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INVITED EXPOSITORY ARTICLE

This paper is another in the continuing series of expository papers that were invited by the editors. These
papers undergo the same refereeing procedure as do research papers submitted directly by the authors, although
the refereeing guidelines are modified to suit the largely expository nature of the paper. Due to the rapid recent

technical development of a number of areas in control and optimization, many of the seminal papers are quite
specialized and are readily accessible to a limited group of experts only. Moreover, the original motivations and
practical importance of the ideas are sometimes difficult to find in the mathematical development. The purpose
of these papers is to bring the ideas, techniques, and applications of a few selected areas to the attention of a
wider audience, so that their basic importance can be more easily and widely appreciated.

CONTROLLABILITY OF NONLINEAR DISCRETE-TIME SYSTEMS:
A LIE-ALGEBRAIC APPROACH*

BRONISLAW JAKUBCZYK’ AND EDUARDO D. SONTAG$

Abstract. This paper presents a geometric study of controllability for discrete-time nonlinear systems.
Various accessibility properties are characterized in terms of Lie algebras of vector fields. Some of the results
obtained are parallel to analogous ones in continuous-time, but in many respects the theory is substantially
different and many new phenomena appear.
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1. Introduction. This paper deals with questions of controllability for discrete-time
nonlinear systems

(1) x(t+ 1)=f(x(t), u(t))

for which the control variables u and state variables x take continuous values. Systems
of the type (1) but with discrete-valued states and controls have long been studied in
automata and sequential machine theory, but the continuous case has only recently
become the subject of serious investigation as far as controllability properties are
concerned. Our objective here is to survey a number of known results and to present
new characterizations involving geometric ideas.

The study of controllability questions for the better known continuous-time
analogue of (1), the differential equation

(2) :( t) qb(x( t), u( t)),

has been the subject of a concentrated research effort, as documented, for instance,
in the survey papers [2] and [7], the text [8], and the exposition [35]. It is known, for
instance, that the set accessible from any given state x, that is to say, the set of points
reachable from x, contains a smooth submanifold of the state space and is in turn
contained in a submanifold of the same dimension. Thus, for instance, the cusp in
Fig. 1 cannot be an accessible set for any system of the type (2). More interestingly
perhaps, this dimension can be computed from the rank of certain matrices formed
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FIG. 1. Impossible reachable set.

by taking iterated Jacobians of the various vector fields 4’(’, u) evaluated at the state
x. These Lie-theoretic characterizations are "direct" in that they do not involve
integration of the differential equation, and they are closely related to more classical
geometric material related to Frobenious’ theorem.

(Certain technical hypotheses are of course required for the validity of the above
and other assertions that we will make here; for purposes of providing an informal
introduction we shall not make them precise yet; however, as a general rule, real-
analyticity of f and 4’ and the assumption that states and controls take values in
Euclidean space n and m, respectively, are more than sufficient.)

Discrete control systems (1) are of interest for various reasons. Of course in many
areas difference equation models are more natural than differential equations, but our
interest has been motivated more by the problem of modeling physical systems under
digital control via sampling. Recall that sampling is the process under which the state
of a continuous time system is measured at discrete instants, and control actions are
taken also at discrete instants. Figure 2 illustrates a typical approach to computer
control. A discrete-time algorithm observes the state (or more generally, the outputs)

,/
u(t) x(t)

Continuous-time physical
system

Computer
FIG. 2. Digital control configuration.
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of a physical system, through an analogue-to-digital converter. Typically this observa-
tion is made at periodic time instants 6, 26,. --. On the basis of this observation the
controller decides upon a control value u to be applied during the next period of
length 6. This value is converted to analogue form and is held constant during that
next period. So the controls applied to the physical system are restricted to be 6-sampled
controls, constant on intervals [k, (k+ 1)] (Fig. 3). The main point here is that, as
far as the control algorithm is concerned, the physical system is a discrete-time system
described by an equation of type (1), where f(x, u) is the solution of the differential
equation (2) at the end of an interval of length assuming that the initial state was x
and control was held constantly equal to u.

3 23 33 43 53

FIG. 3. O-sampled control.

This description of sampling is oversimplified in many respects. For instance,
analogue/digital conversion involves a quantization of the values of x into a discrete
number of steps. Constant controls values may be smoothed out by a filter before
being applied to the system. Multirate strategies, in which the sampling period is varied
in a fixed set, may also be used. And the time involved in the algorithm actually
computing the value of the control is sometimes nontrivial and must be included in
the model as well. But even without these complications, the study of discrete-time
control systems appears naturally.

Another area in which results from discrete-time nonlinear control theory are of
importance is in the study of Markovian systems (1). There, the variables u(t) are
random, and together with the transitions f they characterize the probabilistic behavior
of the process x(.). Accessibility conditions play a central role in establishing the
existence and smoothness properties of equilibrium distributions; see for instance 15]
and [16].

Yet another source of discrete-time control systems, related to but different from
sampling, arises when numerically approximating the solution of a system (2). For
instance, a Euler approximation with stepsize h gives the recursion

x(t + 1) x(t)+ hqb(x(t), u(t)).

These motivations notwithstanding, discrete-time systems have been studied much
less than their continuous counterparts, and it has long been felt that their properties
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may diverge considerably from those of the latter. Regarding control and observation
problems, the paper [26] and the monograph [27] considered various aspects of
discrete-time systems defined by polynomial evolution equations. However, the general
theory remained, until recently, much weaker than that possible in the more classical
continuous time case, for which a large body of knowledge, as described above, is
now available.

One of the main difficulties in the general discrete-time case is due to the possible
noninvertibility of the one-step transition maps

x---f(x, u),

which means that semigroups tend to appear where groups would appear in the
continuous case, so less algebraic structure is available. Accessible sets with singularities
such as the curve in Fig. 1 can then easily appear.

An important observation, however, is that--due to the time-reversibility of finite-
dimensional differential equationsmfor those discrete-time systems that arise through
sampling these transition maps, obtained by integrating (2) over an interval of length
6 with control =-u, are invertible. More precisely, each of these maps is a diffeomor-
phism (possibly not everywhere defined) of the state space. This is analogous to the
situation in classical dynamical system theory, where one studies time-one diffeomor-
phisms and Poincar6 maps associated to differential equations. Invertible discrete-time
systems are often also obtained in numerical schemes for discretizing continuous-time
models, if mesh sizes are chosen small enough.

In this paper we shall restrict our attention to invertible systems, for which the
maps f(., u) are assumed to be diffeomorphisms. For such systems we derive several
characterizations of accessibility and we study the geometric structure of accessible
sets. As an example, we provide a theorem that shows that, at least from equilibrium
states, a picture such as that in Fig. 1 can never hold for these sets. (Precise statements
of results are given later.) As with continuous-time systems, we also give Lie-theoretic
characterizations of accessibility. These characterizations have the advantage that they
do not require the computation of arbitrary iterates of the transition map, save for
those iterates corresponding to just one value of the control value set.

The basic fact that underlies our approach is that one has an analogue for difference
equations of the infinitesimal information obtained in the continuous-time case by
taking derivatives with respect to time. One uses here derivations with respect to control
values. This idea can be traced back to the paper [9], the first to deal in detail with
general invertible discrete nonlinear control systems, although in the context of reali-
zation theory rather than controllability problems. For the latter, and for the source
of the closest related material to that presented here, the credit goes to Fliess and
Normand-Cyrot ([3], [25]), who originally proposed the definition in this manner of
Lie algebras associated to discrete-time systems. This is analogous to associating a Lie
algebra action to any given Lie group action. Other work along those lines was carried
out in [11], [32], [17], [29], and related papers. A particularly important line of work
is that pursued in [18], [20], [22], as well as by other authors (see, e.g., [5]), who have
shown how to frame a large number of problems of control design (decoupling,
noninteracting control, immersion, and so forth) in this geometric formalism; we shall
not deal with such questions in this paper, however. For other recent references on
geometric discrete-time control, see, for instance, the following papers as well as
references given there: [1], [6], [10], [12], [14], [19], [24], [28].

We close this introduction with the precise statement of a simplified version of
one of our main results to illustrate the nature of our contribution. Assume that the
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system (1) is analytic, in the sense that f is analytic, and invertible, meaning that each
of the maps

f =/(., u): " --> "
is a global diffeomorphism of" for each control value u; for simplicity assume further
that the control values are arbitrary real numbers, u U := .

Denote by f0 the kth power of fo with respect to composition, and define the
following vector fields depending on u:

0
f f+v(x),X;(x) =Uv :o

fu+v(x),XX(x)
,=o

and more generally for each integer k and for = ,f =f,, fS=f,

f((Ad Xu)(X)=
0

fof f+,o x),

where - -, + if +, -, respectively. These vector fields were introduced in
[11], [17], [20], and [21].

In analogy with standard continuous time notions of accessibility, we call the
system (1) forward accessible from the state x " if its attainable set from x has a
nonempty interior. Similarly, we say that (1) is backward accessible from x it its
backward attainable set from x, the set of points controllable to x, has a nonempty
interior. Finally, we say that the system is forward-backward accessible or transitive
from x if its orbit through this state (the smallest positive and negative-invariant set
containing x) has a nonempty interior. The orbit turns out to be a submanifold, so
forward-backward accessibility is equivalent to this orbit being an open subset of the
state space.

By an equilibrium state x we mean one that satisfies f(x, 0)=0. Part (c) of the
following theorem had already been stated in [11] (see also Theorem 7 in [20]) but
parts (a) and (b) are totally new. The theorem is a specialization to analytic systems
and equilibrium states of much more general results to be discussed later.

THZOZM 1. efollowing statements hold for any analytic system (1) and equili-
brium state x:

(a) System (1) is forward accessible from x if and only if
dim Lie {ad Xk O, u U}(x) n.

(b) System (1) is backward accessible from x if and only if
dim Lie {Ad Xlk O, u U}(x) n.

(c) System (1) is forward-backward accessible from x if and only if
dim Lie {Ad X:[k Z, u U, }(x) n.

It is an easy corollary of this theorem that all three conditions (forward, backward,
and forward-backward accessibility) coincide for analytic systems and equilibrium
initial states. This gives a generalization of the well-known Chow Theorem in the
continuous-time theory. More generally, the dimension of the corresponding (forward,
etc.) accessible sets are given by the dimensions of the above subspaces, from which
it follows that the (forward) accessible set is an open subset of a manifold (the orbit);
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therefore, the cusp in Fig. 1 cannot be a forward accessible set. Later we give an
example for which this cusp appears as the union of three orbits, corresponding to
the origin and each of the two smooth branches.

Note that the conditions in Theorem 1 involve iterated compositions of transitions
corresponding to only one control--arbitrarily taken as the zero control. The "naive"
conditions that one can give based on the implicit function theorem for the above
accessibility properties, reviewed below, would involve compositions of all transition
mappings, as well as, for backward and forward-backward accessibility of their (pos-
sibly hard to compute) inverses. Moreover, in the particular case when the. system has,
for instance, the form

x(t + 1)= x(t)+ g(x(t), u(t))

with g(x, 0)-= 0, the "Ad’s" become all the identity and no compositions at all need
be computed.

In this paper, we present an exposition, including complete proofs, of the known
transitivity (positive and negative-time accessibility) facts, as well as of new results
for the substantially different (positive-time) forward accessibility problem. We also
clarify the relationship between a large number of forward and/or backw..ard controlla-
bility notions. Another topic studied is the role played by various continuous time
systems derived mathematically from the original discrete time model, and we show
how to view the more classical results for continuous-time systems as a particular case
(essentially when "time" is thought of as a control) of our theory. Finally, we provide
an application of our accessibility characterizations to the sampled control of con-
tinuous systems; the resulting explicit eigenvalue condition, which generalizes the
classical (linear system) sampling theorem, illustrates the power of the techniques
developed. An illustrative example is included towards the end of the paper, which
ends with a brief description of the alternative approach due to Normand-Cyrot.

2. Basle lefinitions. We start by introducing basic notation and definitions. As
stated previously, time takes integer values, 7. We introduce the following notations
for the effect of shift operators:

x+(t) x(t+ 1) ancl x-(t) x(t- 1).

In this way we can write equation (1) in the more compact form, with f/ =f
x+ =f+(x, u), x(t) 6 , u(t) .

The state set Z is a connected differentiable manifold of dimension n. To simplify the
notation we first assume that the control is scalar, meaning that is a subset of
contained in the closure of its interior,

U clos int ,
such that 0 U. Later we show how to generalize everything to the case where LI is a
subset of a more general manifold.

The system is of class C ’ if the manifold Z is of class C, Hausdorff, second
countable, and the function f:Z U-Z is of class C, meaning, to be precise, that
there exists a C extension of f to an open neighborhood of Z in Z x. When
k oo we say simply smooth; for k co, analytic.

Associated to each such system there is a family of maps

fu =f(’, u): - ?K, u U.
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DEFINITION 2.1. The system (1) is invertible if for each u in an open neighborhood
of U the map f, is a global diffeomorphism of X.

Invertibility can be weakened in various ways. For instance, many results can be
obtained under the assumption of local invertibility at x, meaning that for each u U
f, is a local diffeomorphism at x, i.e., rank (Of,/Ox)(x) n, or the assumption that this
holds for every state, local invertibility of the system. The paper [10] shows how a
condition called submersibility is in fact enough to define many of the concepts that
we use in this paper.

To any invertible system one can associate an inverse or reversed-time system with
equations

(3) x-=f-(x,u),

where f-(x, u)--fl(x). By the implicit mapping theorem, this is again of class C k,
and its inverse is the original system.

Unless otherwise stated, every system appearing in this paper will be assumed to be
invertible. Furthermore, until 6, controls are scalar.

The maps f, and their inverses fl can be considered as "one step forward maps"
(respectively, "one step backward maps"). Ifwe apply a sequence of controls ul, , Uk
then we obtain the composition of these maps denoted by

(4) f,,,..-,.,, =Lk L,.

Allowing backward as well as forward steps we obtain a larger family of maps

where each of el,..., ek takes a value +/-1.

We shall denote by A-(x) the set of points attainable from x in k forward steps,
and by A+(x) the set of points attainable from x in any nonnegative number of forward
steps. Replacing forward steps by backward steps we obtain other sets, A-(x) and
A-(x), which consist of points controllable to x in k steps, and controllable to x in
any nonnegative number of steps, respectively. Finally, the set of points attainable
from x in any number of positive and negative steps is called the orbit of x and is
denoted by A(x).

DEFINITION 2.2. The system (1) is forward (backward) accessible from x if its
attainable set A+(x) (respectively, A-(x)) has a nonempty interior. It is called transitive

from x (orforward-backward accessiblefrom x) if its orbit A(x) has a nonempty interior
(and so it is necessarily open).

Finally, the system is forward (backward) accessible if it is forward (backward)
accessible from any x X, and it is called transitive if it is transitive from any x .

Observe that there is a straightforward criterion for accessibility of the discrete
time system, based on the rank of the following map. For each fixed state x and integer
k define

6,.(u) := f. ,(x),

where u (u,. ., Uk) takes values in the kth Cartesian product k. Notice that the
attainable set A-(x) is by definition equal to the image of this map. The following
proposition says that this set is of nonempty interior if and only if the linearization
along some trajectory starting from x is controllable.



8 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

PROPOSITION 2.3. Let (1) be smooth. For any fixed x and k, the interior of the
attainable set A-(x) is nonempty if and only if

sup {rank 0 }ou O,(u)
u n

and thus

sup{rank0 }Oubk,(u) uUg, k > 1 =n

is necessary and sufficient for forward accessibility of system (1) from x.

Proof If there is a point u at which the rank of the map Pk, is equal to n, we
may assume without loss of generality that u is in the interior of U, because of the
hypothesis that U c clos int U. It then follows from the implicit function theorem that
the image of this map has a nonempty interior. Thus, the attainable set A-(x) has a
nonempty interior. (Only that the system is of class C is used for this implication.)

Conversely, if the rank of the map q’k,, is less than n at each u [U, then every
element of A-(x) is a critical value of Pk, as a map defined on an open subset of k.
It follows by Sard’s theorem that the image of U under this map is of empty interior
and is of measure zero under the measure induced by any Riemann metric on (the
Euclidean metric in [n). Therefore, the attainable set A-(x) must have an empty
interior and it is even of measure zero.

The second statement follows from the first because a countable union of sets of
measure zero again has measure zero.

REMARK 2.4. Since the orbit A(x) is the (countable) union of the images of the
maps (5) we can use an analogous argument to give a criterion for transitivity from
x, using the maps (5) rather than (4) to define a family of maps playing the role of
the Ok,x’ S.

The above proposition and remark might appear to give satisfactory criteria for
forward accessibility and transitivity. Unfortunately, this is not the case. Although for
simple systems they may be used to decide whether a given system is forward accessible
or not, for more complicated sytems explicitly computing the functions Ok, may be
highly nontrivial, since composition is hard to deal with computationally. As an
example, consider for instance the problem of obtaining a general formula for the nth
composition of the quadratic function g(x) ax + bx + c with itself or that of comput-
ing the function Ok, if f(x, U)= g(X)+XU. The problem becomes even more serious
in the case of deciding the transitivity of the system, as this requires also finding the
inverse maps f needed for computing the composed maps (5). One approach here
is to develop a calculus for these compositions, as in the work of Monaco and
Normand-Cyrot; see the last section. But in any case, even for classes such as that of
bilinear systems, Proposition 2.3 doesn’t seem to provide much useful information
regarding accessibility properties.

Also, from a purely theoretical point of view, Proposition 2.3 is of little interest.
This is because it gives too limited an insight into the geometry of our systems and it
provides an even more limited tool for their study. The maps appearing in the criteria
do not have much algebraic and geometric structure.

The main aim ofthe next section is to introduce a sort of"infinitesimal description"
of the discrete-time system. This is done by introducing certain vector fields associated
to it. By doing so we immediately get a powerful tool and a rich algebraic and geometric
structure based on the Lie product of vector fields. In particular, the accessibility
properties of the system can be studied using natural Lie algebras of vector fields



DISCRETETIME CONTROL 9

associated to the system. The idea of introducing vector fields corresponding to
infinitesimal perturbations of control values is a natural generalization of the concept
of actions of Lie groups, and it was originally proposed in the context of nonlinear
control in [3]. These vector fields also find natural applications in the study of
controllability properties and the feedback linearizability of sampled systems
([29], 12]).

3. Vector fields associated to the system. We associate the following four families
of vector fields to our discrete time system (1), one vector field for each u U"

o
X(x)=
v+(x)

o
Ov

f’ f+(x),
v=O

u+v(X),

.+ L(x),

fu+v fl(x)
v=O

The partial derivatives here are well defined in the interior of U; therefore, they are
also uniquely defined on the boundary of U because of continuity. The geometric

f f

FIG. 4 (a) FIG. 4 (c)

7
u+3u

FIG. 4 (b) FIG. 4 (d)
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meaning of these vector fields is illustrated by Fig. 4, and the interrelations between
them are explained in the next proposition. These vector fields were also introduced
in [17], [20], and [21], using somewhat different terminology. The last section will
explain the relation between the different notations.

The special case in which the function f happens to correspond to the flow of a
vector field Z, that is, f(x, u)=exp (uZ), will be important later when discussing
continuous time systems within our framework. In that case all of the above vector
fields are in fact independent of u, and they provide the same information about the
system. This is because by the semigroup property of flows it holds that fu+ =fu f
f, fu, so that X+ -X Z Y+ Y. These equalities help us to understand why
the continuous time theory is considerably simpler than the discrete one.

Note that applying these definitions to the inverse system (3) instead of system
(1) gives the same vector fields except that the pluses are changed for minuses and
vice versa.

Given a vector field Y and a control value u, we can define another vector field
from Y by applying a change of coordinates given by the diffeomorphism f,,

(Ad, Y)(x) (dfu(x)) -1 g(fu(X)).
Here dfu stands for the differential of f, with respect to x. Using the diffeomorphisms
(4), we may also define

(Aduk...Ul Y)(x) (dfu,...ul(x)) -i Y(f,,k...,,(x)),
and, applying the even more general family of diffeomorphisms (5),

(6) (Ad e’’’l Y)(x) (d/,.il,,,..., .,,(x))- Y(f,:::’,(x)).
Clearly, the operators "Ad" so defined are linear operators acting on vector fields Y,
and we have that

(7) Adk, V=Ad,-.- Adk Y.Uk’"U Uk

(Note the reversal of indices.) We will use the abbreviated notation Ado Y for Ado...o Y
with u=0 repeated k-times, if k>0, and for Ado-).i-I Y, if k <0. Additionally,
Ado

o Y Y. With this notation we have that

O
f-d ’ f-’ f,+,ofo(X)(Ad X+ )(x)

Ov v=0

(see Fig. 5) and, more generally,

O
f-1 -1(Adu ,X,+o)(X)

Ov =o
Ilk f fuo+vfu"’ul(X)

Since our system is assumed to be invertible, we could apply all definitions to the
inverse system (3) instead of (1). Then all the pluses in the superscripts change for
minuses and Adu changes for AdX1, and vice versa. Therefore, we will have the following
fact, which we shall use repeatedly.

REVERSION PRINCIPLE. Any general property ofsystems of the type (1) that can be
expressed in terms of the above defined vector fields is preserved if we change the pluses
in the superscripts for the minuses and each Adu for Ad21, and vice versa.

Remark 3.1. Some of the above defined vector fields can be equivalently defined
as follows:

0
x.+(x) (d/. (x))-’ L(x),

(Adu..., X,+o)(X) (dfuk ,,(x)) -1 +X,o(f,,...u,(X)).
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3+ f
AdX f o

0 f0 0

X 0

f

f

FIG. 5. Ad X,+,.

u+Ou

Since the inverses fl do not appear, the right-hand sides now make sense for locally
invertible systems. Those of our results that can be stated exclusively in terms of the
above vector fields will also hold for locally invertible systems. Furthermore, criteria
stated in their terms can be checked without computing the inverse of any diffeomor-
phism; only matrix inversions are required. For instance, take the system with , U
[-1, 1], and equations

+
Xx +2x+usinx.

Since for each fixed value of u the right-hand side is strictly increasing, this is an
invertible system. We obtain here that

sin xX+u (X)
3x2 + 2 + u cos x

in the natural coordinates.
The basic interrelations between the vector fields X+, X, Y+, Y are given by

the following proposition.
PROPOSITION 3.2. The following equalities hold for each u U.
(a) X+=-Y+u, X-=-Y-.
(b) X+=-AdX, Y+=-AdY.
Proof To prove (a), we differentiate with respect to u the equality

f-of(x)= x

and we get

v+.(x)+X+.(x)=O.

The second equality in (a) follows from the first by the reversion principle.
On the other hand, differentiating with respect to v the equality

f’ oL+v(x) =fS’ oL+ of’ oL(x)

we get X+ Adu Y, which together with (a) gives (b). The proof of the last equality
now follows by the reversion principle. [3
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Later in the paper it will be very useful to have a formula for the derivative with
respect to u of a vector field Y transformed by the diffeomorphism fu. It was noted
in [25], [11], [17], [18] that this derivative can be easily expressed via the above
introduced vector fields and the Lie bracket; in fact, the next two propositions appear
as the first steps in the proof of Theorem 3 on page 26 of 17] and of Lemma 3 in 18].

Here and further we shall use the standard notation Y, Z] for the Lie bracket of
the vector fields Y and Z which, in ", is given by Y, Z] OZ/Ox Y-0 Y/OxZ. We
also denote ad Z(Y) [Z, Y] and the kth iteration of the operator ad Z, adk Z(Y)
ad Z... ad Z(Y). The flow of the vector field Y is denoted by exp (tY).

PROPOSITION 3.3. Thefollowing equalities holdfor any vectorfield Z and any u c k]:

0
Ad. Z ad X+(Ad. Z)

Ou

and

0
Ad’ Z ad X(Ad’ Z).

Ou

Proof It is enough to prove each of the equalities locally, so we shall assume that
we are in En. We have that

0
Adu Z

0

ou - t=o 0-fS’ exp (tZ)of.(x)

,=o (uf-’) f,.f-’ exp (tZ) f,(x)

0
+

Ot t=0

d(f’ exp (tZ) f)(x)(df,(x))-’ uf(x
(0 V+/Ox)(x) Adu Z(x) + (0Ad, Z/Ox)(x)X+(x)

IX/ Ad,Z](x),

where we use the equality X+= -Y+.
The second equality follows from the first by the reversion principle, replacing f,

byf
In the next proposition and in the rest of the paper we shall use the following

notational convention. Given a family of vector fields {Y]a cA}, we denote by
Lie{Y]c cA} the Lie algebra generated by this family of vector fields and by
Lie Y]a c A}(x) the subspace of the tangent space at x generated by the vector fields
in this Lie algebra.

PROPOSITION 3.4. For analytic systems and connected U,

and

k+lAdok X+(x) c Lie {Ado X-lu c U}(x)

-k-1 +Ad-k X-(x) c Lie {Ado Xulu c U}(x)

for each x c , each u c U, and each integer k.
In the proof of this proposition we shall use the following lemma. This lemma is

in fact about identities on free Lie algebras; we give a somewhat informal statement
to avoid having to introduce considerably more machinery.
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LEMMA 3.5. For any r >--0 there are coefficients al," ap [ and bl," bq
independent of x and u such that

O 0 + X Mr’+Ad, X =awhere YLie X,ouX,,. Ou

Ad X bZ where Z Lie X2 X XX Mr’-.
OU OU

Moreover, these coecients, as well as the expressions of each Z and in terms of
the generators of the corresponding Lie algebra of vector fields, are independent of
the particular system.

Proo From Proposition 3.2 it follows that the assertions are true for r 0. Assume
that the first of them is true for r k From Proposition 3.3 it follows that

0k 0k 0k+
Ad, X ad X Ad, X-+ Ad, k+ X-.(8)

Ou Ou k Ou k Ou

In general for parametrized vector fields A,, Bu we have that

0__[A,,B,]= 0
A, B, + A,,-uBOu

Thus it follows from the induction assumption that the left side term in (8) is a linear
combination of elements in Mk+l’+ and so is the first term on the right. Therefore, the
second element on the right is a linear combination of elements in Mk+’+u and the
assertion is true for r k + 1.

The second part of the proposition follows from the first and the reversion
principle.

Proof of Proposition 3.4. In the proof we shall use the following corollary to the
Taylor formula for an analytic, vector valued function g defined on a connected set
U containing the origin" span {g(u)[u 3} span {g(i)(0)li _>- 0}. We have

k +span {AdoX,, uU}(x)=Adospan X+,r->_0 (x)
oblr u=0

cAdo Ado Lie X ,r=>0. (x)
0 blr u=o

k+lLie {Ado X[u 3}(x).

Here the inclusion follows from Lemma 3.5 (apply Ad, to both sides of the second
equation and then evaluate at u-0); the first and the third equality follow from
Taylor’s formula.

The second assertion of the proposition is a consequence of the first and the
reversion principle.

Note that it is not claimed in Proposition 3.4 that, for instance, X+. is in the Lie
algebra generated by the vector fields Ado X. The statement pertains only to the
equality of the associated distributions, that is, of the tangent spaces at each point.

4. Aeessibility criteria. To state our criteria we shall need the following families
of vector fields"

+F+ {Ad,k...u, X,olk >- O, Uo, Uk U},

F- A,- X-olk > O, Uo Uk U},

F={Adk’’ k>0, Uo uU e,...,e=+/-l,o’=+/-}Uk...Ul
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As previously, for a family of vector fields A, we denote by Lie {A} the Lie algebra
of vector fields generated by A, by A(x) the linear space spanned by the vectors at x
given by the vector fields in A, and by Lie {A}(x) the linear space of tangent vectors
at x given by the vector fields in the Lie algebra.

The following theorem gives criteria for accessibility of smooth systems. It will
be one of the main results of this paper.

THEOREM 2. The following properties hold for any smooth system (1).
(a) The system isforward accessible ifand only ifany ofthefollowing two equivalent

conditions hold"

dimF+(x)=n Vx, or dim Lie{F+}(x)=n VxX.

(b) The system is backward accessible ifand only ifany ofthefollowing two equivalent
conditions hold"

dimF-(x)=n /xe, or dim Lie{F-}(x)=n /x

(c) The system is transitive ifand only ifany ofthefollowing two equivalent conditions
hold"

dimF(x)=n lxe, or dim Lie{F}(x)=n

To state a stronger version of our result, valid for analytic systems, we need the
following Lie algebras of vector fields:

kL+ Lie {Ado X+[k>=O, ue U},

L- Lie {Ado X-lk <- O, u U},

L Lie {Ado X;lk e 77, u e U, cre { +, }}.

The following inclusions are evident:

L+cLieF+, L-cLieF-, LcLieF.

In terms of this data, we now state another one of our main results. As remarked
earlier, the transitivity case had been stated before ([11], [20]). Even for that case,
however, we believe that this paper contains the first complete proof.

THEOREM 3. The following properties hold for any analytic system (1) with con-
nected U"

(a) The system is forward accessible if and only if
dim L+(x) n for any x

(b) The system is backward accessible if and only if
dim L-(x) n for any x

(c) The system is transitive if and only if
dimL(x)=n for any x

Remark 4.1. As a consequence of Proposition 3.4, if we were to take in the
definition of the Lie algebra L only r +, or alternatively, only r -, a smaller set
of vector fields may result, but the conclusions in the theorem would hold equally well.

There is a pointwise version of the above results. An equilibrium point Xo is
one such that f(xo, O)= O.

THEOREM 4. The following properties hold, if is connected"
(a) A smooth system (1) is transitivefrom x ifand only if dim F(x) n (equivalently,

dim Lie {F}(x) n). An analytic system (1) is transitivefrom x ifand only if dim L(x) n.
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(b) An analytic system (1) is forward (respectively, backward) accessible from an
equilibrium point Xo if and only if dim L+(xo)= n (respectively, dim L-(xo)= n).

The proofs of all these results are given later after we develop some further theory.
The second part of Theorem 4 will be strengthened as a consequence of the

following proposition.
PROPOSITION 4.2. If the system is analytic, U is connected, and Xo is an equilibrium

point, then

t+(Xo) -(Xo)= (Xo).

Proof Since L+(xo)C L(xo), it is enough to show that L+(xo) has the same
dimension as L(xo) to conclude that they are equal. Pick a basis of the latter and
assume that the elements in the basis involve vector fields of the form Adok X+, with
the possible k bounded below by the integer k*. (Recall Remark 4.1 to the effect that
we may always assume that or-- + in the definition of L.) Applying the operator

Adk*

to these vector fields, we obtain vector fields in L/. As Xo is an equilibrium point, the
operator Adk* preserves the tangent space at Xo and we obtain a set of linearly
independent vectors in L/(xo), as desired. The argument for L- follows by the reversion
principle.

The above theorem and proposition immediately imply the following corollary.
COROLLARY 4.3. Assume that the system is analytic, is connected, and Xo is an

equilibrium point. Then forward accessibilityfrom Xo, backward accessibilityfrom Xo, and
transitivity from Xo are all equivalent properties.

We will prove the above theorems by splitting them into (somewhat stronger)
sufficiency and necessity results.

Define the following families of vector fields"

X+u oi 0
=X+ x-,i=x

otli OU

TI-IEOREM 5. The following statements hold for any smooth system (1).
(a) If

(9) dim Lie {F+}(x) n for all x

then the system is forward accessible.
(b) If Xo is an equilibrium point and if

(10) dim Lie {Adok X-’i]k >= O, i>= 0}(Xo)= n,

then the system is forward accessible from Xo.
(c) The same statements holdfor backward accessibility if we replace F+ for F- and

X+’ for X’
Proof (a) Let us fix an x e X. Let p and v*,. , vp* be such that the rank of the

Jacobian of the map

(11)

* Becauseis maximal (over all p >0 and v,..., vp ) at v*,..., vn.
we may assume that these are in the interior of . Let W be a neighborhood of
(v*,..., vp*) on which this rank is maximal and such that the image S of W under
the above map is a submanifold. Since S_ A+(x), it is enough to show that the
dimension of S is equal to n, from which it will follow that S is an open subset of
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+We now prove that each vector field of the type Ad,k..., X, is tangent to S. It
will follow then that all the Lie brackets of these vector fields are tangent to the
submanifold S. This, together with assumption (9), will imply that S is of dimension n.

Assume that the vector

tz := (Aduk...ul X+u/,)(y)
is not tangent to S at y =f,,...,(x), for some ul," , uk+l (for convenience we denote
Uo by uk+ now) and some (v,..., vp) W. Again, we may assume that these are all
in the interior of U. Thus

0
fu+, fu,+l+V f,...,,(Y)

0t) v=o

is not tangent to S and therefore also

0
fu+,+v fuk...Ul L...v, (dfu+,...u,)(y)lz

0t v=o

is not tangent to the submanifold fu+,...,,,(S). But this means that the rank of the
Jacobian map of the mapping

(Vl, , v,, u,,..., u+,)-L+,...,,...,(x)
is at least dim S + 1 for this sequence v, , vp, u, , u+, contradicting maximal-
ity of the rank. It follows that the vector field Ad. X+ must indeed be tangent"/’gl /3k+l

to S.
(b) The idea of this part of the proof is the same as in part (a) except that now

the rank assumption is made at one point only. Thus, we have to construct the manifold
S in a neighborhood of Xo so that n linearly independent vector fields in the Lie algebra
(10) are linearly independent in this neighborhood and tangent to this manifold.

Let V be a coordinate neighborhood of Xo such that there are n vector fields in
the Lie algebra (10) which are linearly independent on V. Suppose that these vector
fields involve only k =< k*. Let V c V denote the open ball of radius e centered at Xo.
Fix 6 so that V c V and denote by r the supremum of the possible ranks of those
maps (11) with p -> 1 and x Xo for which all the points of the trajectory

xi =fi...,(Xo), i= 1,..., p,

lie in V. Note that re is nondecreasing with e. Let r=inf{rlO<e<6} and let
e*:= sup {elf= r}. Note that e*>0. Take 0< o- < e* such that all trajectories starting
from V stay in V, for the next k* + 1 steps, under the constant control u 0. Let the

*).corresponding supremum of ranks defining r r be achieved at p and (v*, ,
We define our manifold S as previously, where W is a neighborhood of

(v*,..., vp*) such that all trajectories corresponding to controls in W lie in V. By
an analogous argument as for (a) we see that the vector fields Ad,...,, X, are tangent
to S, provided that k =< k* and Uo, , u are close enough to zero so that our trajectory
does not leave V,, and so the rank cannot increase over r (cf. the definition of o-).
Taking u u =0 and the derivative (o/Ouo) at u* we conclude that the vector
fields Ado X-’i are tangent to S. Therefore, their Lie brackets must be tangent to S,
also. Because of our choice of the neighborhoods, there are n linearly independent
vector fields among those Lie brackets and so S is an open subset of Z.

Statement (c) follows from (a) and (b) and the reversion principle.
The above proof, part (a), gives a somewhat stronger result, actually, which we

state below for further use.
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COROLLARY 4.4. If y is a point forward reachable from x with maximal rank
(in the sense of the ranks of maps (11)), then the condition dim Lie {F+}(y) n implies
that the system (1) is forward accessible from x.

We are now ready to establish a converse to Theorem 5.
THEOREM 6. (a) If system (1) is of class C and forward accessible from x, then

dim r+(x) n.

(b) If system (1) is analytic, forward accessible from x, and U is connected, then

dim L+(x)= n.

(c) Analogous results holdfor backward accessibility with F/, L/ replaced by F-, L-.
Remark 4.5. The case when U is a nonconnected subset of R can also be treated.

Assume that U is a disjoint union of connected subsets of R, each of which is in the
closure of its interior. Then (b) also holds but we have to choose a subset Uo c U which
has at least one point in each of these sets. Then

L+ Lie (Aduk x+l k >- o, u , Ill, IIk J0}

must be used in this case as the definition of L+.
ProofofTheorem 6. (a) If the system is accessible, then it follows from Proposition

2.3 that, for some k-> 1 the rank of the map k,x is equal to n at some point. This
means that the following vectors span an n-dimensional space, for some sequence
Ill, IIk"

Hence, also the vectors

0

OUiLk...Ul(X), i--- 1,’’’, k.

(d/,...,,(x))-’ouL...,,(x)
which can be equivalently written as

0
f-1 --1

tli_ "ill of f,+, f,,_,. ,(x)= Ad,. ,. ,X+.bliOv v=o

i= 1,. ., k, span an n-dimensional space and statement (a) follows.
(b) The proof will be based on a reduction to continuous time systems, as done

in [29] for the transitivity problem.. A different proof, not involving such a reduction,
is provided in a later section. If our system is accessible from x, then it follows from
Proposition 2.3 that there exists a k such that the rank of the map

(u,,. ., u)-,L...,,(x)
is equal to n at some point (Ul*,"" ", Uk*), and so its image contains an open set V.
Then W =f-(V) is also open and x W. We will show that W is contained in the
orbit through x of the Lie algebra L+ (cf. [34]), which we denote by Orbt+ (x). This
will imply that the orbit is of dimension n and from a theorem of Nagano ([23], [34])
it will follow that dim L+(x)= n.

Let y W. We will show that y Orbt (x) by showing the equivalent fact: x
Orb/+ (y). We have that

x=f-1 f-d)o fko( (y),,, Y gl,u, gk,u,
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where

gi, u, f’+’f,--,’o fio.
Denote Yk Y, and

Yi-1 gi,ui(Yi), k, 1.

We have that Yo x. It is enough to show that Yi-1E OrbL+ (Yi), for 1, , k.
Denote

y(u) f-d,+, f-, Ofo(Yi)"

Then, for u E [0, ui], y is a curve in joining yi with Y-I; its tangent vector at u is

0

ou /(u) ov f,+l -1 ’--1 yu+(,)/(u)).f.+ f f- y(u Ado

As y(0) y and U is connected, it follows that Yi-1 ’)/(Ui) belongs to the orbit through
y of the family of vector fields Ad-1Y+, u e U. Since Y+ -X+, it then follows that
yi_l belongs to the orbit through y of the family Ad-1 +X, uU. 1

Remark 4.6. If U is not connected, then the result still holds with the modified
definition of the Lie algebra L/ as given in the remark following Theorem 6. The
necessary modifications in the above proof are as follows. We choose elements
vl, ", vk e Uo so that V belongs to the same connected component of U as u/*. Then
we define

W=fl f-,l( V).
Then we have that

X= gl,u, g,,k (Y), gi, u, fl_l...v f-,’ oL,
Finally, we take the curve

y(u) =fl_,..., f-l f,...,(y,),

with u in the interval joining u and vi. Differentiation with respect to u now gives
the vector fields in the modified Lie algebra L+ as defined in the remark following
Theorem 6.

To obtain criteria for transitivity using Theorems 5 and 6, we may apply the
following trick which reduces the transitivity problem to the forward accessibility
problem.

Define U as the disjoint union of two copies of U denoted by U+ and U-. Consider
a system

(12) x+=f:(x, u), x(t)3, u(t) EU+/-=U+yoU-

where f+/-(x, u)=f(x, u) if u e o+ and f+/-(x, u)=f-(x, u)=f-dl(x) if u As the
control set U has two components, we define its Lie algebra of our new system L+

using the definition in Remark 4.6 with Uo {0+, 0-}, where 0+e U+ and 0-e U- are
two copies of 0 e U. Of course, there is no difficulty in embedding the new control set
again in the reals. The following proposition is then clear.

PRoeosIrON 4.7. (a) The Lie algebra L+ of the system (12) is equal to the Lie
algebra L of the original system (1).
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(b) The family of vector fields F+ for system (12) is equal to the family F defined
by system (1).

(c) The forward accessible set of system (12) is equal to the orbit of system (1).
We may now complete the proofs of all the theorems in this section.

Proof of Theorem 2. Statement (a) follows immediately from Theorems 5 and 6,
part (a). Statement (b) follows analogously from part (c) of these theorems. Finally,
statement (c) is the consequence of statement (a) via the above reduction of the
transitivity problem to the forward accessibility problem and Proposition 4.7. [3

Proof of Theorem 3. Statement (a) follows from Theorem 5 (a) and the inclusion
L+ c Lie {F} (sufficiency), and from Theorem 6(b). Statement (b) follows analogously
from statements (c) of these theorems. Finally, statement (c) is the consequence .of
statement (a) via the above reduction trick and Proposition 4.7. [3

Proof of Theorem 4. (a) In the smooth case the "if" part follows from Corollary
4.4 by the above reduction procedure and Proposition 4.7 as, for system (12) the point
x is attainable from itself with full rank. The analytic case follows from the smooth
case by the inclusion L(x)c Lie {F}(x).

The "only if" part follows from Theorem 6 and Proposition 4.7 via the above
reduction.

(b) The "only if" part is the consequence of Theorem 6. To prove the "if" part
suppose that there are n linearly independent vectors in L+(xo). Each of them can be
taken in the form

(13) ad (Adol X-I ad (Ado.-1X+ +,,,, )(Ad0" Xu)(Xo).
If we take the partial derivatives of these vectors with respect to ul,’’’, Up at zero,
we obtain vectors which appear in the Lie algebra in (10). From the Taylor formula
it follows then that the rank condition in (10) is also satisfied and Theorem 5 implies
the result.

5. Nonaccessible systems. In this section we will briefly discuss nonaccessible and,
more generally, nontransitive systems. The following "orbit theorem" is crucial in
understanding such systems. The theorem has a long history starting with results of
Chow, Nagano [23], Sussmann [34], and Stefan [33] in the continuous time case. In
the discrete time case, analogous results to those in continuous time were provided in
[9], [32], [11], and [29], the latter containing also a proof of a more abstract result
dealing with a general notion of action on manifolds. These papers should be consulted
for details of the proof, which we omit.

THEOREM 7. Any orbit A(x) of the smooth system (1) is an immersed submanifold
of with at most countably many connected components, whose tangent space is given by

TyA(y)= F(y)

at each y A(x). In the analytic case we have that

TyA(y L(y

holds also.
As the attainable set from x lies in the orbit from x, there is no chance for forward

or backward accessibility from x if there is no transitivity from x (that is, the orbit is
not of full dimension). In this case it is reasonable to ask whether the attainable set
has a nonempty interior in the orbit. In the case of analytic continuous time systems
the answer is always positive, as proved by Sussmann and Jurdjevic [36]. The following
theorem generalizes this result to discrete time systems.
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THEOREM 8. If Xo is an equilibrium point of an analytic system (1), then each of
the attainable sets A+(xo) and A-(xo) has a nonempty interior in the orbit A(xo).

Proof If we restrict our system to the orbit then the problem reduces to proving
that the system is forward (backward) accessible from Xo, if it is transitive from Xo.
But this follows immediately from Theorem 4 and Proposition 4.2. [3

Remark 5.1. The above theorem provides an analogue of what is sometimes called
the positive form of Chow’s lemma for continuous time systems. In fact, the proof is
related to that of the continuous time case. However, there is an interesting subtlety
that appears here. Contrary to the continuous situation, it is not true now that the
assumption that Xo is an equilibrium state can be relaxed. In the paper [29, Remark
9.15], an example is given of an analytic system on X , with A , and a state x ;
such that A(x)=, but the system is not forward accessible from this x. In fact, the
system in question arises from the sampling of a continuous time system.

We now give the basic outline of how such an example arises. A real-analytic
function of one variable

g(x)

is first constructed, with the property that

Ig’(x)l--< 1 for all x

and whose zeros are exactly at the nonnegative integers 0, 1, 2,. .. Now the system
is given by equations

with

x+-- 1 + x + ug(x)

U=(-1, 1)

as control value set. Observe that this system is indeed invertible, since for each fixed
u the right-hand side is a strictly increasing function of x. Furthermore, for each x the
set

{x,l+x, 2+x,. .}

is included in A+(x). When x is a nonnegative integer, this is precisely A+(x), while
for any other x one can reach an open set in one step, and hence A+(x) is of dimension
1. Since each nonnegative integer x can be reached from, say, -1, it follows that
A(x) A(-1) has dimension 1, so by connectedness, the orbit through each point is all
of X=, even though A+(0), A+(1), are discrete.

These remarks probably mean that the notion of transitivity is in the discrete time
case too weak to be of interest.

The following families ofvector fields will help us to better understand the geometry
of the attainable sets A+(x) and A-(x) and, in particular, to estimate their dimensions.
Define

A={AdX+[0 <i <k-1 uU}, L=LieA+

and

A {Ad X]O_< i=< k- 1, u U}, L Lie A{.

For any family of vector fields A, let OrbA (X) denote the orbit of this family
passing through x. This orbit has a natural structure of immersed second countable
submanifold ([34], [33]). Further, the orbit of Lie A coincides with the orbit of A.



DISCRETE-TIME CONTROL 21

and

PROPOSITION 5.2. For any smooth system with connected control set U we have that

A-(x) c OrbA. (y), for any y A(x),

A-(x) c OrbA. (y), for any y A-(x).

Proof It is enough to prove the first inclusion as the second will follow from the
reversion principle. It is also enough to show this inclusion for any particular y in
A(x), since for any other y this will be implied by the general equality Orb (y)=
Orb (z) for any z e Orbs(y). Our argument will be similar to that used in the proof
of Theorem 6(b). Take

y =fok(X)
and

z =fuk...u,(X) =fuk ful of-k(y).
We have to show that z Orb. (y). The point z can be written in a different way as

z gk,uk gl,u,(Y),
where

gi, fko-’ f f-k+i-1 i= 1, k.

Taking zo=y, zi gi,,,(zi-1), i= 1,..., k, it is enough to show that zi Orba. (zi-1).
Consider the curve yi(u)=gi,,(zi-1), which joins z_l with z when u[O, ui]. The
tangent vectors to this curve are given by

0 0
fo-’ of,+ of; of-k(y,(u))

Ad-k Y-(Ti(u))-- -Ad-k X-(i(u)).

As -k + 1 _-< i-k =< O, it follows that the above curve lies in the orbit of the family A
and the proof is complete. [3

From the above proposition we immediately conclude the following necessary
conditions for accessibility.

COROLLARY 5.3. If an analytic system with connected U is forward accessible from
x, then

dim L-(y) n for any y A+(x).
Similarly, if it is backward accessible from x, then

dim L+(y) n for any y A-(x).

Proof The first statement follows directly from the first inclusion in Proposition
5.2 and the inclusions

U a-(x)= a+(x), OrbA. (x)c OrbL- (x).

The second statement follows analogously. V]

We now turn to yet another reason why our Lie algebras of vector fields emerge
in studying controllability properties of discrete time systems. We will consider our
system in another (time-dependent) system of coordinates. This is basically the same
as the "local" dynamics defined in the references [18] and [20] in the context of
invariant distributions for nonlinear discrete-time systems.
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Consider the usual system x(t + 1)=f(x(t), u(t)) and introduce the time-depen-
dent change of variables

x(t) fto(Z(t)),

where f is the tth power of fo (in the sense of composition). In the new coordinates
our system becomes time-dependent and takes the form

(14) z(t+ 1)= g(t, z(t), u(t)),

where

g(t, z, u)=f’-l f fto(Z).

What is simpler about the new system is that it has the "doing nothing" option, as
g(t,., 0)=id. As a consequence, if the control set U is connected then so are the
attainable sets of system (14)" A+(x), A-(x), and A(x). In that case the next point on
the trajectory, z(t + 1), can be connected with the previous one, z(t), by the smooth
curve y(u) g(.t, z(t), u), where u [0, u(t)] if u(t) > 0 and u [u(t), 0] if u(t) < 0. As

Oy/Ou(u) =Og/Ou(t, z(t), u)

0
(ft-, of.+,, f-’ of)+l(T(U))

Ov v=o

Ad+1 Y(y(u)),

we see that the point z(t) lies in the orbit through z(t + 1) of the family of vector fields

Ad+ Y, u e U. Since Y; =-X, it follows by induction that for t_-<-I any point
z(t) on a trajectory of system (14) starting from z(0) lies in the orbit through z(0) of
the family of vector fields A{, where k---t and so also in the orbit through z(0) of
the Lie algebra L. By the reversion principle, or by the above argument applied for
t>0, it also follows that any point z(t) of any trajectory of system (14) starting from
z(0) lies in the orbit through z(0) of the family of vector fields A, with k t, and so
also in the orbit through z(0) of the Lie algebra L.

Because of our change of coordinates x( t) fo(Z( t)) it follows that a point x(t)
on any trajectory of the original system (1) starting from Xo, lies in the image under
the map fok of the orbit Orb. (Xo) if k > 0 (respectively, the image of Orb7 (Xo),
if < 0, k =-t). Thus, we have the following proposition.

PROPOSITION 5.4. If the control set U is connected then, for any k > O, we have the
inclusions

and

A-(x)c f(Orb/,+ (x))=f0k(OrbL. (X))

A-(x) cfk(Orb7 (x)) =f’(OrbL. (x)).

The orbits of discrete time systems can be expressed via the orbits of the Lie algebra L
according to the formula

a(x) fok(Orb/ (x)).

Proof The first two inclusions follow from the argument above. It also follows
from the above consideration that the vector fields in L are tangent to the orbit A(x)
(cf. Theorem 7). Thus, Orb/ (x)c A(x). As the maps fok preserve the orbit A(x) and
the family of vector fields L, it follows that the inclusion "" holds. On the other
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hand, the computation preceding the proposition also shows that any two points which
can be joined by a (forward or backward) step of the discrete time system can also
be joined by a trajectory of a continuous time system

2 h(x, u), where h(x, u)= Ado X+(x)
and a (forward or backward) jump by fo. It is well known that each trajectory of a

continuous time system lies in a single orbit of this system. It follows then that any
trajectory of the above system lies in an orbit of the family of vector fields L, and so
the inclusion "c" follows.

The relation between the inclusions in Propositions 5.2 and 5.4 can be further
clarified by the following relation between the Lie algebras L and L.

PROPOSITION 5.5. For an analytic system the distributions spanned by the Lie

algebras L- and L- are related by the change of coordinates given by the diffeomorphism
fo, i.e.,

(Ado L-)(x) L-(x), and (Adg L-)(x) L-(x) Vx .
Proof Since the operator Ado is a homomorphism of the Lie algebra of vector

fields, it follows that

Ado L Lie {Ad X[1 -<_ iN k}.

From Proposition 3.4 it follows that

(Ad X-g)(x) Lie {Ad- X+]u U}(x) Vx.

Thus, all the vector fields Ad X;, i= 1,..., k are tangent to the orbit of the Lie
algebra L and so

+(15) (Ado L)(x)c L(x) VxeN.

The reversion principle and the above inclusion yield

(Adg L-)(x) c L-(x) Vx N.

Applying the operator Ado to both sides of the above inclusion gives the converse
inclusion to (15) and proves the first equality in the proposition.

The second equality follows from the first and the reversion principle.

6. Nonscalar controls. All our previous results can be extended, without difficul-
ties, to the case of multidimensional controls. The basic modification needed is that,
whenever derivatives with respect to u are used in the scalar control case, partial
derivatives with respect to the components of u should be used in the multicontrol case.

We assume that the control set U is a subset of " and satisfies the assumption
U c clos int U. Additionally, we assume that any two points in the same connected
component of U can be joined by a smooth curve lying entirely in int U (except of
endpoints, possibly). We denote u (u 1,... u m) and v (vl,... v").

The vector fields X+ defined at the beginning of 3 should now be redefined as
follows"

Or" v=o

y--t-one for each i= 1 ..., m. Analogously, we define X,,, ,, and Y,.
The Lie algebras F/, F- and F are now defined as

F+ {Ad,..., X,o,ilk >-_ O, 1 <= <= m, Uo, u [LJ},
F-= {Ad Ul X-o lk >= O l <- <- m, Uo, Uk kl},

F {Ad..., ..., +}.blk...bl Xuo,iik >= O, 1 <--_ <--_ m, Uo, blk [, El, ek -+- 1, cr
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We also redefine the Lie algebras L+, L-, and L as follows. We choose a subset
03o c 03 which has at least one point in each connected component of 03. In particular,
if the set 03 is connected and 0 03 we can take 03o {0}. We define

L+ Lie {Aduk...u, X+,ilk >= O, 1 <= <= m, u 03, ul, , Uk 03o},

L-= Lie {Adu- u, lX-d,ilk>=0,1<=i<=m,u03, u, uk030},

L=Lie{Adk’X[k>O,l<i<m,uU,u, uk03o e e=+l or=+}.
k.

THEOREM 9. With the above definitions of the Lie algebras F+, F-, F, L+, L-, and
L, all the theorems stated in the preceding two sections remain true.

The proof of the multicontrol versions are completely analogous to the scalar
case. The main modifications needed are the replacement of derivatives with respect
to u by partial derivatives with respect to the components of u, and the replacement
of parameterizations of curves by u with parameterizations by components of u. We
leave the details to the reader.

7. From discrete time to continuous time systems. In this section we have two goals.
The first is the description of one manner in which the study of continuous time systems
can be reduced to that of discrete time systems. The second is the development of a

technique, based on expansions of the previously defined families of vector fields,
which gives added power to the use of these vector fields and their associated Lie
algebras. As an illustration of the use of this technique, we provide a short proof of
part (b) of Theorem 6 which is independent of Nagano’s theorem and of the orbit
theorem. In this manner, not only does the discrete time theory become independent
of continuous time techniques, but in fact it becomes itself a basis for the accessibility
theory for the latter, via the reduction also described here.

To show how continuous-time systems can be viewed as a special case of discrete
time systems, we consider a continuous-time system of the form

(16) =h(x,v),

where x(t) Z and v(t) V is the control. We assume that the controls are piecewise
constant (this assumption does not affect the controllability properties of the system
we are studying). For the convenience of having all the maps defined everywhere we
assume that our system is complete. We introduce the discrete-time system

(17) x+=f(x, u), x(t)6Z, u(t)03=+x V, +=[0,),
where u=(t, v) and f(x, u)=exp(th(., v))(x). In this way, going forward by time
with a constant control v for the continuous-time system corresponds to a forward
step using the control u (t, v) for the discrete time system. Analogously, going
backward by time with the control v corresponds to a backward step with u (t, v).
This implies that the forward (respectively, backward) attainable sets as well as the
orbits of both systems (16) and (17) coincide. Thus both systems have identical
controllability properties.

It is convenient to endow V with the discrete topology. The set 03 + x V can
be viewed then as the disjoint union of copies of +. We compute the Lie algebras
L+, L-, and L corresponding to system (1 7) according to the remark following Theorem
6. We choose the subset 03o {(0, v)lv V} c 03. Then fo id and we can easily compute
that

X+=h(’,v)=-X, for u=(t,v).

Strictly speaking, the present set 03 is not an allowable control set, since it is not
a subset of ". However, the arguments in previous sections can be repeated as long
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as we use in the definition of X,+ and X only differentiation with respect to but not
differentiation with respect to v. Finally, we obtain

L+= L-= L= Lie {h(., v)lv V}.

Our aim now is to prove a discrete time version of the well-known Baker-
Campbell-Hausdorff expansion formula for a vector field Y transformed by the flow
of a vector field Z:

1
Adu Y= =o -.. adkZ(Y)"

This is classical when Ad, corresponds to f, exp (uZ), for which X+ Z =-X.
Assume now that f is of the general form f =f(x, u); we wish to generalize the above
formula.

LEMMA 7.1. For analyticfand Y we have thefollowing expansions, for u sufficiently
close to zero,

’ adX ..adXAd, Y +, + Ado Y dye" dye,
=0

Ad Y ad X- Ad-1 Ydv... dv
=0

where the series converge pointwise at each x .
Iff and Y are of class C only, then we have the formula

kIoIo IOi(18) Adul Y= Y ad X,, ad X,, Ado Y dvi" dVl + R,
i=0

where

R, ., +, Ad+, Y dvk+

(Note the subscript "0" in Ad: Y in each of the above formulas except for the
one for the reminder term Rk.)

In order to prove the above lemma we shall first prove the following estimate.
Below we shall denote by I] the absolute value of 0, if 0 is a scalar, and the "max"
norm ]qs] max {1011,"", 10.l}, if 0 is a vector ---(tl, On).

LEMMA 7.2. Let x be a point in . If Yo, Y are real analytic vector fields on
a subset of " containing x that have complex analytic continuations (denoted by the
same letters) to the closed polydisc D D, {z Xl] <-_ r, IZn X] <-- r}, then

(19) lad Y. ad Y2(Y,)(x)l<-_suplY(z)] .suplY(z)l(2/r)-’k.
zD zD

Proof. Before we prove the estimate in the lemma, we shall derive the following
estimate. Let be a real analytic function which has a complex analytic extension to
the polydisc D. Then the iterated derivative of along the vector fields Y,. ., Y
can be estimated by

(2o) lYe... Y(x)l<-supl6(z)]sup]y(z)l "’sup[Y(z)l(k/r) .
zeD zeD zeD

To prove this estimate we use a method of Sussmann [34] (proof of Lemma 4.2) which
reduces the problem to Cauchy inequalities. Consider the complex analytic vector
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fields zl Y1,’’ ", ZkYk defined on D, where z,..., z are complex parameters in the
unit disc {z]]z] _-< 1}. Let exp (tziY) denote the flow of ziY in C". Then

b exp (tZl Y1)’’’ exp (tkZkY,)(X)

is a well-defined analytic function on the unit polydisc Iz] <_-1,..., ]z _<-1, if

(21) ]til<-_r(ksuplY(z)lzo)-1, i=1,...,k

(as the concatenation of the trajectories of Zl Y1,"" ", zkY starting from x does not
leave D if fi,..., tk satisfy the above inequalities). From the Cauchy inequality we
obtain then that the iterated derivative at the origin of this function with respect to
Zl," ", z is estimated by the supremum of this function on the unit polydisc. This
gives the inequality

I(tY)
zGD

If we take the maximal values of t, , tk in the inequalities (21), the above gives (20).
The estimate in (20) gives the inequalities

(22) [Yk""" Yqc/)(x)] <- sup Y(z)l sup Y(z)[ k’r-t’+l,
zD zD

for 4i--x and i,..., i any permutation of 1,..., k. These inequalities imply the
estimate in (19) as the left-hand side of this estimate can be replaced by the components
of the vector field given by ad Y... ad Y4 and each such component consists of
2- terms of the form as in (22) (this follows from the definition of the Lie bracket
as a commutator).

Proof of Lemma 7.1. Integration of the first equation in Proposition 3.3 between
0 and u gives

IoAd Y= Ado Y+ ad X+(Ad Y) dr.

Replacing Ad Y on the right by this expression yields

’ ad (Ad, Y) do2 dv.AduY AdoY+ adX+(AdoY) dv+ adX+ +
Vl D2

Repeating such a replacing k times gives the ’+ case of formula (18). The "- case
follows by the reversion principle.

To prove the first formula of the lemma we shall now use the estimate in Lemma
7.2. Our families of vector fields X+ and Ad. Y are analytic with respect to x and u.
Let us fix an x K. Then there exist an r > 0 and a Uo such that both families have
complex analytic extensions to the complex polydisc D in C with the (real) center
at x and radius r for all u [0 u0]. Denote

C sup IX+(z)[, D= sup [Adu Y(z)[.
D,ue[O,uo] D,ue[O,uo]

Lemma 7.2 gives the following estimate for Rk(x) with, if u [0, Uo],

IR(x)l<-(2/r)g(k+ )+C+’D dVk+l
0

CDuo(2Cuo/r), (k+ 1)g+

(k+ 1)!
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From Stirling’s formula,

lim (27rk)1/2ekkk(k!)-l= 1,
k->

it follows then that Rk(X) tends to zero as k tends to infinity. This implies that the
first series in the lemma converges.

The second formula follows from the first by the reversion principle.
Both expansions in Lemma 7.1 can be combined to obtain a more general

expansion. In order to have a compact expression for this expansion we introduce the
following notation. Define the following linear operators acting on vector fields Y or,
more generally, on smooth families of vector fields Y.) depending on u

Io Io Ioo,
ad X, ad X, Y. dv dr)l,adI"iY.):

and ad i:,Oy.)= y,, where tr is either + or -. With this notation, formula (18) in
Lemma 7.1 takes the form

k

Ad+lu Y= ad Iu"i Ad’ Y+ad I+’k+lu Ad<. Y.
i--0

Finally, using analogous techniques as above, one can also establish the for-
ward/backward version of the above.

LEMMA 7.3. Iffand the vectorfield Yire analytic, then thefollowing expansion holds:

lO’k, ik ,iAd, Y= ad_, Ad-.. ad Iu Ado’ Y,Uk...u
i1>0, .,ikO

where tr is the sign ofe, j 1, , k, and the series converges pointwisefor small enough
’S.

From this we can draw the following conclusions.
COROLlaRY 7.4. If the system is analytic and U is connected, then

L+(x) r+(x), -(x)= t-(x), L(x)= r(x),

for any x .
Again, the result is valid also in the nonconnected case provided that one modifies

the definitions of the Lie algebras as explained in Remark 4.5.
Because of Corollary 7.4, part (b) is equivalent to part (a) in Theorem 6. This

provides the promised direct proof of part (b) of Theorem 6.

8. Sampling. In this section, we explain briefly how some of our results can be
applied to the sampling problem. More details are given in the conference paper [31].
For other related facts about sampling, the reader should consult [19] and [21].

When a continuous-time system is digitally controlled, decisions are often restricted
to be taken at fixed times 0, 6, 26,. 6 > 0 is the sampling time. Under what is often
called zeroth-order hold sampled control, the resulting situation can be modeled
through the constraint that the inputs applied be constant on intervals of length 6. It
is thus of interest to characterize the preservation of basic system properties when the
controls are so restricted. For controllability, this problem motivated the results in the
classical paper of Kalman, Ho, and Narendra [13]. This studied the case of linear
systems and established that controllability when sampling at intervals of length 6 is
preserved if 6(A-/z) is not of the form 2kri for any pair of distinct eigenvalues of
the A matrix. The dual version of this result, for observability, is basically the classical
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Nyquist-Shannon sampling theorem from digital signal processing, and is often sum-
marized by the statement that controllability (or observability) is preserved provided
that one samples at more than twice the natural frequencies of the system. We sketch
here how a similar result can be obtained for certain nonlinear systems, using the
accessibility conditions given above. This is an improvement over the result in [30],
where only the case of bilinear systems was treated, and more importantly, where only
transitivity conditions were obtained.

Let ga denote the class of all continuous time systems E of the type

(23) Fx q- 2 uigi(x),
i=1

where F is an n by n matrix and the coordinates of all the gi are polynomials of degree
at most d. For instance, :o is the class of all linear systems (the gi’s are constant
vectors), while :1 is the class of bilinear systems. Here x(t) E" and u(t) E for each
t; n is the dimension of the system, m the number of independent controls. We shall
study controllability properties of (23) from the initial state Xo 0. Nonequilibrium
initial states can also be studied, but we restrict ourselves to the equilibrium case,
always reducible to Xo 0, for simplicity. We let f(x)= Fx be the linear vector field
corresponding to the matrix F.

We shall say that the naturalfrequencies of the system (23) are the imaginary parts
of the eigenvalues of F, and let l)(E, 0), or just 12, be the set of these numbers (counted
with multiplicities). Note that since F is real, -tof whenever to 12. For each
nonnegative integer j we denote by 3j the set of all linear combinations

1
Z p(oi(24)

k i=1

with k any nonzero integer, to1,..., ton the natural frequencies, and the pi’s non-
negative integers satisfying

pi=2j+2.
i=1

Note that if , is the largest of the to (equivalently, the largest absolute value of these),
each element of j is in magnitude bounded by (2j + 2),l.

Denote the set of states of the continuous time system : that can be reached from
0 in time T>0, using arbitrary (measurable locally integrable) controls u(.) by Ar.
We shall say that the system (23) is (forward) accessible from 0 if AT" has nonempty
interior for some T> 0. Let to > 0 be any real number. We shall say that Z is to-accessible
from O, or accessible under sampling at frequency to from O, if the set of states Ar
reachable from 0 in time T using controls sampled at that frequency has a nonempty
interior. A control u(. defined on an interval [0, T] is said to be sampled at frequency
to (in radians/sec) if and only if T is an integer multiple of 8 := 2rr/to, say T r6, and
there are vectors

l)l, Dr

such that u(t)=-v on the interval [(i-1)6, i6). Thus accessibility under sampling
corresponds to forward accessibility for a discrete time system derived from the
corresponding Z and to. With this definition it is clear that to-accessibility for even a
single to implies accessibility. The following theorem from [31] provides a converse
to this fact. The corollary is immediate from the theorem and the discussion given
above about the largest frequency a.
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THEOREM 10. Assume that , e d is accessiblefrom O. Ifw > 0 is not in jfor any
j <= d, then E is also to.accessible.

COROLLARY 8.1. Accessibility is preserved under samplingfor systems in .d provided
that the sampling frequency be larger than 2d / 2 times the largest natural frequency of
the system.

The reader is referred to [31 for the details of the reduction of the above theorem
to the results given earlier in this paper. However, we wish to at least sketch this
reduction here. For each fixed 3, the vector fields X+ can be explicitly described using
a Lie expansion formula ([4], see also [25], and especially [19], [21])"

Xo+, 0 _f e(f+ege (x).
0e e=o

(We will be interested here only on the case u 0.) Under suitable assumptions, which
are satisfied for the class of systems considered here, this can also be written as

O(adf)(g,),

where as earlier adf is the operator adf(h)= [f, h] and for each fixed real number ,
O is the entire function

e_ 1
O(z) :=

Finally, one also has a formal expression, for each fixed 3,

Ado e ao f.
This expression can be made rigorous when acting on polynomial vector fields such
as those that appear in the classes ;d. Thus the Lie algebra L+, for each fixed 3,
contains the Lie algebra/+ generated by the vector fields

{O(ad f)(gl)," O(ad f)(gm), eadfo(ad f)(gl), eadfo(adf)(gm),

ekadfo(ad f)(gl), ekadfo(ad f)(gm), },

which equals the span of the vector fields

{gl,""", g,, [f, g],""", [f, g,],""", adkf(gl), adkf(gm), "}

when 3 is as in Theorem 10 (see [31] for details). It follows that /+ coincides with
the strong accessibility Lie algebra associated to the original continuous time system,
which has full rank at the origin due to the accessibility assumption. Then Theorem
4 gives the desired result.

9. An example. Consider the following invertible polynomial system with X R3.
X+--X(Z2+I)2

(25) y+ y(Z2 " 1 )3
+

Z Z+ U,

where we are using the superscript + to denote time shift, and we denote coordinates
as (x, y, z). Calculating, we obtain that X+= -2z(z2+ 1)-1Z-X and X =(0, 0, -1)’,
where Z is the vector field
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for each u 6 . Since the basic vector fields X,+ and X turn out to be independent of
u in this example, we drop the subscripts u from now on. Further,

(26) Ado X+ -12yz( 2_}_ 1)- 2X+ + X-,

from which it follows that

span {X+, Ado X+} span {X+, X-}.
The identity Ado X-=-X+ (of. Proposition 3.2(b)) implies that

Ado X+ 2 Ado X+- X- span {X+, X-},
so the linear span of the set of all generators of L+, {Ado X+, k => 0}, coincides with
the span of X+ and X-. Similarly, applying Adff to both sides of (26),

Ad X- X+- 2 Adff X+ X+ + 2X-,
so the span of the {Ado X-, k<=0}, the generators of L-, is again the same. Finally,

[X+, X-] 2(1 z)(z2+ 1)-Z,
from which it follows that {X-,X+,[X+,X-]} and {X-,Z} span the same C
submodule of vector fields. The latter set is involutive, and we conclude that, for this
example,

L+=L-=L.
Thus the orbits have dimension 2 through each point except at those points with
x y 0, where Z vanishes, and there the dimension is 1. The tangent spaces are given
by the vectors O/Oz and 2xO/Ox+3yO/Oy. The forward and backward accessible sets
contain open subsets of each orbit, by the equality of these Lie algebras.

Of course, in this very simple example one can analyze the system directly. The
initial states (Xo, Yo, Zo) with Xo yo=0 are such that the only possible directions of
movement are those in which z changes, as is clear from the equations (25), consistently
with the above conclusion about tangent spaces. The points where exactly one of Xo
or Yo is nonzero are also easy to analyze. Take now a point with both Xo and Yo nonzero.
Consider the set C consisting of all points (x, y, z) with

ygx3-- xy2.
This is the cross product of a cusp with a line. The forward accessible set consists of
all (x, y, z) in C with sign y sign yo for which Ixl->-IXo[ and [yl->-lyol. The backward
accessible has both these inequalities reversed, and the orbit consists of the branch of
C with just sign y sign Yo. Note how each such set C, an algebraic variety, can be
stratified into three submanifolds, which turn out to be its singular set (the orbit of
(0, 0, 0)), the orbit of (Xo, Yo, Zo), and the orbit of the "conjugate" point (Xo, -Yo, zo).
See Fig. 6 for a picture of a typical cross-section with constant z.

Thus in this example both the forward-accessible set and the orbit from each point
are open subsets of an irreducible algebraic variety. More generally, similar behavior
may be expected when dealing with invertible polynomial systems and equilibrium
initial states. We conjecture that the orbit is an open subset of the quasi-reachable set
in the sense of [26] and [27]. This is an algebraic variety, and it can be computed
explicitly, via Jacobians of the n-step transition map. Note that polynomial invertible
systems may exhibit highly nonlinear behavior, such as in the case x/= x3+x+ u,
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A+(x ,Y /

-(Xo, (

//(Xo, Yo)

Orbit of (Xo, Yo

Orbit of (Xo,-Yo)

FIG. 6. Forward and backward accessible sets in example (x0, yo > 0).

where the inverse of the transition mapping is not even rational. We plan to study
such systems in greater depth in the future.

10. An alternative formalism. We now briefly describe the formalism due to
Monaco and Normand-Cyrot; the thesis [25] and the papers [17]-[22], as well as the
references given there, should be consulted for details.

Their approach is based on the introduction of certain operators and the formal
relations that these satisfy. As a first step, one writes the system equations as

x+=x+f(x,u)

so that the new "f" is our f(x, u)- x. Thus now f indicates what the increment is,
rather than the new state, making things more analogous to differential equations.
(This is similar to the introduction of the forward difference operator in numerical
analysis.)

For simplicity we shall assume again that inputs are scalar, and also that ".
Thus we may identify functions F:"-" (in particular, the functions F-f(., u))
with vector fields, in the usual coordinate system for

F= --.
i=1 OXi

We will work purely formally, since the intent is merely to point out the relations
with the alternative notations in the papers mentioned above. Formally then, one
introduces the operators on smooth functions

0kL: F,(.)...F,,(.)
il,’"i OXi OXi

and the complete series

1
LFkz,:= + 2 .

Now one can obtain similar series for compositions and inverses of the dynamics map.
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Further, the vector fields that we use can be expressed then as

3

v=O
AS(.,.+ A(.,.)(Id)l,

X (x)
v=O

-1

v=O

-1AS(.,.) As(.,.+)(Id)l,

v=O
f(.,.) Af(.,i,+,>)(Id)lx,

Adk X< x -v v=O

Af(.,o)Af(.,u+v) Af(.,u)Af(.,o)(Id)lx

and many properties of these vector fields can be obtained from the corresponding
expansions.

The reader is directed to the above references for details on how these expansions
can be very useful in studying, among others, problems of disturbance decoupling,
sampling, Volterra expansions, linearization, and realization.
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A CONSTRAINED LEAST SQUARES REGULARIZATION METHOD FOR
NONLINEAR ILL-POSED PROBLEMS*

CURTIS R. VOGEL?

Abstract. This paper deals with a method for solving ill-posed, nonlinear Hilbert space operator
equations F(x) y. Regularization is obtained by solving a constrained least squares regularization problem

min IlF(x) y[[ subjectto J(x) <= fl 2.

flserves as a regularization parameter, and J(x) is a quadratic penalty functional. To robustly and efficiently
solve this regularization problem, we apply a trust region method. At each iteration, the quadratic penalty
constraint is retained, a Gauss-Newton approximation to the objective functional is taken, and we add a
quadratic trust region constraint. The resulting quadratic subproblem is then reformulated as a nonlinear
complementarity problem and solved using Newton’s method.

This paper applies methods to find approximate solutions to a severely ill-posed nonlinear first kind
integral equation arising in geophysics. The method of Generalized Cross Validation (GCV) is used to pick
the regularization parameter when random error is present in the discrete data.

Key words, inverse problems, ill-posed problems, regularization, constrained optimization

AMS(MOS) subject classifications. 45G, 49, 65

1. Introduction. In this paper we introduce a constrained least squares regulariz-
ation method for solving nonlinear ill-posed problems in a Hilbert space setting. Unless
otherwise indicated, "11" I1" refers to the appropriate Hilbert space norm. Consider the
operator equation

(1.1) F(x)=y,

where the operator F is nonlinear and maps a separable Hilbert space X into a
separable Hilbert space Y. Problem (1.1) is well-posed provided" (i) for any y Y,
there exists a solution x X for which F(x) y; (ii) the solution x is unique; (iii) the
solution x depends continuously on the data y. Otherwise, the problem is ill-posed.
Examples of ill-posed nonlinear problems include inverse (i.e., parameter estimation)
problems for differential equations [1], [6], inverse scattering [7], and nonlinear
Fredholm first kind integral equations [10], in which case F is an integral operator of
the form

(1.2) F(x)(t)= k(t, %x(’)) dr, a<-t<-b, xeX,

and k is nonlinear in x.
To obtain reasonable approximate solutions, we apply regularization. Regulariz-

ation methods replace the ill-posed problem with a stabilized problem whose solution
depends on a parameter, referred to as the regularization parameter. These methods
should have the following features:

1. The regularized problem is well-posed in the sense that a solution exists. (For
nonlinear problems, uniqueness and continuous dependence usually cannot be
guaranteed.)
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2. One has a "reasonable" means of choosing the regularization parameter,
especially when error is present in the data.

3. As the error in the data tends to zero, regularized solutions should converge
to the solution of the unperturbed problem, provided the regularization parameter is
picked correctly.

Perhaps the most widely used regularization method is the method of Tikhonov
Regularization [13] (also known as Regularized Output Least Squares [3], and in
statistical circles as the Penalized Likelihood Method [10], [7]) in which one solves
the unconstrained minimization problem

(1.3) min {[[F(x)-yll2+ crJ(x)}.
xX

Here a >0 is the regularization parameter, and J(x) is a penalty functional whose
purpose is to stabilize the minimization and provide a priori information about the
solution.

In this paper we consider an alternative approach in which regularization is
obtained by solving the constrained least squares regularization problem

(1.4) min ]lF(x)-yll 2 subjectto J(x)<=l 2.
xX

For this method,/3 is the regularization parameter.
In 2 we examine the well-posedness of the regularized problem (1.4). We also

examine convergence of solutions of (1.4) to a solution of (1.1) as error in the data
tends to zero when /3 is chosen appropriately. In addition, we discuss stability of
regularized solutions.

In 3 we present a nonlinear ill-posed model problem of the form (1.1), (1.2) arising
in geophysics. We also discuss the choice of the spaces X and Y for this particular
problem, and we show that the assumptions required in 2 hold for our model problem.

In 4 we consider the numerical-solution of the regularized problem (1.4) when
J(x) is a quadratic functional using a trust region method. At each iteration we apply
a Gauss-Newton approximation to the object functional f(x)--llF(x)-yll 2, thus
obtaining a quadratic approximation to f We retain the quadratic regularization
constraint and impose an additional quadratic trust region constraint, where the trust
region parameter is chosen to decrease the objective function. The resulting quadratic
minimization subproblem is diagonalized using the singular value decomposition and
then reformulated as a (quadratic) nonlinear complementarity problem. This dual
problem in two variables (the Lagrange multipliers for the primal problem) is then
solved using Newton’s method. The resulting algorithm is robust and quite efficient.

Finally in 5, we present some numerical results for our algorithm applied to the
model problem of 3. In this section, we also discuss the practical choice of the
regularization parameter/3 when error is present in the discrete data. We apply the
method of Generalized Cross Validation to an example where random error is added
to the data.

2. Existence and characterization of regularized solutions. The results of the first
two theorems below have been obtained by Seidman and Vogel 11] under somewhat
more general conditions. We will verify that the assumptions used below are actually
satisfied for our model problem in 3. We first consider existence of regularized
solutions.

To simplify notation, we define the objective functional in (1.4),

f(x):=llF(x)-Yll,
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and the constraint set

s := {x x: (x) <_- }.
THEOREM 2.1. Let F’X--> Y be weakly continuous, and let the penalty functional

J" X--> R+ U {0} be weakly lower semicontinuous. Suppose that for each
X" Ilxll <--r} fq s is weakly compact. Also, suppose f(x) and the penalty functional J(x)
are jointly coercive, i.e.,

lim If(x) + J(x)]

Then problem (1.4) has a solution.

Proof Let {Xk} be a minimizing sequence for (1.4). Then by joint coercivity, there
exists y-> 0 such that IIxll--< % By the weak compactness assumption, we can extract
a subsequence {Xk(j)} that converges weakly to some x.. By weak lower semicontimaity
of J, J(x.) <= lim inf J(Xk(j)) <= 2. By weak continuity of F and the lower semicontinuity
of the Y-norm,

[IF(x,) yll 2 -<_ lim inf F(x()) yll 2

-inf {l[F(x)-Yll" x e S}.
To obtain a convergence result for perturbed data, we need to assume local

uniqueness ofthe solution to the unperturbed problem (1.1). We also make assumptions
concerning solutions to (1.4) with perturbations to the data y and the operator F"

(A1) Let 37 e Y and let ff be the unique solution to F(x)= fi in the region St
where/ := J().

(A2) Let Yk -> (strong convergence in Y) and Fk F in the sense that if Xk
converges weakly to x,, then Fk(Xk) F(X,).

(A3) Let /3k > 0 and Xk be chosen so that

IIF(x)- yl[=-inf {l[F(x)- y[[ 2" J(x) _-</3,}, J(x) <- #,
and suppose lim/3k =/3. (Note that such an Xk exists by Theorem 2.1.)

(A4) Suppose J and f(x):= IlF(x)-Yll 2 satisfy the coercivity condition

lim inf [f(x) + J(x)] oe.
Ilxll-oo k

(A5) If/3- J(x), there exists a sequence {x} for which J(x) <= and x converges
weakly to x.

(A6) If Xk converges weakly to x, and J(Xk)-- J(x,), then Xk converges strongly
to x,.

THEOREM 2.2. Under assumptions (A1)-(A6), Xk converges strongly to
Proof By the coercivity assumption (A4), {Xk} is bounded, so we can extract a

subsequence {Xk(j)} converging weakly to some x,. Since/3,(j)-/2= j(), by assump-
tion (A5) we can choose a sequence {97} such that J()) _<-/3,(j and 2 converges weakly
to 9. Then by the lower semicontinuity of the Y-norm,

F(x,) 9711 _-< lim inf Fk(Xk(j))

lim inf {lIFk()(x)--Yk(ll" J(x) <-- fl2k(} by (A3)

_-<lim IIF<)()-y(j)ll by (A5)

<_-lira IIFk(j()) F()Z)II +
By assumption (A2), the last right-hand side goes to 0, so x, solves F(x)=
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By the weak lower semicontinuity of J, J(x,) < lim inf J(Xkj)) < lim/32kj) =/2. By
the uniqueness assumption (A1), x, 2. Moreover, since the above argument can be
repeated for any subsequence, Xk itself converges weakly to 2. We next show that
J(Xk) i2. The theorem will then follow from assumption (A6).

By assumption (A3), lim sup J(Xk) <= 2. Now suppose lim inf J(xk) </2. Then
there exists a </3 and a subsequence Xk(j) with J(Xk(j)) <- a 2. As was done above, we
can extract a further subsequence converging to some for which F()=2f and
J())---a2</2. But this contradicts the uniqueness assumption (A1). Hence,
lim inf J(Xk) lim sup J(Xk) 2 J(2). [’]

Remark 2.3. Assumptions (A5) and (A6) hold for many commonly used penalty
functionals. For instance, if J(x) Ilxll =, (A6) is the Afimov-Stekin condition. Assump-
tion (A5) holds if the constraint sets Sj are closed and convex, in which case we may
take xj for which IIx -xll-inf{llu-xll" u e s}.

Remark 2.4. Assuming existence but not local uniqueness of solutions to F(x)
the above proof shows only the existence of a subsequence which converges weakly
to a solution of F(x)= .

We next look at a characterization of regularized solutions. We assume that F is
twice continuously differentiable with derivatives denoted by F’(x) and fr"(x), respec-
tively. Let the superscript "T" denote Hilbert space adjoint. We will also assume a
quadratic form for the penalty functional,

(2.1) J(x)=(Bx, x),

where B is a bounded, self-adjoint positive definite linear operator on X. Recall that
f(x) := IIF(x)-y}l 2. In addition, we define the constraint functional

c(x) := J(x) i3 .
THEOREM 2.5. Ifx is a solution to (1.4) and fl > O, then there exists A R such that

(2.2) f’(x)+Ac’(x)=O,

(2.3) c(x) <-_ o, t >-_ o,
(2.4) Ac(x) =0.

Proof See Luenberger [8, p. 249]. The left-hand side of (2.2) is half the gradient
of the Lagrangian

Lx (x):= f(x)+ Ac(x).

To see that a solution x to (1.4) is a regular point for c(x) take h -x. At such a
solution, c(x) <- 0, and

c(x) + (c’(x), h) J(x) 2_ J(x) _f12 < O.

In general, solutions to (1.4) need not be locally unique. The following theorem
provides conditions for local uniqueness and continuous dependence of local solutions
with respect to perturbations in the data y.

THEOREM 2.6. Let fo(x):= IIF(x)-Yoll and suppose Xo is a solution to

minfo(x) subject to c(x) <-_0.
xX

Suppose also that for some t > O, the Hessian of the Lagrangian,

L((Xo) := f’(Xo) + Ac"(Xo) 2[F"(Xo) 7" F(xo) Yo) + F’(Xo) 7"F’(xo) + AB],

satisfies
(2.5) (L(xo)s,s)>-2allsll 2 wheneverA(c’(xo),s)=O.
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Then there exists > O, 6 > O, r > 0 such that (1.4) has a solution x which is locally
unique in some neighborhood [Ix- xoll < whenever IlY- yoll < r, and

(2.6) IIx- Xo[I <-- c/lly- yoll.

Proof Since F is twice continuously differentiable, so is f, and

(2.7) fo(xo+s)-fo(xo)=(f’(xo),S>+1/2(f"(Xo)S,S)+O(llsll=).
If C(Xo)=0 and C(Xo+ s)<-_0, then since (x) is quadratic,

o>- C(Xo+ s)- C(Xo) (c’(xo), s)+1/2(c"(Xo)S, s).

Thus

fo(Xo+s)-fo(Xo)>=(Li(xo),S)+\,(Xo)S, o

By Theorem 2.5, L’x(Xo)=f’o(Xo)+ Ac’(xo)=0, and by (2.5),

fo(xo + s) -fo(xo) -->
Thus there exists 6 > 0 and 6, 0 < 6-<_ a, such that

(2.8) fo(Xo + s) -fo(Xo) >--
whenever Ilsll < , i C(Xo)< 0, then f’(xo)=0, I =0, and (2.8) follows directly from
(2.7) and (2.5). Equation (2.6) now follows from Theorems 4 and 6 in the paper by
Alt [2] with/3 2 and y playing the role of w.

Remark 2.7. We will observe in 5 that as /3 becomes large, becomes small,
and problem (1.4) becomes unstable. To explain this behavior, suppose IlF"(Xo)ll-<_ M,
F’(xo) is compact, and X is infinite-dimensional. We can then choose a sequence {s}
such that ]lskll <= 1, (c’(xo), Sk)= 0, and Sk converges weakly to 0. Then

(L’(Xo)Sk, sk) <=2[MllF(xo)- yoll + Ilf’(xo)sll+ x Ilnll3,
and since F’(xo) is compact,

lim sup (L(xo)s, s) <--2[MllF(xo)-Yoll / A Ilnll3.
Consequently, any constant a for which (2.5) holds must satisfy

<- MIIF(xo)-yoll/ A Ilnll.
Then if [[F(Xo)-Yo[I and A are very small, c is also very small. In Alt’s proof [2], the
Lipschitz constant c7 in (2.6) is inversely proportional to 6 <= c. In this case, the Lipschitz
constant c7 is very large. This is an indication that problem (1.4) is highly unstable.

3. A model problem. In this section we illustrate the results of 2 with an example.
Consider the nonlinear Fredholm first kind integral equation

(3.1) y( t) F(x)( t) := log (t_.)+(H_x(.)) dr,

where H is a positive parameter. This equation occurs in inverse gravimetry (see [13,
p. 15]). The solution x(-), a_-<--< b, represents the vertical deviation from constant
depth H in the location of the boundary of an object buried beneath the surface of
the earth. The geometry is shown in Fig. 1. The data y(t), a _-< _-< b, represents gravity
measurements at the surface of the earth. In practice, observations of y(t) are available
at discrete points, but derivatives of y are not available. Thus we take Y L(a, b).
We assume the solution vanishes outside the interval [a, b] and is smooth" in the
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FIG. 1. Geometry of the gravitational inverse problem, z H Xtrue is plotted against

sense that ab x’(r)2 dr is bounded. We take X=H(a, b)={x(r), a<=’<-b’x is
absolutely continuous; x’ L2(a, b); x(a) x(b) =0} with inner product

(3.2) (x, u):= x’(z)u’(z) dr, x, u X,

and induced norm

(3.3) [Ixll x’()= d, x X.

Remark 3.1. Prilepko [9] has shown that if (3.1) has a solution, the solution is
unique provided we make the restriction H x(’) > 0. On the other hand, the fact that
the right-hand side of (3.1) is analytic as a function of implies that the range of F
is a subset of the analytic functions which is in turn a (dense) proper subset of
Y L2(a, b). Thus a solution x will not exist for arbitrary y e Y.

The following lemma shows that F is weakly continuous. Since closed balls
{x x.. Ilxll <--B} are weakly compact, this implies that F is a compact operator. This
also shows that the range of F is a proper subset of Y. In addition, the inverse image
under F of (noncompact) neighborhoods N(y)={zY:llz-yll<-_r}, r>0, is
unbounded. Hence, we do not have continuous dependence of solutions x on the
data y.

LEMMA 3.2. If X=H(a,b), Y=L2(a,b), F’XY is given in (1.2), and
Ok/Ox(t, % x) is continuous in all its arguments, then F is weakly continuous.

Proof Suppose {x,} converges weakly to x in Hi(a, b). Then there exists 3,>0
such that y > x. ll :-- sup {[x.()l: a<-z <- b}, and by the mean value theorem,

[F(x.)(t)-F(x)(t)l <- -u-(t, r, .(7-)) [x.(-)-x(r)l d"

(b-a)Clx.-xlloo,
where r/(r) lies between x.(r) and x(r) and

C=max{[Ok z, r/)[" aN t, <b, Ir/I <_- y}.

Consequently,

F(x.)- F(x)II (b- a)3/2Cllx. -x Iloo.
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The lemma follows from the fact that weak convergence in Hi(a, b) implies strong
convergence in C[a, b]. [3

COROLLARY 3.3. Let X= H(a, b), Y= LZ(a, b). For F’X-. Ygiven in (3.1) and
sufficiently small, problem (1.4) has a solution.

(3.4)

Then

Proof Let

(t_ .)2+ H2
k(t, r, xl=log (t_.)2+(g_x)2

Ok 2(H-x)
(3.5) O- t, "r, x)

t_ 7.)Z + (H x)2.
If/3 is sufficiently small, then H- x() > 0 for each [a, b], and Ok/Ox is continuous.
Thus by Lemma 3.2, F is weakly continuous, and by Theorem 2.1, (1.4) has a
solution.

Remark 3.4. In practice, problem (1.4) must be solved numerically. Let P, denote
a projection ofX onto an n-dimensional subspace X,, and suppose p,T_. Ix (pointwise
convergence to the identity in X). Similarly, let Q,, denote a projection of Y onto an
m-dimensional subspace Ym with Q,,-. Iy and suppose the Q,,’s are uniformly
bounded. Define

(3.6) F,,,.(x) := QmF(P.x).

Since F is weakly continuous, each Fro. is weakly continuous and by Theorem 2.1 we
can find a solution x.,. to each problem

min IIF.,(x)- y.ll 2 subject to J(x)
xX

Suppose x,.. converges weakly to some x.. For each u 6 X,

](PnXmn-X,, U)l<=l(Xm,, PU-U)I+I(X,,,-X., u)]

so P.x.. converges weakly to x,. Then by weak continuity of F,

IlFmn(Xmn)- F(x,)II <--IIQ IIF(P,xm,)- F(x,)II + II(Q I)F(x.)[I-0.
This shows F,,, converges to F in the sense of assumption (A2) in 2.

Remark 3.5. The operator F in (3.1) is twice (Frechet) differentiable. The first
derivative F’(x)" X- Y is given by

(3.7) [F’(x)u](t)= ox(t, r,x(’))u(’) dr, a<=t<-b,x, ueX,

where the kernel Ok/Ox(t, -, x) is defined in (3.5). F’(x) is cOmpact, since its kernel is
square integrable. The second derivative F"(x)" X X-. Y is given by

ro2k
(3.8) [F"(x)(u, v)](t)= OX2.(t, Z,X(Z))U(Z)V(Z) dr, a<=t=b,x, u, veX.

4. Numerical solution of the regularized problem. To numerically solve (1.4), we
obtain a finite-dimensional problem by choosing linearly independent basis functions
{thj}=l c X H(a, b) and taking approximations

(4.1) )(’) xjqbj(r), x=[xl,’’" ,x,]
j=l
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We also approximate the norm in Y L2(a, b) by a discrete sum

(4.2) [[y[[
1 y(t,)e, {t,},"=l c [a, b].

i=1

To put this approximation in the context of the projection operator Q,, of Remark
3.4, we might define

I b

Qmy E (d/i, y)Oi E i(t)y(t) at ,
i=1 i=1

where each i is a nonnegative "averaging function" whose support consists of disjoint
subintervals of [a, hi. By the smoothness of y F(x) (see Remark 3.1), we can apply
the mean value theorem for integrals to obtain

(, y) y(t) @( t) at

for some point t in the ith subinterval. By scaling the ’s appropriately and by their
orthogonality, we obtain the right-hand side of (4.2) by taking IIQ yI[.

Thus the integral operator F in (3.1) gives rise to an operator F :R

I b

(4.3) [F(x)] := k(t, , 2()), lNiNm.

Similarly the derivative operator F’(x) in (3.5), (3.7) yields an m x n matrix:

(4.4) [F(x)]
Ox

(t, r, ())() d, 1N N m, 1Nj N n.

From (2.1) and (4.1), the constraint J()N yields xrBxN, where B is the
symmetric, positive definite matrix with entries

(4.5) [B] {B, } [(B)(,)] d, lNj, kNn.

Without loss of generality we may assume B I. Otherwise, we can compute a Choleski
factorization B R rR, R nonsingular, and consider the change of variables Rx.
Hence we take as our (finite-dimensional) penalty functional

Remark 4.1. If B is not strictly positive definite, one may apply a similar change
ofvariables and consider the penalty functional J(x) I111, where P is the orthogonal
projection onto the orthogonal complement of the null space of B. Computational
details appear in the paper by Elden [5].

The resulting finite-dimensional analogue of problem (1.4) is then

(4.6) min F(x)-y subjectto J(x):= xlN.
xN

We implemented several constrained optimization codes from the widely available
Numerical Algorithms Group (NAG) software library to solve (4.6). We found both
the Augmented Lagrangian code and the Sequential Quadratic Programming code in
the NAG library to be unreliable for our model problem (3.1) for moderately large
values of the parameter H (e.g., H- 0.1). We suspect that this lack of robustness is
due to deficiencies in the line search phase of these algorithms. The line searches rely
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on merit functions which try to balance the often conflicting requirements of reducing
the objective function and maintaining the constraint. Solutions to highly ill-condi-
tioned problems appear to be very sensitive to parameters which determine this balance.

Trust region methods have long been popular for unconstrained optimization
problems

(4.7) minf(x)

where f:Rn-R is "smooth." See Dennis and Schnabel [4] for a discussion of
convergence theory and numerical implementation. In their simplest form, trust region
methods generate a new approximation Xk+l Xk + S from the current approximation
xk as follows: One takes a quadratic approximation Q(s) to f(xk + s) and then solves
the subproblem

(4.8) min Q(s) subjectto Ilsll
where k > 0. If the solution s decreases the objective functional, i.e., iff(xk -}- S) <f(xk),
one sets Xk+ Xk q- S and proceeds. Otherwise, one decreases the trust region parameter
6k and resolves (4.8) until either f(Xk + S) <f(Xk) or k 0, in which case the iteration
is terminated.

To robustly solve the constrained problem (4.6), we consider the trust region
iteration

Xk+ Xk + Sk, k O, 1,

where Sk solves the quadratic subproblem

(4.9) min Q(s) := IIAs bll 2, where A := F’,,n(Xk), b := y- F,,,,(Xk),

subject to

(4.10) [J(xk’-s)-2] [ (xk4rs)T(xk-]’S)-2] <-o.

At each iteration, the trust region parameter 6 > 0 is chosen so the objective function

(4.11) f(x) := IIF,(x)-yll

is reduced. Note that Q in (4.9) is the usual Gauss-Newton approximation to f, which
is obtained from the Taylor expansion F,,(Xk + s)= F,,(Xk)+ F,(Xk)S+ o(llsl12),

The constraint region in (4.10) is convex and is nonempty provided J(Xk)<=
If A := F’,,,(Xk) has full column rank, then Q(s) is strictly convex, and subproblem
(4.9), (4.10) has a unique solution. The following theorem shows .that when 6k is small,
our trust region method behaves like a projected gradient method. We will use "V"
to indicate derivative with respect to x.

THEOREM 4.2. Suppose j2> O, Xk O, J(Xk) <= 2, and Vf(Xk) # 0, but Xk does not
satisfy thefirst-order necessary conditions (2.2)-(2.4). Let s solve the quadratic subproblem
(4.9), (4.10). Then

s d

Ilsll
as o,

where

(4.12) d --Vf(Xk), if Vf(Xk) rVJ(Xk) > 0 or if J(Xk) < f12.
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Otherwise, Vf(xk)TVJ(Xk) - 0, J(Xk) f12, and

Vf(Xk)rVJ(Xk)
(4.13) d --Vf(Xk)+

iiVJ(xk)ll 2 VJ(Xk).

Note that (4.12) gives the negative gradient, or "steepest descent" direction for the
objective function f. Equation (4.13) gives the projected gradient direction, which is the
orthogonal projection of--Vf(Xk) onto the tangent subspace {s X" VJ(Xk)rS=O).

Proof. To simplify notation, define Vf:=’Vf(xk)=-2Arb and VJ := VJ(Xk)= 2Xk.
First-order necessary conditions for a solution to (4.9), (4.10) give

s=[ArA+(A + tx)I]-(AT"b-hXk)
=[ATA+(A +)I]-I(-Vf-AVJ),

where A 0, 0, J(Xk+S)fl, J(s), and A[J(Xk+S)--flE]+[J(s)--]=O.
Note that k OJ(s) llsll 2 0 . Similarly, a straightforward calculation
shows that

Xk+S=[ATA+(A +)I]-[AT(Axk+b)+Xk],
SO that h J(Xk + s) [IXk + S[[ 2 O. But then the constraint J(Xk + S) fiE would
become inactive, and h 0. This contradiction shows that A must remain bounded.
Thus for small 8k,

(4.14) s=
2

+O

Since Vf=-2Arb, the objective functional for the quadratic subproblem (4.9), (4.10)
can then be expressed as

(4.15) O(s) -"Vfll2-AVfVJ+ 0() +llbll =.
Similarly, VJ 2Xk and J(Xk + s) J(Xk) + 2XS + J(s) yields

+0 +J(x)-#2O.

If VfrVJ> 0 or J(Xk)< f12, we see from (4.16) that the constraint becomes inactive
for suciently large, in which case the complementarity condition forces A 0. We
then obtain (4.12) from (4.14) as k 0. On the other hand, ifVfrVJ 0 and J(Xk) fiE,
(4.16) gives

(4.17) I e g + O

To minimize (4.15), we take equality in (4.17). Then as 0, I -(vfrvJ/lvJIl),
and we obtain (4.13) from (4.14).

The following corollary shows that for suciently small, the objective function
f is decreased.
CooA4.3. Suppose the conditions ofeorem 4.2 hold. enfor s the solution

to (4.9), (4.10) and suciently small, f(x + s) <f(x).
Proo Since f is twice continuously differentiable,

f(Xk + S) f(Xk) + Vf(Xk)S + o(lls I1=).
Hence, it suNces t0 show that there exists y > 0 for which

(4.18) Vf(x)s -rllsll
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whenever k is sufficiently small. By Theorem 4.2 we have that as tk -- 0, either

or else

T S

Vf(x#,) T
s

i-]-7 --> -IlVf(x,<)ll+

In this second case, by Schwartz’s inequality,

If(x) VJ(x)lz

IIVJ(x,<)ll

IVf(x,<)Va(x,<)l _-< IlVf(x,<)II lira(x,<) II,
with equality if and only if Vf(xk)= VJ(xk). Since we have assumed the first-order
necessary conditions (2.2)-(2.4) do not hold, Schwartz’s inequality is strict. In either
case,

T S
lim Vf(xk) < O.
6,-0

Equation (4.18) follows from the continuity of the solution s with respect to 6g. V1

This trust region approach gives decrease in the objective function outside the
region of convergence of the Gauss-Newton method. Once we are inside this region
of convergence, we take the Gauss-Newton step, the trust region constraint J(s)<= <5
becomes inactive, and we obtain the following result. Note that

where

V-f(x)=2[F’(x)rF’(x)+ N(x)],

N(x) := F"(x)(F(x)-y).

THEOREM 4.4. Define c(x):= J(x)-/32= Ilxll-t, te x, e a solution to (4.6)
with corresponding Lagrange multiplier ,t,, and suppose the second-order sufficient con-
dition

(4.19) srEV2f(x,)+A,VZc(x,)]s>-ollsll z whenever ,t,Vc(x,)rs=O
holds for some > O. Assume each 6 has been chosen so the trust region constraint
J(s) 6 is inactive. If N(x,) is sufficiently small and Xo is sufficiently close to x,, then
iteration (4.9), (4.10) converges to x,. If N(x,)=0, the rate of convergence is locally
q-quadratic. Otherwise, the rate is linear.

Proof If ,=0, the standard analysis for the unconstrained Gauss-Newton
method applies. See for example, Theorem 10.2.1 and Corollary 10.2.2 of Dennis and
Schnabel [4]. Otherwise, x, and , > 0 are locally unique solutions to

(4.20)
Vf(x) + V c(x) O,

c(x) =0.

For x and X+l= x + s sufficiently close to x, and s the solution to (4.9), (4.10),
c(x) c(x + s) 0, and first-order necessary conditions give

V Q(s -I- lk+ V C(Xk AI- S)

c(x,+s)=O.
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Since 7 Q(s) Vf(xk) + 2ArAs and O c(xk) c(x + s) c(x) + Vc(x) rs +1/2srVZcs,
where V-c 2/, setting ,+1 ,k + AZ above gives

[2ATA’qt’IkV2C VC(Xk)][ S ]_.. [Vf(Xk)’ql-AkVC(Xk)lqt_ O(AI [[SII - I]$112).
Vc(x) 0 zX, c(x)

The theorem follows from standard analysis of quasi-Newton methods for solving
(4.20). As in the unconstrained case, if N(x,)= 0, we obtain local quadratic conver-
gence. If 0< (llN(x,)i]/)< 1, where c is the coercivity constant in (4.19), we obtain
linear convergence. 13

Remark 4.5. The quantity (]]N(x,)][/) in the above proof governs the rate of
local (linear) convergence when N(x,) O. By an argument similar to that in Remark
2.7, we see that for large values of , (which correspond to small values of the
regularization parameter/3) c is large. As , decreases, one would expect c to also
decrease. In this case, one observes much slower convergence of iteration (4.9), (4.10).

Solution to the quadratic subproblem. To solve subproblem (4.9), (4.10) in a
numerically stable manner and to reduce the computational cost, we first diagonalize
it using an approach similar to that of Elden [5]. We will also use the diagonal entries
to determine a reasonable choice for the regularization parameter in 5. We assume
A F’(x) has full column rank. Let A have the singular value decomposition

A= UDVT,
where U and V are orthogonal matrices and D =diag {di} has the (positive) singular
values di of A as its diagonal entries. Subproblem (4.9), (4.10) is then equivalent to

(4.21 min 11D-/ 2

subject to

(4.22)

where

g:= Vs, 9:= Vrx, /:= Urb.

Our approach to solving (4.21),.(4.22) follows ideas outlined in Pang’s paper [12,
p. 65]. First-order necessary conditions for the solution g are

DT[Dg-/]+ A() + )+/x 0,

(4.23)
/  112 -<- t II ll 2 -<

, ->0, /x =>0,

/ 2- =] /  [11 11 =- 0.

From this we obtain

(4.24) g(X) [DrD+ (A -+- )I]-I(D 7"/ A)),

(4.25)

Thus the Lagrange multipliers A, /x are solutions to the nonlinear (quadratic) com-
plementarity problem (4.25). Once these have been obtained, is computed from
(4.24), and s V is the solution to subproblem (4.9), (4.10).
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We solve the quadratic complementarity problem (4.25) using the following
Newton iteration" For k=0, 1,..., let .=k+l solve the linear complementarity
problem

(4.26) A->O,

(4.27) g() + Vg()( ) =< O,

(4.28) r[g() +V()( )] 0.

For a summary of convergence results of iteration (4.26)-(4.28) as well as a review of
relevant literature, we refer the reader to Pang [12]. Note that this iteration is locally
quadratically convergent. To obtain global convergence to a solution of (4.25), we
added a line search. Define

h() := min (,

(componentwise minimum) and observe that solves (4.25) if and only if h()=0.
Given a solution to (4.26)-(4.28) for which ]lh(])n -> IIh()]], we define the Newton
step

and obtain a solution 3% to the one-dimensional minimization problem

min [[h(,k +
0y<l

We then take

k+ k -l- ’l:A

as the new estimate for the solution to (4.25).

5. Numerical results. We applied our constrained least squares regularization
method to the model problem of 3. All computations were performed on a Zenith
(IBM-compatible) AT Personal Computer. F is the nonlinear integral operator in (3.1)
with a 0, b 1, and H 0.2. We took approximate solutions x from the n-dimensional
subspace of H(0, 1) spanned by piecewise linear functions

r-r, if 7)_1 <’-" ’<--
h

h
:=

0, otherwise,

(5 1) qbj(t) "O+, if j--- "/-= ’/’j+l,

where =jh, h 1/(n+ 1),j= 1,..., n =25. The integrals (4.3), (4.4) were computed
numerically. We took as our true solution a linear combination of two Gaussians,

Xtrue(r) 171 exp (dl(’r +pl)2) + C2 exp (d2(’r-p2)2) + 3"/" q- C4,

where c -0.1, c2 -0.075, d -40, d_ -60, Pl 0.4, p 0.67, and c3, c4 are chosen
so that x(0) x(1) 0. H xte(r) is plotted in Fig. 1. We took data points y y(t) + e,,
t=i/(m+l), i=l,.-.,m=30. The e simulate measurement errors and are
pseudorandom and normally distributed with mean 0 and variance 0

.2 chosen so that
the noise to signal ration was 0.2 percent, i.e.,

.002.
IIFm,,(x)ll
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We took as our (infinite-dimensional) penalty functional

J(x)--Ilxll=- x’()2 d.

Figure 2 is a semilog plot of the singular values of the derivative A F’,,,,(x) at
the initial guess Xo(r)--O. The exponential decay rate of the singular values gives a
quantitative indication of the server ill-posedness of the problem.

We solved a sequence of finite-dimensional problems (4.6) with increasing /3 e
{.2, .25, .275, .3, .35, .4, .5,} using the trust region algorithm of the previous section.
Resulting approximate solutions x0 are shown in Fig. 3 for/3 .2 (dashed line),/3 .275
(solid line), and fl =.5 (dotted line). The true solution satisfies J(xtrue (.277) and
is represented by +’s. The constraint J(x)<= fl was active in each case.

Figure 4 is a semilog plot of the corresponding Lagrange multipliers h A (/3).
From Remark 2.7, we would expect the regularization problem (4.6) to become highly
ill-conditioned for larger values of/3. Also, by Remark 4.5, we would expect the rate
of convergence of iteration (4.9), (4.10) to slow considerably in the presence of noisy
data. We have observed both these phenomena in our numerical experiments.

l0

10

10-t

10-2

o-

"n 10-5

10-0

10-7

10-8

10-9
10 15 20 25

index

FIG. 2. Semilog plot of singular values of discrete derivative operator in decreasing order of magnitude.
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tau

FIG. 3. Approximate solutions -xt for fl =.2 (dashed line), fl =.275 (solid line), and fl =.5 (dotted
line). The +’s represent the negative true solution, --Xtue.
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FIG. 4. Semilog plot of the Lagrange multipliers A versus the regularization parameter ft.

Figure 5 gives the error indicators as a function of the regularization parameter
/3. The curves represent, from top to bottom, (i) the "solution error"

e(t ) := J(x IIx 
(ii) the generalized cross validation functional V(/3), defined in (5.5) below; and (iii)
the weighted objective functional obtained from (4.11) and (4.3),

(5.3) l__. f(xt
1

):=-- Z [F,,,(xt3)(ti)-Y,]2.
m mi=l

The fact that the solution error e(fl) increases for large fl while the objective functional
f(x) continues to decrease is another consequence of the ill-posedness of this problem.

Remark 5.1. The practical choice of a regularization parameter for a given error-
contaminated data set is a difficult matter. Many methods require prior knowledge of
the magnitude of the error and/or the norm of the true solution. A statistical technique
known as the method of Generalized Cross Validation (GCV) requires only that the
error be random in the sense that

(5.4) E(ei) =0; E(eiej)

10

10-2

10-a

10-4

10-5’

10-7
0.2 0.25 0.3 0,35 0,4 0.45 0,5

beta

FIG. 5. Semilog plot of error indicators: Solution error e(fl) (represented by *’s); GCV function V()
(represented by o’s)" and scaled objective functional f(xt3)/ m (represented by x’s).
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GCV has been successfully applied to a variety of regularization methods including
Tikhonov Regularization (see 15], 10]) and Truncated Singular Value Decomposition
(See [14]). For the regularization problem (4.6), the GCV functional is given by

1
--f(x)

V([3

{1Trace Im A(ATA + AI)-IAT]} 2

1
--f(x)
m

(m-n)+A ’i=1 d + A

where A A (/3) is the Lagrange multiplier for problem (4.6) and the di’s are the singular
values of the derivative A F’,,,(x). In Fig. 5 we see that although V is very flat, the
minimum of V(/3) coincides with the minimum of the solution error e(/3). At least for
this particular example, the minimizer of V(fl) provides a very reasonable choice for
the regularization parameter.
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THE SENSITIVITY OF THE ALGEBRAIC AND DIFFERENTIAL
RICCATI EQUATIONS*
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Abstract. In this paper it is shown that the ideas developed by Byers in [Proc. Summer Research
Conference, AMS Vol. 47, Contemporary Math., American Mathematical Society, Providence, RI, 1984, pp.
35-49] on the sensitivity of the algebraic Riccati equation can be sharpened and extended to norms other
than the Frobenius norm. This extension is crucial from an interpretive point of view because use of the
spectral norm allows an identification between the condition number of the algebraic Riccati equation and
the damping properties of the closed-loop dynamical system. Moreover, this approach has the pleasant
feature that it carries over to a completely parallel theory for the sensitivity of the differential Riccati
equation, an area that has not been considered previously.

Key words. Riccati equation, condition number, closed-loop damping
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1. Introduction. Algebraic and differential Riccati equations arise in the problem
of optimal control of linear time-invariant systems of the form

(t) Ax( t) + Bu( t), x(0) Xo,
(1.1)

y( t) Cx( t).

Here A "", B n,, C k,; x, u, and y are the state, input, and output vectors,
respectively. For a given symmetric positive semidefinite matrix P1 and a terminal time
tl, the goal of optimal control is to find the input u u(t) that minimizes the cost
functional

’ t)CT"Cx(t)+u t)u(t) dt+x (tl)PlX(tl).(1.2) (u, P1, tl)--- x( (

In this case, the input function, utl, which minimizes the cost functional, is [16]

(1.3) u,,(t)=-BrP(t)x(t) for 0=< t=< tl.

In (1.3), P is the solution to the differential Riccati equation

(1.4) P(t)=-G-ArP(t)-P(t)A+P(t)FP(t), P(tl)=P

where F BB 7" and G CTC. If u,, in (1.3) is used in (1.1), we obtain the closed-loop
system

(1.5) (t)=(A-FP(t))x(t), x(0)=Xo, O<-t<=tl.

A related procedure involves letting t go to infinity in (1.2). If (G, A) is detectable
and (A, F) is stabilizable, then the algebraic Riccati equation

(1.6) 0 G + A7"X + XA XFX

* Received by the editors January 21, 1987; accepted for publication (in revised form) April 24, 1989.
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nia 93106. This research was supported by the National Science Foundation and the Air Force Office of
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has a unique symmetric positive semidefinite solution, X [4]. Moreover, as tl- in
(1.2), the initial matrix P(0) in (1.4) converges to X, independently of the terminal
matrix P1, so long as P1 P1 -> 0. The resulting closed-loop system,

(1.7) ( t) (A- FX)x( t), x(O) Xo,

is stable in the sense that the eigenvalues of A-FX have negative real part.
This paper has two objectives. The first is to study the sensitivity of the solutions

to (1.4) and (1.6) to perturbations in the coefficient matrices A, F, and G. Good upper
and lower sensitivity bounds for the algebraic Riccati equation were obtained by Byers
in [2]. We will show that these results can be sharpened and extended to the differential
Riccati equation.

Our second objective is to point out a very strong relationship between the
sensitivity of the Riccati equations (1.4), (1.6) and the damping of the closed-loop
systems (1.5), (1.7). We define the damping D of the closed-loop system (1.7) as

(1.8) D= max Ilxll= max IIx(t)ll 2 dt
xoll Ilxoll

where I1" denotes the 2-norm, Ilvll =- vff. The maximum in (1.8) is taken over solutions
to. (1.7). A similar definition of damping applies to (1.5).

For the algebraic Riccati equation, the connection between sensitivity and damping
relies on the identity

(1.9)

IIx(t)ll = dt= xT(t)x(t) dt

xg e exo dt

x ea e dt xo

=- x2nxo.
In (1.9), Ac denotes the closed-loop matrix A-FX and the matrix H satisfies
f(H) =-I with

(1.10) f(Z) AZ+ ZAc.
This identity shows that damping is related to the closed-loop Lyapunov operator f.
Moreover, we show that D= IIHII- Ill,-Ill, for the induced operator 2-norm

(1.11) ]lf-I =max
o IIMII

When coupled with a slightly more general definition of damping, these results clearly
show the connection between the dynamical behavior of the closed-loop system and
the sensitivity of the associated Riccati equation. This complements the results of [9],
in which the sensitivity of the solution to the Lyapunov equation ArX +XA =-W,
for A stable, was shown to be related to the damping behavior of the dynamical system

Ax.
The outline of the paper is as follows. In 2, we develop sensitivity and damping

results for the algebraic Riccati equation. Section 3 extends these results to the
differential Riccati equation. Section 4 is devoted to numerical tests of the bounds in
2 and 3.
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2. Sensitivity of the algebraic Riccati equation. We will assume throughout this
paper that F and G are positive semidefinite matrices with (A, F) stabilizable and
(G, A) detectable. Let X X(A, F, G) denote the unique positive semidefinite sym-
metric solution to (1.6). Our goal is to investjga.te the variation~ in X with respect to
changes in A, F, and G. More precisely, let A, F, and G be matrices that are near A,
F, and G with respect to the matrix 2-norm. (Exc.ept for Theorem~ 2.1, all the results
in this paper are for the two-norm.) Define AA A A, AF F F, and AG G G.
We assume that and are of the form //7- and T7 for some / and 7, so we
will require/3 and to be s.yrn.metric and positive semidefinite.. For Ilaal[, tlall, and
IlzXG[I sufficiently s.mall, (A,, F.) i.s stabilizable and (G,A) is detectable; hence the
perturbed solution X X(A, F, G) is well defined. Let AX ’-X.

To relate IIxll to IIall, IlaFtl, and tlGll, we adopt the condition theory of Rice
[19]. For sufficiently small 6 > 0, define Ks Ks(A, F, G) by

 IIAXIIsup
[ x

(2.1)
IIAII IIAII, IIFII IIFIt, IlaGII IIGII, and 6

symmetric positive semidefinite}.
Taking the limit as 3 goes to zero, we obtain the asymptotic condition number

(2.2) K -= lim
60

It is worth mentioning that this limit exists in an extended sense because Ks is
nonincreasing as goes to zero. Moreover, this limit is finite as we will see below.

We can obtain bounds on K by substituting , , , and " into (1.6). After some
rearrangement, we find

AAX+AXAc -AG- AATX-XAA+XAFX

-(AA AFX) 7-AX AX(AA AFX) + AX(F+ AF)AX
where Ac A- FX is the closed-loop matrix. The left-hand side of (2.3) has the form
I(AX), where f is defined by (1.10). Since Ac is stable, f is invertible [17] and

(2.4) 12-1(Z) --f ea’tZ eAct dr.

We may rewrite (2.3) as

aX -I)-I(AG + AAT"X +XAA XAFX)
(2.5)

-f-((aA-/FX)aX+aX /A AFX) AX F+ AF)AX).
The first term on the right-hand side of (2.5) determines the norm of AX for AA, AG,
and AF small, and is in fact the Fr6chet derivative of the mapping (A, F, G)- X. For
the purposes of estimation and interpretation, it is convenient to break up this term
into the sum of three linear operators (using the notation of Byers in [2]):

(2.6) -f-I(AG+AArX+XAA’XAFX)=-f-(AG)-O(AA)+II(AF)
where

(2.7) O(Z) l)-l(ZT"X + XZ), II(Z) f-I(XZX).
In general, the operator O determines the sensitivity of X with respect to uncer-

tainty in the state matrix A (e.g., modeling errors in the open-loop dynamics). Similarly,
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II and ---1 determine the sensitivity of X with respect to uncertainty in F (actuator
errors) and G (sensors errors), respectively.

It is worth emphasizing that throughout this paper we are concerned only with
the effects of "small" perturbations, i.e., we are dealing with a first-order sensitivity
analysis.

Associated with (2.6) is the Byers approximate condition number

(2.8) KB IIx-’ll IlOll + IIOII IIAII + Ilnll IIFII

The motivation for using this condition number is that if 6 is small and IIAII IIAII,
IIAGII--< llGII, IlaFII--< llFII, then

IlzXxll II-s-’(zxo) O(zXA) / rI(zXF)

llXll
I1-11 I111 + Iloll IIAAII + Ilnll IIFII KB.

6X

Using a result from Stewart [20], Byers [2] was able to show that, for the Frobenius
norm, KB is a very good approximation to K.

THEOREM 2.1 (Byers [2]). Define K and Kn by (2.2) and (2.8) for the Frobenius
norm. Then (1 /9)KB <- K <= 4

Proof See [2] for the proof. 13
Remark. From (2.7), 11011-< 2ll-lll [[X[[ and Ill-Ill _-< [[-l[I [[Xl[ 2. This leads to the

"conservative" Byers condition number Kcn"

(2.9) KB <= Kcn X (11GII + 211All IlXll + IIFII IIX I1=).

However, this simpler condition number is generally too conservative and is often
several orders of magnitude larger than KB (see [2]).

The next theorem shows that, for the matrix 2-norm, KB is within a factor of 3
of K.

THEOREM 2.2. Define K and KB by (2.2) and (2.8) for the matrix 2-norm. Then

Kn<= K <= Ka.
Proof See Appendix 1 for the proof. Fq

These theorems show that KB is entirely satisfactory as an estimator of K, especially
in view of the fact that for most numerical purposes we only need to estimate K to
within a factor of 10. However, the question arises as to what KB means in terms of
the original problem. While a geometric interpretation of ill-conditioning is difficult
for the Frobenius norm, as noted in [2], it is rather easy for the spectral norm: X is
sensitive to perturbations if the closed-loop system (1.7) is poorly damped with respect
to the weighting matrices /, X, or X2.

We define the damping of (1.7) with respect to X, for k 0, 1, 2 by

(2.10) D-- max Ilxll,-- max xr(t)Xx(t) dt
Ilxoll Ilxoll

We will show that D= II11-111, O= Ilnll, and 2D -< IIOII <-DoD=’, thus establishing
the intimate relationship between sensitivity and damping.



54 C. KENNEY AND G. HEWER

(e.3)

(2.14)

and

As a step in this direction, let Hk be the solution to the closed-loop Lyapunov
equations,

(2.11) AHk + HkAc -Xk

for k 0, 1, 2. Since Ac is stable [17], Hk o eAxk eA’ dt.
LEMMA 2.3. Let x satisfy the closed-loop differential equation (1.7). Then XfHkXo-

x 2.x and Hk maxlxll =, x =.x, D.o XO eAtxk eActxo dt xffHkXo. If IlxollProof. Since x(t) ec Xo, Ilxll=,x T

1 then XHkXo <= n II, because Hk is symmetric and positive definite. Thus D _-< Hk II.
Moreover, if we let Xo be a unit eigenvector of Hk corresponding to Xmax(nk) n II,
then we obtain equality: D IIHII.

The connection between damping and sensitivity relies on the observation that

(2.12) no=-D,-l(I), 2H1=-(R)(I), n2=-Ii(I).

THEOREM 2.4. Define l-l, O, H, and Hk by (1.10), (2.7), and (2.11). Then

]In-Ill Holl,

IIrI n=ll,

(2.15) 211Hlll IIOII - ;11/-/o11’/11HII ’/-.

Proof See Appendix 1 for the proof.
COROLLARY 2.5.

(2.16) D I1-’ II, D2 IIrIII, 2D_-< OII <-- DoD2.

Proof The proof is immediate from Lemma 2.3 and Theorem 2.4.
Remark. These results are novel in that they provide an exact expression (in two

different forms!) for sep (M, Mr) -= min ((11MrZ +ZM II)/IIZ I1), where M is any
stable matrix in "" [20]. This is because sep(M,-MT)=min([lf(Z)ll/llZl])=
min (ll YII/I1-’(Y)II) 1/II-lll, where (Z)= MrZ+ZM. From the preceding argu-
ments, sep (M, M7-) 1 /II H II, where M7"H + HM I; and sep (M, M
where D=maxllxoll= Ilxll, for solutions to := Mx, x(0)= Xo. This is important in
another respect because it means that the damping measure, D D(M) is nicely stable"
Stewart has shown [20, Thm. 4.6] that

sep (M, -M)-211EII =<sep (M + E,-(M + E)r)-< sep (M, -M) +2lIE II.
Thus, D(M)/UI+2IIEIID2(M)<-_D(M+E)<=D(M)/41-211EIID(M), where we
assume that E is small enough that M+ E is stable and 211ElIDe(M)<

From Theorem 2.4 we see that large norms for Ho, Ha, and H2, which are indicative
of poor damping in the closed-loop dynamical system, mean that Ks is large. Con-
sequently, X will be sensitive to small perturbations in A, F, and G. Conversely, if
the norms of H0, H1, and H2 are not large then the problem is well-conditioned. A
mixture of large and small norms among the H indicates selective sensitivity. For
example, if the closed-loop dynamic system (1.7) is poorly damped with respect to the
identity as a weighting matrix but not with respect to X or X2, so that IIHoll is large
relative to IIHlll and IIH=I], then we can expect that X is more sensitive to variations
in the sensor matrix G than in the open loop matrix A or the controller matrix F.
Examples showing selective sensitivity are given in 4.



RICCATI SENSITIVITY 55

Although Theorem 2.4 gives exact values for I1-11 and IIrIII in terms of Ilnoll and
IIn=ll, the upper and lower bounds on IlOll in (2.15) are not very useful unless

(2.17) IIH, IIHolI’/IIHII ’/.
The next lemma shows that this approximate equality must hold whenever X is

moderately well-conditioned with respect to inversion.
LEMMA 2.6. Assume that X >0 aria let K(X)= IlXll IIx-ll. Then

[llnol, liB=Illg(x)
--< IIn, <--[llnoll liB=Ill ’/=.

Proof. By (2.15) we need only show IIHoll IIH=II--< K(X)IIH, -. Let v be any unit
vector in n. Then,

vTHlv= V
T eAtXeActvdt>>_Amin(X 1.)

T eA eActvd Amin(X)l)Tnol).

This gives IIHlll >_- min(X)ilHo[I [[noll/llx-l[I. Similarly,

vrHv= vr eAg’xx-Xe’vdt>_Imn(X-)vrHv.

This gives IIn, Amin(X-1)lln2ll--IInll/llxll. Thus IIH, II Ilnoll IInll/g(x).

For all but one of the problems that we tested the approximate equality (2.17)
was true to within about 15 percent---even for some problems with K(X) large.
However, the following example shows that Ilnoll’/=llH=ll ’/= can be very much larger
than H, II.

Example 1. Let

Then

X [x/i+2x/X 1 J1 x/i +2A

IIHoll4, IIHlll, IIH=ll
For example, if A 10 then 1 IIHll--< IIHolI/EIIH:[[/=6124.

Fortunately, there is a simple procedure that can be used to estimate 19 accurately
even when IIHll<< IIHoll/=lIH=ll /=. To motivate this method, we briefly consider the
related problem of finding the Frobenius norms of I-1, 19, and II.

Let Vec M denote the vector formed by stacking the columns of a matrix M and
define the Kronecker product of two matrices M and N by (see [7])

(2.19) M(R)N=-[MoN].

The Frobenius norm of M is equal to the 2-norm of Vec M:

(2.20) IIMII IIVec MII.
Also

(2.21) Vec (MZN) (Nr (R) M) Vec Z.
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Apply the Vec operator to the equation AH+ HAc Q, to obtain

(2.) (a(R)+ l(R)a) Vec H=Vec Q.

This may be rewritten as

(2.23) VecH=(A(R)I+I(R)A)-IVecQ.
Since H -I(Q), we get

max
(2.24)

[[a--l[IF max
[[QI[v

-max

(a@ I + IA)-’.
Note in (2.24) that [-[v denotes the operator norm on- induced by the Frobenius
matrix norm, and is not the same as the Frobenius norm of the associated Kronecker
representation of-. From (2.24) we see that we could evaluate ]]- v by constructing
(A@I+I@Ac)- and taking its 2-norm (see [8] or [2]). However, because A
I+ I@A is of order n, this is usually not a practical procedure. Instead, we use the
fact that if MA@I+I@a then {M-[[ ((M-a)M-).

Y us can be estimated by the inverse power method [5]. That is, given
v Vec (Q) 0, solve for and w in

m= v, M=.
Unless v is poorly chosen, M-I recycling repeatedly with v

reset to w, this estimate converges to M-[[unless the initial v is orthogonal to the
eigenspace of (M)-M-’ corresponding to ]M- (see [5]).

An equivalen version of this method avoids the use of Kronecker forms" given
Q 0, solve for H and H in

(2.25) a+ac Q,

(2.26) acH + HA
Yen ]}-1] ]Hll/]Q] and recycling with Q reset to H improves the estimate

The Frobenius norm of can be found in a similar way. Suppose that (Q)= H,
that is, AH+ HAc Qx+ XQ. Apply the Vec operator to get

(A@I+la) Vec H= (IX) Vec Q+ (XI) Vec

The components of Vec Q are just a permutation of the components of Vec Q"

(2.27) Vec Q U Vec Q

where U is a permutation matrix [7] with U= U. Then

(2.28) Vec H (a@I + 1@a)-(I@X + (X I) U) Vec Q

and

(2.29) ]I=]](AcI+I@A)-(IX+(X@I)U)[[.
The same type of argument gives

(2.30) ][n[ e (ac @ I + I@A)-a(X
To estimate ][e, the inverse power method takes the following form. Given

0 0, set Q 0X + X0, solve (2.25), (2.26), and let W= 2XH. Then
([W]]/{]O[v, and we can recycle with 0 set equal to To estimate st

Q xQx, solve (2.25), (2.26), and let Z XHX to get {n[[ #[ZI]v/O]]; recycle
with Q Z
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These results can be related to the 2-norms of ---1, O, and H by exploiting the
well-known inequality [18]

(2.31) IIM[[ =< [[MII_-< x/- [[MI[,
for any n n matrix M. If L is either of the operators 12-, (R), or II, then

1 [IL(Q)II<IIL(Q)II_<v IIt(Q)ll
(2.32) x/ IIQII IIQIIv ]]Qll

and

(2.33)

This means that if Q maximizes the 2-norm ratio IIL(Q)II/IIQII, then Q will nearly
maximize the Frobenius norm ratio L( Q) v/ Q II, and vice versa. For example, by
Theorem 2.4, II-(Q)II/IIQII is maximized by Q= I, so I1-11,-I1-(I)11,/11II1,
IIHoll/4-d. Similarly, IIrlIl,-IIrI(I)ll,/llI.II,-IIH=ll,/4-d. If better estimates are
required then the inverse power method can be used, starting with Q (or Q) equal to
the identity.

This also suggests a means of estimating the 2-norm of (R) when
[IHoII’/2IIH2I[ 1/2" Use the inverse power method to find ( # 0 such that
is nearly maximized. Then IIo(O)ll/llOll provides a good estimate for I111.

We found that for all the problems we tested, one cycle of the inverse power
method, starting with (= I, gave excellent estimates for IIO11. More specifically, set
Q 2X, solve (2.25), (2.26), and let W 2XH. Define

(2.34) HI1)O Ilwll
Then IIH>II Iloll and IIH>I[ gives a lower bound on

iiHil>ll- IIO( W)ll __< max
IIO(Q)I___1- IIOII.IlWll IIQII

If we apply this procedure to Example 1, then we find-IIHI>II-<-IIOII--<,/11Holl IIH211 ,/3/2.
Thus IIH’>II is within x/ of IIOII for this problem.

The preceding suggests that we define upper and lower condition estimates for
the 2-norm as

(2.35) Kt

(2.36) KL=

By Theorem 2.4,

(2.37)

By Theorem 2.2,

(2.38)

IIHoll IIGII + IIH’)II IIAII + II/-/=1111FII

KL <= KB <= Ku.

KL<_K<_Ku.
3
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Numerical tests on a large class of problems (see 4) show that KL and Kv are
usually very close. If desired, more refined results can be obtained by replacing the
term ]]H)II in (2.36) with the norms of higher inverse power cycle iterates.

We conclude this section by giving a lower bound on Boll in terms of the stability
radius of the closed-loop matrix. For any matrix M Rmxm, the stability radius of M
is the norm of the smallest perturbation AM, which makes M+AM unstable (see 11 ],
[14], [21]):

(2.39) ps(M) min {IIAMII [M +AM has an eigenvalue h with Re (h)_-> 0}.

LEMMA 2.7. Let AHo+ HoAc L Then

1
(2.40)

2ps(Ac IlHoll.

Proof. See [9] for the proof. [3

From this lemma we see that if the closed-loop matrix A-FX can be made
unstable by a small perturbation, then llHoll will be large and the problem of finding
X is ill-conditioned. This complements a study by Kenney and Laub [14] in which it
is shown that for companion systems

0 1

i 0.
(2.41) A= B= C=I

al a2 1

where al does not grow faster than c for some constant c > 1, we have that p(A-
BBrX) decays to zero exponentially fast as n increases. We can thus expect that X
is very sensitive to small changes in A, B, and C for companion form systems of high
dimension.

3. Sensitivity of the differential Riccati equation. We now turn to the sensitivity
of the solution to the differential Riccati equation, which although important has
apparently not been treated in the literature.

For convenience, we transform the Riccati problem (1.4) with terminal condition
into an initial value Riccati problem. Let X(t) P(tl- t); then for 0 _-< t-<_ tl

(3.1) .,(t)=G+ATX(t)+X(t)A-X(t)FX(t), X(O)=PI=-Xo

Under this transformation, P(t) X(t- t) and the closed-loop dynamical system (1.5)
becomes

(3.2) (t)=(A-FX(tl-t))x(t), x(0) Xo, O<-t<-tl

As in the algebraic case, it is convenient to define the damping of the closed-loop
dynamical system (3.2) with respect to the weighting matrices Xk for k 0, 1, 2:

t,
(t)xk(tl t)x(t) dt(3.3) Dk(tl) max Ilxllto,,,a,, -= max xr

Ilxoll xoll

where the maximum is taken over solutions, x to (3.2).
To avoid confusion, we will use a "+" subscript or superscript to denote quantities

related to the algebraic Riccati equation (e.g., X/ for the solution to (1.6), K for
(2.8), etc.).
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Let Jo J >_-.0 be a perturbation of Xo and set AXo-- Jo-Xo. Let ., , and (
be perturbations of A, F, and G with AA A-A, AF F-F, and AG G-G. As
in 2, we assume that and ( are symmetric and positive definite. Let J (t)
denote the solution to (3.1) for ,/3, (, and o and set

(3.4) AX(t)--X(t)-X(t).

For 0-< t-< tl, define the differential Riccati condition numbers

lAX(t)
K(t) -- lim K(t).(3.5) K(t) sup

llx(t)ll o

Here the supremum is taken over the set IIA wll _-< 611 wll with W= A, F, G, and Xo
such that F+ AF and G+ AG are symmetric and positive semidefinite. We assume
throughout that IIx(t)ll>0; obvious modifications in terms of absolute rather than
relative condition numbers apply to the case where IIx()ll is very small or zero.

Bounds on K (t) can be found by expanding (3.1) for the perturbed matrices. For
X X(t), let Ac A- FX and define

(3.6) M1 -- AG+ AArX +XAA-XAFX,
(3.7) M2-- (AA- AFX)TAX + AX(AA- AFX) AX(F+ AF)AX.

Using , /, (, and J in (3.1), we obtain

(3.8) A2=AAX+AXAc+MI+M2, AX(O)=AXo, O<--t<=

To find the analogue of f-i in (2.4), let satisfy

(3.9) c(t)=O(t)Ac(t), O(O)= I, O<- t<- tl.

Define

(3.10) a-(Z) -- oT(t)o-T(s)Z(s)O-I(s)O(t) ds

for any continuous matrix function Z Z(s), s [0, t].
By variation of parameters [6], AX in (3.8) can be written as

(3.11) AX(t) Or(t)AXoO(t) 1)-1(AG) (R)t(AA) + n,(AF) +

where

(3.12) o,(z) a ;-’(zx + xz), n,(z)- a-i(xzx).

Since the first-order terms in (3.11) depend on the constant matrices AA, AF, A G,
and AXo, we define the restricted operator norm, Ilgll--max (IIR(Z)II/IIZII) for R=
11-1, (R)t, or IIt with Z restricted to nonzero constant matrices in

From (3.11 ),

"lt- ]]O--I(s)O(t)II ds[N(llzell / IIAFll IIXII,)IlZXXII,

+ (IIFII + IIAFII)IlzXXII]
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where II" II, denotes the max norm, Ilzll,- maxo=<s__<t IIZ(s)ll for any continuous matrix
function Z. This inequality suggests that we define the Byers-type approximate condition
number

(3.13) KB(t) =---
IlX(t)ll

We then have the analogue of Theorem 2.2.
THEOREM 3.1. For 0<= t<--_ tl, let K(t), KB(t) be defined by (3.5) and (3.13), and

assume that X satisfies (3.1) with x(t)II 0. Then

(3.14) Kn(t..___) _< K (t) < Kn(t).
4

Proof See Appendix 2 for the proof. [3

This theorem shows that Kn(t) gives a reasonable estimate of K (t). The connection
between conditioning and damping is established by using the analogues of Hk in
(2.16): let Hk Hk(t) be the solution to

(3.15) I2Ik=aHk+Hkac+Xk, Hk(0)=0, k=0,1,2.

LEMMA 3.2. Let x, Dk, and Hk satisfy (3.2), (3.3), and (3.15), respectively. Then

(3.16)

and

f0!1
X t)xk(tl t)X(t) dtXgHk(tllXo Ilxll 2 r(L2[O, tl],X

(3.18) Hk(t) @r(t)dP-r(s)Xk(s)@-’(s)dP(t) ds, 0 <- t<= tl

where satisfies (3.9). Now proceed as in the proof of Lemma 2.3.
From (3.18),

(3.19) f-/’(I)=-Ho(t), Ot(I)=-2H(t), II,(I)=-H2(t)
-1so that IlHo( t)ll <_-Ilo, II, 2IIH( t)]l--< II(R),ll, and IIH2(t)ll IIrI, II. This suggests the follow-

ing analogues of Theorem 2.4.
THEORZM 3.3. For Hk, f-, 0,, and IIt as in (3.15), (3.10), and (3.12), respectively,

(3.20) [[f/-ll[ [[no(t)ll,

(3.21)

(3.22)

Proof The proof is similar to the proof of Theorem 2.4.
Because of the parallels between the algebraic and differential problems, the

remarks following Theorem 2.4 also apply to Theorem 3.3 with only slight modifications,
the main difference arising from the presence of the term II,(t)ll=liXoll in (3.13). This
term represents the main contribution to the error for small because Hk(O)=0, but
as we will see, II(t)ll-0 as t- so that its influence is less important for large t.
The norm of (t) can be interpreted as a damping measure for the linear dynamical
system (3.9) rather than (3.2).

(3.17) IIHk(t)ll D(q) for k=0, 1,2.

Proof Use the fact that x(t) -1(tl t)(tl)xo and
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For Xo=Xo>--0, lim,_.X(t)=X+, (see [4]) and limt_,R(t)=0. In this case,
the differential relation (1.4) for X tends to the algebraic relation (1.6). Thus, it is
natural to ask how the sensitivity estimates for the differential problem compare with
those of the algebraic problem as t- . The next two lemmas show that the two
sensitivity estimates are asymptotically equal, under the assumption that IlHo(t)ll is
uniformly bounded for 0 <- < c.

LEMMA 3.4. Let X X(t) satisfy (3.1) with Xo X>=O. Let dp satisfy (3.9). Then
lim,_, (t) O.

Proof See Appendix 2 for the proof. [3

LEMMA 3.5. Let 1)-1, 19, H, and Hk be given by (2.4), (2.7), and (2.11). Let -1,
0,, II,, and Hk(t) be defined by (3.10), (3.12), and (3.15). If Ho(t)[[ is uniformly
bounded over 0 <- < c, then

(3.23) lim Hk Hk.
t-cX3

Moreover, for any constant matrix Z,

(3.24) lim O-I(Z) f-l(z),
t--

(3.25) lim (R),(Z) O(Z),
t---

and

(3.26) lim H,(Z) H(Z).

Consequently, limt_. Ks(t) K.
Proof See Appendix 2 for the proof.
Remark. Since Ac (t) A, which is stable, the assumption that Ho(t)[I is uni-

formly bounded for t_-> 0 seems reasonable; however, it is not clear how restrictive
this assumption really is.

Just as in the algebraic problem, the possibility exists for IIn(t)ll<<
Ilno(t)ll’/=llH=(t)ll ’/, in which case (3.22) does not provide much information about
1119,1[. In general this was not found to be a problem, but for Example 1 (2.18) of 2,
the gap increased with h. For example, if h 108 and Xo I, then [1H1(10-4)11 0.724,
whereas

Ilno(lO-4)ll’/=l[n2(lO-4)ll’/== 2432.0.

This problem can be handled as in 2 by using the Kronecker forms associated
with the Frobenius norm of ,. For a given constant matrix Z,

(3.27) 0,(/) r(t)-r(s)(ZrX(s)+X(s)Z)-(s)(t) ds.

Using the Vec operator, we obtain

(3.28) Vec (o,(z))= (t) Vec (z)

where

(3.29) L(t)=-dPT"(t)(R)(t) (dP-7"(s)(R)dP-7"(s))(I(R)X(s)+(X(s)(R)I)U) as.
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(The permutation matrix U is symmetric [7] and satisfies U Vec (ZT) Vec (Z).) From
(3.28),

[Io,(z)ll IlVec o,(z)[I liE(t) Vec
(3.30) o, I1, max max max L(t) II.
Thus the 2-norm of L(t) is equal to the Frobenius norm (restricted to constant Z) of
O,. Moreover, .from (3.29)
(3.31) L=(A(R)I+I(R)A)L+I(R)X+(X(R)I)U, L(0) 0.

We could integrate (3.31) to obtain L(t) and then find IIt(t)ll to get IIO,ll. In this
case, an estimate of the 2norm of O, can be found by using the singular vector v of
L(t) corresponding to O-max(t(t)). Let V= Unvec (v), that is Vec (V)= v, then IIZ(t)[I
Ilz(t)vll/llvll implies that [IO,II IIo,(v)ll/ll vll. Thus by (2.32), we get the 2-norm
estimate IIO,11- IIo,(v)ll/ll vii. n fact, by (2.33) we have IIO,(W)ll/ll vii--<
4-(llo,(v)ll/II vii).

This procedure is numerically expensive since L(t) is nx n=. This suggests a
power method approach like that of 2, in which we avoid explicitly constructing
L(t). This method is only partially successful, because the nature of LT(I) makes it
hard to avoid using Kronecker forms.

Given o Vec (W), we can form L(t)o by integrating the system

(3.32) I2I=AH+HAc + wTx+xw, H(0) 0

and setting L(t)w=Vec(H(t)). This follows from the (3.31), since F=-Lw satisfies

= (A(R) I + I(R)A)F+(I(R)X +(X(R) I) U)w.

However, g= LTo satisfies =LT(Ac(R)I+I(R)Ac)w+(I(R)X+ U(X(R)I))to, which
does not in general reduce to a simple n n matrix differential equation for
Unvec (LTw), unless LT and (Ac(R)I+I(R)Ac) commute. In this case Vec(LTq)=H
where

I2I acH + HA. + X( W+ WT), H(0)--0.
This problem needs more research, but fortunately there is a procedure t.hat seems

to work well and is much less expensive than evaluating L(t) directly. Let W be given
by one cycle of the inverse power method for estimating IIo11 as in (2.34). Let
satisfy (3.32) with W= I7/11 I711. Then IIH’(t)[I--IIO,( ff)ll/1[ Yell-<-[1o,[[, and we have
found that IlH’)(t)ll--IIo,ll. The rationale for this choice of I7 is that IIO(
II.o as discussed in 2, and that O, O as - oe. Thus there is a good possibility that
W nearly maximizes the ratio IIO,(/)[I/ll fill, especially for large t.

We now define

llo(t) I1=11 gull / IIHo(t)ll GII / 2 Ho(t)ll’/=lln2(t)ll’/=llall / IIn2(t)ll IIFII(3.33) Ku(t)=-
Ilx(t)ll

(3.34) Kt(t)=-I[(t)llllxll / [[H(t)ll IIG[I / IlH’)(t)[[ llAII + IIH(t)ll IIFII
Ilx(t)ll

By (3.13) and Theorems 3.1 and 3.3, KL( t) <= Kn( t) <- Ku( t), KL(t)/4<=K(t)<=Ku(t).
The asymptotic convergence results of Lemma 3.5 give limt_,oo Ku(t)= K+U and
lim,_ KL K-.

4. Numerical results. By considering seven basic problems from [1], [9], and [15]
with various parameter values, we tested 21 examples for the algebraic equation and
seven for the differential equation. A representative subset of our results are presented
below in such a way as to illustrate several points.
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For example, the upper and lower bounds, Ku in (2.35) and KL in (2.36) for the
true condition number, K in (2.2), were farthest apart for the first example (see Table
1). The same applies to the time-dependent upper and lower bounds, Ku(t) in (3.33)
and KL(t) in (3.34) for K (t) in (3.5), (see Table 2). That these upper and lower bounds
are relatively close, even for this rather extreme.example, is encouraging.

Another point we want to make with these .results is that selective sensitivity can
be easily detected. As discussed in 2, the ratios IIHoll IIGII/llXll, IIH’)II Ilall/llxll,
and IIH21111FII/llxll, (see (2.11) and (2.34)) measure, respectively, the sensitivity of X
with respect to perturbations in the sensor matrix G, the state matrix A, and the actuator
matrix F. Example 1 below illustrates state matrix sensitivity while Example 2 shows
that actuator sensitivity dominates the condition number of companion form systems
as the state dimension, n increases. The same example shows that the bound
1/2p(Ac)<IIHolI, in Lemma 2.7, which relates the closed-loop stability radius to
conditioning, can be very conservative. Example 3 shows that a problem can be sensitive
in all three coefficient matrices. Lastly, Example 4 has the interesting feature that it is
most sensitive with respect to sensor matrix perturbations for the algebraic Riccati
problem, but for the differential problem most of the initial sensitivity (t < 10) is due
to the actuator matrix. Except for Example 4, F BB 7- and G C rC.

Example 1. Let

A=[; ] B=[01] C=[1 ]0

TABLE
Condition measures for Example 1.

Lower Upper Sensor State Actuator
System Cond. no. cond. no. cond. no. matrix matrix matrix

parameter (Frob. norm) (2-norm) (2-norm) sensitivity sensitivity sensitivity

IIH0il IIGII IIHI)II Ilall Iln21l IIFllX Ka KL Ku Ilxll Ilxll Ilxll

10 3.7 3.8 4.2 0.6 1.6 1.6
10 7.4 7.3 11 0.3 6.3 0.8
102 53 52 89 0.3 5,1 0.8
104 5 x 103 5 x 103 9 x 103 0.3 5 x 103 0.8
10 5 10 5 10 9 x 10 0.3 5 10 0.8

TABLE 2
Convergence of time-dependent condition measures to steady state for A 10 and X L

Time

Lower Upper Initial Sensor State Actuator
cond. no. cond. no. matrix matrix matrix matrix
(2-norm) (2-norm) sensitivity sensitivity sensitivity sensitivity

II(t)ll21Xoll IIn0(t)llllGII IIH’(t)llllall IIH2(t)llllFII
IIX(t)ll IIX(t)[I IlX(t)ll IIX(t)ll

0.0 1.0 1.0 1.0 0.0 0.0 0.0
10-7 29 79 1.0 4 x 10-8 28 4 10-6

10-6 3 10 7 10 1.0 3 10-7 3 10 3 10-3

10.5 2 X 10 3 X 10 0.2 2 X 10.6 2 X 10 0.8
10-4 10 2 10 3 10-4 7 10-3 10 1.0
10-3 5 10 9 10 4 10-1 0.3 5 ,10 0.8
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For this problem the upper and lower condition number bounds, Kt and KL are
relatively more separated than for any other problem we tested. (See also the discussion
in 2 concerning the gap between IIHII[ and IIHoII1/=IIH_II1/=.) Not surprisingly this
problem exhibits sensitivity with respect to the state matrix A (compare column 6 with
columns 5 and 7 in Table 1). This carries over to the differential problem. Table 2
shows the asymptotic convergence of the time-dependent condition measures to their
steady state (algebraic) values.

Example 2. Let A, B, and C be given by (2.41), with a a2 a, =0. This
problem illustrates that high-order companion form systems are subject to actuator
sensitivity (compare column 4 with 2 and 3 in Table 3). Columns 5 and 6 in Table 3
show that the bound 1/2ps(Ac) < tlnoll in (2.40) can be very conservative. For related
results, see [14].

Example 3 (Example 2 in [1]). Let A, B, and C be given by

-e 1 0 0 1

-1 -e 0 0
B=

1
A=

0 e 1 1

0 0 -1 e 1

C=Br.

This problem was designed so that the closed-loop matrix Ac has eigenvalues that
approach the imaginary axis as e- 0. This forces the stability radius ps(Ac) to go to
zero and consequently by (2.40) the norm of Ho becomes large. From Table 4, we see
that X is sensitive to perturbations in A, B, or C.

Example 4 (From [12]). Let A, B, C F, and G be given by

0.331 -1.13 0.0 0.0 0 0
---1.0 -0.0042 0.128 0.0 1.0 0 0

00.0 -0.0461 -0.803 1.0 0.0 B= 0

0.438 0.0 0.0 0.0 0.0 03
L 0.0 0.0 0.0 0.0 0.0 0 103j

0.0331 -0.0113 0.0 0.010.0 0,012048 0.021187 0.0 0.0 F= BB r,
0.0 0.001265 0.05028 0.0 0.0

1 0 0

G=CT 0 OC.
0 0 e

TABLE 3
Sensitivity measures for companion form systems.

System
size

Sensor State Actuator Inverse
matrix matrix matrix stability

sensitivity sensitivity sensitivity radius

IIHoll IIGII Iln’)ll IIAll IIU21111FII
2ps(Ac)

inverse
Lyapunov
norm

5
10
15
20

0.65
0.65
0.65
0.64

4.5 39.0 15.6 40.0
9.2 8.2 103 65.0 9.5 x 103
14.0 2.2 x 105 1.4 103 2.6 106
19.0 6.3 x 10 2.4 10 7.8 10
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TABLE 4
Sensitivity measures for Example 3.

Eigenvalue Sensor matrix State matrix Actuator matrix
parameter sensitivity sensitivity sensitivity

IIHoll IIGll IlH’ll IlAll IIHll Ilrll
IlxII IlxII Ilxll

10 4.1 4.0 25
10-3 4 106 2 106 4 106
10-5 4 x 10l 2 x 10l 4 106
10-7 4 X 1014 2 X 1014 4 X 106

This problem shows increasing sensitivity with respect to the sensor matrix G as e

decreases (see column 1 of Table 5). A very interesting feature of this problem is that
for Xo-I and near zero, the sensitivity of the differential Riccati equation (Table
6) is mostly due to the actuator matrix, F because of its large norm; HF[I 106. (See
row 6, column 4 of Table 6.) Thus the sensitivity of the algebraic problem is not always
a reliable guide to the sensitivity of the differential problem.

5. Conclusion. In this paper we have shown that the ideas developed by Byers in
[2] for the algebraic Riccati equation can be sharpened and extended to norms other

TABLE 5
Algebraic sensitivity measures for Example 4.

Sensor Sensor matrix State matrix Actuator matrix
parameter sensitivity sensitivity sensitivity

Ilnoll GII IIn’ll IIAII IIn21111FII
IlXll ItXll IlXll

10 103 9.9 102
10-1 9 103 13 82
10-2 2 104 13 82
10-3 2 104 13 82

TABLE 6

Differential sensitivity for Example 4 with e 10-3 and X L

Time
Sensor matrix State matrix Actuator matrix Initial matrix

sensitivity sensitivity sensitivity sensitivity
Ho(t)lt IIOlt IInl(t)ll IIAII IIH2(t)ll IIFII II(t)ll211Xoll

IIx(t)ll IIx(t)ll IIx(t)ll IIx(t)ll

0.0 0.0 0.0 0.0 1.0
10-5 10-7 10-4 101 1.0
10-4 10-6 10-3 102 1.0
10-3 10-5 10-2 103 1.0
10-2 10-2 10-1 104 1.0
10-1 0.2 1.3 105 0.9
10 16 2.4 104 10-2

101 59 13 6 103 7 10-4

102 77 13 5 103 4 10-4

103 6 103 13 83 6 10-8
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than the Frobenius norm. This extension is crucial from an interpretive point of view
because use of the spectral norm allows an identification of the condition number of
the algebraic Riccati equation with the damping properties ofthe closed-loop dynamical
system. The resulting condition numbers are easily computed and provide a simple
means of detecting selective sensitivity with respect to the sensor matrix, the open-loop
state matrix or the actuator matrix. Moreover, this approach has the pleasant feature
that it carries over to a completely parallel theory for the sensitivity of the differential
Riccati equation, an area which to our knowledge has not been considered previously.

Appendix 1. Proofs of Theorems 2.2 and 2.4.
Proof of Theorem 2.2. Let IIzXAll =< 3[Iai[, IIAFII--<-- [[FII, and II+/-Gll <- llG[I with

F+ AF, G+ AG symmetric and positive semidefinite. Then by (2.1), Ilaxll--< llXllg.
Taking norms in (2.5),

+ 6=11-’ K(2(IIAII + IIFll [[xll)llx[I + (1 + 6 )[IF’[[ IlXll=g),

Divide by IIx to get

IIxII _< K / I1-"11K(2(IIAII / IIFII IIXII) / ( / )IIFII IIXI[ K).

From (2.1) we then obtain

K =< K / II-"IIK(2(IIAII / IIFII IIXII) / (a / )ItFII IIXIIK).

From Theorem 2.1, K(A, F, G, II. I[) is finite for 6 sufficiently small. Since all norms
on t are equivalent [18], we must have that K(A, F, G, I1" II) is finite for 6 small
for the matrix 2-norm. But K(A, F, G, [[. [[) is nonincreasing as 6- 0+ so

K (A, F, G, I1" II) lim K(A, F, G, I1" II) =< Ks(A, F, G, II"

We now show that 112-’[[ IIGII gllxll, IIOII IIAII gllxll, and IIrIII IIFII KIIXII;
adding these inequalities gives KB =< 3K, which completes the proof.

Let aA=0, aF=0, and aG=8IIGIIL Then G+aG is symmetric and positive
definite as required in (2.1). Using these perturbation matrices in (2.5) gives AX
-811GII-’(z), so Ilaxll- 811GII II-(Z)ll- 81[GII I1-’11 by (2.12) and (2.13). From
(2.1),

Letting 80 gives Ila-’ll IIGII KIIxll as desired. Similarly, aA =0., AF= IIFIIZ, and
AG=0 gives Iloll IIFII<-KIIXII, by (2.12)and (2.14). (Note that F=F+AF is sym-
metric and positive semidefinite in keeping with (2.1).)

For the operator norm defined by (2.9), standard compactness arguments show
that there exists a matrix ao, satisfying Ilaoll-1, IIO(ao)ll-IlOll. Now let AA=
61]A]IAo, AF=0, and AG=0 and after an argument similar to the one above we get

Proof of Theorem 2.4. From (2.12), IIHoll <--I1-11, IIH=II <- Ilnll, and 211Hll <--IIOII.
Now, for Z ,,m, let u and v be unit left and right singular vectors of lq-l(Z) such
that
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Then by (2.4), II-l(z)ll o u eA’tz eActl9 dt <-_ IlZll $o IleA’ull Ilea’vll dt. Applying
the Cauchy-Schwarz inequality, we obtain

IIzIIE  [leactul[ 2 dt]l/2[ Ileactl)[[ 2 dt] /2. But o Ileactull 2 dt u T o can’t eact dt u
unou<-_.llHoll because u is a unit vector. The same applies to v, so

Ilzll Ilnoll/=llHoll /2- IlZll IIHoll. Thus I1-11-< IIHoll. Similar arguments establish IIrll--<
liB211 and IIOI1-<-IIHolI/2IIH=II

Appendix 2. Proofs of Theorem 3.1, Lemma 3.4, and Lemma 3.5.
Proof of Theorem 3.1. Let (0, c) be given. Because the right-hand side of (3.1)

is a smooth function of its arguments, we may appeal to the theory of perturbations
of initial conditions and parameters of ordinary differential equations (see [6, Thm.
7.5, Chap. 1]), to conclude that

AX AX(A, F, G, Xo, AA, AF, AG, AXo, t)

is a continuously differentiable function of its arguments. Moreover, for 6, sufficiently
small, with ]IAAII/IIAII, IIAFII/IIFll, IIAGII/IIGII, IIAXolI/[IXoll <--6, there exists a constant
c < such that IIAXII,--_< c.

Using this in (3.11), we obtain

IlAX(t)ll <--II(t)ll=a IlXoll / II-llla[I GII / IIO,[1 Ilal[ / Ilrt, lla IIFII
+ [I.-l(s).(t)l[ 2 dt[2(llAll+llFIIIIXllt)c+(l+6)llF[Ic2]62.

Thus IIAX(t)ll/8llX(t)ll <= KR(t)+ N(t)6, where

N(t) ’I II-l(s)(t)ll= atE2(llall / [lUll IlXll )c/(1/
IIX(t)ll

So K(t)<=KR(t)+N(t)6. Now N(t) is finite by (1.10) and the assumption that
X(t) # O. Thus letting 60 gives K(t) lim_.o Ks(t) <-_ Kn(t), which proves the right-
hand side of (3.14).

Using arguments similar to those in the proof of Theorem 2.2, we can show that

II-lll IIGII =< K(t),
IIx(t).ll

II,ll IIAII K()i;(t)
n, F

K (t),
IIx(t)ll

II(t)ll=llxll
K(t).

IIx(t)ll
Adding these inequalities gives Kn(t) _-< 4K (t) and completes the proof.

Proof of Lemma 3.4. This lemma has been proved in [13] for the special case
Xo=0. For the general case write (3.9) as O(t)=i,(t)(A-FX+)+(t)F(X+-X(t)).
Since A: =- A- FX+ "" is stable, the result follows from Theorem 8.1 on p. 92 and
Problem 35 on p. 106 of [6], if we can show that for some to_-> 0,

(A1) t"llx+-x(t)ll dt
to

To prove (A1), let +(t)= eat. Then we can use the representation (see [13])

(A2)
X(t)-X+=dP+(t-t) I+(X(to)-X+) dP+(S-to)FdP+(S-to) ds

to

(X(to) X+)@+(t to)

for any to such that the inverse in (A2) exists.
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Let A(A) denote the set of eigenvalues ofA and define a(A) maxxA(A) ReA.
Since A is stable, a a(A)< 0, and there exists a constant Co such that II+(t)ll =<
Co e ’/2. Hence, o II/(t)ll = at <= Co o e’ at Co/ll <. Since limt_ X(t) X+, we
may find a to>-0 such that IIX(to)-X+ll Ilfll ,o II’(t)ll = at <. This means that for all
t-_ to, the inverse in (A2) exists and

(A3) I+(X(to)-X+) Op+(S-to)FOpT"(S-to) ds <2.
to

Using (A3)in (A2) gives IIx(t)-x/ll<-2cliX(to)-X+ll e’-’o, which establishes
(A1) and completes the proof.

Remark. The preceding actually shows that the decay rate for II(t)ll is asymptoti-
cally the same as the decay rate for II,/(t)ll (see [10, Thm. 5.4.1]).

Proof of Lemma 2.5. We show that lim,_, O,(Z)= O(Z). The other asymptotic
convergence proofs are very similar. From the definition of O,(Z),

(,(Z) ArcOt(Z) + Ot(Z)Ac + ZT"X + XZ, Oo(Z) =0.

This matrix differential equation can be written as a vector differential system" t?(t)=
(t)Y(t)+S(t), where Yt(Z)=Vec(Ot(Z)), (t)=I(R)A+Ac(R)I, and S(t)=
Vec(ZT"X+XZ). Let 4+=I(R)(A)r+(A)r(R)I, and S+=Vec(ZTX++X+Z). By
Lemma 2.4, lim,_, (t) + and limt_.o S(t) S+. Moreover, if we set a a(A)
then there exists constants Cl and c2 such that by

II(t)-/11- IlI(R)(X/-X(t))F/ f(X/-X(t))(R)III c et"/2,
IIS(t)-S/llc=e’/.

Now + has eigenvalues of the form h + u where/z and v are eigenvalues of A
(see [17]). Thus a(M+)=2a(A)=2a. Hence there exists a constant c3 such that
[[e/[[<-c3 e’t. Let Y+=- Vec ((R)(Z)) and note that +Y+=S+. Define AY(t)--
Y( t) Y/. Then A (t)= M+A Y( t) + R(t), where R( t) (( t) 4+) Y( t) + S( t) S/.
The boundness of [[Ho(t)[[, together with [[Hg(t)[[<--IIHo(t)[]llxk[I, for k= 1,2 and
[lOt(Z)[[ <=2[[Ho(t)[[1/2[[H(t)[[1/2,1[Z[[ ensures that R t) --< c4 e ’/2 for some constant
C4

If we write A Y(t)= eCotA Y(0)+o eo(t-S)R(s)ds, we have

Ila Y(t)[I-=< c3 eatl]A Y(0)[I / c3c4 e(t-s) e tc/2 ds

C3C4 e ta/2
< eatc3[lA Y(0)[[ + [a

[1 e’*t].

Thus Ila Y( t) --> 0 as t-->0 and we must have Ot(Z)oO(Z).
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PIECEWISE LINEAR APPROXIMATION FOR HEREDITARY
CONTROL PROBLEMS*

GEORG PROPST

Abstract. This paper presents finite-dimensional approximations for linear retarded functional differen-
tial equations by use of discontinuous piecewise linear functions. The approximation scheme is applied to
optimal control problems, when a quadratic cost integral must be minimized subject to the controlled
retarded system. It is shown that the approximate optimal feedback operators converge to the true ones
both in the case where the cost integral ranges over a finite time interval, as well as in the case where it
ranges over an infinite time interval. The arguments in the last case rely on the fact that the piecewise linear
approximations to stable systems are stable in a uniform sense. This feature is established using a vector-
component stability criterion in the state space " x L and the favorable eigenvalue behavior ofthe piecewise
linear approximations.

Key words, hereditary control problem, piecewise linear approximation, uniform stability

AMS(MOS) subject classifications. 34K35, 65L60, 93C15

1. Introduction. Given b En and b 1. I-h, 0] -> ., consider the retarded func-
tional differential equation with constant coefficients

I:(t)= ._ AkX(t--hk)+ Aol(s)x(t+s) ds, t>=O,
(1.1) k=O -h

x(0)=6 x=41 inLa(-h, 0;

where,.0 ho < hi <" < hp h, Ak E,xn, k 0, , p, and Aol La(-h, 0; Rnxn). An
equivalent abstract Cauchy problem :(t)= Az(t), ->_0, z(0)= (qo, bl) in the space
M2__ [n x La(-h, 0; n) generates a strongly continuous semigroup. Approximations
are constructed by restricting the problem to finite-dimensional subspaces Zn=
[n X yn M2, defining appropriate generators AN on Zn.

Banks and Burns 1 used subspaces yn consisting of functions that are piecewise
constant on the delay interval I-h, 0]. This is the well-known averaging approximation
scheme. As an extension, Burns and Cliff [5] enlarged the subspaces to piecewise
linear functions. In both papers, the approximating generators were constructed by
forward difference methods. In [3] the approximations were obtained by projections
onto subspaces of continuous splines being contained in the domain of A. Then Kappel
and Salamon 13] introduced &type operators to define generators for a spline scheme
whose adjoint semigroups converge strongly. These &type operators are specially
constructed to approximate the differential operator A at the discrete delays, where
the splines may be discontinuous, as are the functions in the domain of A*.

In this paper, a new scheme is presented employing again subspaces of orthogonal
piecewise linear functions as in [5], but using &type operators for the construction of
the approximating generators. These operators are needed at each meshpoint, where
the subspace functions may be discontinuous. In fact, the number of discontinuities

* Received by the editors March 9, 1987; accepted for publication (in revised form) March 24, 1989.

" Institut fiir Mathematik, Universi6it Graz, Elisabethstrasse 16, A-8010 Graz, Austria. This research
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NASI-18107 while the author was in residence at the Institute for Computer Applications in Science and
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F6rderung der wissenschaftlichen Forschung (Austria) under grant $3206 while the author was in residence
at the Universit/it Graz, Graz, Austria in connection with his Ph.D. thesis.
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increases with the order of the approximation, in contrast to the spline case. The
resulting generators are completely different from those given in [5].

An application of the approximation schemes is the optimal control problem,
when an integral ranging over [0, T], quadratic in the trajectory and in the control, is
to be minimized subject to the controlled delay equation. It was shown by Gibson [9]
that, if T<, the strong convergence of the semigroups and their adjoints yields
convergence in norm of the optimal feedback operators. In this present work, strong
convergence of the semigroups and their adjoints is proved using the Trotter-Kato
Theorem as in [1] and [9]. Thereby, it is not necessary to assume absolute continuity
of Aol, as did the proofs in [11]-[13].

In the case of the so-called infinite time horizon T , Gibson’s approach relies
on the assumption that a stable system is approximated by systems that are stable in
a uniform sense. For the averaging scheme, this stability preservation property was
established in [19], and in [11] for the Legendre-tau methods. In contrast, the spline
schemes do not have this quality (see 14]). This is due to extraneous eigenvalues close
to the imaginary axis. It is shown below that the eigenvalues of the present scheme
converge to those ofthe delay equation and that exponential stability of our approxima-
tions is dominated by their Rn-components. Thus, uniform preservation of exponential
stability is proved with decay rates arbitrarily close to the decay rate of the hereditary
system.

The matrices corresponding to the piecewise linear functions are banded and
sparse, in contrast to the Legendre and spline methods. While the Legendre schemes
[10], [12] exhibit high accuracy even for low-order approximation, the numerical
efficiency of the present scheme is about the same as that of the first-order splines in
[13], and superior to the averaging methods [1] as well as to those in [5].

Preliminarily, 2 collects some facts on the semigroup generated by the uncontrol-
led system and on the linear quadratic hereditary control problem. Section 3 presents
an approximation framework suited to 4, where the piecewise linear scheme is
developed. For the sake of transparency and brevity the presentation here is restricted
to the one-delay case. The modifications necessary for the treatment of more general
cases are briefly described in 4.6. In 4.1, the g-type operators are defined and the
projections onto the subspaces of piecewise linear functions are investigated. In 4.2,
the approximating generators and their adjoints are constructed and convergence results
for the finite-time horizon problem are proved. In 4.3, the matrix representations are
given and an Rn-component stability criterion is established. Section 4.4 investigates
the eigenvalue behavior of the approximate systems when the order of approximation
increases. In 4.5, the uniform stability preservation is proved. Finally, in 4.7 there
is a brief discussion of the numerical tools needed for the implementation of the
scheme on a computer and the results of three examples are tabulated.

2. The linear quadratic optimal control problem for hereditary systems. We give a
brief outline of known results on the LQR problem. Proofs and a rigorous analysis
may be found in [6], [8], and [9]. Consider the linear retarded functional differential
equation

(2.1.1) :( t) Aox( t) + AlX( r) + Bou( t), >= 0

in ", where r > 0 is a fixed finite delay, Ao, A1 are real n x n matrices, Bo is a real
n x m matrix, and u (t)

Given b (b, b 1) M2 E, L2(_r, 0; En) and u L2oc(0, c; R"), there exists
a unique solution x(t; 4’, u) that is absolutely continuous with L2-derivative on every
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interval [0, T] and that satisfies (2.1.1) for almost all >-0, and the initial condition

(2.1.2) x(0; b, u)= b, x(.; b, u)= b in L2(-r, 0; [").

Defining xt: I-r, 0] by x,(s)=x(t+s) and the state at time by

(2.2) z(t; 6, u) (x(t; qb, u), x,(6, u)) M2,
system (2.1) is converted to an abstract Cauchy problem in M2, which is a Hilbert
space with the inner product (b, q)= brq+(b 1, b)2. Let S(t), t>=0 be the Co-
semigroup corresponding to the free motion of (2.1), i.e.,

S( t)4, (x( t; 6,0),x,(6,0)), t_>0, 6M.
With B"m

_
M2 defined by

the function

Bu Bou, 0), u ",

z(t; , u)=S(t)ck+ S(t-s)Bu(s) ds,(2.3) t->_-0,

is a mild solution of the abstract system

(,) J.(t) Az(t) + Bu(t), -> 0, z(0) 6
where the infinitesimal generator A of S(. is given by

domA={6 M2[6 wl"Z(-r,O;n),

ab (AoCb (O) + AlCh ’(-r),

The M-adjoint of A generates the M-adjoint semigroup S(t)*, t-> 0:

dom a*= {th M21b W’2(-r, 0; R"), 6(-r)= alb},

A*th (6 ’(0) + A’b, -’).
The optimal control problem on a finite interval is: given 0< T< oo and 4 M: find
the control u L:(0, T; ") that minimizes the cost functional

J(u, 6, T) (z(T; 6, u), Gz(T; , u))

(2.4) Ior+ ((z(t; 49, u), Wz(t; d/), u))+u(t)7"Ru(t)) dt

where G, W: M M2 are defined by Gb (GoSh, 0), Wb Womb, 0) with Go, Wo
being symmetric nonnegative matrices and R R 7" positive definite. The optimal
control (. is given by the feedback law

(2.5) t(t) =-R-1B*II(t)e(t), 0 <- <- T

where H(. is the unique, strongly continuous family of nonnegative self-adjoint and
bounded operators satisfying the Riccati differential equation

d
d-- (’ H(t)th) + (A, H(t)th) + (H( t)p, A&)

-(II(t),BR-B*H(t)dp)+(d/, Wb)=0 forth, qdomA, O<=t<-_T,

rI(T) G
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and (t) is the mild solution of

"2( t) (A- BR-B*II( t))z( t), z(0): 6,

(t)= S(t)qb- S(t-s)BR-1B*H(s)(s) as.

We also consider the infinite time horizon problem, that is the minimization of J(u, b)
given by (2.4) with G - 0 and T , and assume that the system (2.1.1) is stabilizable,
i.e., A-BK generates an exponentially stable semigroup for some linear bounded
operator K M2 --> R’. Then there exists a nonnegative, self-adjoint operator II (M2)
that maps dom A into dom A* and satisfies the algebraic Riccati equation

(2.6) A*IIdp+IIAd-rlBR-1B*rl+ Wb 0, b dom A.

if, in addition, (2.1.1) and Wo have the property that any admissible control drives
the state to zero, that is J(u, b) < c implies z(t; c, u)->O, as t--> , then II is uniquely
determined. This certainly is true if (2.1.1) with output Wo is observable or if Wo is
simply nonsingular. Using the time-independent solution of (2.6) in the feedback law,
(2.5) gives the optimal control and trajectory as in the finite time horizon case,

3. Finite-dimensional approximations. Our goal is to construct systems of ordinary
differential equations, such that their solutions approximate the solution to the
hereditary control problem in 2, To this end, let yn, N 1, 2,... be a sequence of
finite-dimensional subspaces of L2(-r, 0; Rn) with corresponding orthogonal projec-
tions p. Then Zn =nx yn, N 1, 2,... are finite-dimensional subspaces of M2

with corresponding orthogonal projections pnb (4), pNbl), b M2. Suppose there
is a sequence of linear operators An: Zn -> Zn and let Sn (t), >_- 0 be the uniformly
continuous semigroups on M generated by the bounded linear operators Anpn M2__>

Zn, i.e.,

sN t)qb eANpNt dp, chuM2.

Remark. We extend An to all of M2, because we want the semigroup Sn(.)
acting on the whole space. Instead of letting the generator Anpn =0 on (Zn)1, we
could equally well choose another appropriate extension. All that is said about the
control problems in Zn and the corresponding semigroups Sn (.) in M in this section
remains valid, if we take the generator of Sn( to be ASpn--a(I--pn) with some
a R. For simplicity of exposition, we will make use of this possibility only at the end
of the proof of Theorem 3.3 below.

Observing B:=(Bos, 0)Zn, scg for all N, we take the input operators
Bn :’ - Zs as Bn:- Bsc to define finite-dimensional control systems on

(;,n) ,(t)=Anz(t)+Bnu(t) t>_O z(O) =pn,
where u(. Loc(0, o; ") and b M2. The optimal control an(. minimizing the
functional Jn(u, b, T), given by (2.4) with z(.; , u) replaced by the solution
zn(.; b, u) of (En), is obtained as feedback by the Nth Riccati operator I’In(t) that
satisfies the Riccati differential equation on Zn with coefficients An, (An)*, Bn, and
Wn and terminal condition tin(T)= Gn (Gn= G[zN and Wn= Wlz). We write
n(.) for the corresponding optimal trajectory in Z.
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In applications, the original system (Z) is controlled by use of the approximate
feedback instead of (2.5), i.e., fi(t) is replaced by the so-called suboptimal control

(3.1) a(t) =--R-I(BN)*HN(t)pNN(t), 0 < t<= T

where N(t) is the mild solution of

(t)=(A-BR-I(BN)*IIN(t)pN)z(t), z(0) 4.
From the uniform dissipativity assumption

(H1) There exists a constant w R such that

(AN,t), )) (:o (]) 2 forall bZN, N= 1,2,...

follows the existence of a constant M > 1 such that

(3.2) [lsN(t)chl[<=Me’tllcll, t>=o, chuM2.

Therefore, with

(H2) There exists a subset D dom A and a real number h > w, such that
(i) (hI-A)D is dense in M2,
(ii) for all D, ANpNchAch as N-.

(HI), (H2) imply the strong convergence of SN (t) to S(t) (Trotter-Kato Theorem [16,
Chap. III, Thm. 4.5]). The same is true for SN*(t) if (H2) with A, AN replaced by
A*, AN* holds (this will be denoted by (H2*)). Based on this and

(H3) pNb b for all b M2

the following assertions were proved in [9] (also [13, Thm. 4.3]).
THEORZM 3.1. Let (H1)-(H3) and (H2*) hold. Then, asN

(a) IIIIN(t)pN--II(t)[l:e(M2)-O.
(b) a(t)-a(t), a(t)-a(t), ff(t)-e(t), e(t)-

the limits being uniform in t, 0 <- <-_ T.
(c) j (a r), J (a r)-. J(a, 7").

In the case of the infinite time horizon, we deal with the algebraic Riccati equations

(3.3) (AN)*rIN +nA-rInR-(n)*rI + w =0

on zN, N= 1, 2,. .. If (AN, BN) is stabilizable, then there exists a nonnegative,
self-adjoint solution 1-I N of (3.3), governing the Nth optimal feedback. We will establish
convergence of the Riccati operators II.using Gibson’s arguments in [9] combined
with the cross-product structure of the trajectories (see hypothesis (H4) below). This
approach needs the assumption that the stabilizability of the hereditary system implies
that the systems (AN, Bu) are stabilizable in a uniform sense with respect to N (see
(H5)). As to the investigation of stabilizability or exponential stability we will use a
L2-stability criterion due to Datko [7]. We state here a special version (a proof may
also be found in [19]).

LEMMA 3.2. Let S(t), >-0 be a Co-semigroup of bounded linear operators in a
Banach space X satisfying

I[S(t)ll:e(x) <- M, e‘, _O

and

(3.4) IIs()/ll d<-- c llxll , x X
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for some constants M,, O1, Cl>0. Then there exists an exponent
and a constant M M(Cl, M1, al) > 0 such that

(3.5) IIs(t) e()<= M e-’’, >_-- 0.

Note that if we can prove (3.4) for the semigroups SN( with Cl independent on
N, then, by (3.2), (3.5) yields the exponential stability of SN (.) uniformly with respect
to N. Moreover, observe that the estimate (3.4) is equivalent to

(3.6) I(S( t)x)[ dt <-_ c=llxll =, x M

for some constant c2> 0, if S(.) is the solution semigroup on M2 as defined in 2.
By Fubini’s Theorem, this equivalence follows directly from the state concept (2.2)
and is a special feature of the semigroup associated with the retarded functional
differential equation.

As far as we want the semigroups S( to be suitable approximations for S(. ),
it seems to be natural to demand the equivalence of (3.a) and (3.6) also with regard
to Ss(. ). We call this the VDP-property of the approximations (meaning the vector-
component dominance is preserved). It plays an essential role in our approach to
stability questions in context with the infinite time horizon control problem.

Suppose for N sufficiently large there exists a solution II to the Nth algebraic
Riccati equation (3.3). Then with

lNpN generates an exponentially stable semigroup v(.) on M2. We introduce the
projection V: M2- R"

V(, 6’)=

and want the following hypothesis to be valid.

(H4) Provided N is sufficiently large, there exists a Cl >--0, independent on N, such
that for all b e Z

if and only if there exists a C2 0, independent on N, such that for all th ZN

If H is a nonnegative self-adjoint solution to the algebraic Riccati equation (2.6)
for the hereditary control problem, define the operators ." Z - Z, N 1, 2, by

2N AV BR-1B*II

and let N(.) be the uniformly continuous semigroup on M2 generated by/pN, i.e.,
N(t)=eaNPN’ t>_O.

Intending to provide the existence and uniform boundedness of the operators II,
we demand the following.
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(H5) If the hereditary system (E) is stabilizable, then there exist constants M,/3 > 0
such that for N sufficiently large

[Ig(t)lzll<=Me-’, t>--O.

THEOREM 3.3. Let (H1)-(H5), (H2*) hold and assume Wo is nonsingular. If the
hereditary system is stabilizable, then

(a) For N sufficiently large there exists a solution l’IN to the Nth algebraic Riccati
equation (3.3) and

]lrIp -n -0, N

(b) The optimal and suboptimal controls and trajectories and the corresponding costs

converge as in Theorem 3.1(b),(c).
Proof. As in Theorem 7.4 of [9], we first consider the Nth problem (EN) with

initial value b M2, when it is controlled by the feedback aN(t) -R-B*IIpNz(t).
The evolution of the state in time is then described by N(t)=’N(t)pNdp and the
corresponding costs can be estimated using (H5)"

JN(t )= ((N(t), W,N(t))+aN(t)TRaN(t)) dt

<M
2--- (1Wol + IR- nol=lln =) 6 =-

Thus, there exists a nonnegative self-adjoint solution I’iN of the Nth algebraic Riccati
equation for N sufficiently large and

with some constant c, which does not depend on N. Therefore, there is an index No
such that

(3.7) IInp II--< c, N->_ No,

The convergence statement in (a) now follows from Theorem 6.9 of [9], once we have
shown

(3.8) [IgN(t)ll<--IQle-t, t>0,= N >= No
for some constants M, c > 0.

Since Wo>0 we have I1:_-</-:rWo, : ", where is the minimum eigenvalue
of Wo. Following the arguments given in [9] (proof of Theorem 7.5) let 6 zN and
define N(t)=gN(t)cb=(xN(t),yN(t)) with xN(t)I, yN(t) yN, t>=O" Further-
more, note that (R-B*I"INN(t), B*IIVN(t)).,>-O, so that

IxN t)l dt <--_ [d,
-1

X
N t) TWoXN t) dt

(fo=- oh, (gN)*(t)(W+IIBR-B*HN)gN(t)cdt
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applying Corollary 4.2 of [9] to the semigroups sS(,). It follows that

o Iv’(t)l= dt<=-cllll, N>No= and, by hypothesis (Ha), o II(t)ll dt<=
c=ll = with some c2> 0. Also, because s is generated by (As BR-1B*IIS)p s, (3.2)
and (3.7) imply (e.g., [16, Chap. III, Thm. 1.1]) the existence of constants M1, al such
that (t)ll <= M1 e’t, >= O, N >= No. Now Lemma 3.2 assures that there are constants
M, a > 0 such that

t>=O, N>=No.

But this proves (3.8), since, as we mentioned in the remark above, we may replace
ASps by ASps- a(I-pS), so that e-’, while the finite-dimensional
control problems on Zs remain completely unchanged. Statement (b) follows from
(a) in a manner similar to that in the finite time horizon case (see [9]). [3

4. The piecewise linear approximation scheme. This section presents a special
approximation scheme using so-called piecewise linear functions. We prove via several
lemmas that this scheme satisfies the hypotheses (H1)-(H3) and (H2*). Then we show
that it has the VDP-property, so that (H4) is valid. Furthermore, we investigate the
characteristic matrix of the approximate systems to establish results on the eigenvalue
behavior when the approximation index increases. This enables us to conclude (H5).
Finally, after remarks on the treatment of multiple and distributed delays, we present
some of our numerical findings.

4.1. Projection onto spaces of piecewise linear functions. For N= 1, 2,... we
subdivide the interval I-r, 0] into the subintervals Iv [tv, tl), j 2,’.., N and
I1 t, 0] by defining the meshpoints

t7 jr
j=o,...,y

For each N the set yS of all functions [-r, 0] R" that are polynomials of degree
one on every interval I is commonly called a space of piecewise linear functions on
I-r, 0]. A basis of yS is given, written in a simplified notation, by the 2N matrix
functions

e_l(s) X(S) I,
j=l,...,N

where I denotes the n x n identity matrix and t’ is the characteristic function of I.
NThe pairs eo=(I, 0) and ej =(0, e) are an orthogonal basis of the n(2N+l)-

dimensional product space Zs =N’x yS, N 1, 2,.... The orthogonal projections
ps. ME

_
Zs are of the form ps(o, 1) (o,p1), wherep is the L2-orthogonal

projection from LE onto yS. With

(4.1) AS g,v))=diag 1
N 3N N 3

QS=((ej ,--,---,’’’, (R)I

we have

(4.2)
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where the components of the coefficient vector otN(pNt) are given by ao=b and

_,(p%)=--NI 4,’(s) ds,
r

(4.3) j= 1,... ,N.
N N( 3NIa(p )=-- e(s)’(s) as,

r

We frequently will use the abbreviations =a(pb) and =p. Note that

(4.4) j= 1,..., N.

Obviously, the spaces Zu are not contained in the domain of the generator A of
the hereditary semigroup, since the elements of YU are not differentiable on I-r, 0].
Neveheless, the action of A and A* can be approximated by operators on Zu

imitating, heuristically speaking, the delta distributions in the derivatives of discon-
tinuous functions by operators 6u in Y. Following the ideas developed in [13], we
need the operators 6u for each point, where the piecewise linear functions in YU may
have jumps.

We define 6-, 6+’" YU, N= 1, 2,... by

e++e+ , j 0,. ., N- 1

and

-e , j=,...,N.

Pooso 4.1. (a) For any and L(-h, 0; N)

(4.5 (-(,.h %(-, j=0,. ,- ,
(4. (*(, h=%(, j=,...,y

In (4.5) and throughout the paper, we use the notation (t-) for the left side limit of

(b) e norms of the -operators are

Ilfi-[I =2 j=0,..., N-l,

1167+[I =2 j 1,’.., N.

Proof (a) Let 1-<_j-<_ N-1. Using (4.3) and observing that

e_l(t7) e(t7) I,

we get

(6-(s), 4)’): seT e+2) (s)4’(s) ds



APPROXIMATION FOR HEREDITARY CONTROL PROBLEMS 79

The proof for 6y- is analogous. The statement on 6+ follows similarly from the fact
that e_l(t7) I and ez(t7) =-I, j= 1,..., N.

(b) Since the elements eJ are orthogonal, we have

I1+()11-I12 ez-[I + Ilell =

=[ + by (4.1).

The proof for 6- is analogous.
Next we give convergence estimates for the piecewise linear projections of

sufficiently smooth functions.
LZMM 4.2. For W’(-q 0;

C1 1
N= 1,2,....

2

e constants c, cz do not depend on N or 1.
Proof Applying the Peano Kernel Theorem (see, for instance, Theorem 1.3 of

[20]) to the functionals Fs, Gs: W2’(I)",s I, givenby Fs($) $(s)-U(s)
and G() D$(s) Du(s), we obtain estimates involving integrals of and
their projections onto YU. These (respectively, their derivatives) are estimated by
expansion according to the basis {e} and then using (4.4) and le(s)l .

As an immediate consequence from Lemma 4.2(a), we see that the subspaces Zu

defined in this section satisfy hypothesis (H3), sincethe set {($o, $ ) MI$o ., $
W2"(-r, 0; ")} is dense in M and lip 1 for all N.

4.2. The approximating semigroups and their generators.
Dzy-TIOy 4.3. For $ =(o, )Zu we define

AU(6, 6)=(Ao6+A6(-r),D+6+6-(6-61(O))
N-1 )
j=l

Since D+e Y for e Y it is clear that A is a linear operator Z Z.
LMMa 4.4. e adjoint ofA is given by

(A)*(6,6) A6+6(0),-O+61+ E (t7-)-6 tT))
j=l

+ 3+(A(O- O’(-r)))
for (o, 6,) z.

Proof For , 6 ZN, integration by pas of the term in (, ANo) involving D+O
yields

N--1 N

(’, D+6’h= ’(t7-)%’(7-)- ’(7)%’(7)-D+6’, ’.
j=o j=

Fuhermore, by Proposition 4.1

(’, -(o- 6’(o))h (o- 6’(o))%’(o-) 6’(o)%O- ’(o)%’(o),
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and

d/rAldpl(-r) (t+(Ad/), 1)2

so that

((AN),(qto, 1), (bo, dl))=(AO+tpl(o))rcbo+(6+(A’(qO)_D+ql, bl)2+ A

where A is given by

N-1 N

A----(o)%l(o)+ l(tT-)Tdpl(tT-)-- I(t)TcI(tT)
j=O j=l

+ E (ql, 6-(l(t)_l(t-)))2"
j=l

Here the last sum is transformed using (4.5). By the continuity of 4 1, ql y at 0,
the first two terms can also be summed up. This yields

N--1

A= (l(tT-)--ll(tT))Ttl(t)--d/l(--r)Tp1(--r).
j=l

The result follows by applications of (4.6).
The next lemma shows that the operators As satisfy the uniform dissipativity

condition (HI).
LEMMA 4.5. For all N and all c Z (Aud, oh) <= to 2, with to being the dissipa-

tivity constant of A, i.e., o =1/2+laol+1/21al 2.
Proof From the definition of As and Proposition 4.1, it follows that

’ +(AUqb, 4)<--(Ao4)r4+[All’b1(-r)114t+ E (D chl(s))7chi(s) ds
j=l

N-1

+ (q- b (0))b1(0-) +
j=l

for 4 Z. Using

1

17
(D+pl(s))TI(s) ds =- (Ichl(tjN-]-) _lb t7)]2)

and the inequality :rr/-<_1/2(ll=/ll=), ,, we get

1 1 N-1

(AU6’ 6) <-- (A4’)%+- ([a’lz[1611z +14’(-r)12) +- =o

1
E 16(tJ’)1+16116(0)1-10(0)[2

1 12
1

+2- =1 ithl(tff) --<_ (Ao6O)rbo+l 012
1

12 2

2 It -F [a [It, l-’!

Looking for appropriate sets to be used in (H2) and (H2*), we define

O {(61(0), 61)M214,1 W2’(-r, 0; ")}
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and

D* {(, 1) dom A*[IE W2’(-r, 0; Rn)}.

The following lemma establishes (H2)(ii) and (H2*)(ii).
LZMMA 4.6. (a) There is a constant c > O, such that for all N and all ch D

C
ANpNch Ach --(b) For all d/ D*

II(A)*p-A*ll-O as No.

Proof. (a) From the definition of A and As we have the estimate

IIANpNO Ach IAl IO N (--r) 1(--r)[ + IID+ D
+ - N(0)) II=

By Proposition 4.1 and Lemma 4.2 for b D this yields

Ilapck-a6ll<= +2 +ll (6’)11

with some constants c,, c2, c3. Taking advantage of the orthogonality of e,. ., es
in L:, we have for "

E -() N4(N- 1)--I12.
j=l 2 r

Hence,

}la(61)ll2 (N- 1)
const, tmax Iqbs(ty)-qb(t )l_-<

j=I,’",N N

This proves (a). Item (b) follows using similar estimates on the 8+ terms and by the
fact that Ar@= @l(-r) for @ D*. [3

In order to apply Theorem 3.1 to As and (AS)* of this section, it remains to
show (H2)(i) and (H2*)(i).

LEMMA 4.7. The sets (h -A)D and (h -A*)D* are dense in M2, ifh > to as given
in Lemma 4.5.

Proof. We know from semigroup theory that {h C[Re h > to} is contained in the
resolvent sets p(A) and p(A*). Hence, given pRnx Cl(-h, 0; n) the equation
(h-A)b @ has a unique solution b (th 1(0), bl) dom A, which by the definition
of A satisfies hb t 01. But this implies h 01 is continuous and differenti-
able. In fact, 1= Al_,l is continuous, so that bR" x C2(-h, 0; Rn). Hence the
dense set Nnx C is contained in (A-A)(N"x C2fqdomA), which is a subset of
(h-A)D. The same arguments can be applied to (h-A*)D*. [3

Summarizing, we can now say that the semigroups sN( and sN( )* generated
by ASps and (AS)*ps strongly converge to the hereditary semigroups S(. and S(. )*
so that for T < we can approximate the Riccati operators and the optimal controls
by solving finite-dimensional problems in Zs.
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4.3. Vector dominance preservation. With respect to the basis eo, el ’’, ’N of
and the canonical basis of R" the matrices [AN] and [AN*] representing AN and, are given by

[AN]=(QN)-IHs and [AS*]=(QN)-IHNr

with

N= 1,2,....

For the computation of the entries of HN, observe that the derivatives of the basis
elements are given by

D/e_l =O and D+e=-2Ne_a, j=I,’’’,N.

The inner products in HN are evaluated using the orthogonality of the basis elements
and Proposition 4.1. The result is the n(2N + 1) square matrix

(4.7) HN

o 0 0 A -A
h
k Okkh

where ko=(//) is a2nxn matrix and

are 2n x 2n matrices. Numerical algorithms solving high-order systems with coefficients
[As] might take considerable advantage of the fact that HN has band structure (not
the case for the Legendre methods [10]-[12]) and that QN is diagonal (not the case
for spline methods [13]).

In the following, we exploit the structure of the matrix [AN] to deduce the VDP
property and (H4) for our piecewise linear approximations.

LEMMA 4.8. If there is a C2 > 0 independent on N such that for all d? ZN

’lVS(t)6l dt <- cll[[ 2,

then

ItS(t) = dt <- c[lll 2,

for some c >= 0 not depending on N or .
Proof Let b6ZN and set SN(t)ch=eANPNtc/=eAN’4=(WoU(t),w(t))6ZN

t>=0. With wy(t)=}__ew(t) the coefficient vector col(wo(t),Wl(t),
ws(t)) is the solution of

[Wo(t) [w(t)]
(4.8) - =[ ] t0,

Lw.(t) Lw(t)J
wT(O)
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A view of the rows of [AN] reveals that (4.8) implies

(t)
N NavN(t)+-- VC(t),
r r

N
(4.9) f( t) N av( t) +-- bv_( t), j 2,..., N,

r r

vj (0) col (t 2j-I,N 2/), j-l,’..,N

where vV(t)= col (w_(t), w2(t))[2", yoN(t)= C01 (Wo(t),3WoN(t)) and

a=
3

(R)I, b=
3 -3

(R)I.

Using (4.4), we get

4N
(4.10) Ivj(0)]2<- I111 =, j= 1,’’’, N.

To estimate the solutions of (4.9), we make use of the fact that, iff L2(0, ; ), a > 0
and g(t)=oe--)f(s)ds, t>--O, then g t2(0, ; ) and og2(t) dt
1/a f(t) dt (cf. [9, Lemma 7.3]). The first equation in (4.9) yields

v(t)=e-(/’v(O)+ e-(/(’-s Nv(s) ds,

With (t) v(t) e-(/v(0), e 0, we get

I(t)l = dtconst. lv(t) dt

N const. w(t)l dt

const. VS (t) dt

N const. ,
by assumption, where the constants do not depend on N. Using (4.10), it follows that

Io(4.11) Iv(t)l= dt const. I111 ,
Estimating the solutions of the other equations in (4.9) by the same method, we obtain

I()1 dtNconst. I111 if I1()1 dtNconst. I111 , j=2,..., y

So, from (4.11), by induction we get

lv()l dtNconst. 111 j= g.
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But this proves the assertion of the lemma, because by (4.2)

[[sN(t)6[[ = Woe(t)[ iW=_(t)[= r

N

Iwg(t)[2+E Idv(t)[

where

so that

Io" fo rj fo[Is(t)ll = dt<-_ IWo(t)[ dt+-" Idl= Iv(t)[ dt

COROLLARY 4.9. e semigroups gs (.) generated by p
(AS-BSR-(B)*H)pS satisfy hypothesis (H4).

Proo Since Bs .n
col (Bo, 0, , 0), the matrix [s] differs from [As only in the first n rows. Therefore,
(4.8) with [A] replaced by [] again yields (4.9). The rest of the proof remains
unchanged.

Besides for (H4), the VDP-propey of .the piecewise linear approximations
together with the results of the next section will be used to deduce (HS).

4.4. The eigenvalues of the approximate systems. It is known that the spectrum of
the generator A coincides with its point spectrum, namely, (A) {A C ldet A(A 0},
where

A(A)=AI-Ao-A e A C.

The eigenvalues of the finite-dimensional operators A are the zeros of det (AIN-
[AS]) in C. Is denotes the n(2N+l)-identity matrix. T0 calculate the determinant
of the characteristic matrix
we transform AN(A), a square matrix of n x n blocks numbered from zero to 2N, by
elementary row and column operations.

First, to add the odd numbered columns to their succeeding ones, we multiply
As (A) from the right by S the identity with (0, I 0, I) above the diagonal. Then
we multiply from the left with T the identity with -A(A +6N/r)-(O, I O,I)
above the diagonal, in order to subtract A (A + 6N/r)- times the even numbered rows
from their preceding ones. This yields a matrix whose diagonal 4n x 4n blocks look like

q(X) 0 0 0

3N/r A+(6N/r) 0 0

-p(A) 0 q(A) 0

-3S/ r 0 3Sir A + (6S/ r)

with

(4.12) PN(A)=Nr 3NAr A+

qN(,) A +pN(A).
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Its zeroth row of blocks is (AI-Ao, 0 0,-A1,0) and its zeroth column reads
(AI-Ao, ply(A) I, (3N/r)I, 0 0). To transform this matrix into a lower triangular
matrix let

D=(qN(A))-IA1,

D (qS(A))-prV(A)DJV+l, j= 1,..., N- 1

and multiply from the left with DN, being the identity with (/, D1, 0, DE, 0 Ds 0)
in the first row. Thus

(4.13) detAS(1)=(detqS(1)I)s det i+6__ I detAo(1)

where

with

Ao(A) AI-Ao-pS(A)D= AI-Ao-(rN(A))rqA1

(4.14) rS(A)=pS(A)(qS()t))-1.
Note that these transformations are possible, as far as A +6N/rO and qS(A)0,
i.e., A -6N/r and A -2N/r +/- i(N/r)x/, in particular if A {A C Re A -> -p} and
N> pr/2 for some p > 0. Furthermore we note that if Re A ->_ -p, then det As (,) 0
if and only if det Ao(A) 0, provided N> pr/2.

LEMMA 4.10. (a) With the projection V: ME-n introduced in (H4) we have

[V(AI-Arq)-Iv*]=(A(A))-1, A p(Ar).
(b) Ao()t)- A(A) uniformly in A on bounded subsets of C.
(c) For any p>0 let Ko=(A Cl-p-<Re A_-<lAol/lAl, IImAl<-IAol/2e"rlAl}.

There exists an N(p) such thatforN >- N(p) all the roots ofdet As (A) 0 with -p -<,Re A
lie within K.

Proof. Expanding the determinant of As ()t) by elementary operations, we have
seen that DSTsAs(A)Ss Us ()t), where Us(A) is a lower triangular block-matrix
with A(A) in the upper left corner. The first column of blocks in DNTs and the first
row of blocks in (SN)- are of the form (I 0 0). Thus, the application of these
transformations to the equation Ar(A)(0, ,)r =(b00)7- yields

Un (A)(bo,, ,)r=DNTNAS(A)sN(sS)-I(oO, ,)7"

or

DNTS(cO 0)7- (b0 0)7-

(1]Og g)T--(uN(I))-I((O0 0) 7‘ forall b, qo..
This implies q= (A(A))-b. But

V(AI-AU)-V*ck= V(AI-AU)-I(ck, O) V](AS(A))-I(bO 0)7-
=[v](q,o, ,) q,o= (ao())-o

for all be ", and this proves (a).
From (4.12), (4.14) we have

6N2_2NrA ( )-1( 3r2A2 )--1rS(A)=6NZ+4NrA _l_A2r2= 1 + 1- N2 4--rA-_2r2A:6 +
As

( __)-s ( 3rA
1 + -* e-’a and 1 +6N2+4NrA _2r2A2 - 1
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uniformly in h on bounded subsets of C, and (b) follows. To prove (c) let Re h _->-p
and det AN(A) =0. For N> pr/2 it follows that det Ao(h) -0. Thus h is an eigenvalue
ofAo+ (rN (h))NA1, which implies Ih[-<-[Aol + [(rN (h))N[ JAil. For Re h >_- 0, IrN (h)l <= 1.
Computing IrN (h)[2 and its derivative with respect to Re h shows [rN (h)[-< [rN (-P)I
for Re h I-p, 0] and N sufficiently large. Hence the bounds in Ko are obtained from
the convergence rN (_p))N

Although the estimates in (c) are not tight, they lead to precise results by use of
the following consequence of Rouch6’s Theorem.

PROPOSITION 4.11. Let f, fN, N 1, 2,. be holomorphic inside and on a closed
bounded contour F

_
C. Iff has no zeros on F and iffN -f uniformly on F, then there

exists an No N] such that for N >- No, fN andfhave the same number ofzeros (counted
according to their multiplicities) inside

LEMMA 4.12. (a) If ho is an eigenvalue ofA with multiplicity k, then for any e > 0
(small enough) there is an No such that each AN, N >-No, possesses k eigenvalues in

B(ho, )={h cIl - ol <
(b) Let p>0, GO ={h C]Re h->-p} and h, i= 1,..., be the eigenvalues ofA

in G. For any e > 0 (small enough) there exists No such that the operators AN, N >= No,
have no eigenvalues in GO\U= B(h, e).

Proof Assume that hois the only zero ofdet A(A) in B(ho, e).OB(ho, e) is bounded
and det Ao(h)det A(A) uniformly on bounded sets. Thus, (a) follows at once from
Proposition 4.11.

Choose, without loss of generality, e>0 such that det h(h) has no zero in

OGo\Uli=l OB(A, e). We know from (4.13) that, if N> pr/2, h GO is an eigenvalue
of AN if and only if det Ay(h) 0. Write Go\U = B(hi, e)= G 12 G, where

GI=(GpNKp) U B(A, e), G2=(GoNK;) U B(A,, e).
i=1 i=1

G is bounded and OG contains no zero of det A(A). Thus, there is an N1 > pr/2 such
that for all N => N det Ao(h has as many zeros in Ga as det A(A), that is, det Ao (h)
has no zero in G. Since G2 c__ K o, there is no eigenvalue ofAN in G2, if N is sufficiently
large. E1

This shows that the eigenvalues of A are approximated by the eigenvalues of the
operators AN. Moreover, given, e > 0, let p and )t, 1, , l, be the eigenvalues
of the hereditary system with Re , => p. Then the piecewise linear approximations
do not have eigenvalues in the right halfplane Re A >=p outside the balls B(, e),
i= 1,..., l, provided N is sufficiently large.

4.5. Uniform stability. From the results of the previous section, we conclude that
if S(. is stable, i.e., Ils(t)ll <--M e-%t with some M, too> 0, then for all to < too there
are an No, and. constants MN such that for all N => N,o

(4.15) IIs (t)ll--< MN e-".

To get uniformity with respect to N on the right-hand side of these estimates, we
follow an idea given by Ito 11] in connection with his Legendre-tau approximations.
The idea is to establish uniformity in (4.15) for one special no-delay case and to
interpret this special case as a perturbation of the general situation.

Let us consider the equation ( t) -x( t), >-0, in " as if it were a functional
differential equation with delay, demanding the initial condition (x(0), Xo)= & M2.
We approximate by our piecewise linear scheme, denoting the approximating generators
by A. They are given in Definition 4.3 with Ao =-/, A 0. The representation [Ao]
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is a lower triangular block matrix with -I in the left upper.position. Therefore the
first row of blocks in e[A’]t is given by (e-tI 0 0). Hence, for all b ZN

VeA’4I- Iao(

Thus, by Lemma 4.8, there is a c > 0 such that

(4.16) IleA’,ll

and by Lemma 3.2 there exist constants Mo, ao> 0 such that for all N- 1, 2,...

east ]z <= Mo e-t, >-_ O.

Remark. Guided by these arguments, we easily see that the spline approximation
scheme presented in [13], [14] does not have the VDP-property. Because the first row
ofblocks ofthe matrix representing the spline generatorsA is also oftype (-I 0 0)
we obtain for all b in the spline subspace ZN, I(eSAd’4))[<= e-’l[,[I, as above. Thus,
if a spline analogue of Lemma 4.8 holds, then by Lemma 3.2 eatlz II--< K e-", for
some K, e > 0, independent of N. But this contradicts the peculiar eigenvalue behavior
of the spline scheme (see [14, Prop. 4.6]).

LEMMA 4.13. If s(t) <- M e-’t, >-- 0 for some M, too > 0 thenfor all to < too there
exist No, and such that for all N >-N,

IlsN(t)lzll <=IOe-’’, t>0.=

Proof. Let 0 < to < tOo. We have seen in the proof of Lemma 4.10 that there, is a
constant c such that [Ao+(rN(-tO+ ir))SAll <- c, rR, if N>= N(tO). It follows that

1
I(A(-tO + i))-11 <_- for I-tO + izl > c

I-o + izl- c

(det Ao(-tO + iz)# 0 if N is large enough). Thus, from the uniform convergence of
A(A) to A(A) on the set {A =-o/illAl<- c, we have

(4.17) I(Ao( -to + i7"))-11 =< T, "r R, N ->_ N.,

with some N,, and y > 0.
Define A toI + AN and let b Z. The trajectory eargtdp is the solution of..

.(t) Az(t) Az(t) + (Ao A)z(t), > O, z(O) 49.
Equivalently,

hence

eAt eAtdp + eA(t-S)(AoN --A,,) As ds,"

eAtdp eArgtdp + eA(t-s)V*fN (s, 49) ds

where fN ", b) E R is given by fN (S, 49) F eArs 9, S >= 0 with F M2 [n

(4.1-8) F$ (I +.toI + Ao)0+ A101(-r)
because the L2-component of (A2-Ao)O vanishes for all $Z From (4.18) and
(4.16) it is clear that

(4.19) IIf( )11(o;o;O)--< II 112
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for some K > 0 not depending on N. We write

VeAtqb VeA’g’ cb + y( t),(4.20)

with

Thus

I_oo e-’"tVeA’v* dt(fl’(., 4,))^(r)

V(-w+ i--AC)-Iv*(fN( q))^(r),

By Plancherel’s Theorem and (4.19), we get

I(fN( b))^(r)l2 dr= If(t, qb)l dt<=:2ll4[I.
ly(t)l2 at I)3(r)l 2 dr

<= f -oo V(-o + ir- AN)-’ V*121(f 4,))^(r)[ dr

ff I(a(-w+ ir))-’ll(fu(" ))*(r)l2 dr

by Lemma 4.10(a). Therefore, from (4.17)

dt

and, by (4.20), (4.16), and Lemma 4.8,

olleA’]

dtconst. I1 11 =, NN, Z.
Lemma 3.2 thus yields constants , e > 0 not depending on N, such that

e’l}e’lzll=lleZ’lzlle-’, N N
So, if the hereditary semigroup S(. is exponentially stable with some decay rate

o, it is approximated by piecewise linear systems with decay rate arbitrarily close to

0"
Another immediate consequence of Lemma 4.13 is the following corollary.
COROLLARY 4.14. e semigroups (. generated by Np

(A BR-B*U)p satisfy hypothesis (HS).

y(t)= Veat-s)V*fU(s, ) ds, t>=O.

Letting f(s,d?)=O, s<=O and eAt-s)=O, s>t or s--<O, we have fN(.,b)
LI(R; [n) ["I L2(R; n) and by (4.15) eAN" LI(R; (ZN) I"l L2(; (ZU)), if N is
sufficiently large. The calculation of the Fourier-transform 33(. of the convolution
y(. yields

(r) veA’v*)^()(fu b))^(r)
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Proof. If the hereditary system is stabilizable, there exists a solution H of the
algebraic Riccati equation, and the closed.loop semigroup (.) generated by =
A-BR-1B*II is exponentially stable. The approximations to q(. are actually given
by s(. ). Thus the previous lemma yields constants hT/, to > 0 such that

I[(t)I _-</f/e-’ t>0

for all N sufficiently large. 1
Summarizing, we have proved that the convergence statements of Theorem 3.3

are valid when the piecewise linear approximation scheme is applied to infinite time
horizon hereditary control problems.

4.6. Multiple and distributed delay terms. The piecewise linear approximation
scheme can also be used for systems with more than one discrete delay (p => 2 in (1.1))
and/or distributed delays (Aol(") O, Aol L2(-h, 0; n,) in (1.1)). Then the intervals
Ik [--hk, --hk-1), I I-h1,0] of length rk hk hk-1 are each divided into N subinter-
vals of length rk/N and the (2npN)-dimensional space ys consists of functions that
are polynomials of degree one on each of these subintervals. In fact, all the results
stated above for the single-delay case are valid in the general case. The proofs can be
found in [17], which is a previous version of the present paper.

The arguments are essentially the same as above, with the main modifications
arising from two facts: in the general case domA* contains pairs (o, 1) with
discontinuous functions @ 1, the jumps at -hk given by A[@; in order to get dissipativity
of A and A, an equivalent inner product placing increasing weights on the intervals
Ip-k is employed (cf. [13, Lemma 5.4]).

The generators AS have 8 s- terms at all the discontinuities in the subspaces Y
while the adjoints As* in addition must reflect the jumps of elements in dom A* at
the points --hk and so the jump heights A’@ appear in the arguments of the 8s/
terms for these points. AS*@ A*p for b in an appropriate set D* dom A* follows
from (Aq)s-A@ for AOlG L2(-h, 0; ""); the density of (A-A*)D* can be
shown by arguments similar to those in the proof of Theorem 7.2 of [9]. This avoids
additional smoothness assumptions on A01 as it is required in [11]-[13].

The coupling of the intervals Ik as reflected in the matrices [As] again yields the
VDP-property. Expanding det AS(h) for the general case and the determination of
bounds on its zeros is laborious but leads to the above stated conclusions on the
eigenvalues and the uniform stability of the approximate systems.

For the numerical implementation of a problem with multiple and/or distributed
delays we must use the n(2pN / 1) matrices:

rl rlQs diag 1, N,3N,
rl rl r2 r2
’N’3N’N’3N’

and H, obtained by replacing the first row of n x n blocks in (4.7) by the row of
blocks (Ao, A1 Ap) with

N N --Ak),a (al,a A,N2N_2, A,2N-1 + a, A,ZN
o

A= Aol(s) e(s)ds, k=l,...,p, j=I,...,2N,
-h

Nwhere ekj are the basis elements of Y, constructed for each interval Ik by analogy
to the single-delay case.

4.7. Examples. Testing the numerical performance of the approximation scheme
that has been developed in this paper, we have employed it in several examples and
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compared the outcomes with the results produced by other schemes. As far as these
examples are representative, it turns out that the piecewise linear and the first-order
spline approximations 13] are of the same numerical accuracy (for the same approxi-
mation index N), but both are inferior to the Legendre methods [10], [12].

In the case of the finite time horizon the Riccati differential equation--- [rI’ (t)] + [(A’)*][n’ (t)] + In’ (t)][AN
dt

--[IIN t)][BN]R-I[BN]T[IIN t)] +[ WN] O,

[IIN(T)]=[GN]
O<-_t<=T,

is transformed, by taking FN(t) QN[I’IN(T--t)], into a standard Riccati matrix
differential equation

d
F(t) +[A]rF +r[Ar]-r[B]R-[Br]r + W] 0,

dt

(4.21) 0--< t--< T,

r’(0) [G’].
Observe that the self-adjointness of 1-I N(t) implies [FIN(t)]7-QN QN[IIN(t)] and
hence FN (t) 7- FN (t). Since B, WN, GN refer exclusively to the -component of
Z, we have

[BN]=col (Bo, 0,.’’, 0)(2pN+I’,

Wo 0 0

wN 0 0 n(2pN+l)xn(2pN+l)

Go O. 0

GN - ,01 n(2pN+l)xn(2pN+l).

0

Thus (if p 1, Aol=0) we can reduce the dimension of (4.21) introducing the 2n x
n (2N + 1 matrices

[ Fo O, ,0 GoA-GoA] F=[I 0 ,0]F AGo 0 0 0 .0 I- I

where Fo is given by

Fo AGo+ GoAo- GoBoR-’BGo+ Wo,

in order to get the factorization

’(O) FN) T F).

This implies ([18, p. 304 ft.])

(4.22) FN(t)=[GN]+ L(s)TL(s) ds,
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L(t) being the solution of

_d_d LN(t) L(t)([AC]_[Brq]R_I[BC]TFN(t)),
(4.23) dt

L(0) FY, i= 1, 2.

Multiplying (4.22) from the left with [BN], we obtain

[B](t)=[BN]L(t)L(t), Ot T,
(4.24)

[BN]TFN (0) [BN]T[GN].

Solving the n(4n + m)(2N + 1) differential equations (4.23), (4.24), we get [B]rF (t).
But this is all we need for the computation of the suboptimal control (t) (see (3.1)).
Denoting the m x n blocks in [B]r[H(t)] by (t),..., (t), we have

(4.25) a(t)=-R-1 (t)(t)+ (t) e(s)(t+s) d
j=l

where )rq(t) is the solution of

(4.26) ( t) Aox( t) + Ax( r) + BoN t)

O<_t<_T

subject to

1 )2 2) llo’J(u)=-(x(2 +x2(2) + (u(t)2-Fu2(t)2)dt

(01 ) (1 )(t)= x(t-1)+
0

u(t), O<=t<=2,

x(O) xo( t) ( ll ) -1<--_ <_ O.

The true solutions ti(t), (t) (see [2]) and the piecewise linear approximations with
index N =4, 8, 16 are presented in Tables 4.1 and 4.2. The relatively greatest errors
occur around 1 and 2, where the derivatives of (t) and ti(t) have jumps, while
;S (t) and u(t) are of course continuously differentiable.

For the infinite time horizon control problem (p= 1, Aol--0) the suboptimal
control and trajectory are again calculated via (4.25), (4.26) when IIrq(t) is replaced
by the stationary operator II u, that is, the solution of the algebraic Riccati equation
(3.3). The transformation Fr= QN[IIN] yields a standard Riccati matrix equation

[AU]rF+FEA]-FN[B]R-I[Bv]rF+[Wu]=O
in N,(2N+I),(2u+), which was solved by the Newton-Kleinman Algorithm as presented
in [18]. In each step of this algorithm, a Lyapunov matrix equation was solved using

in R". In each term of the sum in (4.25), the integration ranges only over one of the
intervals I, j 1,. ., N.

Numerically the systems (4.25), (4.26) were solved simultaneously by an appropri-
ately adjusted fourth-order Runge-Kutta procedure combined with Simpson’s rule for
the evaluation of the integrals.

Example 4.1. Minimize



92 GEORG PROPST

TABLE 4.1

0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0

-1.0602
-0.8419
-0.6209
-0.4008
-0.2268
-0.1743
-0.1897
-0.1877
-0.1880

-1.0599
-0.8419
-0.6241
-0.4030
-0.2116
-0.1860
-0.1878
-0.1880
-0.1880

-1.0598
-0.8419
-0.6239
-0.4060
-0.2022
-0.1884
-0.1880
-0.1880
-0.1880

-1.0598
-0.8419
-0.6239
-0.4060
-0.1880

-0.1880

16(t)

0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0

-0.8721
-0.8721
-0.8721
-0.8721
-0.8720
-0.8720
-0.8719
-0.8718
-0.8719

-0.8719

-0.8719

-0’8118
-0.8718

-0.8718

-0.8718

-0.8718

-0.8718

1.4018 1.4017 1.4017 1.4017

TABLE 4.2

l(t)

0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0

0.76221
0.57927
0.45179
0.37519
0.32780
0.28219
0.23498
0.18799

;(t)

0.76227
0.57902
0.45050
0.37582
0.32910
0.28203
0.23503
0.18802

0.76228
0.57905
0.45031
0.37500
0.32905
0.28205
0.23504
0.18803

0.76229
0.57906
0.45032
0.37607
0.32906
0.28208
0.23504
0.18803

2(t)

0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0

1.03198
1.06395
1.09593
1.12791
1.12906
1.07761
0.98737
0.87187

1.03203
1.06407
1.09610
1.12814
1.12933
1.07790
0.98748
0.87180

1.03205
1.06409
1.09614
1.12818
1.12934
1.07797
0.98755
0.87179

1.03205
1.06410
1.09615
1.12821
1.12941
1.07799
0.98758
0.87180
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the quadratic procedure given by Smith (see also [18, p. 297]). The time-independent
m x n blocks/3, j =0,..., 2N were then employed in (4.25). Furthermore, with

Nl’Igl-I 1N1 II 1,2N

we give some values of the feedback kernel

2N

e(s)E
j=l

which together with 1-Io determines the feedback law of the Nth approximation. At
the meshpoints, we simply have

n 1,2-l-H1,2j, j=I,’’’,N.

Example 4.2. This is the problem of minimizing

subject to

J(u)= [x(t)2+u(t)2] dt

(t)=x(t)+x(t-1)+u(t), t>--O,

x(0)=0, Xo(t)=sinrrt, -l _--< =< O.

Table 4.3 gives the optimal costs jN ((x(0), Xo), 1-IN (x(0), Xo))M2 ofthe approximating
systems and the costs J(aN) when the original system is controlled by aN. Table 4.4
presents the feedback gains rl and II(s) at the meshpoints -j/4, j=0,..., 4. In
Table 4.5, we list the values of N(j/4), N(j/4), j 0," , 12.

TABLE 4.3

N jN j(aN)

4 0.32117 0.32143
8 0.32138 0.32143
16 0.32142 0.32143

TABLE 4.4

no noo ng

2.8083 2.8092 2.8094

0 0.6349 0.6365 0.6369
0.8700 0.8801 0.8838

2 1.2544 1.2745 1.2803
3 1.8518 1.8812 1.8895
4 2.7507 2.7930 2.8050

j na(-j/4) rllS(-j/4) rl6(-j/4)
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TABLE 4.5

a4(t) t8(t)

0 0.86968 0.86836 0.86818
0.25 0.64873 0.64888 0.64891
0.5 0.49572 0.49647 0.49657
0.75 0.36350 0.36395 0.36400
1.0 0.24664 0.24624 0.24618
1.25 0.16200 0.16153 0.16147
1.5 0.11027 0.10997 0.10993
1.75 0.08030 0.08022 0.08021
2.0 0.06013 0.06015 0.06015
2.25 0.04349 0.04347 0.04347
2.5 0.02988 0.02982 0.02982
2.75 0.02002 0.01996 0.01995
3.0 0.01377 0.01373 0.01372

t 4(/) 8(/) 16(/)

0.25 0.11276 0.11260 0.11258
0.5 0.05337 0.05332 0.05332
0.75 -0.06642 -0.06628 -0.06626
1.0 -0.10870 -0.10849 -0.10846
1.25 -0.06170 -0.06160 -0.06158
1.5 -0.01396 -0.01396 -0.01397
1.75 0.00758 0.00753 0.00752
2.0 0.00180 0.00178 0.00178
2.25 -0.00787 -0.00784 -0.00784
2.5 -0.01034 -0.01030 -0.01029
2.75 -0.00648 -0.00646 -0.00646
3.0 -0.00178 -0.00178 -0.00178

Example 4.3. A simplified model for a wind tunnel at the NASA Langley Research
Center is given by (see [4])

(4.27)

:(t)= 0 0 1 x(t)+ 0 0 0 x(t-0.33)
0 -w2 -2sCto 0 0 0

+ 0 u(t), t>--O,
2

x(O) col (-0.1, 8.547,0) Xo(t), -0.33 =< =< O, where k -0.0117, 0.8, w 6.0,
1/a 1.964. We want to minimize

J(u)= [loax,(t)2+u(t)2] dt

subject to (4.27).
The true solution of the problem has been given in [15]. Note that the matrix Wo

weighting the contribution of the state trajectory to the costs is singular in this example,
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in contrast to the assumptions in Theorem 3.3. However, the piecewise linear approxi-
mation scheme produces the following values for j(N) and jN (Table 4.6).

In Table 4.7, we compare the first block of the Riccati matrix 1-IN with the
E3-component of II. The matrices 1-I(t) and 1-l(t), -r =-0.33 <- t<=0, have nonzero
entries only in their second columns, which are shown in Table 4.8 for =-jr/4,
j=0,... ,4.

TABLE 4.6

N J(t N) jN

4 136.4490 136.1785
8 136.4490 136.2921

16 136.4493 136.3486

J(t) 136.4049

N

4

8

16

I-[oo

TABLE 4.7

8677.02161
-9.81498
-0.94768

8677.02502
-9.81503
-0.94768

8677.02551
-9.81504
-0.94768

8677.02405
-9.81505
-0.94768

-9.81498
0.01850
0.00186

-9.81503
0.01851
0.00186

-9.81504
0.01851
0.00186

-9.81505
0.01851
0.00186

-0.94768
0.00186
0.00019

-0.94768
0.00186
0.00019

-0.94768
0.00186
0.00019

-0.94768
0.00186
0.00019

TABLE 4.8

3

II(-jr/4)

II -jr/4

IIl6(-jr/4)

II,(-jr/4)

-41.39647
0.06915
0.00669

-41.39710
0.06917
0.00668

-41.39721
0.06917
0.00668

-41.39721
0.06917
0.00668

-43.83755
0.06653
0.00641

-43.84694
0.06633
0.00640

-43.84929
0.06631
0.00640

-43.85008
0.06632
0.00641

-46.36726
0.06358
0.00614

-46.37700
0.06359
0.00614

-46.37952
0.06360
0.00614

-46.38034
0.06360
0.00614

-48.97855
0.06095
0.00589

-48.98892
0.06097
O.00589

-48.99157
0.06098
0.00589

-48.99246
0.06098
0.00589

-51.67634
0.05845
0.00564

-51.68730
0.05847
0.00565

-51.69010
0.05847
0.00565

-51.69103
0.05847
0.00565
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ON THE OPTIMAL REWARD FUNCTION OF THE CONTINUOUS TIME
MULTIARMED BANDIT PROBLEM*

JOSI LUIS MENALDI- AND MAURICE ROBIN

Abstract. The optimal reward function associated with the so-called "multiarmed bandit problem" for
general Markov-Feller processes is considered. It is shown that this optimal reward function has a simple
expression (product form) in terms of individual stopping problems, without any smoothness properties of
the optimal reward function neither for the global problem nor for the individual stopping problems. Some
results relative to a related problem with switching cost are obtained.

Key words, variational inequality, switching problem, bandit problem, dynamic programming, index
policy

AMS(MOS) subject classifications. 35B37, 49A60, 49B60, 60J25, 93E20

1. Introduction. This paper deals with the properties of the optimal reward func-
tion associated with the so-called "multiarmed bandit problem." Let us recall, formally,
the statement of the problem: assume that there are N independent machines, xi(t),
R+ is the state (for instance the production) of machine i. At each time t, one

operates only one machine, the others being frozen. When machine is operating,
xi(t) evolves as a continuous time Markov process with a given semigroup i(t). If
i(t) denotes the number of the machine in operation at time t, we want to maximize
a global payoff

(1.1) J E e-rf(i(t), Xi(t)(t)) dt

where f is a given instantaneous reward.
The multiarmed bandit problem has been studied by Gittins [4] and Whittle [8]

in the discrete time case, and more recently by Varaiya, Walrand, and Buyukkoc [7]
in a more general setting. Karatzas [5] studied the continuous time case when xi(t) is
a one-dimensional diffusion process. The most general study is done in Mandelbaum
[13], [14] who formulated the problem as the control of a multiparameter process.
This approach allows, in particular, a strong formulation of the optimal process when
xi(t) is a diffusion process.

In Whittle [9] it is shown that the optimal reward function has a simple expression
in terms of an individual stopping problem each involving only one machine. Such an
expression is shown to hold true for the diffusion bandit problem in Karatzas [5]
thanks to the smoothness of the reward function which allows explicit computations.

In this paper, the main objective is to obtain such an expression when the xi(t)
are general Feller processes, without smoothness properties of the optimal reward
function neither for the global problem nor for the individual stopping problem.

Let us describe briefly what expression we are looking for.

* Received by the editors October 19, 1987; accepted for publication (in revised form) March 9, 1989.
? Wayne State University, Department of Mathematics, Detroit, Michigan 48202. This research was

partially supported by National Science Foundation grant DMS-8601998 and Air Force Office of Scientific
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Following Whittle [9], we will use the variant of the problem where one can
decide, at any time, to stop the control problem, with a reward M if this "retirement
option" is chosen.

Assume that xi(t) is for each i, a Markov process with values in some space
with semigroup i(t).

If _x denotes the initial state of the whole set of machines, and if u(_x, M) is the
corresponding optimal reward function, then by applying, formally, the dynamic
programming arguments, u(_x, M) is shown to be the minimum solution ofthe following
inequalities"

(1.2)
u(x_, M) > e-ti(t)u(x_, M)+ e (s)fi(xi) as

u(x_,M)>-M.

The individual stopping problems have optimal cost functions (bi(xi, M), i=
1, N), where b is the minimum solution of

(1.3)
i(xi, M)>-e-ati(t),d?i(xi, M)+ e-aSdpi(s)fi(xi) ds

)i(Xi, M) >= M
when ak fi(xi) aK, Vi, Vxi.

The objective is to show that

I K I a/)
(1.4) u(x_,M)=K- dm.

M i=lOm

It would be nice to obtain such a formula by analytic methods, as it can be shown
that (1.2) and (1.3) have a minimal solution (cf. [1], [2], [3]). However, without
smoothness on bi, we do not know how to show the result by analytic methods.

Here we will use an intermediary control problem ( 2.1) which is suitable for
our objective, although it does not contain a general statement of the multiarmed
bandit itself when there is no switching cost.

Using this particular interpretation of the minimal solution of (1.2), we will show
(1.4) using an extension to the continuous time case of the Tsitsiklis’ lemma [6]. In

3, we investigate the problem with switching cost, showing a similar lemma; it does
not seem possible, however, to obtain an expression of the optimal reward in terms
of some individual problems.

2. Problem without switching cost. We start with a control problem which will
provide a stochastic interpretation of (1.2).

2.1. An intermediary control problem. Let Ei, 1 N be a family of compact
metric spaces endowed with their Borel r-algebra.

Define E E1 x. EN. Throughout the paper,

_x will denote an element of E, i.e.,

_x (xl ," ", xN), xi e Ei.
We are given a family of Markov semigroups i(t) i= 1,..., N, (t) being defined
and continuous on C(Ei), the Banach space of continuous functions on Ei.

So, (I)i is a Feller semigroup on C(Ei), cf. Dynkin [10].
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If fi D(R+, Ei), the space of right continuous, left limited functions on R+ with
values in Ei, we denote by Q, the probability measure on fi corresponding to
and we define - ’1 X... X "N
and {Ft} the associated canonical r-algebra.

In order to define the controlled process, we first consider the probability measure
corresponding to constant trajectories for the-components j # (i being the number
of the process which is active, the others being frozen), and which gives the markovian
evolution corresponding to (t) for the component i: in other words we define

Pix X" X x,_, X QiXi X 6Xi+l X 6XNO(2.1)

Notice that, if

then

_xt(to) to(t) for to 12,

Ei,_g(_x,) Ei,g(xl, xi-, xi(t), xi+, XN)

where E,_ (respectively, E,) denotes the, expectation with respect to Pi,_, (respectively,

Assume now that

(2.2) f(x) is a positive function f C(E), /i a > 0 a discount factor

(2.3) Vwillbethesetof admissiblecontrolsand v V:v=(O,)o, Oo=0,
where (0n) is an increasing sequence of Ft stopping times, :n a Fo,,-
measurable random variable with values in {1,..., N} and we assume

(2.4) On(to) " +o Vto.

For any v 6 V, _x E, we define, as in [11], the following sequence of probability
measures on (f, F), if o

pO= Pi,_x

P is the (unique) probability measure on (f, F) such that

pl__ p0 on Fo,
P’(’Oo, BIFo,) P, (B) pO a.s.,,01

’qB Borel subset of 12, r/t being the shift operator,

and so on...

Defining

P" is similarly defined from pn-1

pn pn-1 on Fo.
P"(rlo, BlVo.) P,,xo (B), pn-1 a.s.

(t)=n fort6[0,,0n+,[, n>--0.

We consider the discounted reward

f On+l
(v) lim E_ e-"f((t), x_t) dt

dO
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where

f(:, _x)=f(xi) iff = i.

Actually, with the assumptions 0. ’ +c, one can know that there exists a unique
probability measure Pi,_ on (l, F) such that

(2.5) P
and one can also define our total reward by

(. (v e-(,, , a.

We now add another control possibility, namely the retirement option."
Let T be the set of F, stopping times, for v V, r e T, and (i, ) e U x , we define

the total reward as

(.7

where M is a given constant.
We will use, as in Whittle [9], the additional assumption

where k < K are given nonnegative constants.
The optimal reward function is

(2.9) u(,M)=Sup(J(v, ), (v, r)e Vx T).

Using aformal dynamic programming argument, it is easy to check that u(, M) should
solve the following inequalities

w(,M)e-’(t)w+ e-S(s)(x)ds, Vt>0 ViU,

(2.0)

w(., M) is a bounded measurable function.

In the following section, we will show that u is actually the minimum solution of these
inequalities (for fixed M).

Let us recall the following result (cf. Bensoussan and Robin [3], Bensoussan [1]):
THgOREM 2.1. Under the assumption (2.2) there exists a minimum solution of

(2.10) in the space ofbounded measurablefunctions. Moreover is upper semicontinuous.
Remark 2.1. In Bensoussan and Robin [3], another kind of interpretation was

given for (, M). The present one will be more suitable for the problem we consider... Cretert f tetl rerg (.). In order to characterize u(, M)
as defined in (2.9), we introduce another switching problem, with a switching cost e.
Namely, we consider the same problem as in 2.1, but now, at each switching time a
cost e (i.e., a reward -e) is involved. This is in fact a classical switching problem
(which can be considered as an impulse control problem where the state is (,, ), cK
Bensoussan [1], Bensoussan and Lions [2] for the general theory).

In this context, let

be the set of admissible controls, 0, being defined as previously.
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For (i, _x) U x E, define the reward

(2.11) i,_x ,/), 7")--Ei, e-Sf((t),x_t) dt-e 2 e-:Xoj<+e-’M
j>-I

where Ei._ is defined as in 2.1, (v, ’) Vo T, and XB(w) is the characteristic function
of the set B and sCo for the construction of P,.",_.

We also define

(2.12) U (_x, M)= sup, ,._ (v, r), (v, ’) Vo T).

Let u (u,. ., u).

From impulse control theory (cf. Bensoussan and Lions [2], [11]) we know that,
for fixed M, u is the minimum element of the set of bounded measurable functions
w satisfying

Wi(X_ > e-’’(t)wi + e-aSfi(s)fi(xi) as,

(2.13) w,(_x) => e + max wj(_x),

Vt>O,

w,(x_)>=M.

Moreover, uT(_x) C(E), Vi 1,..., N.
We first establish the following result.
TIaEOREM 2.2. Let u_ (x_, M) be the minimum solution of the inequalities (2.10), then

(2.14) lim u(_x, M)= _u(_x, M)
e$0

pointwise in x_.
Proof It is clear that uT(_x, M) increases when e decreases, and that uT(_x, M) is

bounded (say by (1/)llfll / M). Let us define

From (2.13), we have

(2.15)

Hence

W_ Ui

_wi--> max wj(_x, M), Vi.

_w,(_x, M)= _w(_x, M) Vi.

But _u(_x, M), the minimum solution of (2.10), satisfies obviously (2.13) and therefore

So we deduce, when e 0,

(2.16)

u(_x, M)-<_u(_x, M) Ve, i.

w_(x_,M)<=u_(x_,M).

But we see that _w(_x, M) will also satisfy (2.10), since this is identical to (2.13) when
e 0 for a function which does not depend explicitly on i.

Therefore

w_(x_,M)>=u_(x_,M).
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Hence

and the theorem is proved.
Let us define

_w(_x, M) _u(_x, M)

(2.17) u(_x, M)=sup (J(v, "r), (v, "r)c V T).

Then we have the following Theorem.
THEOREM 2.3.

(2.18) u_(x_,M)=u(x_,M).

Proof. Since e > 0, we have

’ ), (v, ) VoX T)u,(_x, M)=sup i._; (v,

and

i,_x

where ((i, 0), v), and (5, z) V T.
Therefore

u(x_,M)<-u(x_,M),

hence

(2.19) u_(x_,M)<=u(x_,M).

Now, for any solution w of the inequalities (2.10), one can show as in [11, Thm. VII,
3.1] or [2b, 6.4], that

w(x_) > E ’x e-S ’^w(x_o.,+,^) + e-tf(x_,, v,) dt

for any admissible control (v, z), v (0, :i)i=>o where E is the expectation correspond-
ing to the measure P associate to (v, z) as in 1, with 0., ^ z instead of

From this inequality, we deduce, when m - +c, since w(_x) >- M and Om ^ z ’ z, that

and therefore

Finally, this gives

w(x_ )>- J(v, -)

w(x_)>=u(x_,M).

_u(_x, M)>_- u(_x, M),

which, with (2.19), proves the result. [3

2.3. Reduction to write off policies. Following Whittle, a write off policy is defined
as a policy such that there exists a family of "write-off" sets S c E with the following
properties.

as soon as x (the state of the processi) belongs to Si, the process is abandoned;
one retires as soon as all the processes have been abandoned, and only then;
before retiring, one works only with those processes which have not been
abandoned.
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In this section we are going to show a lemma similar to the one obtained by Tsitsiklis
[6] for discrete time, showing that we can restrict ourselves to write off policies with
write off sets defined by optimal stopping problems for the individual processes.

The individual stopping problems. Let us consider the optimal stopping reward

(2.20) 6i(xi, M) sup IMs, (r)

(2.21) ia4 -at -’Mx, (’)= E e (xit) dt + e

It is known from standard theory (see Bensoussan [1]) that (x, M) is the minimum
element of the set of functions w(x) satisfying

(2.22)
w(x) e-’(t)w+ e-’(s)(x) ds, Vt>0

(x) e M, e C().

Let us show the following results which extend the discrete time case (cf. Whittle [9])
and the diffusion case (Karatzas [5]).

LMMA2.1. Underthe assumpions (2.2)-(2.8), (x, M)= (xi, M) has thefollow-
ing properties:

(i (x, M Me;
(ii) (x, M) Io e-’*(t)(x) dr, VM N k;
(iii) Vx , (x, is an increasing convex function;
(iv) (x,. is Lipschitz continuous and in every M where the derivative exists

o40NN1;
OM

(v) in every poin where the derivative exists

O
_

(x,M)=xe
OM

where is optimal for (2.20), namely

= inf (t 0, (x, M)= M).

Proo (i) This shows that 0 is optimal in (2.20) whenever M K. Since NK

J(r) N x{(1- e-’)K +
=K+e-’(M-K),

clearly if M K, 0 gives the maximum value.
(ii) k implies

Wo(X)= e-(t) dt k

and since wo(x)=e-’(t)wo+Ioe-(s)ds, we see that wo satisfies (2.22) for
M=k.

Moreover + in (2.22) gives

w(x) wo(x) Vw solution of (2.22).

(iii) If 0 N I N 1, then we check that. a(x, m+ ( a(x,
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satisfies (2.22) for m Am1 + (1 A)m2 and therefore

wa -> (x, Am1 + (1 A )m2).

The increasing property is obvious from (2.20).
(iv) From (2.21) one has, for an arbitrary r

I+() Iff(’)= E e-3

therefore, for 6 > 0

I+(r) I(r) + 6(x, M)+ 6

implying

(x,+ )_-< (x, M)+

and since (x, M+ 6)->_ (x, M), we see that

(v) Let -= inf(t => 0, 4(x, M)= M), we know (of. [1]) that

6(x, M) Iff ).

Therefore, if 6 > 0,

hence

Taking 6 < 0, we get

I+(’) I(’) + 6Ex e-=(x,M)+6Ee

(x, M + 6)- (x, M) => 6E,, e-"

O+b (x, M) => E, e-".
OM

OM

Therefore, in M such that the derivative exists, we get the result.
COROLLnRY. O+c/OM is a right continuous increasing function such that

0=<0+=< 1,
OM

0+4,
(x, M) 1 VM>-K

OM

(x, M) =0 VM<k.
OM

Let us now define, for fixed

yi=(X1, ,Xi-l,Xi+l, ,XN)

Ui(yi, M) the optimal reward function when only the processes different from are
available.
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From the previous section, Ui(yi, M) is the minimum solution of

(2.23)
W(y, M)>- e-’(t) w, + e-’(s)f(x) s, t>0, j e

(y, M) N M, (., M) bounded and measurable.

We can now state the Tsitsiklis’ lemma in continuous time.
LMMA 2.2. (Tsitsiklis’ lemma in continuous time). One has

(2.24) u(s, M)

Proof Let (, M) be the right-hand side of (2.24). We are going to show that
satisfies (2.10) and since u is the minimum solution, this will show the lemma.

Notice that since U M and Cg M, we have

(,M)M.

Moreover, since U does not depend on x,

--si(S --ti i e-,e-ati(t)W e )fds: e (t)iW e (s)ds + [Ui M]

=I+II.

We have,

and, since Ui M => 0,

{ e-’pJ
Hence, using (2.23)

I-<_ 4 by (2.22)

H<= Ui-M.

Then, for j i, since bi does not depend on xj, j i,

e-’p(t) Wi+ e-’dp(s)fds

t) U + e-Sd(s)f ds + e-[4- M] III + IV.

and

IV- i-M since bi- M -> O.

Therefore the lemma is proved. 71
COROLLARY. Define$ {xi Ei, qbi(xi, M) M}, then one can restrict the policies

to be write off with respect to (S, i= 1,..., N).
Proof Notice that Ui(yi, M)<= u(x_, M). If xi S, then (2.24) gives, with the

above inequality,

u(x_, M): Ui(Yi, M)

which means that the optimal reward is the same as the one with N-1 processes
where the process has been dropped. If there exists such that, for _x (Xl, , xN),
x S, then u(_x, M) _-> b(x, M) > M implies that it is not optimal to retire. Finally
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if _x is such that xi S, /i, then u(_x, M) Ui ’qi and we can use the same argument
for N-1 processes to show that

u(x_, M)= j(xj, M)= M /j.

Let us denote by Vo the set of admissible write off policies corresponding to
(SY, i= 1,..., N). We will use the following lemma due to Whittle (cf. [9]).

LEMMA 2.3. If V, r) is a write offpolicy, then

N

E e-"= H E, e-"’
i=1

where r is the retirement times when only the process is available.
Proof For the proof see Whittle [9].
In our context, this means that, if

(2.25) r inf (t _>- 0, &(x,, M) M),

then, for all write off policies,

(2.26) E e- I-I Ex. e-We can then deduce the product formula for u.
THEOREM 2.4.

(2.27) U(x_, M)= K (x,, m) dm.
M i=1

Proof Let (v, r) be an admissible write off policy with respect to (S, i=
1,-.., N). We have,

J+(v, r)-J(v, r)= 6E e-.
From the previous lemma

N

J+(v, r)-J(v, r)= . 1-I Ex, e-"’,

therefore

N

u(x_,M+a)>-J(v,r) +6 [I Exi e-r.
i=1

Note that the last term is independent from (v, r) as far as (v, r) is a write off policy
with respect to (S). Therefore, maximizing with respect to (v, r)

u(x_, M + 6) >= u(x_, M) + 6 rl E, e-y

which implies, for 6 > 0,

(x_, M) >= l-I Ex, e
OM

and for 6 < 0

(x_, M) <- [-I E, e-,
OM
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Therefore, at every point where the derivatives exist, we have, thanks to the Lemma 2.1,

OU N

(_x, M)= ,II (x,, M).
i=

Integrating from M to K, using the fact that u(_x, K)= K, we get (2.27).
Remark. From Bensoussan and Robin [3], we can show that the optimal reward

of the discrete time problem converges to the u(_x, M) when the time step h goes to
zero. However, we have not been able to show the product formula in continuous time
by letting h go to zero on the product formula of the discrete time case.

2.4. The forward induction lemma. Let us consider the discrete time version of the
stopping problems (2.22). Namely, for h > 0, we define (dropping the index i)

r(x) Ex e-’f(Xs) ds

QhZ= dp(h)z

[3 e -ah.
Then the optimal reward for the discrete stopping problem ebb(X, m) is the unique
solution of

chh (x, m) max rh + QhChh, m ).

Defining Vh {r, stopping times with values in Nh {nh, n >= 0}}, we can write

4h(X, m)= sup E e-f(Xs) ds + e-’m
V

The index is defined, as previously, as

Mh(X)=inf (m> k, Oh(X, m)= m).

On the other hand, Whittle [9] shows that Mh(X) has the following representation:

M (x) sup
v 1- E e

with Vh* {r stopping times with values in N Nh--{0}}.
The extension of the formula (2.28) to diffusion processes was done by Karatzas

[5] using explicit calculation for one-dimensional processes. We are going to show the
same formula in our context; the idea being to approximate the stopping problem
(2.22) by a discrete time problem (like in Bensoussan-Robin [3]).

LEMMA 2.4. Let O(x, m) be defined as in (2.20) (where we drop the index i), and
define

M(x)=inf(m> k, O(x,m)=m),andV*=U V,
h

then

E,, o e-’f(x) ds
M(x)- sup

v* 1 Ex e

where V* { (.J h V*h }.
Proof. Starting with Mh(X) we have

k<=Mh(x)<-K Vx,
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Clearly, Vh* is increasing as h decreases to zero and therefore Mh(X) is increasing
when h $ 0. For fixed x, let

then

v(x) lim Mh(x)
h$O

v(x) sup Z(z), where Z(z)=
v* 1 Ex e

Indeed, for all e, there exists h, such that

t) >= Mh > V e36(e) s.t. Mh 6(e) > V-- e

and from the definition of Mh, we can find Zh(6(e)) such that, Zh e Vh*,

Mh >=Z(%)> Mh--6(e).

Therefore for all e, there exists r V* such that v -> Z(r) > v e proving that v
sup (Z(z), ’ V*).

Let us prove that v M(x). Assume that m->_ v, then

m >- v >- Ex o e-’Sf(x,) ds
Vr V*

1-E,,e

m>=Ex e-"f(xs)+e-"m

(and for z=0, we have the equality). Therefore m _>-b(x, m).
But 4(x, m) -> m, for all m implies 4(x, m)= m for all m => v. Now assume that

Let us assume that for such m

This would imply

b(x, m) su,p Ex e-’f(x,) + e-’m m.

m >= Ex o e-’’f(Xs) ds
V’r e V*

l_Ee

which contradicts the assumption m < v.
Therefore

m < v=:>ch(x, m) > m, hence v M(x). [-1

Remark. As it was stressed in Katehakis-Veinott [12] we can also characterize
Mh(X) using the "restart in x-problem" for which the optimal reward function v(.)
is given by

v(y) =max (rh(y) + flQh), rh(X)-k- flQhVh)

and then (see [12]) we have

Mh(X)= V’(x).
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In continuous time, in order to define a similar problem, we can use the discrete time
solution; namely, as in Bensoussan-Robin [3], we could show that for h 2-N

vu(y)= v(y)

is increasing when N--> +, (and bounded).
Then

vX(y) lim vu(y)
N

is the minimum solution of the inequalities

vX(y) >_ e-’(t)v + e-Sdp(s)fds

vX(y) >= vX(x), Vy

vX(x) bounded measurable functions.
This is the continuous time version of the restart in x-problem.

3. The problem with switching cost. We now turn back to the case where there is
a switching cost incurred at each time we change the active process. This was already
considered in 2.2 when we constructed the functions uT. Recall that this is a more
or less standard impulse control problem where the underlying state is in fact (z, _x)
where z {1,. ., N} is the number of the active process. It would be interesting to
know if a product formula like (1.4) holds. We do not know the answer, neither for
the question of the optimality of some index rule. However, we can show that the
concept of write off policy is still valid in this case and this gives some more information
on the optimal policies than the mere interpretation of the dynamic programming
condition. The reduction to write off policies will be a consequence of the following
simple result, similar to the Tsitsiklis’ lemma. Let us make precise some notations" we
drop the e in the optimal reward which is now

jM r),(v,r(3.1) u(z,x,M)=sup( z,_(v, )e VoX T)

JzM,_(V, r), Vo, T being defined as in (2.11), with z e {1,..., N}. We know that u is
the minimum element of the set ofbounded and measurable functions w(z, x_) satisfying

w(z,x_)>=e-’dPz(t)w+ e-"’Z(S)fz(Xz) ds

(3.2) w(z, x_ >= -e + max w(j, x_ ),

We denote by

w(z, x_ >= M, Vze{1,. ., N}.

Yi (xa,j # i),

U(z, Yi, M) the optimal reward when only the processes different from are available,
and when the initial active process is the process number z.

LEMMA 3.1. We have for arbitrary {1,’’., N},

(3.3) u(j,x_,M)<=[dpi(xi, M)-(M+e)]++ U(j, yi, M) Vj#

(3.4) u( i, x_, M)<- c/)i(xi, M)-M+ max [M, -e + max,#i U(j, Yi, M)].
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Proof Let us define, for fixed i:

w(, _x)
4(x, M) M+max M, -e + max U(j, y, M) for z i.

j

We are going to show that w(z, _x) satisfies (3.2) and since u(z, x_, M) is the minimum
solution, this will prove the lemma. We have,

e-’(t)w(z, x_)+ e-SZ(s)f(x) ds

e-’(t)U(z,y, M)+ e-’(S)fz(X) ds

+ e-’[(x, M)-(M + e)]+ if z

e-’()4+ e-(s)(x) ds

+e-’[max[M,-e+max U(j,y,M)]-M] ifz=i.

In the first case, thanks to (3.2), the right-hand side is less than

U(z, y,, M)+ e-’[d,(x,, M)-(M+ e)]+

i.e., less than

U(z, Yi, M)+[di(xi, M)-(M + e)]+= w(z, x_ ).

In the second one, thanks to (2.22) for 4i, the right-hand side is less than

(i(Xi, M)-M+max [M, -e + maxj#i U(j, Yi, M)] w(z, x_) if z= i.

Therefore the first inequality of (3.2) is satisfied. It is obvious that w(z, x_)>= M. Now,
for the second inequality of (3.2), we must check that

(3.5) w(i, x_ = -e + max ([i(xi, M)-(M+ e)]+ + U(j, y,, M))
ji

and, for z

f[dp(x,M)-(M+e)]i+U(j, Yi, M) VJi

](3.6) w(z, _x) -> -e + max
cbi(xi, M) M +max M, -e + max U(j, Yi, M)

ji

But, since dpi(xi, M)-M >- [4)i(xi, M)-(M+ e)]+, (3.5) is obvious from the definition
of w(i, x_). For (3.6), since

U(z, y, M) >- e + max U(h y,, .M)
j

we have

w(z, x_ >--_ -e +. [4)(x, M) -(M + e)]+ + max U(j, yi, M)
j#i
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and since [(i(Xi, M)-(M+ e)]+ ->_ li(Xi, M)-M- e, we also have

w(z, x_ >- -e + ch,(xi, M)-M+max [M, -e +max U(j, Yi, M)].
k joi _l

Therefore, the lemma is obtained. [3

Let us define the following write off sets:

S/ {(z, _x) {1,. ., N} Ei such that either z and thi(x, M) M,
(3.7)

or z # and d(xi, M) <- M + e}.

THEOREM 3.1. We can restrict the admissible policies to be write off with respect to

(SiI, i- 1,..., N), in other words
(i) if ::li s.t. (z,x_):S, we continue (i.e., we do not use the retirement option)
(ii) if V i, (z, x_ S, we retire

(iii) if (z, x_ Si, the process is abandoned.
Proof (i) Assume that ::li s.t. (z, _x) S
then -either z and th(x, M) > M hence u(i, x_, M) >- cki(xi, M) > M,

therefore we do not retire;

-or z # and b(x, M) > M+ e

hence u(z, x_, M) >- -e + max u(j, x_, M) >- -e + cki > M.

Therefore we do not retire.
(ii) Assume that

(3.8) Vi, (z, _x) 6 S
and to fix the idea, take z N, then (3.3) implies, since (z, _x) e S, and U(z, Yl, M) _-<

u(z,x_,M),

u(z, x_, M)- U(z, y, M).

Denote U by UC-(z, y-, M) to make explicit that U is the optimal reward of a
problem where only the N- 1 first components are available, i.e., y- (x2, , x).

Then applying again (3.3) to the N-1 dimensional bandit problem we get, with
i=2

u(z, x_, M)= uN-I(z, ylN-l, M)= uN-2(z, y2-2, M)
with yN-1 (X3,. ", Xr).

This process goes on until

u(z, x_, M)= U’(z, Xz, M)= Ckz(X, M)

which by the assumption and (3.4) is equal to M. Therefore we must retire if (3.8) holds.
(iii) Assume (z, _x) e S
-either z# then (3.3) and u(z,x_, M)>-_ U(z, yi, M) implies u(z,x_, M)=
U(z, y, M) meaning that we never use again the process

-or z- and b(x, M)= M, then (3.4) implies that either we retire, or we have

u(z, _x, M) -e + max U(j, Yz, M)
jOT

meaning that we switch to another process and never use the process z i. This
completes the proof of Theorem 3.1. [3
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THE AUGMENTED LAGRANGIAN METHOD FOR PARAMETER
ESTIMATION IN ELLIPTIC SYSTEMS*

KAZUFUMI ITO AND KARL KUNISCH:

Abstract. In this paper a new technique for the estimation of parameters in elliptic partial differential
equations is developed. It is a hybrid method combining the output-least-squares and the equation error
method. The new method is realized by an augmented Lagrangian formulation, and convergence as well as
rate of convergence proofs are provided. Technically the critical step is the verification of a coercivity
estimate of an appropriately defined Lagrangian functional. To obtain this coercivity estimate a seminorm

regularization technique is used.

Key words, augmented Lagrangian method, parameter estimation, least squares, elliptic system
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1. Introduction. In this paper we consider the problem of determining the
unknown functional coefficient q in the elliptic partial differential equation

(1.1) -div(qgradu)=f inl2 u=0 onF,
from an observation z of the solution u, where is a bounded domain in En, n 1, 2,
or 3, with piecewise smooth boundary F and f H -1 is given. In applications, the
function z might be constructed by interpolation of pointwise measurements. We
propose and analyze a hybrid method that combines the output least squares and the
equation error formulation [2], [17] within the mathematical framework given by the
augmented Lagrangian technique.

The output least squares (OLS) approach is used most commonly and in our
example for n 2 or 3, it is stated, for instance, as the minimization problem in H2:

1 lN(q)(1.2) Minimize u (q) z n+
over Qad {q H2(fl): q >= a and Iq[H2<= 3"}

where a and 3’ are positive constants chosen a priori, u(q) is the solution of (1.1),
and H is chosen as Hi, i= 0 or 1, for example. The second term in the cost functional
represents a regularization term and Qad is chosen so that (1.2) has a solution for every
/3 -> 0. The use of a regularization term guarantees the continuity of the mappings from
the observation zH (H=H or L2, for example) to a solution q3(z) Qad C H: for
an appropriate choice of N and /3 > 0 and, in general, /3 cannot be taken equal to
zero [3], [4], [9], [17]. In this paper we will use a regularization term such that (N(q))1/

is a seminorm on H2. The use of seminorm regularization is very common for the
inversion of linear operators [6], but it is not well studied in nonlinear problems such
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as the one presented by estimating q in (1.1). The OLS formulation is quite flexible
with regard to the availability of the data. The OLS term in (1.2) can be adjusted in
case data are only available over a subset of the domain, or are given as point
measurements or as measurements of the flux at the boundary. As its form indicates,
the OLS approach is less sensitive with respect to noise in the data when compared
to the equation error method to be specified below. However, the minimization in (1.2)
is an indirect method to determine the unknown q, and any iterative algorithm for
solving (1.2) requires the solution of (1.1) for every update of q Qad.

An alternative to the OLS formulation is the equation error formulation. For our
problem it can be stated as follows:

(1.3) Minimize 1/2IV" (qVz)+fl
subject to q E H2, q--> a

where H is either H-l( (H)*) or H. Since in computations H -1 requires a lesser
amount of numerical differentiations of z, it should be preferred. An obvious disadvan-
tage of this formulation is that it needs a fairly accurate observation of z defined over
the entire domain f and it may be sensitive to noise in the data. On the other hand,
it leads to efficient algorithms, since the minimization in (1.3) is quadratic.

The hybrid method that we propose not only combines both these formulations,
but it also inherits the flexibility of the OLS approach and the quadratic structure of
the equation error approach. This is achieved by viewing (1.2) as the following
constrained minimization problem:

(1.4) minimize

subject to

2 N(q)F(q, u) --- lu-- Zlno+-

(1.5) -V. (qVu)=f in

(1.6)

(1.7) a<-q on12,

in the two independent variables q and u. To solve (1.4)-(1.7) we apply the augmented
Lagrangian algorithm (see, e.g., [1], [7], [8], [16]). It essentially involves minimizing
a sequence of functionals of the form

Ck(1.8) Lck(q, u; zk) F(q, u)+(A k, e(q, u))H,+-le(q, U)IH’o over q Q,d,

and the multiplier sequence {A k} in H is given by

(1.9) , g+ Z k + c,e(q,, Uk),

where A. H H-1 is the Laplacian, the function e" HaH H is defined by

(1.10) e(q, u)= (-A)-I(v (qVu)+f),

and the pair (qk, Uk) minimizes (1.8). To carry out this iterative scheme a (possibly
constant) sequence of positive real numbers { Ok} and a startup Z H for the Lagrange
multiplier need to be chosen. We suggest A 1= 0 but convergence will be guaranteed
for any other choice of A as well. The inequality constraint IqlHz<= / (see (1.6)) can
be augmented in a manner similar to the equality constraint e(q, u)= 0 (see 2 for
details). Convergence of this algorithm will be shown in Theorem 2.2 by employing
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the results of [8], where a general framework for the analysis of the augmented
Lagrangian method in infinite-dimensional spaces with equality constraints, as well as
inequality constraints with finite-dimensional image space, is given. More precisely,
convergence and rate of convergence of the pair (qk, Uk) to a solution (q, u) of
(1.4)-(1.7) in HE x H, as well as of A k to , *,’ the Lagrange multiplier associated with
the equality constraint (1.5), in H will be proved. This result will be obtained under
the assumption that the Hi-error between the data z and the nonregularized OLS-
solution u is sufficiently small and that the penalty parameters Ck are sufficiently large.
It is not required that lim Ck oe as k- oo.

A number of remarks are in order.
(1) The minimization of the function in (1.8) requires the solution of a Poisson

equation. For the discretized problem several efficient numerical techniques are readily
available and any variant can be chosen. As a comparison, in the OLS approach (1.1)
must be solved for u u(q) whenever a change in q occurs.

(2) Note that

21 for allqH-1 (Hol),I1-’ (-A-l, I(--A-ll,o
Thus the minimization of the cost functional in (1.8).is a combination of the OLS-
problem (1.2) and the equation error problem (1.3) where H H -1, with the aid of
the multiplier method. The choice of the H-topology for the OLS-term and the
H-l-topology for the equation error term (equality constraint (1.5)) is natural from
the point of view of the second-order sufficient optimality condition for (1.4) that will
be used below, and the choice of these topologies leads to a method that requires the
same amount of numerical differentiations in both the OLS and the equation error term.

(3) Note that e(q, u) is a bilinear function in q and u. Thus for fixed q (respectively,
u) (1.8) becomes quadratic in u (respectively, q) and we can take advantage of this
structure numerically (see 4 for details).

(4) As will be shown the penalty term (c/2)[e(q, u)[ enhances the convexity in
the neighborhood of local minima.

(5) There is some arbitrariness in the choice of the topologies for the OLS and
the equation error term. We can use [V(qVu)+f[2 instead of [e(q, u)[Zn while simul-

2taneously [u-z[ is replaced by [U--ZlHoCH. This would require a different analysis
of the coercivity estimate (see 3) and would lead to a different numerical implementa-
tion. This aspect is not exploited further within this paper.

The paper is organized as follows. In 2 we describe in detail the augmented
Lagrangian algorithm for the estimation of q in (1.1) and state the convergence results
in Theorems 2.2 and 2.3. The essential technical tool that guarantees convergence is
the positivity of the second Fr6chet-derivative of the Lagrange functional (see (2.4)
below). This coercivity condition is analyzed for various situations (Propositions 3.4
and 3.5) in 3. Section 4 is devoted to a brief summary of the numerical experience
that has been obtained with the augmented Lagrangian algorithm in parameter estima-
tion. A comprehensive study of our numerical experience will appear elsewhere.

The notation that we use is rather standard. Unless otherwise specified, all function
spaces are considered over the domain fl. We use (.,.) to denote the inner product
in L and [. to denote the norm in L2 and E", n_-> 1. For other inner products and
norms we use an index, as for instance [V[H denotes the common norm in H. The
space E" is endowed with the Euclidean norm. The inner product in H is given by
(I.), W)H --(V I), V W) and the associated norm is defined through [v[2ng (v, ))Ho1.

2. Problem formulation and convergence results. Let us formulate the problem for
the multidimensional case (n- 2 or 3) first. We consider the constrained minimization
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problem in the variables (q, u) H2 H:

(P) Minimize u ZlH+’ .2 [q"lX’2
ll

subject to e(q, u) (-A)-’(V (qVu)+f)=0 in H, and

Iqln2 <= 3",q >= a onO

where A is the Laplacian (considered as operator from Ho onto H-a),f H-a, z H,
/3 _-> 0, and a, 3’ are given constants satisfying a2 a dx < 3’2. Note that (qt, us) is a
global solution of (P) if and only if q is a solution of (1.2) with u(qt3) u t3. To
argue existence of a solution qt of (1.2) observe that Qad is a bounded, closed, and
convex subset of H2 and hence it is weakly sequentially compact. The parameter-to-
solution mapping q- u(q), q Qad, is continuous from the space of continuous
functions C to the H-topology. Moreover, H2 is compactly embedded in C and
norms are weakly lower semicontinuous functionals. Hence it can be shown that for
any/3 => 0 there exists at least one solution to (1.2) or equivalently (P).

Subsequently we will use the closed convex cone c with vertex at the origin of
H2 defined by

Let

c {w H2: w-<O}.

c+= {b H2: (b, h)H=< 0 for all h c}

be the positive dual cone and let

-={x: x=<O}.

Then (P) can be written as follows"

1 N((2.1) Minimize F(q, u)=[u-z+ q

subjectto e(q, u)=(-A)-(V (qVu)+f)=O,

g(q)=(lq-y)-,
l(q)=a-q.

Hencefoh (q, u) denotes a solution of (2.1). The next theorem (that will be proved
in the latter part of this section) shows the existence and the uniqueness of a Lagrange
multiplier (h*, *, *) Hx R+x + associated with a solution (q, u) of (P). We
suppress the dependence of (h*, *, *) on ft.

THEOREM 2.1. ere exists a Lagrange multiplier (h*, *, *)Hx+x + such
that

L(q, u; h*, *, *)= F(q, u)+(h*, e(q, u))n+ ([q[-T)+(*, a--q)n

satisfies
(2.2a) VL(q, u; h*,*, *)(h, v)=O forall (h, v)HxH
(e.b *(lql- =0, (*, -q>,=0.
Moreover, the Lagrange multiplier is unique and h*=A(q)-lA(u-z) in H where
A(q)u V. (qVu). Here VL(q, u; h*, *, *)(h, v) denotes the Frdchet derivative of
L(., .; h*,*, *) at (qe; u) in direction (h, v)HxH.
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TO solve (P) (or equivalently (2.1)) we will apply the augmented Lagrangian
method. This method, due to Hestenes and Powell, has been studied extensively in
the finite-dimensional case and, with equality constraints only, also in the infinite-
dimensional case (cf. [1], [5], [7], and [16], for example). The infinite-dimensional
case with equality as well as inequality constraints has been studied in [8]. To explain
this method we require several reformulations of (P). For c >- 0 consider the augmented
problem:

(P)c Minimize

subject to

C
F(q, u)+-le(q, u)l+-lg(q)+ wl

e(q, u)=O inHlo,

g(q)+w=O, w,

w>=O,

a-q CC

In the notation of (P)c as well as F we suppress the dependence on/3. We observe
that (qt, us) is a solution of (P) if and only if (q, us, wt =-g(qO)) is a solution of
(P)c. Moreover, it is simple to verify that (h*, /x*, /x*, r/*) is a Lagrange multiplier for
(P), i.e.,

VLc(q, ut, we; A*,/z*, r/*)=O and (r/*, a--q/3)H2=O, #*Wt =0

where the Lagrangian Lc(q, u, w; A*,/x*, r/*) is given by

L(q, u, w; A*,/x*, r/*)= F(q, u)+(A*, e(q, U))n’o+tZ*g(q)
(2.3)

C
+(rl*, a-q)H2+-le(q, u)12n+-lg(q)+ wl :z,

and f, e, g are defined in (2.1). It can also be shown that any solution (q, u, w) of
(P) is a regular point in the sense of ([14], cf. also Theorem 2.1 and its proof), but
since we will not use this fact we do not give its proof here.

Henceforth the following second-order sufficient optimality condition will be used:

There exist constants cr > 0 and Co -> 0 such that the second Fr6chet derivative

V2Lo of L satisfies the coercivity condition

(2.4) 72Lco(q/3, u s, we; Z*,/z*, r/*)((h, v,y)(h, v, y)) >- o’(Ihl2+ lvl2n +lyl2)

for all (h, v,y)H2Hx, where the Lagrangian L is defined by (2.3)
and wt =-g(q).

In the next section we will establish this condition for several specific cases. Under
(2.4), it can be shown that (qt, u s, wt) is a solution of (P)c if and only if it is a solution
of

C
(2.5) min F(q, u)+(A*, e(q, U))H+tx*(g(q)+ w)+-[e(q, u)lH+-lg(q)+ wl2,

with w _>-0, a <-q. In (2.5) the equality constraint and the inequality constraint with
finite-dimensional image space are eliminated from the explicit constraints. However,
(2.5) contains the unknown Lagrange multipliers (A*,/x*). The augmented Lagrangian



118 K. ITO AND K. KUNISCH

algorithm applied to (pS) involves solving iteratively for (h*,/z*) and (qS, us) and
requires the solution of the following minimization problem"

(2.6) Given h H and/z +
minimize F(q, u)+(A, e)I-I+(g(q)+ w)+-le(q, U)[2H+-[g(q)+ W[2

subject to w>-O,a<-qand(q,u,w)eH2xHxR.
This problem is equivalent to the problem of minimizing

c c
(2.7) F(q, u)+(A, e)H+I.,(q, tz, C)+-[e[2H+- ,(q, tz, C

c +1 (imax (0, cg + tz)[2-[/12)F(q, u)+(A, e)H+-le(q, u)l,
2c

subject to a-< q, where the constraint w => 0 is eliminated. Here we put

(q’/’ c) max ( --c g(q))
and we used the equality

c, (q, /z, c) //z max (-/, cg(q)) / tz max (0, cg(q) / tz ).

Observe that (qS, us, ws -max (0,-g(qS)-tz/c)) is a solution of (2.6) if and only if
(qS, us) is a solution of (2.7).

We are now prepared to specify the augmented Lagrangian algorithm to solve
(p)S. Choose a monotonically increasing sequence {Ck} of positive real numbers with
Cl> Co and (h 1,/z)e HxE+. In practice we suggest choosing (h 1,/z) (0, 0), where
the choice of A is based on Theorem 2.1" h* is close to 0 if us is close to z.

For k >- 1 determine (qk, Uk) by solving the following:

(2.8) Minimize k(q, U),

subject to (q, u) H2 H, a _<- q,

and define

(2.9) h+’=h+(Ck--Co)e(qk, U), I.z+’=lk+(cg--Co),(q,l,C)
where

k 1 kk(q, U)= F(q, u)+(h k, e)n+z[el’+2c
k

(0, Ckg(q)+tZ

In the following result we will ascertain local convexity of the cost functional
appearing in (2.7) and (2.8) in a closed ball/ containing the solution (q, u
We call (qk, Uk) a solution of (2.8) in B if k(qk, Uk) <---- k(q, U) for all (q, u) B with
a q. Existence of a solution of (2.8) in / and a Lagrange multiplier T/k associated
with the inequality constraint a _<-q can easily be verified. We will prove convergence
of the solutions (qk, Uk) B of (2.8) as k_o.

It is useful to observe that

k+l lul"
k

o k )=max ,/z +(Ck--Co)g(qk)
\ Ck

and, since $,1 0, this implies that /.k 0 for all k->_ 1.
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THEOREM 2.2. (a) Suppose that the coercivity condition (2.4) holds. Then for every
r >-Ix* there exist constants (r)> Co and > O, and an open bounded ball B in
H2x H centered at (qt, ut3) such that

Co CoF(q, u)+ (A*, e>H+ Ix*,(q, IX, C)+ (’q*, a- q>H2+- le[+- ]ff,(q, IX, c)l2- F(qt3, u t3)

>-_ 6"([q qtlH2 + ]u UtI2H)
for all (q, u)6 B, c>-_ and Ix [0, r], where ff,(q, Ix, c) max (-Ix/c, g(q)).

(b) Suppose that in addition r=>*/(IA-A*I=/I-*I2)/2, and c>-(r) is
chosen sufficiently large. Then every solution of (2.8) in B satisfies (qk, Uk) B, Ixk [0, r]
and

(2.10)

#([qk q]2+ lUk U )+ 2(ck- Co)
(I k+l__/:l "- IIx k+l- Ix "12)

1

2( ck Co)

for every k >-1. Moreover, there exists a constant K > 0 such that

(2.11)

1
[q,-qt12+lu,-utl<-2.(c,_Co (IX-a*l,+l-*l=) fork>= 1,

I *1,+ I, *1 + In-’- n*l

H (]h -h*[+] for k >2.
i= Ci Co

The proof of Theorem 2.2 will be given in the latter part of this section.
Next we formulate the problem for the one-dimensional case. Without loss of

generality we can assume that 12 (0, 1). We take (q, u) H Hand the regularizati0n
term N(q) is chosen as

N(q)= Iqx dx.

Thus, for/3-> 0, the analogue of (P) is defined as follows:

(2.12) Minimize - lu zl + Iqxl

subjectto e(q, U) (--A)-l((qUx)x+f) =0 in H,
IqIH,<--y and c -< q on [0,1]

where A. H-* H-1 is given by Au Uxx. The results corresponding to Theorem 2.1
hold with q H2 replaced by q H1. In particular, if (q, u) H Ho is a solution
of (2.12), then there exists a unique Lagrange multiplier (A*, Ix*, r/*) Hx R+x c+
such that the Lagrangian

L(q; u; A*, Ix*, rl*)=1/2[u-zl+-lqx] +(A*,

satisfies VL(qt3, ut; A*, Ix*, 7")=0 and Ix*(lqtl-),2) =(r/*, a-qt),,=0, where
(., .),, is the duality pairing on Hl, cg {h e H1" h _<-0} and
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for all h c} is the positive dual cone of c. The Lagrange multiplier associated with
the equality constraint can be expressed as

A*=A(qt)-lA(ut-z) in H
where A(qt)’H--H-1 is given by ZX(qt3)u=(qOUx)x. The Lagrangian for the aug-
mented problem (compare (2.3)) is given by

Lc(q,u,w’A*,ix* r/*)=lu-zl 2, /3 2m+ Iql + (Z*, e),
(2.13)

e 1 [2+(n*, a--q)H’+*g(q)+-]el2+-lg(q) + w
where e e(q, u), and g(q) 1/2([q],- y-).

The augmented Lagrangian method for the solution of (2.12) now proceeds
precisely as in the multidimensional case described in (2.8), (2.9) with q e H2 replaced
by q H1, and the regularization term is chosen as /31qx[. In particular, (q, Ix, c)=
max (-Ix 1/2(Iql’-’)’)) and (2.8) becomes

(2.14) Minimize k(q, U)

where

subject to (q. u) 6 H x H.a _-< q.

1 /3 c
k(q, u) -]u-zl+-lq[2+(A , e)n+-le] 2

Ho

1
+ (Irnax (O,ckg( q) + Ixk)12--1Ixk[2).
2ek

The following analogue of Theorem 2.2 holds for the one-dimensional case.
T4EOREM 2.3. Suppose that there exist constants o’> 0 and Co>= 0 such that the

second Frdchet derivative V2Lo ofL satisfies
(2.15) VLo(q, us, w; A*, *, n*)((h, v,y), (h, v,y))(lh[,+lv[+lyl)
for all (h, v, y) H x HxN. en for every r #* there exist constants = (r) > Co
and > O, and an open ball B in Hl x H centered at (q, u) such that

1 , , Co Cou-zl%+lqxl+(A *, e).+ (q.#. c)+(, a-q).’+lel+}(q., c)2

1 /3 _q ut-- 2

2 lu -zl2"+- Iql +e(lq I’+lu-

for all (q, u) B, c>= , and [0, r]. Similarly, the assertions analogous to eorem
2.2(b) hold with H replaced by H.

We now come to the proofs of the results of this section.

Proof of eorem 2.1. Let " H2 x H Hx x Hz be defined by

(h, v)= ((-a)-’(V. (qVv+ hVu)), (q, h),, -h).
The Fr6chet derivatives 7e, 7g, and 71 at the minimizer (q, u) in direction (h, v)
are given by

7e(q, u)(h, v)= (-)-(7 (qTv+ hu)) H,
Vg(q, u)(h, v)=(q, h),6, 7l(q, u)(h, v)= -h 6 H2.
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These are the coordinates of hT/. The existence of a Lagrange multiplier satisfying (2.2)
will follow directly from the regular point condition [14, p. 100] that for the problem
under consideration is given by

{//(h, v) + (0, r, k)+ h (0, 1/2(Iqtl2 2), O/ qt).
(2.16)

(h, v) H2 x H, r +, -k c, , } Hx x H2.
We thus turn to the verification of (2.16) and choose (Wl, w2, w3)HxNxH2

arbitrarily.
Let

k w3- min w3

where the minimum is taken over fi and is well defined since H2 embeds continuously
into C. Observe that -k e c. Further define

h (a q min w3,

with )t e to be fixed below. Clearly, h e H2 and

-h + k + X(a qt) w3

and thus, independently of X N, the third coordinate in (2.16) is satisfied for this
choice of k and h. Next we consider the second coordinate of (2.16)"

(q, h),2+ r+ (Iql 3,) w

or by the choice of h

(2.17) r+ A((qt, >-lql,-r w2 + (qt, min w3).

Since a 2 dx < r2, the factor (q, a)-lql%:-r in (2.17) is negative and thus there
exist ,E+ and rE+ that satisfy (2.17). With (,,h,-k,r)EH:CE+ fixed
we turn to the first coordinate in (2.16) that requires solving

7(q7v)=-Awl-7(h7u) inH-1,
for v H. This is clearly possible and hence (2.16) is verified.

Next we will show that

,* a(q)-’a(u z) in H where a(q)u V(qVu).(2.18)

Note that

VL(q, ut3; X*, tx*, rl*)(h, v)

(2.19) (V(ut- z), Vv)+/3 ((V q
il,i2

-(V,*, hV u + qVv)+/z*<q, h>,2- <r/*, h), 0

for all (h, v)e H2 H. Let h 0 and v e H be arbitrary. Then we have

<A(ut- z), v>-<7. (q7,*), v>=0
for all v H. This implies (2.18) and the uniqueness of the Lagrange multiplier A*.

To show the uniqueness of Lagrange multipliers /x* and r/*, assume that
(A*,/x*, r/*), i= 1, 2 are two Lagrange multipliers satisfying (2.2a) and (2.2b). Let
/x =/x*-/x2* and r/= r/*-r/2*. By (2.19) and (2.2b) we find

for all h H2
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and moreover

(n,a-q>,=O.
First consider the case of q9 a. Since a 2 dx < 3,2, the norm constraint is not active
and therefore /x* =/z2* 0 in this case. Moreover, by the first equation we find that
r/=0 so that r/* */2*. Next assume that q is not identically a. Putting h a- q in
the first equation and using the second equation, we obtain /z(q, a-q),2=0 that
implies /x 0. Thus, (/, h)H 0 for all h H2. This implies r/= 0 and the proof is
completed.

Remark 2.4. If/x*=/3 0 and /*= 0, then

(2.20) (V(ut3-z), ’ut) 0.

In fact, suppose that /x*=/3=0 and r/*=0. Then (2.19) with v=0 implies
(V,*, hVu) =0 for all h H2. This equation with h qt and * expressed as in (2.18)
implies

(A(qt)-A(ut -z), A(qt3)ut3)=(V(u t3 -z), Vu) 0,

which is the desired equality.
To prove Theorem 2.2 we need the following lemma.
LZMM 2.5. The adjoint operator II*’H H2H2H of 1I is surjective.

The kernel of 1(4" is one-dimensional and it is characterized by

ker//*= span {(0, 1, q)}.
Moreover, II1(-I* has a bounded inverse as an operator, on range i.

Proof It is simple to show that the range of M is closed. Next suppose that
hT/(h, v) =0 for some (h, v) H2 H. Then h =0 and thus (-A)-7 (qtVv) =0. Since
(-A)-’. H- H is an isomorphism and since q -> a, this implies that v 0. Hence
hT/is injective and by the closed range theorem//* is surjective. A short calculation
shows that the kernel of//* is given as the set of elements (x, y, z) H H2 that
satisfy

(yq, h)q (z, h)H for all h H2.
In particular, dim (ker hT/*) 1. By the closed range theorem, (ker hT/*) +/- range hT/and

H x R x H2 ker//*@ range

To show that /rhT/* has a bounded inverse on range /17/, we observe that hT//l;/* is
injective and surjective on range M. This completes the proof.

Now we turn to a proof of Theorem 2.2.
Proof of Theorem 2.2. The augmentability estimate in (a) follows from the proof

of Theorem 2.1 and from Corollary 2.2 of [8] (with (2.4) replacing Theorem 2.1 of
[8]). In addition, if the norm constraint is not active, then (r) and B can be chosen
so that

(2.) g(q)+-<0

for all/z =< r, c -> (r), and all (q, u) e B. Estimate (2.10) is a special case of Proposition
4.1 of [8]. We now turn to the proof of (2.11). First observe that by (2.19)

(V(ut3-z),Vv)+((Vqt3, Vh)+, (qx,,x,,h)c,,x,))
il ,i2

-(grA*. hV u + qtV v) + tx *(qt. h)n-(r/*, h).2 0
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for all (h, v) H2H and the necessary optimality condition for (qk, Ilk) yields

(V(tlk--Z), VV)q-fl ((Vqk, Vh)q- ((qk)x,,x,2, hx,,x,))i1,i2
(2.22)

-<VXk+’, hVuk + qkVV}+ t2k+’<q k, h>H2--< k, h>H2 0

for all (h, v) e H2 x H, where

Xk+= a k + Cke(qk, Uk) and k+ k+ Ck{(qk, k, Ok).

Subtracting these two equalities, rearranging terms, and using the definition of , we
obtain

((a,_Xk+,, ,_k+,, ,_k), (h,

(2.23) =(V(Uk-U),Vv)+fl((V(qk-q),Vh)+ Z ((qk)x, --q,,xi2, hx, lx,2)
il,i

IXi2

-(Vk+’’ V(u --Uk), h)+((q-qk)Vk+’, Vv)+k+(qk--q, h)H

From (2.10), the sequences {A k, k} and {qk, Uk} are uniformly bounded in Hx and
Hzx H, respectively. This implies uniform boundedness of the sequence {k, ilk} in
Hx. By the Riesz Representation Theorem, the right-hand side of (2.23) can be
represented by (bk, (h, V))H2xH where bk HZx H and

for a constant K1 independent of k. We find from (2.23) that

,(, k+l, ,__ k+l, n*- nk) bk
in H2 H. If PR denotes the ohogonal projection ofHR x H onto (ker *),
then

,pR(Z,_k+,, ,_k+,, n,_ nk) bk.
Since from Lemma 2.5 * is continuously inveible on range (ker *),
(2.24)

for a constant K2 independent of k.
Next the complementarity conditions imply that (*, a--q)H=O and (k,

qk)H=O. Since {k, k} is uniformly bounded in HxR, it follows from (2.22) that
{k} is uniformly bounded. Thus, these equalities yield the estimate

(2.25)

for a constant K independent of k. Now let us assume that q
0 and it follows from (2.24), (2.25), and the characterization of ker M* in Lemma 2.5
that

(2.26)

for a constant K4 independent of k. In the case q a the norm constraint is inactive
and hence *=0. By (2.10) we haver for all k 1, and (2.21) then implies that

0 for all k 2. Consequently, (2.26) also holds for the case q a. Next we will
show that (2.26) holds when (+, +) is replaced by (h g+, +). Observe that
there exists a constant K independent of k such that

I+*-X+’I.
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and

where for the last estimate we assumed that the norm constraint is active and we used
the fact that /xk_>- 0. Combining these estimates with (2.26), we obtain

(2.27) I(* 1 k+l, /’1’* ’ kd-1, "*--’k)[HloXX"2<--- Ksl(qk, Uk)--(q3, ’)[ .2xH
for a constant Ks independent of k, provided that Iql 3’. If the norm constraint is
not active, then by (2.10) we have

k+l < , , 2 ,12)1/2 .=/, --’(IA --A IHo-I/.Z --/J, --r forall k > 1

/x max ,/x + (Ck CO)g(qk)
Ck

(2.28)
< max

/x Co /x Co, (c Co)
Ck Ck

The estimates (2.11) now follow from (2.10), (2.27), and (2.28). This completes the
proof.

Remark 2.6. The assumption of Theorem 2.2(b) that cl _-> ?(r) is sufficiently large
is used to guarantee that (qk, Uk) is in the open ball B for all k 1. If we only assume
Cl Y(r), then the estimates of Theorem 2.2 need to be modified. First (2.10) holds
with (qk, Uk) replaced by (k, ak), where (k, k) is a solution of (2.8) in (compare
[8]). In paaicular, this implies that (k, k) (q, U) and that {(A k, k)}k is bounded
in HxR. Let ko be chosen such that (4k, ak)eB for all kko. Then the analysis of
Theorem 2.2 can be repeated to show that for k 1

2 k+k ,12 k+ko-1I+-*lo+l - +1 I
H (la-a +1. . )

k/ ko Ci CO

The proof of Theorem 2.3 can be given along the lines of that for Theorem 2.2.

3. The coercivity congition. In this section we establish the coercivity condition
(2.4) for specific cases. To achieve this goal it is necessary to study the behavior of
the solutions (q, u) to (PC) as fl 0+. Let

(3.1) S(q)= lq,,,l+lVql,
il ,i2

representing the seminorm regularization.
LEMMA 3.1. Let (q, u) be any solution of (PC). For fl > flo O, we have

(3.) I -lloluo- zl no+ fl(N(q)- S(q)),
(3.3) sup N(q) inf N(qo),

Q QO

(3.4) supluo-zJuinf}u-zln
UO U

where for fl O, Q {q" (q, u) is a solution of (P)} and U { u" (q, u) is a
solution of (PC)}. Iffl 0+ and {q,,} is any sequence ofcorresponding solution of (PC,,),
then {q,,} has a weak cluster point, and every weak cluster point is a solution of (pO),
and we have

(3.5) lim sup N q,, min N qo).
Q,, QO

]]k+l Lk+l] Co (k )max -, g qk
Ck

<-- Klqk-- qt3[H

and therefore by (2.21)
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Moreover, every weak cluster point of a sequence ofsolutions q’,, is a strong cluster point
in H2 and it is a minimum norm solution of (1.2).

Proof The proof of (3.2)-(3.5) is a simple consequence of the above remark on
the equivalence between (1.2) and (P’) and the results in 2 of [4]. In fact, (3.2)
follows from (2.2) in [4], (3.3) and (3.4) from Lemma 2.2, and (3.5) from Lemma 2.3
of [4]. Assumption (A2), requiring existence of a minimizer of (pO) in [4], is guaranteed
by the properties of Qad. The coercivity assumption for N in (A1) of [4] is replaced
by the norm constraint. We will show the last statement of the lemma. If q’,, converges
weakly to q, then from (3.5) N(q’,,)- N(q) where q is a minimum norm solution of
(pO). Since the embedding from H2 into L2 is compact, q’, converges strongly to q in
L2. Thus we obtain

N(q")+]q"lt2- N(q)+lqlt.
Since N(q)+[ql defines a norm that is equivalent to the common H2-norm [15,
p. 13], this implies Iq-I- Iql so that {qn} converges strongly to q in H.

From (3.2), (3.3), (3.5), and observing that ]u zl is independent of u Uo,
we find the following corollary to Lemma 3.1.

COROLLARY 3.2. There exists a real-valued monotonically increasing function p(l
with lim p(l 0 as fl - 0+ such that for fl >= 0

sup lu t3 zl < lu z[ 2, mi.nHo + fl N(q)- N(q))
ut

-<_ I,- zing+/p(t).
The second Frchet derivative of Lc at (q, u, w) in direction (h, v, y)

H2HR appearing in (2.4) is given by

VLc(qt3, u t, wt3; *, Ix*, r/*)((h, v, y), (h, v, y))

(3.6) lvlzn+ N(h)-2(VA *, hVv)
2/z*lhl,/cl(-A) ’V, (qtVv+ hVut3)lno+ Cl(q t3, h)H2+ yl2

where we used
2(3.7) I(-A)-lVpl ,o ((-A)-lv qg,

for H(g; "), which can be verified by Green’s formula [15, p. 28]. Here the
operator P grad - div defines an orthogonal projection in L2(, n).

To prove the coercivity condition (2.4) in Proposition 3.4 we use some well-known
estimates [15, pp. 18, 20, 72].

LZMMA 3.3. ere exist positive constants K, i= 1, 2, 3, 4, depending only on
such that

(a) Ilg N K,II. for all H2,
(b) I1 K=IVI for all H’ with In dx O,
(c) ]lg3(2,,.,lx,,,12+[v12) 1/2 for all H with Ia dx=O.
The proposition also involves the constants a and y that define Oad, the function

p() from Corollary 3.2, and the constant w that is defined as follows. For f g-1

with f 0 and q e Qad we have

If[--’ sup
H

I<qVu, vv>[
< iqllVul < g, Tlul.

and therefore

fin-’(3.8) lul. --: o > o.
yK1
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PROPOSITION 3.4. Let f H-I satisfy fO and let k=(1 + K+4KK)-1. Let
(qO, uo) be a solution of (pO) and suppose that for a constant flo (0, 1)

(3.9) u ] ]
/K kl---Krflo -p(flo)

Then there exists a nontrivial compact interval I [fl, flo] (0, 1) and constants Co > 0,
O’o> 0 such that

VRLc(q, u, w; A *,/x*, r/*)((h, v, y), (h, v, y))>- ro(Ihl+lvl+ly[)
for all c>-co, (h,v,y)eHRxHxN and any solution (q3, u3) of (PC) with flI.
Moreover, if u=z, then such a constant o always exists and I can be chosen as any
compact subset of (0, t3o].

We point out that in Proposition 3.4 the solutions (qO, uo) and (q, u) are assumed
to be global. This is necessary since the proof requires the estimates of Lemma 3.1
and Corollary 3.2 that are given for (global) solutions. The assumption regarding
existence of 13o such that (3.9) holds represents a smallness condition of the error
between z and the nonregularized OLS solution u. All quantities appearing on the
right-hand side of (3.9) except for 0(13) in principle can be given explicitly.

Proof Define a quadratic form on HxH by

(3.10)
Mc(h, v)=lvl+N(h)-2(VA* hVv)

+ c((-A)-V (qVv + hVut), V(qtVv + hVut))
where c>_-0 and the dependence of M(h, v) on /3 is suppressed. For (h, v,y)
H2 x Hx R it follows that

(3.11) VRLc((h, v, y), (h, v, y))= M(h, v)+ c((q3, h)n2+y)2+
We first concentrate on M. By Theorem 2.1 and Lemma 3.3(a)

(VA*, hVv)=-(A*, V. (hVv))=(VA(qt)-lA(ut-z), hVv)
-> IVA(q)-IA(u z)llhVvl

(3.12)

By (3.7) and Lemma 3.3 (suppressing the index/3)

((--A)-lv (qVv+ hVu), V (qVv+ hVu)}=(P(qVv+ hVu), qVv+ hVu}

(3.13)
>-1/2(P(hVu), hVu)-(P(qVv), qVv)

>-1/2(P(hVu), hVu)-lqllVv[
>=1/2(P(hVu), hVu)- KrIvi%t.

Here and in (3.14) below we suppress the superscript/3. Each h L2 can be uniquely
decomposed as h hi + hR, where hi Ia h(x) dx and hR {h L2: a h dx 0}. Observe
that hi and h2 are orthogonal in L2 and if h e H2, then h2 e HR. By definition of P and
by Lemma 3.3(a) we find

(P(hVu), hVu)=(P(hlVU), hVu)+2(P(hVu), h2Vu)q-(P(h2Vu), h2Vu)

(3.14) >- h12lV ul= 21hl h_llVul 2

->_ hllV ul2- 2K, Ih,I h21.q ul.
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Let us put g:= lu] and c= 6/3 with 8>0 to be chosen below. Then from (3.10),
(3.12)-(3.14) we have

(3.15)
( )

Next we will show that there exist constants k and 8 such that

(3.16) N(h +-Ih,I2- gl 8ill hll Ih2l. > k( N(h) + Ihl 2)

for all h H2.
From Lemma 3.3 it follows that for any 0 < A < 1 and B > 0

N(h) /-- Ihl g8glhl[ 1h21,2

8
12

A (8)2

B2KIhI2___>=(1-J)N(h)/lh, /K-71h2l----7- Ih=l,

_K] g(h)+ BZK ]h +lh2l2.1-A B2 ] 2 4 K
Since ]hi2= lh]2 +]hl] 2, inequality (3.16) holds if there exist positive constants 8, k, B,
and A (0, 1) such that

K 6g (6{)2

B2 2> a
1-A-k’ 2 4

K=k and Kk.
A calculation shows that these inequalities are satisfied if we take

k=(I+K+4KZlK])-, a=K22k, B2=(4kK21)-, 8g=4k.

This is the choice of k contained in the statement of the proposition. From (3.15) and
(3.16) we have

Mc(h, c)>=kfl(N(h)+lhl2)+ 1----,SK2T2 Ivl2,o

2K1 lut zl lhlwlvlH 

where c=4kCl/g and g=g()=lu[2. By the choice of to the last inequality implies

Mc(h, v) klhl2H2-t 1 4koK21T2 Ivl2,-klhl
K2

No
to ece2k lu Ho[Vl

(3.17)

=(1-e)kfllh]+(1 4kflKy2 K- -2lu Ho IVI
where c=4kfl/to and e (0, 1) is arbitrary. By (3.9) and Corollary 3.2 we find

sup lu- zla < 1 K12T2/80
UtO to
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for some el (0, 1)o Furthermore, by (3.4) of Lemma 3.1 there exist constants (0,/30)
and ,q > 0 such that

ec2k ( 4k )2l< 1._K2sup [u t3 z] 8o -.,2 ,)/3] T]
u K

for a!l /3 I [/3,/30] and by (3.17) with e E this implies

Me(h, v)(1-el)k/lh]2H2-t-/lviq where c-

for all /3 I. From the definition of Mc and the last inequality, it follows that there
exists a constant cr > 0 such that

(3 18) Mc(h, v) >= cr]([h[ 2 4k/382+]v i.;) for all c => and q L

If u= z then there always exists o> 0 such that (3.9) is satisfied, and using Corollary
3.2 we can verify (3.18) with I any compact subset of (0,/3o].

Next note that

](qt3, h)H2_ y12 [y]2__ (qt3, h)H212 > 1/2 y]2__ ,)/2]h128
and consequently

/31h],+ c[(q, h),+ yl (c ,/2c2)lhl2__> 2 / cll2

(3.19)

(]h] 2/2 -]- [y[2)
l+2y

where c2=2cr13/(1 +2y2). Hence from (3.11), (3.18), and (3.19) we obtain

V2Lc(q, u t3, wt3" A* *, V*)((h, GY) (h, Gy)) > (Ihl2+lvl,+ly 2)2l+2y

for all (h, v, y) H2x HxN, cmax (4k/w, 2/(1 +2y2)) and I. This implies
the claim.

In special cases the coercivity estimate of Proposition 3.4 can be obtained with

PROPOSITION 3.5. Let (qO, uo) be a local solution of (Po).
(a) lf*>Oanddist2:=]u z[,no < (/K)2*, then there exist positive constants

and c such that

V2gc(q, u, w)((h, v, y), (h, , y))(Ih2+[+lyl)
for all c c and (h, v, y) H2 x H x .

(b) Let L be given by (1.8) where the norm constraint is not augmented (i.e.,
L= L+(c/2)lg(q)+ w]). If dist 0, then there exist positive constants 2 and c2 such
that

(3.20) v2(q, u)((h, v), (h,

for all c c2 and (h, v) H2x H.
(c) Let {} be (curved) linear elements [19] or indicator functions such that

M0NpN1 on and let VM={q== qp" qN}c L. Let (pO)y be theproblem of
minimizing

1 C

-2 ]u zl 2
,Ho + z-g ]e(q, u)l 2.
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M vM TwMqsubject to e( q, u) 0 in H and q Qad { q i= qicPi qi >- a and q < ,)/2},
where [( WM)I/zal2< ),2 and WM is a symmetric positive definite matrix on NM. Further-
more, assume that q Qad implies q(x)>--a on . Then (pO)y has a solution (qO, uO)

M such thatVM x H with an associated Lagrange multiplier (A*,/*, r/*) Hx+ xR+
if we define the augmented Lagrangian (compare (2.13))

1 [J" * TwMq ,)/2c(q, u, w;,*,/z*, r/*)=IU--ZlH+(* e)H’o+---ff(q

+ G *(-q)+lel2’-o+ (q ’)/2) -}- W
i=1

then Vc(q, u, w; Z*,/z*, /*)(h, v,y)=0 for all (h, v,y)e VM xHxR and
o’rwMq0 M/x*(q _y2) i=, /*(a- q) =0. Moreover, ifh-->]n(hVu)l defines a norm on

VM with [n(hVu)[bIh[c for some b>0 and all hVM, and if dist<
ab2(2]q[+ b2) -, then there exist positive constants and c3 such that

V(q, u, w; *, *, n*)((h, v,y), (h, v,y))(lP(hVu)l+lvl ,Ho + y2)

for all cc3 and (h, v,y) VMxHxR.
We precede the proof with a brief discussion of this proposition. Part (a) presents

the most desirable situation. In this case #* > 0 takes over the role of the regularization
parameter > 0 of Proposition 3.4. In general, however, it is difficult to give conditions
that guarantee *>0 (see, however, [13] for the one-dimensional case). Part (b) is
not directly applicable forthe results of 2, but it exhibits clearly the difficulties that
are involved in obtaining a lower bound on the second derivative of the augmented
Lagrangian: First the norm involved in (3.20) is only the L2 rather than the H2-norm;
second, we obtain an estimate only in terms of P(hTu), where the kernel of P is the
set of all divergence flee vector fields. However, (3.20) also indicates how further
assumptions can be made to obtain the desired coercivity estimate. To give an example,
let us assume that q is known to be constant a priori, i.e., we take q
{qR" aqy(a dx)/}. Then hR and P(hu) becomes hVu and the desired
coercivity estimate holds, with the HZ-norm replaced by the norm in R, iff # 0. A less
trivial case is considered in part (c) of the proposition. In the statement of (c) we did
not distinguish between a function q and its coordinate expansion q in terms of i.
Moreover, we used a to also stand for col (a,...., a)eRM and we recall that
2w= y-qWq"

ProofofProposition 3.5. (a) First observe that Theorem 2.1 is applicable for local
solutions (qO, uo) of (po). From (3.10) with =0, (3.12) and (3.13) we conclude that

M(h, v)+ #*[hl Ivl 2 2(vA*, hVv)+ clP(qVv+ hVu)[2+Ho

2, 2K #*

for any e > 0. The assumption on dist implies the existence of tr > 0 such that

M(h, v)/ *lhl > hi 2 2
H2 H2 -1- Vl Hd))

for all (h, v) H2x H. The claim now follows with the same argument as at the end
of Proposition 3.4.
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(b) Since dist =0, Theorem 2.1 implies that A* =0, and further
2V2/_7,e (qo, uO)((h, v), (h, v)) Ivl Ho + clP(qV v + hV u)]2 +/z

C
-> vl(1 c[q[o)+ [P(hVu)[

C
v12(1 cK/) +- IP(hV u)l2.

This estimate implies the claim.
(c) The assumptions on c, q, and qi imply that ()ad is nonempty and that q(x) >-

for every q Qad- It is simple to argue existence of a solution (qO, uo) of (pO).
Moreover, the conclusions of Theorem 2.1 and Lemma 2.5 remain valid if h and
qH are replaced by h and qON, if N is endowed with the inner product
(h, Wh), and if =RY, {(q)=-qR. In particular, there exists a Lagrange
muitiplier (A*, *, B*) with the specified properties.

h V and v H we findFor h

M(h, v):= [v[+ 2(VA*, hVu)+ cP(qVv+ hVu)l

o---distlllla+ IP(V)I-IP(vV)I

2, 2 c
o) 2

If 2(b2+2q]t)- then for c c the following inequality holds:

2 2

where b2(b2 +2q)-. Thus, if dist <, then there exists a constant 8 > 0 such
that

(3.21) M(h, ) a3(llg+lP(hVu)la)
for all c73. Since VLc(q,u,w;a * >*,*)((h,v,y)(h,v,y))=
M(h, v)+*hrWVh+c(qWVh+y)2, the final claim follows from (3.21) and an
argument analogous to the one at the end of Proposition 3.4.

Next we consider the one-dimensional case where we have an explicit formula
for the orthogonal projection P and explicit values for the estimates in Lemma 3.3.
By D we denote differentiation and the domain a is (0, 1).

LEMMA 3.6. e operator P D-D is an orthogonal projection on L. Moreover,
ker P is the set 4all constant functions on (0, 1) and IP12 Il- (I’o &) for .

Proo The first part of the lemma is obvious. Next recall that {1, cos x,
cos2x,... } is a complete orthonormal system in L. For e H with

ao+ acoskxitiseasytosee.thatPp== acoskxand(I-P)=aok=l

Since n is dense in L this follows for all eL and, moreover,
I1=- I(z p)l= I1= (51o dx),

Lemma 3.7 (a) I1 11-’ for egg S,
(b) I1’l/lOl for all e H with I; dx O,
(c) 11 IOl for all e e H with Jo P dx O.
Proo (a) Let e H. By the Mean Value Theorem there exists fie[0, 1] such

that ()= Io p(x) &. For every x e [0, 1] we have

(x) D(s) as + ().
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This implies

[q(/)]--< (IDq(s)l+[q(s)l) ds <- (IDq(s)+lq(s)l) ds

E acoskx.(b) By assumption, can be expressed as =
Therefore [De[= E= ka, and

Iql Z ]a]= k2la[2 (2 k-2) a/2

k=l k=l

which was to be proved.
(c) The assertion immediately follows from

k=l
IDqI2= r 2 k21akl2- 7"2 2 Icel 2.

k=l k=l

Analogously to the multidimensional case we find a lower bound on the solutions
of-D(qDu) =f for q e Gad"

qDu, Dr)

.o Ivl,,
and thus

If I--’(3.22) lu(q)l.>-- w, :=
x/3’

for all q e Qad-

PROPOSITION 3.8. Let f H-1 satisfyf #O and let k 37ra/(77ra+3). Let (qO, uo)
be a solution of (pO) and suppose that for a constant o (0, 1)

(3.23) [u-zl<o[9(1-8kyaBo)-p(o)].O)

Then there exists a nontrivial compact interval I [/3, 13o] (0, 1) and constants Co> 0,
ro> 0 such that

V2Lc(q3, u, w’, A*,/z*, n*)((h, v, y), (h, v, y))>- Cro(lhl2,+[v]21,o+ ly[)

for all c>-co, (h,v,y)HaxHxN and any solution (qt3, u) of (pt) with I.
Moreover, if u= z, then such a constant o always exists and I can be chosen as any
compact subinterval of (0,/3o].

Using Lemmas 3.6 and 3.7 the proof of this proposition is quite analogous to
that of Proposition 3.4. In the present case (K1,K2, K3) is replaced by
(x/, 1/m x/(1/’/r2) + 1).

Special cases in which the coercivity estimate holds with/ 0 are quite similar
to the multidimensional case and hence we will not explicitly state the analogue of
Proposition 3.5 in dimension one.

4. Numerical results. In this section we briefly report on our practical experience
with the augmented Lagrangian technique (2.8), (2.9) to determine q in (1.1) from
data for u. We carried out extensive testing in dimensions one and two. These results
will be presented in a forthcoming paper [8*] (see also [10], [11]) and we will therefore
give only two typical examples.
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Example 1. This is the problem of determining q in

(4.1) -(qUx)x =f on (0, 1), u(0) u(1)-0

where

+ 18 + sin(18x-6)--- cos
2

f(x)= 0 forx(-,),

(18x 12)
3r 3rx ( 3x)cos+18 + sin
2 2

for x [0, -),

for x [, 1 ],

and the "true coefficient" q* is given by

3 3rx
q*(x) + sin---

The corresponding solution u(q*)= z of (4.1) is

-9x + 6x for x [0, ],
u(q*)= 1 forx(,],

-9x2+12x-3 forx(,l].

With f and z specified, it is immediately clear that q is not unique within the class of
positive H functions that satisfy u(q) z, since its value over the interval S (1/3, 2/3)
does not effect the solution u there. On the other hand, with the techniques of [12] it
can easily be argued that u(q)=u(q*), qH q*H implies q=q* on [0,1]\S
Thus we expect a different behavior of the algorithm over S than over the complement
of S.

In Fig. 1 we give the numerical results for various values of N. Here N represents
the index of discretization of the infinite-dimensional problem (2.8) by finite-
dimensional ones involving linear spline subspaces HN for the statespace H and VN

for the parameter space H 1. More precisely we take

span {B/2N} 2N-li-I and Vu span {B2U}.j=o,N

where B is the usual first-order B-spline on the interval [0, 1] corresponding to the
mesh {x k/ N}, k O, , N:

N(x+- x)
elsewhere

for x_, -< x _-< x,
for x <x < N

Xk+l,

where x 0, x+ 1. Figure 1 gives the results after one iteration of the augmented
Langrangian algorithm where A= x 1= 0, 72= 100,000 and/3 0. The start-up value
for the minimization routine to solve (2.8) was taken as (qO, u o) (1, 0). The correspond-
ing value for u 17 is indistinguishable from u(q*)( z) on all of (0, 1). For this example
the use of the regularization term did not change the results significantly. In other
examples with the same value for z, but with different values for q* (and thus of f)
the use of the regularization term decreased the L2-error.for q N-q*. The penalty
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FIG.

parameters ck were taken to be I for all k. The augmented Lagrangian algorithm for
this example (as well as for the other examples that we tried) was quite insensitive to
the choice of u and qO as well as the choice of t and ]jl and ck. However, 11 0,
/x 0 increased the number of iterations that were required before convergence was
obtained. We compared the augmented Lagrangian method with the output least
squares approach and found that it is less sensitive with respect to the choice of the
regularization parameter 10].

Example 2. Here we estimate q in

(4.2) --(qUx)x--(qUy)y =f on f

u=0 onF

where f [0, 1 x [0, 1 and

f= 82 sin 2x sin 2Try(1 + 6xZy(1 -y))-247rxy(1 -y) cos 27rx sin 2Try

12"rrx2(1 2y) sin 27rx cos 2Try.

The true solution q* is

q* 1 + 6xZy(1 y)

and the corresponding solution u(q*)= z for (4.2) is given by

u(q*) sin 27rx sin 2Try.

The discretization (4.2) is carried out by taking tensor linear spline subspaces HN (R) HN

for the statespace Ho [18], and tensor linear spli.ne subspaces VU(R) Vu for the
coefficient space. Figures 2(a) and 2(b) give the graphs for z ar_d q*, respectively. The
results after eight iterations of the augmented Lagrangian algorithm with N 5 and
N 9 are given in Figs. 2(c) and 2(d). The results after just one iteration are essentially
identical. These results are obtained with/3 1=/z --0 and qo-1. We also carried
out calculations where we assumed that only partial observations are available.
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Specifically, we took the values of u(q*) at the grid [(.2i,.2j): i,j=0,... ,5} and
calculated a bicubic interpolation z. Using this z in the augmented Lagrangian algorithm
(2.8), (2.9) the resulting plot for q5 is almost indistinguishable from Fig. 2(c). Then
we tried the same procedure with data at {(i/3,j/3): i,j =0,..., 3} and the result for
q5 from these interpolated data is shown in Fig. 2(e).

Overall the augmented Lagrangian approach to estimate q in (1.1) proved to be
very effective. This is especially true for the two-dimensional problem, where earlier
experiments with the output least squares technique were not very encouraging numeri-
cally. Clearly, there is a wide variety of choices for implementing (2.8), (2.9). One
variant of (2.8), (2.9) that proved to be effective numerically is the following (we
specify it for n 2 or 3).

Step 1.
Step 2.
Step 3.

Choose A 1=/xl =0, {Ck}kC= monotonically increasing Ck> CO.
Putk=l, Uo=Z.
Determine qk from

(Pequ) minimize k, Ck- g(q)+(A e(q, Uk_l))H+--le(q, Uk-1)[

Ck k, k)2+ 2

Step 4.
over q H2 subject to q-> a.

Determine Uk from

Step 5.

(Pout) minimize
H

1 Cklu-zl+< , e(qk, U)>,+le(qk, U)IHo.

A+l=A+Cke(qk, Uk) and/x+l=,u,q-Ck(q,/z , C).

Step 6. If convergence is achieved, stop; otherwise put k k+ 1 and go to
Step 3.

In our implementation for the two-dimensional problem we dropped the second-
order derivative terms in the regularization functional of Step 3. This is partially because
we used piecewise linear and piecewise constant functions to approximate q and hence
second derivatives could only be taken approximately. Moreover, we expect that the
second-order derivatives are only required analytically since we choose our coefficients
q as Ha functions, but we expect that this is not essential numerically.

Acknowledgment. We are grateful to Dr. M. Kroller who carried out the numerical
calculations that we reported in this section.
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OPTIMIZATION WITH AN AUXILIARY CONSTRAINT
AND DECOMPOSITION*

GUY COHEN? AND BERNADETTE MIARA-

Abstract. In the context of decomposition/coordination of a linear quadratic optimal control problem,
Takahara’s algorithm was an earlier version of the so-called Interaction Prediction Principle that can be
examined in the more general framework of infinite-dimensional constrained optimization problems. This

principle is both a decomposition principle and a coordination strategy based on a fixed point scheme. It
has been later revisited in the general theory of the Auxiliary Problem Principle and the convergence of
corresponding iterative algorithms has been analyzed. In this paper, we keep the same decomposition
principle but we propose an alternative coordination strategy. The improvement brought by this new strategy
is proved theoretically and illustrated by a numerical example. All of this is based on some nanipulation
of constrained optimization problems that we call the Auxiliary Constraint Principle.

Key words, optimization algorithms, decomposition, coordination, interaction prediction principle,
convergence of algorithms

AMS(MOS) subject classifications. 49D27, 65K10, 93A15

1. Introduction. The Interaction Prediction Principle (IPP) was first introduced by
Takahara [1] (see also Mesarovic et al. [2]) in the context of decomposition/coordina-
tion of the classical linear quadratic (LQ) optimal control problem. Later on, Cohen
[3], [4] gave a unified theory of decomposition/coordination algorithms in the
framework of differentiable mathematical programming in infinite-dimensional Hilbert
spaces (in which of course deterministic optimal control problems can be casted). The
IPP was shown to fall into the class of so-called one-level algorithms [3] for which
conditions of copvergence were given in [4]. The terminology "one-level" was chosen
to outline the fact that this class of algorithms is based on a fixed point principle, that
is, iterated values of primal and dual variables are directly exchanged between subprob-
lems without the interventior of a coordination level. This is in contrast with, e.g.,
price coordination [2], [8] where a coordinator iteratively updates the prices, generally
by the Uzawa algorithm, which is indeed a gradient algorithm to maximize the dual
(coordination objective) function.

At this point, we want to emphasize the difference between gradient-like or
variational algorithms, the purpose of which is to minimize, maximize, or find the
saddle-point of some (coordination) objective function, and fixed point strategies, the
idea of which is to solve first-order optimality conditions. To make this point clearer,
let us consider the simple problem ofminimizing some real-valued differentiable convex
functional f of two variables x and y belonging to the same Hilbert space or to spaces
in duality ((.,-) denotes either the inner or the duality product). With these assump-
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This was later extended to nondifferentiable [5] and stochastic [6] optimization and to variational

inequality [7] problems.
Indeed, some coordination task can still be introduced through under- or overrelaxation strategies

which may sometimes improve convergence.
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tions, it is equivalent to say that we wish to solve the following system of equations"

(1)
Of(x, Y)=0

Ox

(2)
Of(x, y_._.__) O.

Oy

A gradient algorithm uses the left-hand side current value of (1) (respectively, (2)) to
update x (respectively, y). Suppose now that f(x, y)= g(x, y)-(x, y) so that (1), (2)
are, respectively, equivalent to (3), (4) below

0g(x,y)
(3) y

Ox

og(x,y)
(4) x ,

Oy

which suggests the following fixed point (parallel) iterations:

k+l Og(xk, yk)
(5) y

Ox

(6) Xk+l-’Og(Xk’yk).
Oy

It should be noted that now (3) (that is equivalently (1)) is used to update y (and
mutatis mutandis for x). Moreover, whereas with the gradient algorithm f(x k, yk)
should decrease, there is no reason why this should be the case with the fixed point
algorithm. A convergence proof for the latter would rely upon an ad hoc Lyapounov
function (or upon a contraction argument).

These considerations apply to the class of one-level algorithms as will be shown
later on with more details. They largely explain the discrepancy that shows up in [4]
between convergence conditions obtained for this class and those for all other classes
of algorithms described there, which were of a variational nature. More specifically,
there is no equivalent for these latter classes of the prerequisite conditions [4, (26-1)
or (26-2)] imposed to prove convergence of one-level algorithms (these conditions will
be recalled in 2.4). In all other cases, conditions are only imposed to the step lengths
used in these gradient-like algorithms under classical convexity and other technical
conditions. Note also that Cohen was able to give a convergence proof for one-level
algorithms in the context of linear equality constraints and quadratic cost functions
only, whereas, for all the other algorithms, he was able to deal with general convex
problems including inequality constraints as well.

The above remarks led us to reconsider the coordination strategy traditionally
used in conjunction with the IPP. It is important to distinguish this decomposition
principIe, that is, a way to formulate independent subproblems using some coordination
instruments, from the coordination strategy itself which is the way of updating these
parameters from one iteration to the next. What we are going to do is modify the latter
without altering the former. The new coordination strategy will be of a variational
rather than of a fixed point nature. Consequently, we shall be able to avoid the
prerequisite convergence condition mentioned above, which means that this new
approach is more often applicable than the earlier one. Moreover, we shall be able to
consider general convex cost functions, but we shall still be limited to affine equality
constraints only for technical reasons that will be discussed later.
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We first introduce a new way of manipulating a given constrained optimization
problem, that is, a way of replacing it by an equivalent one which in this case will
have more constraints and more variables. This may seem a rather odd idea, but the
interest of this manipulation, which we call the Auxiliary Constraint Principle (ACP),
will be more apparent later on. We even believe that this interest is broader than the
application done here but we shall not elaborate on this. For the time being, let us
say that when coupling between potential subproblems arises from constraints, either
these constraints are relaxed by appealing to duality (this is what is done in the
Interaction Balance Principle (IBP) [2] also known as price decomposition [8]) or, in
one way or another, these coupling constraints must be replaced by uncoupled
(auxiliary) ones. In 2.3, we shall recall how this is achieved in the context of the
Auxiliary Problem Principle (APP) by a proper choice of the auxiliary function when
deriving one-level algorithms. With the ACP, the idea is different in that the auxiliary
constraint is introduced by manipulation ofthe original problem and before one appeals
to the APP in order to obtain iterative algorithms.

The rest of the paper is organized as follows. The next section is devoted to a
summary of the situation starting with Takahara’s algorithm later formalized by the
IPP, followed by a brief description of the APP framework and the convergence
conditions obtained for the so-called one-level algorithm which is directly connected
to those earlier algorithms. The ACP is introduced in 3 and a new coordination
strategy is derived from it. Section 4 mixes the ACP and the APP to propose an
alternative algorithm to one-level algorithms. A convergence theorem is stated but its
proof is given in an appendix. A section is devoted to showing how Takahara’s algorithm
is modified using the new coordination strategy, and to giving an account of some
simple numerical experiments, including a comparison of the traditional fixed point
strategy with the new proposed strategy. In these experiments, we study the effect of
increasing the interaction magnitude between subproblems. In the conclusion, we
discuss open problems and topics of future research.

2. The IPP and its connection with the APP. In order for this paper to be reasonably
self-contained, we first recall Takahara’s algorithm in its original context of LQ optimal
control problems [1]. This was the first appearance of the IPP later developed by
Mesarovic and his coauthors [2]. We then abstract this algorithm in a more general
context of constrained optimization. On the other hand, we recall the APP framework
introduced by Cohen [3], [4], and we show how the IPP can be embedded in this
framework (and somewhat extended). Finally, we recall the convergence conditions
which result from these considerations.

2.1. Takahara’s algorithm. Consider the classical LQ optimal control problem

l for(7) min - x* Qx + u*Ru dt

(8) =Fx+Gu, O<-t<=T, x(O)=xogiven,

where the star denotes transposition. Moreover, assume that system (8) is made of N
interconnected subsystems.. With obvious notations, (8) can be rewritten for decomposi-
tion purposes as follows

Fiixi -[- Giiui- vi- ,i 0
(9) i= 1,..., N[ji(Fijxj__aijHj).._.l)i__ 0
where vi is the ith interaction variable. In the same way, the necessary Pontryagin
optimality conditions (which are also sufficient if Q--respectively Rwis nonnegative
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definite--respectively, definite positive--which we assume) can be globally written as

2 Fx + Gu, x(O) Xo

p= -l:*p Ox, p(r)=0

0 Ru + G*p

where p is the costate vector. The above conditions can be rewritten as follows

(10) i=1,...,N,

which can be reinterpreted as the optimality conditions of the following LQ problems:

Iorlg11) i--1 N
min u*i ui dt

i iixi Giitli- vi.

Takahara’s algorithm consist. of the following fixed point algorithm.

ALGORITHM 1 (Takahara). At iterati(n k, knowing xk, U k, and pk, compute the
coordination parameters vi, Ik, and vi using the last three formulas (10) and produce
the updated values xk+l, uk+, and pk+l by solving the subproblems (11).

The fact that the interaction input v is "predicted" at some value to decouple the
subsystems gave the name IPP to the decomposition method. However, there are also
dual variables /xi and ’i that must also be ’predicted."

2.2. The IPP in the framework of constrained optimization. We now give a simpler
view of the IPP by considering optimal control problems as particular instances of
constrained optimization problems (in infinite-dimensional spaces). The decision vari-
ables are the pair of vector trajectories {x(t), u(t)}o<=tr and the constraint is the
dynamic equation (8) (whose multiplier is p). We shall not discuss the issue of proper
topologies in which optimal control problems must be set and we refer the interested
reader to [3], [9] for details. Hereafter, constrained optimization problems will be
considered in Hilbert spaces only. From now on, let Lt denote the Hilbert space of
decision variables and denote that of constraints, let j:0//_E denote the cost
function and (R):0//_> denote the constraint function. We consider the constrained
optimization problem

(12) minJ(u) subject to (R)(u)=0.

Introducing the Lagrange multiplier p which lies in the dual space c.g, and the
Lagrangian L(u, p) J(u)+(p, (R)(u)), where (.,,) denotes the duality product between

These variables should indeed be considered as dual despite the presence of Qx or Ru in their
expressions because these latter expressions should be viewed as partial derivatives of the cost finction
with respect to x and u, respectively.
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and *, under ditterentiability assumptions and a constraint qualification condition,
a necessary condition for some u* to be a solution of (12) is that there exists some p*
such that L’,,(u*, p*) 0 and L;,(u*, p*) 0, where, e.g., L’ denotes the partial derivative
with respect to u. This yields

(13)
0

.O(u*) =0

where the star over an operator denotes its adjoint operator.
Suppose now that some decompositions of ’t/ .and into the product of N

subspaces are given. Each component i is associated with a corresponding //i.4 By
J’i we denote the partial derivative of J with respect to u, by (R) the mapping from ad
to (that is, the composition of t9 and of the projection to ), and finally by 191
the partial derivative of 19i with respect to uj. Equations (13) can be rewritten by
blocks, each block corresponding to a problem over the pair of spaces (i, *). It is
then easy to see that, in this new framework, Takahara’s algorithm corresponds to a
relaxation scheme over this set of equations. In what follows, (u+1, u_) is a shorter
notation for (u k,, ., ,, uL,, .,

(14)

ALGORITHM 2 (IPP). Knowing (u k, pk), compute (u k+, pk+) by solving

0
.j-i= l’ N(19,(uki+,, uki)=O"

These equations can again be interpreted as the necessary optimality conditions
of the following subproblems

(15)
minJi(ui, k + k uk) Ui)U-i) "jE (PJ 19j’(

i=1,’’ .,N u,

subject to 19(u, u)=0.
Another version which differs from the above onemonly if 19 is nonlinearmwould
amount to replacing the argument u k by (u)+ u i) in the terms 19 of (14) and,
correspondingly, replacing the last terms in the cost function of (15) by (p, Oj(u, u_)).

2.3. The APP and one-level algorithms. Consider first a problem of the form

(16) min J(u)+ G(u)
ucU

where U, the feasible set, is a closed convex subset of o//, j and G are convex lower
semicontinuous mappings from 0// to , and, moreover, J is differentiable. Let K be
an auxiliary function of the same type as J. The APP leads to the following basic fixed
point algorithm.

ALGORITHM 3 (APP). Knowing u k, compute U
k+l as the solution of

(17) min K(u)+(eJ’(uk)-K’(uk), u)+ eG(u).
ucU

A justification of this fixed point strategy comes from the fact that if u k= ul’+
(i.e., u is a solution of (17)), then u k is also a solution of (16) (this is proved by

Indeed there is no necessity that the number of component subspaces be exactly N--it may be
smaller without trouble--but it will make our explanations simpler to assume that the two decompositions
have the same cardinality.
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writing the variational inequality associated to (17)). We refer the reader to [3], [4]
for details and also for assumptions on K and conditions on the positive constant e

that guarantee convergence of the above algorithm. As far as decomposition is concer-
ned, if some decomposition of into 0 X" X 0N is given, if Ur Ux. x U%
where U,Y. a// for i-1,..., N (decoupled constraints), if G is additive (that is,
G(u)--i Gi(ui)), and finally if K is also chosen additive, then (17) splits into N
independent subproblems.

This APP is generalized to saddle point problems to cope with coupling constraints.
The idea is to formulate coupling constraints explicitly as equalities or inequalities
and then to appeal to duality in order to relax these constraints. In this paper, we limit
ourselves to equality constraints only and we consider (12) again. To solve the saddle
point problem of the Lagrangian L with respect to (u, p) in a decomposed way, we
introduce an auxiliary saddle function (u, p). However, the question arises ofknowing
whether we want to get a decomposition with respect to the variable u only (this is
what occurs in price decomposition) or a decomposition with respect to both variables
u and p. In the latter case, we have to speak of a decomposition of the space in which
p lies, namely here c.. Hence we assume that a decomposition of c into N components
is given, as we did in the previous section, and we adopt the same notations as previously
regarding the components of tO and (R)’.

Our final purpose is to recover algorithms that look like (15) above, that is, to get
subproblems which are initially saddle point problems but which can eventually be
interpreted as constrained minimization problems. This is obtained by making a proper
choice of the auxiliary function xp, namely by giving it the form of a Lagrangian
function. Therefore we set

(18) XP(u, p)= K(u)+(p, F(u))

where K is again an auxiliary function of the same type as J and is of the same
type as (R). At iteration k, the auxiliary problem then consists of solving a saddle point
problem for the above auxiliary function to which we must add linear corrections
analogous to those appearing in (17), namely

(19) q(u, p)+(eL’,(u k, pk)-q’,(u k, pk), u)+(pL,p(u k, pk)_qt,(uk pk), p)

where p is, as e, a positive constant. Since (19) is affine in p, it looks like a Lagrangian,
hence its saddle point may be reinterpreted as an auxiliary constrained optimization
problem. We then get the so-called one-level algorithm.

ALGORITHM 4 (ONE-LEVEL). Knowing (u k, p k), compute (u k+l, pk+l) as theprimal-
dual solution of

min K(u)+(eJ’(u’)-K’(uk), U)+(pk,[eO’(uk)--’(uk)] U)
(20)

subject to l(u) + p(R)(u) (uk) O.

In order for this problem to split into N independent subproblems, one has to
choose an additive K and a block-diagonal . "Block-diagonal" of course means that
1) I; is identically null whenever j # i. Note that this condition is necessary and sufficient
for the auxiliary function (18) to be additive with respect to the pair (u, p). Now, to
precisely recover the- subproblems (15), the auxiliary functions K and must depend
on the iteration index k, which does not conceptually make any problem, and the

We could have kept uncoupled constraints u Uf and an additive part G of the cost function as well.
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components Kk and (R)k (with obvious notations) must be chosen as follows whereas
e and p are set equal to one6

i= 1 NKki(ui)-- J(ui,

2.4. Convergence conditions of one-level algorithms. A convergence proof for
Algorithm 4 was given only in the case of J and K quadratic and and fl affine [4].
We recall these convergence conditions.

THEOREM 1. Let J(u)=(u, Au)+(b, u), K(u)=(u, Bu), O(u)= Du-d, fl(u)=
Eu, where A and B are self-adjoint strongly monotone operators over and D and E
are linear onto operators from to . Under the following condition (where "strongly
monotone" is symbolically denoted by >0)

(21) DA-E* + EA-1D*- DA-BA-D* > 0 over *
it is possible to choose p e and the latter so that

B eA/2 > O over
(22)

DA-E* + EA-D*- DA-(B + eA/2)A-D* > 0 over *
and then Algorithm 4 converges to the unique solution (u*, p*) of (12).

Once (21) is met, (22) can be satisfied for e small enough. The prerequisite
condition (21) can be further simplified into

(23) DA-E* + EA-D* > 0 over *
for, if this latter condition is satisfied, the former can also be satisfied by changing E
into aE with a large enough. Hence the problem is to find some auxiliary constraint
operator E which is at the same time block-diagonal (for decomposition purposes)
and which satisfies (23). Indeed, we do not know the answer to the question of existence
of such an E in general, but it is clear that this depends heavily on the way the
constraint space is decomposed into component subspaces (that is, how constraints
are grouped in blocks), and then on how these blocks are numbered (that is how
subspaces are paired with subspaces or else how these blocks of constraints are
allocated to subproblems in u). This issue is further discussed in [4, Remark 5.1].
However, these considerations will no longer be relevant when using the new coordina-
tion strategy introduced hereafter since we will be able to avoid condition (23) to
prove convergence.

3. The ACP and a new coordination strategy. As we have just seen, coupling
constraints must be handled by appealing to duality. But there are two ways of doing
this. In price coordination7 [8], these constraints no longer appear as constraints in
the subproblems but they appear as additional terms in the subproblem objective
functions. On the contrary, in the IPP approach, these constraints still appear at the
subproblem level as constraints, but of course in a decoupled manner (see (15)), and
the additional terms in the subproblem cost functions account for the coupling part

Note that this common value of the convergence parameters e and p may be outside the range of
allowed values resulting from the convergence conditions recalled hereafter. But we never claimed that
Algorithm 2 would always converge. As far as Taka,hara’s algorithm is concerned, the proof given by the
author in [1] was very involved and his convergence conditions were not very clear.

This is also called IBP [2], which is embedded in the so-called family of two-level algorithms [3], [4].
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only. Alternately in the APP/one-level approach (see (20)), constraints that appear in
the subproblems are "auxiliary" constraints, and additional terms in the subproblem
cost functions account for the discrepancy between original and auxiliary constraints.
These auxiliary constraints, or more exactly the auxiliary operator f (or/), have been
introduced through the choice of an auxiliary function (18) having a Lagrangian form.
Now we are going to introduce this auxiliary operator f directly at the level of an
equivalent formulation of the original problem (12), that is prior to any recourse to
the APP, the aim of the latter being to define an iterative algorithm to compute a
solution of (12). This way of formulating an equivalent problem to a given constrained
optimization problem is referred to as the Auxiliary Constraint Principle (ACP).

3.1. The ACP.
THEOREM 2. In addition to (12) and to its Lagrangian introduced earlier, consider

the following problem

rain J(u)

(24) subject to f(u)- v =0

O(u)+v-(u)=O

(where v is a new decision variable in and f maps all into ) and the corresponding
Lagrangian

(25) (u, v; p, q)= J(u)+(p, f(u)- v)+(q, (R)(u)+ v-f(u)).
Then problems (12) and (24) are equivalent in the following sense"

(i) If (u*, v*; p’q*) is a saddlepoint of over ( x c) x (c*x *), thenp*= q*
(and of course v* =f(u*)) and (u*, p*) is a saddle point of L.

(ii) Conversely, if (u*, p*) is a saddle point of L, then (u*, f(u*),p*,p*) is a
saddle point of

Proof
(i) From the right-hand inequality of the saddle point of , it is easy to conclude

that necessarily p*= q* and, of course, from the left-hand inequality that
v*= f(u*), and then these inequalities reduce to those of the saddle point
of L.

(ii) The proof of the converse statement is straightforward.
Remark 1. This theorem appeals to the global theory of duality in that it speaks

of saddle points of Lagrangian. Existence of a Lagrangian saddle point is a sufficient
condition for existence of a solution to problems such as (12) or (24). There are also
necessary first-order optimality conditions in the framework of a local theory of duality
(involving Khun-Tucker multipliers in the ditterentiable case). Obviously, it is possible
to state a result similar to Theorem 2 in this context.

3.2. A new coordination strategy for the IPP. Since we consider equality constraints
only, and since we wish to remain in the context of convex programming, we deal
only with affine constraints and we set (R)(u)=Du-.d and (u)= Eu as we did in
Theorem 1. The stationarity conditions for can be expressed in the following way"

(26) ’(u*, v*; p*, q*) 0<=;, J’(u*) + (D* -/*)q* +/*p* 0

(27) ,(u*, v*; p*, q*) 0=>/u* v* 0

(28) ’(u*, v*; p*, q*)=OCq*-p*=O

With Algorithm 4, it does not matter if we rather set f(u) Eu d, as it does not matter if we add a

linear function to K. With (24) .or (30), that amounts to changing v into v-d.



AUXILIARY CONSTRAINT AND DECOMPOSITION 145

(29) (u*, v*; p*, q*)=OC(D-E)u*+v*-d=O.

As far as decomposition is concerned, we shall again assume that decompositions of
and into subspaces are given and that E is block-diagonal with respect to these

decompositions. To further simplify this introductory discussion, let us temporarily
assume that J is additive. The decomposition idea behind the IPP can be viewed as
that of dealing with u and p at the lower (subsystem) level and with v and q at the
upper (coordination) level. Indeed, with our assumptions, and if v and q are fixed at
some values, say v k and qk, the task of solving (26)-(27) splits into N independent
tasks which can be interpreted as those of solving the following subproblems

[min J(u)+ (q;, Djiui)+(qki (Dii- F_,i)ui)
(30) i= 1," N

[,subject to Eiui vi
Let (u+l, p+l) denote an optimal solution. Then, the fixed point coordination strategy
usually associated with the IPP uses (28) to update q, namely by setting q+l =p+,
and (29) to update v, that is, v’+=(E-D)u’++d. This strategy may be improved
by introducing under- or overrelaxation (according to whether the p’s hereafter are
smaller or larger than one)

vg+’= (1-p,)v+p,((E-D)u+l+ d)
(31)

vk-P,(Du+’-d)

(32)
q+’= (1 ,2)q

k k+lq +P2(P qk).

At this point, the reader should remember our discussion of the introduction around
(1)-(6). it results from that discussion that we can imagine the fo|lowing alternative
coordination strategy of a gradient or variational nature.

ALGORITHM 5 (ACP). Knowing (v, q"), compute (u,+, pk+l) as a solution of
(30) and update (v, q) by the gradient formulas
(3.3) v+’= v -p,’(u+’, v ’, p+’, q)= vk-p,(q-p+’)

(34) q’+= q + pzY’q(U +’ v" p+’ q) q + p(Duk+l- d)

where p and p2 are positive step lengths.

The comparison of (31), (32) with (33), (34) reveals the important difference
between these two strategies.

Remark 2. We have used the fact that Eu+= v (see (30)) in both (31) and (34).
However, it is important o keep the term -(q, Eug) in the cest function (30) even
though the value of Eu is a priori known, for, otherwise, the value of p+ would be
changed, and p+ is used in both (32) and (33).

3.3. The new strategy s a parallel Arrow-Hurwicz algorithm. A justification of the
new coordination strategy comes from the study of the following functional

(35) A(v, q) := infsup (u, v; p, q).
p

Note that problem (24) is equivalent to finding infu, sup,,q (u, v; p, q) (without any
convexity assumption--this is a classical result in duality theory). Assuming that supq
can be inverted with infu, the problem reduces to finding inf supq A(v, q) orthe saddle
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point of A if such a saddle point exists. Then Algorithm 5 is nothing but the Arrow-
Hurwicz algorithm [10] in its parallel (rather than sequential) version in that v and q
are updated at the same time instead of sequentially. All these facts are precisely stated
in the following theorem.

THEOREM 3.
(i) If there exists a saddle point (u*, v*; p*, q*) of, then (v*, q*) is a saddle

point of A.
(ii) IfJ is convex and if 6) and are affine, then A is a convex-concave (or saddle)

function.
(iii) If in the definition (35) of A, the infsup is indeed a saddle point, and if the

argument ((v, q), fi(v, q)) of this saddle point is unique, then A is differentiable and we
have

A’(v, q)= ’((v, q), v;/3(v, q), q)

=q-(v,q)

A(v, q)= ((v, q), v;/3(v, q), q)

O(a(v, q))+v-(a(v, q)).

(i) We have the following general inequalities

inf sup -> inf sup inf sup
u,v p,q q p

->_ sup inf sup 5f
q u,v p

sup inf .
p,q u,v

Since it is assumed that does have a saddle point, the two extreme sides are equal.
Then, the equality of the two inner sides means that A has a saddle point. The rest of
the statement is easy to prove.

(ii) Let us introduce the intermediate functional

A(u, v, q):=sup (u, v;p, q).
p

Since is jointly convex in (u, v), A is also (jointly) convex in (u, v) as the upper
hull of a family of convex functions. Since is jointly concave in (p, q), A is concave
in q. This is a general result: if a function f(x, y) is jointly concave (respectively,
convex) in (x, y), the function q(y):= supxf(x, y) (respectively, infxf(x, y)) is concave
(respectively, convex) in y. Also, for this latter reason, A(v, q) inf, )t (u, v, q) is convex
in v. Finally, as the lower hull of a family of concave functions, it is concave in q.

(iii) This is a generalization of a result by Danskin [11] which states a similar
result for either of the two functions q(y) introduced above. We skip the proof of this
generalization, rq

4. ,Decomposition/coordination algorithms derived from the APP and the ACP. In
the same way as Algorithm 4 is an extension of Algorithm 2, we are going to propose
an extension of Algorithm 5 above using the APP. We also propose several variants.
We then study convergence issues.
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4.1. General algorithms. The problem is to compute the saddle point of. Instead
of (18), we choose the following auxiliary function9

(36) dp(u, v; p, q)= K(u)+’ Ilvll -- Ilqll =

and we make the same kind of linear corrections as in (19). The way we put the
superscripts k and k + 1 hereafter translates the fact that we want to deal with (u, p)
at the lower level and then with (v, q) at the upper level. Notice also that does not
directly depend on p. Actually, the term (u, p) (p, Eu) of should be considered
as "additive" since E will be chosen block-diagonal and (ui, pi) will be dealt with
simultaneously. Therefore we deal with (u, p) as we did with the term G(u) when
obtaining (17). We set (u, v; p, q) (u, v; p, q)-f(u, p). Finally, this leads us to
calculate

(u, v; p, q)+ eW’(u, p)

+(e,,,(u k, v k pk, qk)_,(U k, V
k pk, qk) U)

(37) +(e,p(U k, vk; pk, qk)_.,p(Uk vk; pk, qk), p)

+(pl,(uk+l, V
k pk+l qk)_,,(uk+, vk., pk+l, qk) V)

(/,/k+l /)k k+l, k k+l, k pk+ kq-(p2///q ;p q )--(I)q(U V q ), q).

The algorithm consists of computing the maxp minu of this expression, yielding
(uk+l, pk+),, which can be interpreted as the solution of a constrained optimization
problem, and then computing (vk/, qk/) by solving for the maxq minv which yields
(33)-(34). We summarize this as follows.

ALGORrrriM 6 (ACP+ APP- PARALLEL). Knowing (u k, v k, pk, qk), compute (u k/l,
p k/l) as the solution of the following auxiliary problem

min K(U)+(eJ’(uk)--K’(uk), u)+e(q k, (D-E)u)
(38)

subject to e Eu v k) 0

and then update (v, q) using formulas (33)-(34).

Remark 3. It is important not to forget e in factor of the constraint of (38) since
otherwise pk/ used in (33) would be differently scaled. Along the same line, we recall
the second part of Remark 2 which still applies here. Finally, comparing (20) and (38),
it is seen that Eu in (38) must not be identified with f(u) in (20) but rather with el2(u).

As pointed out in Remark 2, we have used the fact that Euk+= vk to simplify
the update formula (34) of q.

From the decomposition point of view, whenever decompositions of and are
given, if Kmrespectively, Emis chosen additivemrespectively, block-diagonalwith
respect to this (these) decomposition(s), then (38) splits into N independent sub-
problems.

We can imagine several other versions of the above algorithm. One corresponds
to a sequential rather than a parallel algorithm in v and q, v being updated before q"
this amounts to replacing v k by vk+ in the last term of (37).

This is the usual way to get a gradient algorithm for v and q.
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ALGORITHM 7 (ACP+APP--SEQUENTIAL--V BEFORE q). In Algorithm 6, replace
the update formula (34) for q by

(39) qk+l=qk+p2((D--E)uk++vk+--d).

Another sequential version is obtained by updating q before v" this amounts to
replacing qk by qk+ in the next to last term of (37).

ALGORITHM 8 (ACP+ APP--SEQUENTIAL--q BEFORE V). In Algorithm 6, replace
the update formula (33) for v by

(40) vk+’= v + p,(p’+’ q’+’).

See 5.2 for a comparison of these two sequential versions.
Finally, we can imagine an implicit version which results from both modifications

indicated above.

ALGORITHM 9 (ACP+APP-IMPLICIT). In Algorithm 6, replace the update for-
mulas (33)-(34) for (v, q) by the implicit formulas (40) and (39) which are equivalent
to the following explicit form

(41) v+’= v+ Pl
1 + PP2

(p+ qk p2(Du+ d))

(42) q,+, q + p_._____2 (Du,+, d + p,(p’+’ q ’)).
+ PP2

Indeed, there is another way to get this implicit algorithm directly. Before we
explain this let us make the following remark.

Remark 4. It is equivalent to introduce e, p, and p2 as we did in (37), or to set
e p, p2 in (37) but to redefine (see (36)) as

(43) (u, v’, p, q)=le K(u)+p I1 11 q 2.

To get the parallel version, we defined W(u, p) as <p, Eu) on the basis of the fact
that u and p were dealt with at the same level and thus a nonadditive term appearing
in could be preserved in the auxiliary problem. The same kind of reason can now
be advocated for the pair (v, q) and the term <q, v> appearing in (see (25)). Therefore,
redefining W(u, v; p, q) as <p, Eu)+<q, v) and again 3// as the complement of W to ,
we can use this observation in conjunction with Remark 4.1 above to get the implicit
version directly from (37).

4.2. Convergence.
DEFINITION 1. We say that J is strongly convex with constant a if and only if

:la>0" Vu, a and a[0, 1],

(44)
a

J(ou+(1-c)Et)cJ(u)+(1-o)J()-- (1- )llu- ll.
If J is differentiable, it is equivalent to say that J’ is strongly monotone with

modulus a. Also, this property implies that

(45)
a

J(F)>=J(u)+(J’(u), -u}+ Ilu-, ll
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The Lipschitz property of J’ with constant A, namely

:Ia > 0" I]J’(ti)- J’(u)I a[[(46)

implies that

A
(47) [lu- 2.

THEOREM 4. We make the foliowing assumptions:
J (respectively, K) is strongly convex with constant a (respectively, b) and

differentiable with a Lipschitz derivative with constant A (respectively, B).
D and F are linear continuous operators and E, is onto.

Then there exist a unique primal solution u* to (12), and a unique primal-dual solution
(uk+l, pk+l) to (38). Moreover if e is chosen in the open interval (0, b/A), there exists
an interval (0, l(e)) in which 01 must be chosen, and then an interval (0, 2(e, pl)) in
which 02 must be chosen so that Algorithm 6 generates a sequence {u} which converges
to u* (and consequently, {v} converges to Fu*). The sequences {p} and {q} are
bounded and have the same cluster points (in the weak topology). Any such cluster point
forms with u* a saddle point of L. Finally, if D is also assumed to be onto, the dual
solution p* of (12) is unique and (pk, q) (strongly) converges to (p*, q*).

Comments. The exact expressions of the bounds t51(e) and/52(e, pl) would be very
involved as shown by the proof given in the appendix, but we can say that if e tends
to either end of its allowed interval, then 51(e) tends to 0. The same occurs to/52(e, Pl)
if e or 01 approaches its bounds.

Concerning the sequential and the implicit versions (Algorithms 7, 8 and 9),
essentially the same convergence theorems as the above can be stated and similarly
proved.

5. Applications and numerical results. Before discussing the results of very simple
numerical experiments, let us come back for a while to Takahara’s algorithm and show
how the new coordination strategy looks like in this particular instance.

5.1. Takahara’s algorithm revisited. We are not going to make all the calculations,
leaving them as an exercise to the reader, but we will only give the main indications.
First of all, the variable u of the general theory must be identified with the pair (u, x)
of 2.1, Du- d =0 is (8) (in the form Fx + Gu- 2 =0 with its given initial condition
Xo), thus p is p, and of course J(u) is (7). It is natural to choose K(u) as the same
integral cost but which retains only the block-diagonal part of Q and R. Finally,
/u-v =0 and Du- d + v-lu =0 are the pair of equations (9) in that form.

Because of the connection of K with J, it is convenient to set e 1 (as we actually
did in (30)). But it is not clear that the condition of Theorem 4, namely e < b/A, does
allow this value. Actually, it suffices that b be large enough so that b > A. This may
be obtained by changing our previous choice of K, adding to it a term of the following
form

z llull 2/$xll 2dr(4s)
2

with y large enough. With this at hand, subproblems (11) are unchanged, except for
the consequence of (48) which add terms y/2 Ilu-u  ll + IIx-x ll 2 dt in the cost

and likewise for/xi and vi.
o At stage k, set v /.)i
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functions. Let (U k+l, Xk+l, pk+) be the resulting solution. Then the new coordination
strategy (Algorithm 6) updates z and v in the following way

Vki+l vki + pl(pki+l qki

i=1,’" .,N
+ ,+(F

With Algorithm 7, we must change v in the right-hand side of the second equation
above into v/+1. We let the reader imagine the other versions (Algorithms 8 and 9).

5.2. Numerical example. The following example is purposedly very simple so that
it is possible to have a measure of performance which is independent of the initial
conditions of iterations for the various algorithms we are going to compare. This is
important since the dimensionality of the "state vector" of the iterations (the number
of required initial conditions) is not the same for all of them. We consider quadratic
cost functions and linear constraints so that the iterations can be put into the form of
a linear system zk+= Pzk where z is the state vector, and P is a matrix depending on
the convergence parameters e, and (p, p2) when appropriate. For all algorithms, we
retained the best value of " we have been able to obtain by the choice of convergence
parameters as the measure of performance, where r is the maximal modulus of
eigenvalues of P.

We consider the following probleml

1 2

min tZl.= Ell x, = + u, =3

subject to ui + ox.i xi 0, i, j 1, 2, j #

where o- will serve us to make the interaction magnitude between the two subsystems
more or less important. With respect to the general theory, u (u, u2) must be identified
with ((u,xl), (u2, x)). We choose K=J (as far as J is additive) and E as the
block-diagonal part of D, that is

D=(10 -1 0)tr1
and E=(10 -1 0).01

Notice that

DA-E* + EA-ID* ( 4

-2r

so that the condition (23) is not satisfied for Itrl >=2.
For this example, we considered Algorithm 4 (fixed point coordination, without

under- or overrelaxation scheme since this did not seem to improve things in this
instance), Algorithm 6 (parallel Arrow-Hurwicz coordination strategy) and its sequen-
tial and implicit versions (Algorithms 7, 8, and 9). To save space, we do not give the
expressions of matrix P for all these algorithms; they result from a straightforward
application of the general theory. Let us just notice that the state vector z is 8-

1 The solution is zero for all primal and dual variables but of course this does not matter as far as
convergence is concerned.
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dimensional with Algorithms 6, 7, 8, and 9 (z is the column vector whose entries are
(ui, xi, vi, qi)=l.2) 12 whereas it is only 6-dimensional with Algorithm 4 (z is
(u, x, p)i= 1.2). The numerical results summarized in Table 1 have been obtained using
MATLAB on a Macintosh.

Several comments are in order. First, as predicted by theory, Algorithms 6-9
always converge, even for large interactions, although more and more slowly as
interaction magnitude increases, whereas Algorithm 4 fails to converge for tr>-2.
Second, as it might also be expected, the sequential versions appear to be faster than
the parallel one and the implicit version is the best of all. 13 Third, the same performance
is obtained with both sequential versions whose results have been displayed in the
same column of the table. We shall come back to this point later on. Finally, the
"one-level" algorithm appears to be better than the other algorithms for small or
moderate interaction magnitude, except for the implicit version, at least for the interac-
tion magnitudes investigated above. This confirms our past experience with Algorithm
4 which always performed well for reasonably sized interactions. Indeed, there is a
theoretical explanation to this observation. As o- goes to zero, since we chose E as the
block-diagonal part of D, E and D tend to be identical. Moreover, since in our example,
K and J are also identical, it is obvious that by picking e =p 1 in (20), Algorithm
4 is immediately stationary, which means that - tends to zero with o-. A similar statement
cannot be made for either Algorithm 6 or its sequential or implicit versions. Therefore,
the fixed point coordination strategy should be preferred for weakly coupled subprob-
lems. However, in our example, the implicit Arrow-Hurwicz coordination strategy is
already better for tr 0.5 (this is not the Case with the other versions).

Let us now come back to the comparison ofthe two sequential versions (Algorithms
7 and 8). Since - can be properly defined only when the recurrence is linear, that is,
when K and J are quadratic, we limit ourselves to this case. We come back to the
notations used in Theorem 1 and we assume that b =0 and d 0 without loss of

TABLE 1.

Each entry of the table reads as Pl

/92

Algorithm 4

0.5

1.0

2.0

5.0

1.00
none
none

1.00
none
none

does
not

converge

0.3536

0.7071

does
not

converge

Algorithm 6

0.80
1.20
0.10

0.8013

0.50
1.00
0.10

0.8716

0.50
1.00
0.05

0.8851

0.50
1.20
0.05

0.9148

Algorithms 7 & 8

1.00
2.10
0.50

0.5462

0.80
1.70
0.40

0.6468

0.50
1.10
0.20

0.8139

1.00
1.20
0.05

0.8216

1.00
2.50

10.00

1.00
2.10
1.10

1.00
1.00
0.50

1.00
1.20
0.05

Algorithm 9

0.2500

0.4095

0.5774

0.7038

12 Indeed, (Pi)i=l,2 must also be computed at each iteration but need not be stored for the next iteration.
13 Another advantage of the implicit version which does not appear in the table is that the value of the

best 7" seems to be less sensitive to those of e, p and/92 than with the other algorithms.
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generality (the optimal primal and dual solutions are thus null). The recurrence can
be put into the form Myk+l Ny’ where y is the column vector with entries (u, p, v, q).
We want to prove that - (indeed all the eigenvalues) is (are) the same with both
sequential versions. An eigenvalue A and an eigenvector y of M-1N obey the equation
(AM-N)y =O. It suffices to prove that the expressions det (N-AM) are formally
identical for both sequential versions. For Algorithm 7, we have

(1-A)B-eA -AeE* 0 -e(D*--iY,*)

det (N1 AM)
-AcE 0 eI 0

0 ApI (l-A)/ -pI
Ao(D-E) 0 ApzI (1-A)I

where I is the identity operator, and for Algorithm 8 we have

(1-A)B-eA -)teE* 0 -e(D*-E*)

det (Nz AM2)
-AeE 0 eI 0

0 ApI (1-A)I -ApI
Ap2(D-E) 0 021 (1--A)I

It is easy to check that, if Q denotes the matrix diag (I, I, eI/Ap,-e/Ap), Q,(N-
AM) is the transpose of Q(N- AM1). Hence both have the same determinant, which
proves the desired result since det Qa is not identically null.

6. Conclusion. We have proposed a new coordination strategy under several
versions (parallel, sequential, implicit) for such decomposition techniques as
Takahara’s algorithm, the IPP, or one-level algorithms (in the framework of the APP),
all these decomposition methods falling into the same category. Because the conver-
gence conditions stated for this new coordination strategy avoid some prerequisite
conditions involved in the convergence proof of one-level algorithms, we claim that
this new coordination scheme is of broader applicability and that it is particularly
suited for subproblems having interactions of large magnitude. This fact has been
confirmed by some simple numerical experiments. However, we observed that for weak
interactions the fixed point strategy may be competitive. Also, this latter strategy is
easier to implement since only one parameter e has to be tuned instead of three for
the new scheme. Some hints are given at the end of the convergence proof in the
following appendix concerning the choice of the latter.

The new coordination strategy is indeed an Arrow-Hurwicz algorithm for two
auxiliary variables (one primal, the other dual) artificially introduced by some manipu-
lation of the original constrained optimization problem. We called this manipulation
"the Auxiliary Constraint Principle" and we believe that the interest of this manipula-
tion is broader than the particular use made here. This will perhaps be shown by future
applications. About the Arrow-Hurwicz scheme, we completely studied the parallel
version but the numerical experiments have shown that the sequential version, when
the primal variable is updated before the dual, which is more classical, is also more
efficient. Another sequential version when the dual variable is first updated yields the
same performance, at least in the case of linear iterations (quadratic objective functions
and affine constraints). We also proposed an implicit version which seems to be the
best of all. For the sequential and implicit versions, we can state convergence theorems
and give proofs which are similar to those given for the parallel version. However,
these theorems and proofs do not reflect the improvement brought by the sequential
and implicit over the parallel version. This point can thus be considered an open
problem.
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About the directions of future research in this area, we may mention the following.
We made assumptions ensuring the differentiability of the saddle function A introduced
in 3.3 so that it was natural to use step lengths p and 02 that we call "large" as
opposed to "small" steps, the latter being steps which must tend to zero as those used
in some subgradient algorithms (see [5] for example). Also e was a "large" step because
J and (R) were assumed to be differentiable. The other assumptions that contribute to
the differentiability of A are the strong convexity of J, the assumption that all the
constraints considered are affine equality constraints (excluding in particular the
presence of a feasible subset Uf which would not be equal to the whole space og as
in (16)) and finally the assumption that E is onto. As a matter of fact, these assumptions
all together guarantee uniqueness of and/3 introduced in Theorem 3. Therefore, by
relaxing one of these assumptions or another, either r or/3 (or both) would not be
necessarily unique, meaning that A would not be differentiable in either v or q (or
both). Then, we should consider algorithms mixing "large" and "small" steps e, Pl
and p2 (see [5] for examples of such algorithms). Forthcoming papers will discuss
some of these possibilities.

Appendix: proof of Theorem 4. Existence of a saddle point of the respective
Lagrangians associated with (12) and (38) are easily derived from the assumptions.
Notice in particular that (45) and the same kind of inequality for K imply that the
corresponding cost functions increase at least quadratically at infinity. They also imply
that u* and u k+l are uniquely defined. Uniqueness of pk+ (and similarly of p*) is
derived from the assumption that E (respectively, D) is onto in the following way.
Necessary and sufficient optimality conditions for (38)mrespectively, (12)--are

K’(u k+’) K’(u) + (J’(u) + D*q + E*(p+’ q)) 0

Eu k+l
1) k,

(49)

(0)
respectively,

(51)
(52)

J’(u*)+D*p*=O

Du* d.

Considering for instance (49), multiply it by E. Since E is onto, EE* has a continuous
inverse. Hence we get

(53) P+’=qk-(EE*)-’E[ 1-e (K’(uk+)--K’(uk))+J’(uk)+D*qkl
from which we see that pk+ is uniquely defined since u k+l is. The same applies to p*
using (51) and the inverse of DD* if D is assumed to be onto.

The principle of the proof consists of studying the behaviour of some
"Lyapounov function" along the iterations of the algorithm, from which convergence
conclusions will be reached. This Lyapounov function is defined by the following
quantity (at stage k)

O:= (1/e)(K(u*)- K(uk)--(K’(uk),

(54)

where/3 s a positive constant to be chosen later and/J (together with ) is uniquely
defined by the equations

(55) J’(a) + D*q + E*( fi q) 0
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(56) Ek--vk --0.

Indeed t and/ are those already encountered in Theorem 3 when defining A. Notice
that b is larger than (b/e- a)/211u*-ull (from (45)applied to K)and this quantity
is nonnegative after the condition imposed on e and the fact that a <-A. Therefore
4>=0.

Let us now calculate the variations b/’- b for i= 1,..., 4.

Ckl+’-Ckl (1/ e)(K(u)- K(u+’)-(K’(u), u- u+’))

+(1/e)((K’(uk)--K’(uk+’), U*--uk+’))
a2

a-- (ll l,/k+l- 1,/* 2- IIN k 1,/’112),

Then a, <---(b/2e)lluk+l--ukll2 and from (49) and (51)

a2=(J’(uk)--J’(u*), U* uk+l))
b

+(D*(qk--q*), u*-u+)+(E*(p+-q), u*-u+).
b2 b3

By repeated uses of (45) and (47), we get that

A k+ k 2 O k , 2 k+lblllu -(llu -u +llu -u

From (33) we get that

k+l 1 k 2-(q-pg+’, v-v*>+ [Ivg+’- v

and we notice that the first term in the right-hand side is nothing but -b3. Similarly,
from (34) we derive that

4’3 +’- 4’ <qk q, D(uk+,_ u,)>+P2 ilD(uk/,_ u,)[[=
2

and the first term in the right-hand side is equal to -b. Summarizing the calculations
made so far, and setting d := [1DII, we have that

(57)
/k+l (_ _)k+, k (_ 2 ) k+l $Y ( -)--< Ilu -u I1=+ d-a Ilu -u 2

i=1

/ (/2p,)llv+’- vll.
From (56) and setting e := IIE[[, we have that

e21 tk+ 9_ < k+ k 2(58) c-o liE( -a)ll -v, Ila -k/,_ 4 let us establish some inequalities thatBefore considering the last variation 4
will prove useful. For the sake of brevity, let rk :=/3k- qk (notice that r
from Theorem 3). Multiplying (55) by E, we get that

(59) rk= -(EE*)-lE(j’(ak)+ D*qk).
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We set to := II(E*)-*II. Then

(60)
r"+’ r"ll -< (AI] ak+’ all / dllqg+’- qll)

<= (AII a+’- all + p2d211 u+’- u*ll)

using (34).
Multiplying the difference of (55) expressed for index k+ 1 and for index k by-+ yields

(rk+l r k, vk+l__ vk)= (E.(rg+,_ rk), ak+l__

(61) =(j,(g+)_j,()+D.(qg+_qk), k_k+)

-all+- ll2+dllu+a- u*ll" II+- ll
using the strong monotony of J’ and (34) again.

Consider the difference of (49) and of (55), the latter multiplied by e. Multiplying
this difference by k_ uk+ and noticing that Ek= Euk+= Ok, it yields

alla-ul[ <J’(u)-J’(a), u-a>+<’(+’)-’(u), u+_u>
<j’(u) J’(a), u u+’> + <K,(u+,) K’(u), a u>
(B + A) u+- ull" " u"ll

from which it comes that

B+eA
(62) Ilt k ukll IIU k+l- ukll.a

(63)

Consider now the difference of (53) and (59). We get that

ilpk+l _/3k]l ilpk+l_ qk_ rkll

-(EE*)-IE[ 1-e (K’(uk+’) K’(uk))+J’(uk)--J’(k)]

tome k+l k

where we have used (62) and we have set Me := B +(A/a)(B + eA).
Now, we calculate the variation

/l 4 i[/, r4

r"+ r"ll + 2(rk, rk+l rk}.
h

But

h (fig--pg++pk+--qg, rk+J_ rg)

/)k+l
(ilk _pk+l+--, rk+l_ rk)

[91
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from (33). Now, using (60), (61) and (63), it comes that

h4+’- b4<-- wZ(A}l k+- + 26211u u*ll) 2

2co2m
+ l[u k+

Finally, adding inequality (57) to the above multiplied by (e/2p), we can bound
the total variation of h !’ (see (54)) as follows:

(64)

where we have set

and

,+._, _< -1/2(9).(. p.. p) 9

b/e-A
-fiwZAM/p,
pzfiwd 2M/p

-CO2AM,/p
2ea/p e=,-( + ew2A2)/px
-epz,dZ(1 + pco2a)/p#

-p2flco2d2M/p,
-ep=fld=(1 + p,wA)/p2

2a pd(1 + epod/p)

Suppose that we can choose e, p and pz in such a way that s is positive definite.
Then, the sequence {h} is nonincreasing. Since, as shown earlier, it is also bounded
from below (by zero), it must converge and the difference of two successive terms must
converge to zero. With (64), this proves that ’, and in particular Ilu+-u*[I, also
converge to zero. Since E is continuous, v converges to v* and vk+- v converges
to zero, hence, from (33), p’+- q also goes to zero. Therefore, a cluster point of the
sequence {q} (in either the strong or the weak topology), if any, is also a cluster point
of {p}. Observe that since b k is nonincreasing, it is bounded, and thus {q} is bounded
and does have weak cluster points. Let g/ be such a cluster point. Considering (49)
and passing to the limit, it is not difficult to show that the pair (u*, c) satisfies the
necessary and sufficient conditions (13).

Finally, if D is onto, hence DD* is invertible, from the difference of (49) and
(51), the latter multiplied by , this difference being further multiplied by (DD*)-D,
it is easy to conclude that q, and thus p, converge to p* (which is unique).

For the proof to be complete, it remains to show how the convergence parameters
can be chosen to ensure the positive definiteness of s. This property translates into
the following three conditions:

(i) ml(e):-- b/e-a>o
(ii) m2(e, p) := [m,(z)(2e#la-pl(e=+ eco2A2))-#lZw4azM]/p#> 0
(iii) det s(e, p, p=) > 0.

Condition (i) is equivalent to the condition imposed to e in Theorem 4. Condition (ii)
first imposes that /3 be chosen in the open interval (0,2em(e)a/ 4a2,Zx

co ea vt ), say/3
eml(e)a/ 4AeM2co ) to fix ideas. Then p must belong to the open interval (0, fi(e))
where

e(b-eA)a2

fi,() 2 2A2(e(b- ea)a + e2co Me)co

Notice that #(e) goes to zero if e tends to either zero or b/A. Finally, once e and P1
have been fixed at admissible values, observe that s becomes a block-diagonal positive



AUXILIARY CONSTRAINT AND DECOMPOSITION 157

definite matrix if p2 0. Of course this null value is not allowed since we manipulated
1/p2 in the expression of b. But, by continuity, it is clear that there exists an open
interval (0, 2(e, p)) in which I)2 may lie while s remains positive definite. Unfortu-
nately, the expression o(" this upper bound yielded by condition (iii) is very involved.
But it should be clear that this fi2 tends to zero if either m(e) or 1112(8,/91) does so,
that is, if e or p approaches zero or its upper bound.

Ackno,vletlgment. The idea of the Arrow-Hurwicz coordination strategy occurred
for the frst time during a conversation of the first author with Professor Philippe
Mahey of the Catholic University of Rio de Janeiro, Brazil, while the latter was visiting
Fontainebleau in February 1984. His contribution is gratefully acknowledged.
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POSITIVE PROPER EFFICIENT POINTS AND RELATED CONE RESULTS
IN VECTOR OPTIMIZATION THEORY*

JERALD P. DAUER? AND RICHARD J. GALLAGHER:

Abstract. Positive proper efficient points are defined as solutions of appropriate linear scalar optimiz-
ation problems. A geometric characterization of positive proper efficient points is given as well as conditions
under which the set of positive proper efficient points is dense in the set of all efficient points. It is shown
that these results are applicable in the normed vector lattices C[a, b], p, and L for 1-<p-< oo, and that
previous related results, which required the ordering cone to have a compact or weak-compact base, are
not applicable in many normed vector lattices, including C[a, b], lP, and Lp for -< p <_- co.
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1. Introduction. One important problem in vector optimization theory is to identify
the efficient points of a set A that are solutions of a scalar optimization problem

maximizef(y
yeA

where f is a continuous linear functional that is strictly positive on the ordering cone.
We will refer to such efficient points as positive proper efficient points.

Many authors have obtained results on "proper" efficient points (e.g., see [3]-[5],
[9], [14], [16], [22]). An attempt by Hurwicz [16] to give a geometric characterization
of positive proper efficient points motivates the approach in 2, where we first obtain
a necessary and sufficient condition that there exists continuous linear functionals that
are strictly positive on the ordering cone. We then use this condition to characterize
positive proper efficient points. This characterization applies in very general settings.
In particular, it does not require the space to be locally convex, and it does not require
the ordering cone to have a compact or weak-compact base (assumptions used by
earlier authors [4], [5], [9]). In 3 we examine the restrictiveness of the compactness
and weak-compactness assumptions on the base. In particular, we show that the positive
cones (i.e., the nonnegative orthants) in the normed vector lattices C[a, b], p, and
LP(ff), l<-_p<=oo, do not have compact or weak-compact bases; and moreover, the
positive cones in p and LP(N), 1 < p < oo, do not even have bounded bases.

A second optimization problem involves the density of the set of positive proper
efficient points in the set of all efficient points. This problem has been studied by
Arrow, Barankin, and Blackwell [2], Hartley [15], Borwein [5], Dauer and Saleh [9],
and Jahn [17]. However, none of these density results are applicable in the normed
vector lattices C[a, b], p, andLp, 1 _<-p _<_oo. Radner [24], in considering the problem
of efficient prices for infinite horizon production systems, obtained such a density
result for the space ordered by the nonnegative orthant. In 4 we generalize the
result of Radner to obtain a density result for many normed vector lattices including
the spaces C[a, b], p, and Lp, 1 <-p <-_ c. Section 5 is devoted to further investigating
spaces and cones satisfying the hypotheses of this density theorem. In particular, it is
shown that the theorem can be applied in any reflexive normed vector lattice.

Received by the editors February 29, 1988" accepted for publication (in revised form) April 14, 1989.
? Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403.
$ Department of Mathematical Sciences, University of Montana, Missoula, Montana 59812.

158



POSITIVE PROPER EFFICIENT POINTS 159

Throughout the paper the term topological vector space will mean a real Hausdorff
topological vector space and will be denoted by . Also, the notation for the spaces
C[a, b], B[a, b], c, Co, p, and Lp follow those used in Dunford and Schwartz [10].

2. Positive proper efficient points. Let be a (real Hausdorff) topological vector
space. A subset K of is called a cone if cK K for all c->0. If, in addition,
K f’l (-K) {0}, where 0 denotes the zero vector in 0, then K is said to be apointed
cone. A pointed convex cone K in 0 induces a partial ordering on by the association

x _-< y if and only if y x K.

An element f in the topological dual * of is said to be positive if f(k)->_ 0 for all
k K and is said to be strictly positive iff(k)>0 for all k K\{O}. For convenience
we use the notation

K+ ={f *: f(k) >= 0 for all kK},
K+’= {f *: f(k) > 0 for all k K\{0}}.

Note that K+i is not necessarily the interior of K+. In fact, if K is the nonnegative
orthant in l", 1 <p < oe, then K+ has empty interior and yet K/i is nonempty. Also
note that K/i may be empty. For example, if B[a, b], the set of all bounded
functions on [a, b], and

K ={y B[a, b]: y( t) >= 0 for all [a, b]},

then K+i is empty [23, p. 27]. Proposition 21 gives a necessary and sufficient condition
for K+ to be nonempty, and Remark 2.2 further discusses conditions for K+ to be
nonempty. We first specify some notation and remind the reader of a definition.

If A is a subset of , we denote the closure of A by cl (A) and denote the smallest
convex cone containing A by cone(A). If A is convex, then cone(A)=
{Aa: A >-0, a A}. A cone K is said to have a base B if B is convex, 0 cl (B) and
K cone (B). A based cone is necessarily pointed and convex.

The following proposition characterizes cones with K+ nonempty in terms of an
open generator for the cone.

PROPOSIarION 2.1. Let be a topological vector space and let K be a convex cone
in . Then K+i is nonempty ifand only if there exists an open convex set U in satisfying

(i) 0U; and
(ii) K c__ cone (U).
Proof If K+i is nonempty take anyf K+i and define U {y : f(y) > 0}. Then

U is an open convex set satisfying (i) and (ii).
Conversely, suppose U is an open convex set satisfying (i) and (ii). Since 0 U

there exists f* such that f(O)<f(u) for all u U (e.g., see [25, p. 58]). Thus
f(u)>0 for all ue U. From (ii) it follows that f(k)>0 for all keK\{O}. Thus
f K+i. 1-]

Remark 2.2. It is easy to see that if K /i is nonempty, then K must be pointed.
Moreover, if K is convex and K/i is nonempty then K is based. Indeed, let f K+i

and define B {y : f(y) 1} (’1K; then B is a base for K. In locally convex spaces
the converse is also true. That is, if K is a based cone, then K/i is nonempty. To see
this, suppose B is a base for K. Since 0 cl (B) there exists an open convex neighbor-
hood V of 0 such that 0 B + V. Thus B + V satisfies (i) and (ii) in Proposition 2.1,
and so K/i is nonempty.

It should also be remarked that Krein and Rutman [21, Thm. 2.1] and Klee [20,
Thm. 2.7] have shown that if is a separable normed space and K is a closed pointed
convex cone then K/i is nonempty.
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We now turn our attention to concepts in vector optimization theory. We begin
by reviewing the definition of an efficient point and defining a special class of efficient
points that are the focus of this work.

DEFINITION 2.3. Let A
_

0. A point ao A is said to be an efficient (maximal,
nondominated, Pareto-optimal) point of A if (A-{ao})71K {0}.

DEFINITION 2.4. Let A . A point ao A is said to be a positive proper efficient
point of A if there exists some f K+i such that f(ao) >=f(a) for all a A.

We will denote the efficient points of a set A by E(A) and the positive proper
efficient points of A by Pos (A). It is an easy exercise to show that Pos (A)_ E(A).
Also note that if A is compact and K+i is nonempty, then Pos (A) is nonempty; hence
E(A) is nonempty. Though this fact is easy to show, the proof that E(A) is nonempty
for A compact requires a more elaborate argument involving Zorn’s Lemma if we do
not assume K+i is nonempty [6].

A few remarks concerning the notion of positive proper efficiency are in order.
In both finite- and infinite-dimensional spaces many notions of "proper" efficiency
have been proposed [3, p. 234], [4, p. 57], [14, p. 618], [16, p. 89], [17, p. 1003], [22,
p. 488]. See [5], [9], and [27] for comparisons of the various definitions. In Hurwicz
16], Borwein [4], and Benson [3] these definitions are motivated and defined geometri-

cally, and it is shown that Pos (A) is a subset of the set of "proper" efficient points.
Moreover, the notions of proper efficiency introduced by Borwein and Benson are
equivalent to positive proper efficiency when A is convex and the ordering cone has
a weak-compact base [5, Thm. 1]. Since our interest is in the set Pos (A), we give the
following equivalence between positive proper efficient points and certain open gen-
erators for the cone. The result is applicable in a very general setting. In particular, it
does not require the ordering cone to be weak-compact based, an assumption that will
be discussed in 3.

THEOREM 2.5. Let be a topological vector space, let K be a pointed convex cone
in , and let A . A point ao A is a positive proper efficient point ofA if and only if
there exists an open convex set U in such that

(i) K cone (U); and
(ii) cone (a-{ao}) f) U .
Proof Suppose ao is a positive proper efficient point of A. Then there exists f K+i

such that f(ao)>-f(a) for all a A. Let U {y o: 1 <f(y)< 2}. Then U is an open
convex set satisfying K cone (U). Now if a A, then f(a ao) <-- 0. Thus

A- {ao} c_ {y &: f(y) __< 0}.

Since the latter set is a convex cone, we have that

cone (A- {ao}) c___ {y : f(y) <= 0}.

Hence cone (A-{ao}) G U .
Conversely, suppose U is an open convex set satisfying (i) and (ii). From (ii)

there exists f * and 3’ R such that

f(x) <= y <f(u)
for all x cone (A-{ao}) and all u U (e.g., see [25, p. 58]). Since 0 cone (A- {ao})
we have y=>0. Thus f(u)>0 for all u U. From (i) it follows that f K+. An easy
contradiction argument shows thatf(x) <- 0 for all x cone (A { ao}). Thusf( a -<f(ao)
for all a A. Hence ao is a positive proper efficient point of A.

3. Compact and weak-.compact based cones in normed vector lattices. Many results
in the theory of ordering cones and vector optimization have been proven under the
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hypothesis that the cone has a compact or weak-compact base [4], [5], [9], [20]. Thus,
since many commonly used normed spaces are, in fact, normed vector lattices, it is of
interest to know whether a cone that arises naturally from an existent lattice structure
possesses such a base. We begin our study by reviewing the concept of a normed vector
lattice. The notions discussed here will be referred to again in 5. Readers familiar
with normed vector lattices may proceed to Theorem 3.1.

If is a partially ordered vector space and A , we say that y is the
supremum of A, written sup (A), if y satisfies the following two conditions:

(3.1) any forallaA;

(3.2) if z and a =< z for all a A, then y <_- z.

Similarly, we define the infimum of A, written inf (A), except we replace "_-<" by "_>-"

in (3.1) and (3.2). A partially ordered vector space is called a vector lattice if for
every pair x, y both sup {x, y} and inf {x, y} exist. If is a vector lattice and if
y , we define

y+ sup {y, 0}, y- sup {-y, 0}, lyl- y+ +y-.
It is clear that y/, y-, and lyl are in the set K := {y " y-> 0}, and it is easy to verify
that y y+-y-. Thus 0 K K. The set K is a pointed convex cone called the positive
cone of .

If, in addition to being a vector lattice, is also a topological vector space, we
say that the lattice operations are continuous in if the maps y - y/, y - y- and y lyl
of into itself, and the maps (x, y) - sup {x, y} and (x, y) - inf {x, y} of 0 into

are continuous. It can be shown that continuity of any one of the maps implies
continuity of all of the maps (e.g., see [26, p. 234]).

A norm I1"11 on a vector lattice is said to be a lattice norm if Ixl -< lyl implies
Ilxll -< Ilyll. m normed vector lattice is a vector lattice equipped with a lattice norm. It
is easy to check that the lattice operations are continuous in a normed vector lattice.

Some examples of normed vector lattices are B[a, b] and C[a, b] each with
pointwise ordering and the supremum norm, Lp for 1 _-<p-< with pointwise almost
everywhere ordering and the usual norms, and p for 1-< p-< with componentwise
ordering and the usual norms. The corresponding positive cones in these spaces are
the nonnegative orthants.

THEOREM 3.1. Let be a normed vector lattice and let K be the positive cone in
induced by the lattice order.

(a) If K has a compact base, then is finite-dimensionaL
(b) IfK has a weak-compact base, then is reflexive.
Proof To show (a) it suffices to show that the closed unit ball is compact. To

show (b) it suffices to show that the closed unit ball is weak-compact.
Let B be a compact (weak-compact) base for K. Then there exists M > 0 such

that Ilbll--< M for all b B (e.g., see [25, p. 68]). Also, since 0 cl (B) B, there exists
m > 0 such that b >- m for all b B. Thus, 0 < m <- b -<- M for all b 6 B.

Let KM={kK Ilkll-<M}. Then KM is closed and convex (and hence it is
weak-closed). We claim that KM is compact (weak-compact). To show this, first note
that

KM ab’O<a< bB
m

By Tychonoff’s Theorem (e.g., see [10, p. 32]) [0, M/m] B is compact in the product
topology ofR x where R has the usual topology and has the norm (weak) topology.
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Also, (with either topology) is a topological vector space, and so multiplication by
scalars is a continuous operation from E into . Thus, since the continuous image
of a compact set is compact, the set {ab’O<=a<=M/m,bB} is compact (weak-
compact). Therefore, the set K4 is a closed (weak-closed) subset of a compact
(weak-compact) set, and so Ka4 is compact (weak-compact).

Now let M {Y " IlYlI--<M}. Then M is closed (weak-closed) and 4 -K4-K4. But K-K4 is compact (weak-compact) and hence is compact
(weak-compact). [3

COROLLARY 3.2. The nonnegative orthants in 11, , c, Co, L, L, and C[a, b] are
not weak-compact based.

The converse of Theorem 3.1(a) is also true. In fact, any closed pointed convex
cone in n has a compact base [20, Prop. 2.4]. However the converse of Theorem
3.1(b) is not true. Corollaries 3.4 and 3.5 show that the nonnegative orthants in the
reflexive spaces p and Lp() for 1 < p < do not have bounded bases, and hence are
not weak-compact based. We first need the following result, which is due to Johnson
[19].

PROPOSITION 3.3. Let be a normed space and let K be a convex cone in . Suppose
K contains a sequence {Yn} satisfying

(i) there exists a constant m 0 such that I[y[I >- m for all n, and
(ii) {y} converges weakly to zero.

Then K does not have a bounded base, and hence it does not have a weak-compact base.
Proofi Suppose B is a bounded base for K. Then there exists M 0 such that

b =< M for all b B. Also, for each n there exists a, 0, b, B, such that yn abn.
Thus M _-> lib, (1/a,)lly, -> (1/an)m. Therefore 1 <- M/m. Thus, since {Yn} con-
verges weakly to zero, each fe gt* satisfies

lim If(b,)l lim 1__ If(y,)l o.
an

But this says that {bn} onvers wakl$ to zero; that is, 0 wk-l (B). But since B
is convex, wk- 1 (B) 1 (B) and so 0 el (B). This is a contradiction since, b$
definition of base, 0 cl (B). [3

COROLLARY 3.4. If 1 < p < C, the nonnegative orthant in p does not have a bounded
base, and hence it does not have a weak-compact base.

Proof Let {en} be the standard basis. That is, en (6in) where 6in --0 if # n and
nn 1. Then en II- 1 for all n and {en} converges weakly to zero. [3

COROLLARY 3.5. If 1 <p<, the nonnegative orthant in LP([) with Lebesgue
measure tx does not have a bounded base, and hence it does not have a weak-compact base.

Proof Write E=

_
In where {In} is a disjoint collection of measurable sets

such that/x(In) 1 for all n. Now define

Xn(x) (10 ifxIn,

ifxC:In.
Then 112’nll 1 for all n and {Xn} converges weakly to zero. [3

It should be noted that the earlier authors in vector optimization have not indicated
any infinite-dimensional reflexive normed vector lattices whose positive cone is weak-
compact based. However, we do have the following characterization [18, Thm. 3.8.4].

PROPOSITION 3.6. Let be a reflexive normed vector lattice and let K be the positive
cone induced by the lattice order. Then K has a weak-compact base if and only ifK+ has
nonempty interior in the norm topology of *.

4. Density of Pos (A) in E(A). In 2 it has been noted that Pos (A) E(A). Many
authors have given sufficient conditions for the inclusion E(A)_ cl [Pos (A)] to hold.
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Arrow, Barankin, and Blackwell [2] seem to have been the first to obtain such a result
They assumed --n with the ordering cone being the nonnegative orthant. Hartley
[15] extended this result to arbitrary closed pointed convex ordering cones in n.
Radner [24] generalized the result of Arrow, Barankin, and Blackwell to the space
with the nonnegative orthant as the ordering cone. Borwein [5] and Dauer and 5aleh
[9] obtained density results in normed spaces that are partially ordered by a weak-
compact based cone. Jahn [17] provided a density result in normed spaces partially
ordered by a Bishop-Phelps cone. (A cone K is said to be a Bishop-Phelps cone if
K={y : ,llyll<-f(y)} for some a(0, 1] and some f*, Ilfll-- 1.) Borwein [6,
Thm. 5] stated a related density result (the set of "Borwein proper" efficient points is
dense in E (A)) for normed spaces and required the ordering cone to be closed, convex
and admit strictly positive continuous linear functionals.

In this section we give sufficient conditions for the density of Pos (A) in E (A) in
the setting of normed spaces without requiring the ordering cone to have a bounded
base. (Note that both weak-compact based cones and Bishop-Phelps cones have
bounded bases.) Instead we assume the cone satisfies property P defined below. We
show that this property is satisfied by the positive cones in many normed vector lattices
including C[a, b], p, and Lp for l<_-p<-.

For convenience we use the following notation. If 0 is a normed space, the closed
unit ball in * is denoted by

Ball (*)= {f *: Ilfll--< 1}.

If, g, h 0., we write h-<_ g if g-h K+.
PROPERTY P. Let be a normed space and let K be a pointed convex cone in. Then K is said to satisfy property P if there exists a nonempty subset D of

K+ Ball (*) satisfying the following two conditions:
P(i) If f, g D, then there exists h D such that h _-<f and h -< g.
P(ii) Whenever y and f(y)>-0 for all f D, then y K.
The significance of Property P will become apparent in the proof of the density

theorem (Theorem 4.5). First we give some examples.
Example 4.1. Let = and let

K {(y, y,. ., y): Yi 0 for 1, 2,. , n}.
One can easily show that

K+i={(a, a2," , an): ai>0 for i= 1,2, , n},
and that D K/i f’l Ball (*) satisfies P(i) and P(ii). Hence K satisfies property P.

Example 4.2. Let p, 1 <= p <-co, and let

K {y := {y} p: y _>- 0 for 1, 2, 3,. .}.
Choose

<1 ai>0fori=l 2,3,...}D {a := {ai} q []allq-
where lip+l/q= 1. Then De__ K/(-IBall (ad*). To show that D satisfies P(i), let
a {a} and b {bg} be in D. For i= 1, 2, 3,. ., define c min {ai, hi} and let c {c}.
Then c D, c _-< a, and c-<_ b. Thus D satisfies P(i).

We now show that D satisfies P(ii). Suppose y {yi} IP and y K. It suffices to
show that there exists a {a} D such that Y=l ay <0. Since y K there exists a
positive integer m such that ym < 0. Also, since v c_ , IlYI[oo < oo. Thus, we define

Ilyll-1/2y
a,
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Note that 0 < a,. < 1. Now, let ai, m, be any sequence of positive numbers such that

ai 1 -am.
i

Let a {a,}. Then a 11 q and [[al[q _-< 1. Thus a 6 D. Moreover,

E a,Yi <= E a,[[y[[+a,.y.,=-y.,<O.
i=1 i=1

irn

Hence, D also satisfies P(ii), and so K satisfies Property P.
Example 4.3. Let = LP(", , ix), 1-<_p-<, where ix is a o--finite measure. For

convenience, abbreviate Lp (),, , ix) by Lp (ix). Let

K {f LP(ix): f(w) >=O for ix-a.e, o) e f}.

If g Lq(ix), where 1/p+ 1/q= 1, it is well known that the functional Fg, defined by

(4.1) Fg(f) fg dix for allf LP(IX),

is in (LP(IX))*; and furthermore, that IIF II- ][gllq. Using the notation in (4.1), define

D={&(L())*: gL"(z), Ilgl]-< , g(o)> 0 for z-a.e. o f}.

We show that D is a nonempty subset of K+i f-1 Ball (*) satisfying P(i) and P(ii).
To show that D is nonempty it suffices to show that there exists g Lq(ix) such

that g(w) > 0 for ix-a.e, o) f. If p 1 or if ix() < oe, this is obvious; and so we
assume pC 1 and ix(f)= oo. Since ix is o’-finite, f U= fi, where 0< ix(fi) <oe for
i= 1, 2, 3,..., and fi fqfj for ij. Define g:f-->N by

( 1 )) 1/q

forwards, i=1,2,3,....g(,o)=

Then g e Lq (ix) and g(w) > 0 for all w e . Hence D is nonempty.
It is clear that D

_
K+ f3 Ball (*). To show D satisfies P(i), let Fg,, Fg e D and

define g Lq (ix by

g(o) min {g,(w), g2(w)} for all o e a.
Then Fg, defined by (4.1), is in D, Fg <= Fg and Fg <_-Fg. Thus D satisfies P(i).

It remains to show that D satisfies P(ii). Let fe LP(IX), f_ K. It suffices to show
there exists Fg e K+ such that Fg(f)< 0. Since f K, the set

A= {w e f:f(w) <0}

satisfies ix(A) > 0. Choose h Lq(ix) satisfying h(oo) > 0 for ix-a.e. o e . Then fh e
LI(IX). Let

a=Iafhdix and /3=Ia fhdix.
\A

Then -m < a < 0 and 0 -<_/3 < oe. Choose y > 0 such that a +/32’ < 0, and define

h(w) ifw A,
g(oo)

yh(w) ifw\A.

Then Fg, defined by (4.1), is in K+ and Fg(f)< 0. Thus, D also satisfies P(ii), and
so K satisfies Property P.
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Example 4.4. Let C[a, b], the continuous functions on the interval [a, b],
and let

K={yC[a,b]: y(t)>=O forall t[a,b]}.

Let NBV[a, b] denote the space of normalized functions of bounded variation on
[a, b]. It is well known that the dual of C[a, b] is isomorphic to NBV[a, b]. In
particular, if F (C[a, b])*, there exists a unique v NBV [a, b] such that

I b

(4.2) F(y)= F(y):= y(t) dr(t) forall y C[a, b].

Furthermore, F T.V. (v), where T.V. (v) denotes the total variation of v. We denote
elements in (C[a, b])* by F, where the subscript v is understood to be the correspond-
ing element in NBV[a, b] such that (4.2) holds.

Let

D= {F (C[a, b])*: T.V. (v)_-< 1, v is continuous, piecewise linear with
a finite number of linear pieces, and strictly increasing}.

Then D is a nonempty subset of K+VI Ball (*), and D satisfies P(i) and P(ii) [13].
Hence K satisfies Property P.

The previous examples have illustrated that the positive cones in many common
normed vector lattices satisfy Property P. However, this is not always the case. Recall
from 2 that the positive cone in the normed vector lattice B[ a, b] does not even admit
strictly positive continuous linear functionals, and hence it does not satisfy Property
P. Klee [20, pp. 315-316] and Krein and Rutman [21, pp. 21-22] also give examples
ofpointed convex cones that do not admit strictly positive continuous linear functionals.

Below, in Theorem 4.5, the density theorem is stated. The reader should be aware
that the assumption requiring the set A to be compact is more stringent than what is
required on the set A by Borwein [5], Dauer and Saleh [9], and Jahn [17], who, on
the other hand, place more stringent requirements on the ordering cone.

THEOREM 4.5. Let o?y be a normed space and let K be a pointed convex cone in
satisfying Property P. Let A be a nonempty compact convex subset of . Then E (A)c_
cl [Pos (a)].

Before proving this theorem it will be convenient to introduce some notation and
to develop some lemmas that will be used in its proof. For the remainder of this section,
let oj be a normed space, let K be a pointed convex cone in satisfying Property P,
and let D be the subset of K+i f-I Ball (*) whose existence is assumed in Property P.
For each p D, define

K + +I(P)={UK .f_->pandllfll --<1}.

LEMMA 4.6. For each p D, the set K+(p) is convex and weak-star compact.
Proof Let p D be given. Note that

K+ +{p}) Ball ).l(p)=(K+ 0/*

By Alaoglu’s Theorem, Ball (*) is convex and weak-star compact. Thus, it suffices
to show that K/ is convex and weak-star closed.

Clearly, K / is convex. Let {f} be a net in K /, and suppose that f converges to

f weak-star. Then f (y) converges to f(y) for all y . In particular, f (k) converges
to f(k) for all k K. Since f (k) _-> 0 for all and all k e K, we get f(k) _-> 0 for all
k K. Hence f K+ and so K+ is weak-star closed. [3
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LEMMA 4.7. For each p D, define the function F" K- p by

F(y,f) =f(y) for all (y,f) x K(p).

Then F is continuous in the product topology on K-(p), where has the norm
topology and K+(p) has the weak-star topology.

Proof. Let (y, f) x K/(P) and let {(yh,f)} be a net in K-(p) converging
to (y, f). Then y converges to y in norm and f converges to f weak-star. Let e > 0
be given. Let the symbol > denote the ordering on the directed set for the net. Then
there exists hi such that h > hi implies that Ily-yl[ <e/2, and there exists 1 2 such
that h >/2 implies ]f(y)-f(y)l<e/2. Choose/3 such that /3 " /1 and /3 > }2" Then
if h > h3 we have

IF(y, f) F(y;,, fa )[ If(y) -f (ya)[

<= If(Y) -f (Y)I + [f (Y) -f (Y)I
-<-If(Y) -fx (Y)I + Ilfh II[ly yx

E E
<-+-= e.
2 2

The following lemma is due to Fan [12, p. 121].
LEMMA 4.8. Let A and B be compact convex sets, each in a topological vector space.

.Let F be a real-valued continuous function on A x B. Iffor every fixed b B, F( a, b) is
a convex function of a on A, and iffor every fixed a A, F(a, b) is a concave function
of b on B, then

min max F(a, b) max min F(a, b).
aA bB bB aA

Consequently (e.g., see 11, p. 167]), there exists a pair (d, b) A B satisfying

F(a, b) <= F(a, b) <= F(a, b)

for all a A and all b B.
We now have everything needed to prove Theorem 4.5.

Proof of Theorem 4.5. Since a E (A) if and only if 0 E (A {a }) and since A
is compact if and only if A-{a} is compact, we assume, without loss of generality,
that 0 E(A). We must show 0 cl [Pos (A)].

By Lemmas 4.6 and 4.7, for each p D, the hypotheses of Lemma 4.8 are satisfied
for the function F" A x K-(p) N, defined by

F(a,f) =f(a) for all (a,f) A x K[(p).

Hence, there exists ap A, fp K[(p) such that

F(ap,f)>=F(ap,fp)>=F(a, fp) forall aAandfK(p).
That is,

(4.3) f(ap) >=fp(ap) >=fp(a) for all a A andf K[(p).
Since 0 A, inequality (4.3) gives

(4.4) f(ap)>O for allf K+,(p).

Since D satisfies P(i), the pair (D, <=) is a directed set. Hence, the set {ap" p D}
is a net contained in A. Since A is compact, the net has a cluster point, say i, in A.
From (4.3)

fp(ap) >=fp(a) for all a e A.
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Therefore, since fp e K+ +i(P)C___. K ap Pos (A). Thus, the net {ap p D} is contained
in Pos (A), and so a cl [Pos (A)] (e.g., see [8, p.378]).

We finish the proof by showing that 0. Since 0 E (A), it suffices to show that
a => 0. By P(ii), it suffices to show that g(a) _>- 0 for all g D. To this end, let g D be
given and let e >0 be given. It suffices to show g(a)>-e. Since a is a cluster point
of {ap" p D} and since g is continuous, g() is a cluster point of {g(ap)" p D}. Thus,
there exists r D, r -< g, such that

In particular,

g(Kt) > g(ar)- e.

Since r<= g we have g K-(r). Thus, by (4.4), g(ar)>-O. Hence g()>-e.

5. Results concerning Property P. In 4 we considered some specific examples of
spaces and cones satisfying Property P. In this section we give sufficient conditions
for a cone to satisfy Property P. We begin with the following proposition.

PROPOSITION 5.1. Let be a normed vector space and let K be a pointed convex
cone in satisfying Property P. Let X be a nontrivial subspace of and put C K fq X.
Then C is a pointed convex cone in X that satisfies Property P (with respect to X).

Proof The fact that C is a pointed convex cone is clear. Let D be the subset of
K+if3 Ball (*), which satisfies P(i) and P(ii). Define

Dx ={fi: f=flx for somef D}

where fix denotes the restriction of f to X. Then Dx is a nonempty subset of
C+71Ball (X*), satisfying P(i) and P(ii) with respect to X. Hence C satisfies
Property P.

As an example of how Proposition 5.1 can be used, note that the space c of all
convergent sequences and the space Co of all sequences converging to zero are both
subspaces of . Hence, by Example 4.2, the nonnegative orthants in c and Co satisfy
Property P.

In many of the examples given in 4 we were able to choose the subset D of
K+ f’l Ball (*) satisfying P(i) and P(ii) to be D= K+fq Ball (aj*). Specifically, this
was done in Example 4.1; Example 4.2 for 1 =< p < oo; and Example 4.3 for 1 =< p < o.
Whether or not this can always be done, assuming of course that K+ is nonempty, is
an open question. Theorem 5.2 and Corollary 5.3 give sufficient conditions under which
such a choice is possible.

The notation [0, k] is used to denote the order interval

[O, k]:= {y " O<= y<=k}.

THEOREM 5.2. Let be a normed vector lattice and let K be the positive cone

induced by the lattice order. Suppose that
(i) K +i is nonempty, and
(ii) 0, k] is Weak-compact for every k K.

Then K+if-1 Ball (*) satisfies P(i) and P(ii), and hence K satisfies Property P.
COROLLARY 5.3. Let be a reflexive normed vector lattice and let K be the positive

cone induced by the lattice order. IlK +i is nonempty, then K+i Ball (*) satisfies P(i)
and P(ii), and hence K satisfies Property P.

The remainder of this section is devoted to results leading to proofs of Theorem
5.2 and Corollary 5.3. Specifically, Theorem 5.2 follows from Propositions 5.7 and 5.9;
and Corollary 5.3 follows from Theorem 5.2 and Proposition 5.11. We begin by giving
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sufficient conditions for K+iffl Ball (*) to satisfy P(ii). The conditions are stated in
Proposition 5.7. We first develop some lemmas from which the proposition will follow.
The first lemma is well known; its proof uses a standard separation argument (e.g.,
see 16, p. 66]).

LEMMA 5.4. Let be a locally convex space and let K be a closed convex cone in
o. Ify and f(y) >-_ 0 for all f K+, then y K.

LEMMA 5.5. Let oq be a locally convex space and let K be a closed pointed convex
cone in for which K+ is nonempty. Ify and f(y) >- 0 for all f K+, then y K.

Proof Suppose y K. By Lemma 5.4 there exists f K+ such that f(y)<0. Let
g K+ and choose a > 0 such that f(y) + ag(y) < 0. Define F =f+ ag. Then F e K+

and F(y) < O. E]

To apply Lemma 5.5 to the proof of Theorem 5.2, the positive cone in a normed
vector lattice must be shown to be closed, pointed, and convex. In 3, it has been
noted that the positive cone is pointed and convex. A proof that the positive cone is
closed if the lattice operations are continuous can be found in Schaefer [26, p. 235].
For reference we record these facts in the following lemma.

LEMMA 5.6. Let be a vector lattice and let K {y y >- 0}. Then K is convex
and pointed. If, in addition to being a vector lattice, is also a topological vector space
such that the lattice operations are continuous, then K is closed.

Lemmas 5.5 and 5.6 imply the following proposition.
PROPOSITION 5.7. Let o be a normed vector lattice and let K be the positive cone

induced by the lattice order. If K+ is nonempty, then K+i Ball (*) satisfies P(ii).
We now work toward obtaining sufficient conditions for K+i Ball (*) to satisfy

P(i). The conditions obtained are stated in Proposition 5.9.
LEMMA 5.8. Let be a vector lattice and let K be the positive cone induced by the

lattice order. Let f and g be positive linear functionals on and define f ^ g K - by

(f^g)(k)=g(k)-sup{(g-f)(y): O<-y<=k} forallkK.

Define h -> by

h(y)=(f^ g)(y+)-(f^ g)(y-) forall y 0.

Then h is a positive linear functional on such that h <=f and h <-g.
If, in addition to being a vector lattice, is also a topological vector space such that

the lattice operations are continuous, then h is continuous provided at least one off or g
is continuous.

Proof. The fact that h is a linear functional satisfying h _-<f and h _-< g can be
found, for example, in Aliprantis and Burkinshaw [1, p. 189] or Schaefer [26, p. 211].
Let k K. Since sup {(g -f)(y): 0 <-_ y <-_ k} <-_ g(k), we have

h(k) (f ^ g)(k)

=g(k)-sup{(g-f)(y)" O<- y<=k}

>-_g(k)-g(k)

Thus, h(k)=> 0 for all k K, and so h is positive.
Now assume that f is continuous. Let {ya} be a net in od converging to 0. Since

the mapping T" -> 0 defined by T(y)= lYl is continuous, we have that

ly l T(ya)--> T(O)=IOI= O.
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Also, since O<=h(lyal)<-f(lyal) and since f is continuous, we get. that h(lyal)- 0. That
is,

h(y-) + h(y-) h(y- +y) h(ly I) - o.

But h(y-) >- 0 and h(y-) >-_ O, and so we have h(y-) ---> 0 and h(y-) O. It follows that
h(ya)-O, and so h is continuous at 0. Since h is linear, h is continuous
everywhere. [3

The following proposition uses Lemma 5.8 to obtain sufficient conditions for
K+i f-I Ball (*) to satisfy P(i).

PROPOSITION 5.9. Let qY be a normed vector lattice and let K be the positive cone
induced by the lattice order. Suppose that

(i) K +i is nonempty, and
(ii) 0, k] is weak-compact for every k K.

Thenfor every pairf, g K+i [’l Ball (*) there exists h K+i ["l Ball (*) such that h <-_f
and h <- g.

Proof. Let f, g K/i f-I Ball (*) and define h as in Lemma 5.8. Then h K/

h-<f, and h <= g. Also, since the normed dual of a normed vector lattice is a Banach
lattice [26, p. 238], it follows that Ilhll -< Ilfll -< 1. Hence h Ball (*).

It remains to show that h e K/; that is, to show h(k)>0 for all k K\{O}. Let
k K\{ 0}. Then

h(k) (f ^ g)(k)

g(k)-sup {(g -f)(y)" 0 <= y <= k}.

If h(k) =0, then for every positive integer n there exists y, [0, k] such that

1
O<=g(k)-(g-f)(y,,)< -.

That is,

1
0 <- g(k) --g(y,) +f(y,) <-.

Since both f and g are in K +i we have

1
(5.1) O<=g(k)-g(y,,)<

n

and

1
(5.2) 0 =<f(y,) <

Now 0, k] is weak-compact and so contains a cluster point 37 of {Yn}. Thus, for every
weak open set U containing 37 and for every positive integer N, there exists n_>-N

such that Yn U.
Let N be a positive integer. Define UN {y : f(fi)--1/N <f(y)}. Then UN is

a weak-open set and 37 UN. Thus there exists n _-> N such that yn UN. Hence

1
f()7)-- <f(y,).
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Now f(37) >_- 0 and 1/n <_- 1/N, so the above inequality together with (5.2) yields

2
0 -< f()7) < --.

N

Since N is arbitrary, we get that f(37)= 0. Butf K+i and so 37 0.
Again let N be a positive integer. Define GN {y : g(y)< 1/N}. Then GN is

weak-open and 37 0 Gu. Thus, there exists n >_- N such that y, Gu. From (5.1) we
have

1__+g(y,)<=g(k)< g(y,)

which implies that

2
0=<g(k) <

N

Since N is arbitrary g(k)=0. But this is a contradiction since g K+i and k
K\{O}.

Note that Propositions 5.7 and 5.9 complete the proof of Theorem 5.2. To complete
the proof of Corollary 5.3, it suffices to show that in a reflexive normed vector lattice,
the order interval [0, k] is weak-compact for every k K. This fact is proved in
Proposition 5.11. We first need the following lemma.

LEMMA 5.10. Let qY be a locally convex space and let K be a dosed pointed convex
cone in . Then O, k] is weak-closed for every k K.

Proof Let k K and let {ya} be a net in [0, k] such that {y} converges weakly
to y. It must be shown that y 0, k].

Since {ya} converges weakly to y we have that f(yx)-f(y) for every f J* and,
in particular, for every f K/. But if f K/, then O<-f(y)<=f(k) for all h. Hence
0 <-_f(y)<=f(k) for all f K/. By Lemma 5.4 it follows that 0 <-y _-< k.

PROPOSrrON 5o11. Let be a reflexive normed space and let K be a closed pointed
convex cone in qY such that if kl, k2 K and k, <= k2, then k, <--tl k2ll. Then [0, k] is
weak-compact for every k K.

Proof. Since 0d is reflexive, the unit ball {y : Ilyll-<-1} is weak-compact. Thus,
the set {y : Ilyll_< ]lkll} is weak-compact for every k K. The hypotheses of the
proposition imply that [0, k] {y d: [[yll_-< IIk[I} and, by Lemma 5.10, that [O,k] is
weak-closed. Hence [0, k] is weak-compact.

With Proposition 5.9 in mind, we give one final result, which states that 0, k] is
weak-compact provided K has a weak-compact base. Although the fact itself is
interesting, its usefulness in the context of normed vector lattices is somewhat limited
since, as seen in 3, normed vector lattices with weak-compact based positive cones
are not abundant. Moreover, by Theorem 3.1, a normed vector lattice with a weak-
compact based positive cone is necessarily reflexive; and by Lemma 5.6, Lemma 5.10,
and Proposition 5.11, it already follows that in a reflexive normed vector lattice the
set [0, k] is wak-compact for every k in the positive cone. However, the result is
useful if one is interested in cones that do not arise from a lattice structure.

PROPOSITION 5.12. Let be a normed space and let K be a cone in with a compact
(weak-compact) base. Furthermore, suppose that if kl, k2 K and kl <- k2, then [[k[I-<-
k211. Then O, k] is compact (weak-compact) for every k K.

Proof Let B be a compact (weak-compact) base for K and let k K be given.
Since 0 cl (B)= B, there exists rn > 0 such that lib _-> rn for all b B. Since B is
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weak-compact, it follows that K is closed. Thus, by Lemma 5.10, [0, k] is weak-closed
and hence closed. Also,

[0, k]___ {y " y= ab where O_-< a _-< Ilkll/rn, b B}.

Using Tychonoff’s Theorem and the fact that scalar multiplication is continuous, it
follows that the latter set is compact (weak-compact). Hence 0, k] is compact (weak-
compact). 1

It should be remarked that the above proposition is true in more generality. In
particular, it can be shown that if is a locally convex space and K has a compact
(bounded) base, then [0, k] is compact (bounded) for all k K [13, Prop. 5.9]. Also,
it is interesting to note that the converse of Proposition 5.12 is not true. Indeed, for
p, 1 =<p<, the set [0, k] is compact for all k in the nonnegative orthant [7, Ex. 2.8],

[13, Prop. 5.10]. However, by Theorem 3.1(b) (for p= 1) and Corollary 3.4 (for
1 <p < ), the nonnegative orthant in p is not weak-compact based.

We refer the reader to Borwein [7] for an excellent summary of many results and
examples pertaining to order intervals, based cones, and Banach lattices.
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ON A NECESSARY AND SUFFICIENT CONDITION FOR
FINITE DIMENSIONALITY OF ESTIMATION ALGEBRAS*

LUEN-FAI TAM?, WING SHING WONG$, AND STEPHEN S.-T. YAU

Abstract. Ever since the technique of the Kalman-Bucy filter was popularized, there has been an intense
interest in finding new classes of finite dimensional recursive filters. In the late seventies, the concept of the
estimation algebra of a filtering system was introduced. It has proven to be an invaluable tool in the study
of nonlinear filtering problems. In this paper, a simple algebraic necessary and sufficient condition is
established for an estimation algebra of a special class of filtering systems to be finite-dimensional. Also
presented is a rigorous proof of the Wei-Norman program which allows one to construct finite-dimensional
recursive filters from finite dimensional estimation algebras.

Key words, nonlinear filters, solvable Lie algebra, estimation algebra

AMS(MOS) subject classifications. 17B30, 35K15, 60G35, 93Ell

1. Introduction. The idea of using estimation algebras to construct finite-
dimensional nonlinear filters was first proposed in Brockett and Clark 1 and Brockett
[2]. The motivation came from the following Wei-Norman approach [3] of using Lie
algebraic ideas to solve time varying linear differential equations. Consider the equation

__d X(t)= A(t)X(t) E ai(t)AiX(t), X(O) Xo,(1.0)
dt i=1

where X and ai’s are n by n matrices and ai’s are scalar-valued functions. Let
B1,’’’, Bt be a basis of the Lie algebra generated by A1,’’ ", Am. Then the Wei-
Norman Theorem states that locally in t, X(t) has a representation of the form,

(1.1) X(t) =exp (bl(t)B1) exp (bl(t)B1)Xo,

where bi’s satisfy an ordinary differential equation of the form

dbi c,(b,,..., b,), b,(O) 0
dt

for all i. The function c’s in the above equation are determined by the structure
constants of the Lie algebra generated by the A’s.

The extension of Wei-Norman’s approach to the nonlinear filtering problem is
much more complicated. Instead of an ordinary differential equation, we have to solve
the Duncan-Mortensen-Zakai (DMZ) equation, which is a stochastic partial differen-
tial equation. By working on the robust form of the DMZ equation we can reduce the
complexity of the problem to that of solving a time varying partial differential equation.
Working independently, Steinberg [4] applied the Wei-Norman approach to solve
some partial differential equations that are roughly related to the linear filtering
problem. Wong in [5] constructed some new finite-dimensional estimation algebras
and used the Wei-Norman approach to synthesize finite-dimensional filters. However,
the systems considered in [5] are quite specific and the question whether the Wei-
Norman approach works for a general system with finite-dimensional estimation algebra
remains open.
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In this paper we examine the properties of finite-dimensional estimation algebras
and the Wei-Norman approach in detail. We consider here a class of filtering systems
having the property that the drift-term f of the state evolution equation is a gradient
vector field. In [6], the concept of f is introduced, which is defined as the matrix
whose i, j-element is (Of/Oxi)-(Of/Oxj). For this class of filtering systems, f is zero.
Conversely, if f 0, then by the Poincar6 Lemma, f is a gradient vector field. So, the
class of filtering systems considered here is characterized by the fact that f 0.

Motivated by the results in Wong [6] and [7], we investigate the algebraic problem
of characterizing and classifying finite-dimensional exact estimation algebras. In [6],
a sufficient condition of finite dimensionality is derived for certain filtering systems.
In [7], a necessary condition and some theorems of the structure of the estimation
algebra are demonstrated. In this paper, we derive a simple necessary and sufficient
condition for an exact estimation algebra to be finite-dimensional. As an important
consequence of these algebraic results, we prove that for a system with finite-
dimensional exact estimation algebras, the Wei-Norman approach always leads to
finite dimensional filters. The proof will be presented in 4. The necessary and sufficient
theorem presented here also leads us to prove some classification theorems of finite-
dimensional exact estimation algebras, which will be presented in a forthcoming paper.

2. Basic concepts. The filtering problem considered here is based on the following
signal observation model:

dx( t) =f(x(t)) at + g(x( t)) dr(t) x(O) Xo,
(2.0)

dy( t) h(x( t)) dt + dw( t) y(O) O,
in which x, v, y, and w, are, respectively, n, [p, .[m, and " valued processes, and v
and w have components which are independent, standard Brownian processes. We
further assume that n p, f, h are C smooth, and that g is an orthogonal matrix. We
will refer to x(t) as the state of the system at time and y(t) as the observation at
time t.

Let p(t, x) denote the conditional probability density of the state given the
observation {y(s): 0<_-s <= t}. It is well known (see [8], for example) that p(t, x) is given
by normalizing a function, or(t, x), which satisfies the following Duncan-Mortensen-
Zakai equation:

(2.1) dcr( t, x) Loo’( t, x) dt + E Lo’( t, x) dyi( t), or(O, x) cro,
i=1

where

102 O
Lo - Oxi f--- 2 hZ

i=1 i=1 OXi i----10Xi 2 i----1

and for 1,..., m, Li is the zero degree differential operator of multiplication by
hi. tro is the probability density of the initial point, x0.

Equation (2.1) is a stochastic partial differential equation. In real applications,
we are interested in constructing robust state estimators from observed sample paths
with some property of robustness. Davis in [9] studied this problem and proposed
some robust algorithms. In our case, his basic idea reduces to defining a new unnormal-
ized density

:(t, x) exp 2 hi(x)yi(t) tr(t, x).
i=1

If p is a vector, we use the notation Pi to represent the ith component of p.
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It is easy to show that ((t, x) satisfies the following time varying partial differential
equation

(2.2)
a(t, x)

dt
Loj(t, x)+ , yi(t)[Lo, Li],(t, x)+

1
Z y(t)[[Lo, Li], Li]j(t, x),

i=1 2 i=1

(0, x) ro

where [.,. is the Lie bracket as described by the following definition.
DEFINITION. If X and Y are differential operators, the Lie bracket of X and Y,

[X, Y], is defined by

[X, Y] X( Y)- Y(X),

for any C function r.
The objective of constructing a robust finite-dimensional filter to (2.0) is equivalent

to finding a smooth manifold M and complete C vector fields /L, on M and C
functions , on M x x and w’s on ’, such that :(t, x) can be represented in the
form:

dz(t)
(2.3a) d---t--,L=l txi(z(t))wi(y(t)), z(O) M,

(2.3b) (t, x) ,(z(t), t, x).

Following 10], we say that system (2.0) has a robust universal finite-dimensional filter
if for each initial probability density ro there exists a zo, such that (2.3a) and (2.3b)
hold if z(0)= zo, and/xi, wi are independent of

In 5, we will use the Wei-Norman approach to construct a finite-dimensional
filter for (2.0). Before we can achieve that, we need to introduce the concept of the
estimation algebra of (2.0) and examine its algebraic structure.

DEFINITION. The estimation algebra E of a filtering problem (2.0), is defined to
be the Lie algebra generated by {Lo, L,. ., L,,}, or, E=(Lo, L,. ., L,,).A.. If in
addition there exists a potential function 4 such that f (04) )/ (Ox) for all 1 _-<i=< n,
then the estimation algebra is called exact.

From now on, unless stated otherwise, we assume the estimation algebra of (2.0)
is exact. We use Vp to denote the column vector

OX OXn

Hence, V4 =f.
In the case where n 1, all estimation algebras are automatically exact. Note also,

all exact estimation algebras are characterized by the fact that f 0.
Define

and

0

OX

rl __+ f2 + h.
i=10.i i=1 ’=
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Then,

Lo= Di-r
i=1

Recall that f (0b)/(Oxi). Hence,

(2.4) 7 A4) + 17l + 2 h.
i=1

We need the following basic results for later discussion.
THEOREM 1. (Ocone). Let E be afinite-dimensional estimation algebra. Ifafunetion

is in E, then is a polynomial of degree 2.
Ocone’s theorem ([11], see [12] for an extension) says that hl,’",h in a

finite-dimensional estimation algebra are polynomials of degree 2.
LEMMA 1. Let be a C function on ". Suppose El() is a polynomial of degree

at most k where E i= xO/(Ox). en=p(xl,’’’, x,)+ff(0,..., 0, X+l,’"" ,x,)
where p is a polynomial of degree k in x,

Proof
(x, x, ., x,) (0, ., O, x+, ., x,)

(x,...,,x,,x,.,...,x

x (tx, , cx, x+, , x,) +-

+x tXl tx, x+ x) dt

;01 ()(x ,..., x, x+ ,..., x) t.

Since () is a polynomial of degree k, we see that Io()x
(tx,..., tx, x+,..., x) dt is also a polynomial of degree k.

LMMa 2. Let be a C function on . Suppose +2 is a sum ofpolynomials
of degree two and a C function on N which depends only on x+,..., x variables.
enfor any (a+ a) -, (x x, a+ a) is a polynomial ofdegree
two in x,. x variables.

Proo Let (x,. ., x) (x,...., x, a+,. ., a). Then

,()(x,..., x)+2(x,..., x) E,()(x,. ., x, a,+,..., a)

+ 2(x, , x, a+, , a)

is a polynomial of degree two in x,..., x variables. It is well known that can be
written in the following form

(x,. , x) =polynomial of degree two+ axxx
ij

where a are C functions on N. Clearly E()=polynomial of degree two+
(E(a)+3a)xxx and ()+2 polynomial of degree two+
(a +5a)xxx. This implies (ao +5a)xxx is a polynomial

of degree two. It follows that for each NjN k, we have (a)+ 5a0 =0. Observe
that E,(xa)= 5xa +xE(a) 0. In view of Lemma 1, we know that xa is a
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polynomial of degree zero, i.e., x Caijk--" constant. Since aik is a function on E we
conclude that the constant is actually zero. So (Xl,’’’,Xl, al+l,’’’,an)--
(Xl, Xl) is a polynomial of degree two in xl,..., X variables.

3. Structure theorems. The following theorem plays a fundamental role in the
classification of exact estimation algebra. It is similar to Theorem 1 in [7], although
assuming the estimation algebra is exact allows us to drop certain technical requirements
on f, g and h.

TtEOREM 2. Let E be afinite-dimensional exact estimation algebra. Then h , hm
are polynomials of degree at most one.

Proof By Theorem 1, each hj is a polynomial of degree at most two. Suppose hi
is of degree two, then by using the affine transformation Y Ax+ b, where A is
orthogonal, we may assume h is of the form

2 CiX "31- Cii "3l- CO,
i:1 i:/+1

where c, , c are nonzero real numbers, and 1_-< n. (If n, the second summation
vanishes.) Define f(Y) Af(x) and/i 0/0Yj-. If (Y) 4(x), it is easy to see that

Under the transformation, Lo is mapped into:

where

+
i=1 OXi i=l

and h is transformed into

(Y) h(x).

E is isomorphic to the Lie algebra enerated by Lo and h. Note that the degree of h
in x is the same as the degree of h in Y. Without causing any confusion, from now
on, we drop the tilde notation.

Since h is not of degree one, then l 1. We shall produce a contradiction. Let
Xo=h, and define X for il recursively by X=[[Lo, X_],Xo]. Since Lo
(= D-W), it is easy to see that

2 2X =4 ci x + ci
i=1 i=/+1

and for j > 1

Xi
i=1

By the invertibility of the Vandermonde matrix, it follows after some relabeling, if
necessary, that

1 22 XiP:- i:l
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is an element in E. Let Yo be the zero degree differential operator defined by multiplica-
tion by p. Define

Y1 Lo, Yo] Y xiDi + l/ 2,
i=1

1 Or/ 1
Y2 Zo, Y1 O2i + - xi O2i + - El r 1,

i= i= Oil i=1

and

Then,

1
Y3 Y2 Y1] 2 Y. D2 - E r/

i=1

2Y2-Y3=sE,(r/)+l2

By Lemma 1, we know that E/(r/)+2r/is a sum of polynomial of degree two and
a C function which depends on Xl+l,’" ", xn variables. By Lemma 2, it follows that
r/is a polynomial of degree two in Xl, "., xl, with coefficients which are C functions
in xl+l,""", xn only. Recall that

(3.0)
i=1

Let q C be any C function with compact support. Multiply (3.0) with 2 and
integrate the equation over

i=1

(3.1)

By the Schwaz inequality

Putting (3.2) into (3.1), we get

(3.3) lv6l- h-. 620,

which is trne for all e C. Take any nonzero C function 0 with compact support.
Define to be 0 followed by a translation in x,..., x variables direction. Observe
that 5u" IVff[ is independent of the translation selected. On the other hand, since W is
quadratic in x,.., x variables and h is of degree four in x, Xl, m h2

/=1 i
becomes very positive when one of the x,..., x tends to infinity while the other
variables remain fixed. We can choose translation in directions, x,..., x, in such a
way that

)
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is arbitrarily large while -IV Ifl[ 2 is bounded This of course contradicts the inequality
(3.3). [3

The argument above actually proves the following theorem.
THEOREM 3. Let F(x1, Xn) be a C function on [". Suppose that there exists

apath C : and 6>0 such that lim,_. c(t)[I-- and lim,_, supn(c(t) F=-,
where B C(t)) {x " III x c (t)II < ). Then there is no C function on " satisfy-
ing the equation

Add + IV bl 2 F.

COROLLARY. Let F(Xl,""", x,) be a polynomial on . Suppose that there exists
a polynomial path C " - such that limt+ C(t)II limt- F C(t) -.
Then there is no C function tp on satisfying the equation

A+ IV d/I 2 F.

Proof It suffices to prove that limt+oosupn(c(t))F(xl,’’ .,x,)=-oo, where
B(C(t)) {x IIx- c(t)ll < } for some 6 > 0. Let C(t) (Cl(t),..., C,(t)),
where

k k-1Cl(t) all + al2t +" + alkt + bl
k -1C2(t) a21 + a22 tk +" q- a2k q- b2

C.( t) anl tk q- an2 tk-1 +" q- ank + b..
Since F is a polynomial, we have

(Fo C)(t) T1 ta -i- ]/2td-l’+" q- ]/d+l,

where yl,"" ", Yd+l are polynomials in aij and bi for <= n and 1 <=j-<_ k. yl must be
negative since limt_.oo (F C)(t) -oo. By continuity, we know that there exists a 6 > 0,
and a sphere center at (bl,’", b,) with radius 6, B(b), such that for any point
(b’1, b,) in it, the following bounds hold

yl(a,j; b,..., b’) =<1/2Yl(a,:i; b,,..., b,)<O
y2(ai/, b’l, b’,)- y2(ai/, bl b,)l <= 1

lTa+l(ai b’ b’,, ,)- Yd+l(a,; bl, ", b.)l < 1.

It follows that for > 0,

sup F(Xl," ", xn)
(c(t))

ksup F(alltk+ +alk+b,’’" a,1 +’’’+a,k+b’,)
b’ B(b)

sup {Tl(aij; b’l, ", b’n)td + T2(aij; bl," ", bn)td-1 +"
b’eB(b)

+ Td+l(aij’, b’,, b’,,)}

<-yl(ai; bl, b,)td +(l + y2(ao, bl, b.))td 1+...

+(1 + Yd+l(aij; bl, "’, b,)).

As yl(aij; bl," ", bn) is negative, the right-hand side tends to - as tends to . The
assertion follows immediately
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The following result provides a simple characterization of when the dimension of
an estimation algebra is finite.

THEOREM 4. Suppose E is an exact estimation algebra. Then, E isfinite-dimensional
Tif and only if V hi Jr is a constant for l<-i<m and all j=O, 1,..., where Jr

(O2q)/(Oxi Oxj), denote the Hessian matrix of
Proof The sufficiency of the condition follows from the main theorem of [2]. For

completeness reason, we provide the proof here. Assume the condition in Theorem 4
holds. Note that E is generated by Lo, L1,’’’, L,,. Recall that for i= 1,..., m we
define

where D denotes the vector

Lm+i=[Lo, L,]=VhrD,

(D1, ,D,) T.
Define F to be the linear space generated by first and zero degree differential

Tj Tjoperators of the form 7hi JnD and 7hi JnT.q, for 1, , m, j --0, 1, Clearly,
Lm+l, Lzm are elements in F. Using our stated assumption, it is also straightforward
to check that

(i) [X, Y] constant if X, Y F,
(ii) [Lo, X]F if XF,
(iii) [hi, X] constant for i= 1,..., m and X in F.
Conditions (i), (ii), and (iii) imply that

dim E -< dim span { Lo, hi, ", hm, 1 } + dim F.

By our stated assumption,

Fc span {O/Ox,, Oq/Ox,, O/Oxl, ", O/Ox,}.

It follows that dimension of E is finite.
To prove the necessary condition, assume E is finite-dimensional and the condition

in Theorem 4 does not hold. Without loss of generality, we may assume there is a
k>0, such that Vhlr VhTj, VhfJk k+ is not.. are constant vectors, but v hT1J,
(Notice that Vhl is a constant vector by Theorem 2.) Let c=Vh. Hence, cTx, cTvrl,

TI-Ivr/ all have degrees at most 1. (If k=0, only the first term iscTjnv’q, c --n
present.) It follows that

(3.4a) A,2i+ =--1 D O, k + 1’Lo lhl 2 cTJn

(3.4b) 2i _1 Tjirl_lvAd Lohl 2i
C / 1, k + 1.

T kLet br= c Jr" There exists an orthogonal matrix, Q, such that

bTQ- (dl, 0, 0,-.., 0)--- dr.

Define an orthogonal transformation on the state space by Y QTx. Under this new
T kcoordinate, cTx is mapped to cro, "q(x) is mapped to r/(QY), and c Jr is mapped

to d T. So we may assume b d. Equation (3.4) implies that D1 and bTV7 dl(O’q/Oxl)
are both in E. By Ocone’s Theorem, (Orl)/(OXl) is a polynomial with degree at most
2. By the assumption that V h Trk+l is not a coristant vector, it follows that the degree
of (Orl)/(OXl) is exactly 2. So,

rl xlq + r,
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where q is a polynomial with degree 2, r is independent of xl. Depending on the
degree of q in xl, we have three possible cases.

(i) Degree 2 case. Clearly, r/-Y,i= h2 can be arbitrarily negative on some
polynomial path as the path tends to infinity.

2(ii) Degree 1 case. It follows that rt i=2 aixix + 13xl + r, where ai’s are con-
stants, at least one of them nonzero,/3 and r are independent of xl Clearly, r/- i= h 2i
can be arbitrarily negative on some polynomial path as the path tends to infinity.

(iii) Degree 0 ease. Since q is independent of x, 7 sx + t, where s and are
independent of Xl. If i= h2i is independent of xl then r/-Yi= h,2 can be arbitrarily
negative. If 2

i=1 hi is dependent on x, it must be of degree 2 in xl. Again, r/-i=1 h,2
can be arbitrarily negative on some polynomial path as the path tends to infinity.

In all three cases, there is a contradiction to the Corollary of Theorem 3.
TIfE is finite-dimensional, then V hi J, is a constant for 1 _-< -<_ n and allj 0, 1, .

It is easy to show by inductive argument that the following theorem holds.
THEOREM 5. Suppose E is an exact finite-dimensional estimation algebra. Then it

has a basis consisting ofone second degree differential operator Lo, first degree differential
operator(s) with constant coefficients, and zero degree differential operator(s) affine in
x. Moreover, ifX and Y are in E with degree less than or equal to 1, then IX, Y] is a
constant.

Theorem 6 follows from Theorem 5.
THEOREM 6. An exact finite-dimensional estimation algebra is solvable.

4. The Wei-Norman approach. In this section we will use the structural results of
previous sections to derive finite-dimensional filters by the Wei-Norman-Brockett
approach. To do this, the first step we have to establish is a representation analogous
to (1.1).

Consider the filtering system as defined by (2.0). In the following discussion it is
not necessary to assume that the estimation algebra of (2.0) is exact. However, we will
retain all the notation introduced earlier. In particular, notice that (2.2) still holds. We
assume that the estimation algebra is finite dimensional and has a basis consisting of
Eo Lo, differential operators, El,’’’, Ep, (for some p) of the form

where ao’s are constants and /3i’s are polynomial in x, and zero degree differential
operators, Ep+,..., Eq, (for some q>p) affine in x. Moreover, we assume for
1 =< i, j_-< p, [Ei, Ej] is a constant and that all zero degree differential operators in the
estimation algebra are spanned by Ep+l,’’’, Eq.2

It follows from Theorem 5 that if the estimation algebra of (2.0) is exact and
finite-dimensional then it possesses such a basis. However, the exactness is not always
necessary. For example, in [6] sufficient conditions are provided for nonexact systems
to possess finite-dimensional estimation algebras.

It is clear that by the assumption on the basis that for 1 <= i, j_-< q,

Ei, Ej constant.

For p+ l <=i, j<=q,

and for 1 =< i-< q the degree of [Eo, Ei] as a differential operator is not greater than one.

20llr earlier definition of L still holds. Notice that the Li’s may not form a basis of the estimation algebra.
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2 ’SSince [[Lo, Zi cixi+ d], Yi= cix+ d] Yi= ci, if ci and d are constants, the
constant function is in the estimation algebra. Without loss of generality, we assume
that Eq is the constant function 1.

For a filtering system with such a basis, [[ Lo, Li], Li] constant for all 1, , m.
Hence, 1/2 =a [[Lo, L], L]yZ(t), denoted by u(t), is a function of independent of x.
Equation (2.2) becomes

(4.0)
d(t,x)

dt
Lo(t,x)+ 2 [Lo, Li](t,x)yi(t)+u(t)(t,x).

i=l

DEFINITION. Suppose X is a differential operator, ’0 is in the domain of X, r is
a continuous function, and R(t)=0 r(s)ds. We denote by eR(t)Xo the solution at
time t.of the following equation"

d(t)
dt

-r(t)X(t), st(O) sro,

if it is well defined.
For 1<_-i<=q, etE’(X) can be expressed in the form k(t,x, r)(r)dr, for some

integrable kernel k. Hence, we can extend the definition of etE’(x) to etE’(t, x), where

" is also a function of t.
PROPOSITION 1. If is a C function in x, then for all 0 <-_ s, the following Baker-

Campbell-Hausdorff type relations hold:
(1) For l<-i<q,

e’Eo Eo+ s aiE + s2ti e SEi,
i=l

where aij s and t S are constants.
(2) For l<-i<-p, l<-j<q, or l_<-i<q, l<-j<-_p,

eSE’Ej= (Ej + syji)eSE’,
where yji’s are constants in x.

(3) Forp+l<=i,j<=q, ori=q, l<-j<=q, orj=p, l<-i<-_q,

e,Ej EjeS,.
Proof If Ei is a zero degree differential operator, es, is simply exp (sEi). If it is

a first degree differential operator, we may assume it is of the form: j= aoDj +.
Define a to be column nth-dimensional vector whose jth component is aj. Then, it
is well known that

e’(x) exp 4(x) 4(x + s) + li(x + i(s r)) dr ’(x + so)

(4.1)

( Io )exp 4(x) &(x + semi) + ,(x + ar) dr (x + so,i).

Assume first that 4 and " are analytic functions. Let " be an arbitrary analytic
function in x. From our discussion, it is clear that e’eg is well defined for all real s
and 1 =< _-< q. Moreover, for any fixedx, eEoe-is analytic in s. Hence, the classical
Baker-Campbell-Hausdorff formula holds from the Taylor series expansion. That is"

eE’Eoe-E’ Eo + s[Ei, Eo] +- [Ei, [E,, Eo]]



FINITE-DIMENSIONAL ESTIMATION ALGEBRA 183

Now let e sE,’. By using the previously stated properties of the basis, it is easy
to see that (1) holds under the analytic assumption.

Next, we relax the condition that b is analytic to that it is C. If Ei is a zero
degree differential operator, then clearly eSE, Eoe-Se,( is still analytic in s and (1) holds
as proven before. Hence, we assume that Ei=j=l Olijpj--i. (Recall~ that /3i is a
polynomial in x.) We can find a polynomial seq,uence, {bi}, so that bi converges to b
and the first and second order derivatives of 4’i converge to the respective first and
second order derivatives of b. Define f, to be (Ocb)/(Ox) and D, to be O/(Oxi)-f,.
Define -’j,i to be Z k=l aikDj,k q- fli. Finally, define

1 02

k=l k=l OXk k=l OXk

It is easy to show by (4.1) that there exist functions u and v such that:

eS,, ,oe-S,,

( 1 8,k(X)+l "2 1 of, sai)
k= k=l k=l

_12 k=li j2,k(X’J-SOli))(X)4r" k=li fj,k(X)N(S,X)-t-)(S, X),

and

esEi Eoe-sEi

1 Ofk(X)- k= OXk
+- f(x) -- OXk2 k=l k=l

7 f(x + sai)|_(x) + Y fk(x)u(s, x)+ v(s, x).
2 k=l ]-- k=l

It follows then, that

lim eS.,,,/,o e-s’’= e*<Eo
jo

Similarly,

lim o + s E, E,o + -f
,,

o
j-+oo

Hence, (1) holds in this case also. For the general case, for any given x, construct
sequences of analytic functions {’}, so that they converge to sr. It follows that (1) holds
in the general case as well. Statements (2), (3), and (4) can be proved similarly.

TrEOREM 7. If the estimation algebra of (2.0) has a basis as described earlier, then
its robust DMZ equation (4.0) has a solution for all >-_ 0 of the form"

(4.2) (t, x) e rq(t)tq e rl(t)E’ etEo’o,

where r’s satisfy an ordinary differential equation for all t. It follows then that a
universal finite-dimensional filter exists for (2.0).
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Proof Since Eo is elliptic, for any > 0, e’ero is C. By differentiating so(t, x) we
have

dSj( t, x)
dt

erqEq erEEo etEoo-o

dr drq+ dt er"eq er2E2E1 erlEl etEO’O+’" "+ dt Eq er,, ert etOo.

By applying Proposition 1,

e rqEq erEEo etEcro- e rqEq e Eo+ r aljE + r6 e r’ etEcro
j=l

Eo+ 2 riaijEj + o (t, X),
i=1 j=l

where o is a polynomial in rl,’", rq_ and constant in x and rq.
For 1 <- < p,

dri erqE eri+Ei+ Ei erE e ri-Ei etEo’odt

dri er+E’+(Ei + ri+yi+,i) e r’+ E.erqEq etEOO-odt

dri
d-- (E, + i):(t, x),

where K is a polynomial with degree 1 in r for i+l_-<j < q and constant in the
remaining r’s and x.

For p + 1 _-< _-< q,

dri r.E. E. drierqEq eri+tEi+lEi e e etEo’o--’- Ei( t, x).

Hence,

(4.3)
d(t,x)

dt
dri dri )Eo+q’ riaijEj+ -Ei+ -i+to ,(t,x).

i=1 j=l i=1 i=1

By substituting (4.3) into (4.0), it is clear that set is a solution to (4.0), if for 1 _<-j < q,

q--1

(4.4) dry_ y yi(t)eo Z riaij,dt i= i=l

and

drq_ q--1 P dri(4.)
dt ut + yi( t)eiq riaiq - i o,

i=1 i=1 i=1

where we represent [Lo, Li] as =1 eijEj
By the aforementioned property of i, it is clear that (4.4) and (4.5) have solutions

for all t.
To see that these results lead to a finite-dimensional filter for (2.0), notice that if

we let the r’s play the role of the zi’s in (2.3a), then (4.4) and (4.5) are of the form
(2.3a). By using (4.1), it is easy to check that (4.2) is of the form (2.3b).
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Remark. For the Benes systems, the fli’s are all linear. It is well known that
finite-dimensional filters exist in those cases [13].
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Abstract. This paper deals with control problems for a state process governed by controlled linear
stochastic partial differential equations, whose drift and diffusion coefficients are the second order elliptic
and the first order differential operators, respectively. A relaxed system is introduced as a generalization of
admissible control and the continuous dependence of state process on a relaxed system, assuming some
regularity conditions, is proved. Appealing to the usual compactification method, this continuity result
derives the existence of an optimal relaxed system and, under convexity condition of coefficients, an optimal
relaxed system provides an optimal admissible control in a wider sense. A relaxed control can be approximated
by an admissible control which is Brownian adapted and where Bellman principle holds. As an application,
stochastic control of diffusions with partial observation, where the state noise and the observation noise
may not be independent, is discussed.

Key words, stochastic partial differential equation, optimal control, relaxed system, weak convergence,
convexity condition, Bellman principle, partial observation
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1. Introduction. In this paper we are concerned with control problems of systems
governed by the following stochastic partial differential equations (SPDE):

i,j:O OXi aV(x’ y+ W(t), U(t))
Oxj

q(t, x)+f’(x, y+ W(t), U(t)) dt

(1.1)
+ bk(x,y+ W(t))-Su__q(x,t)+gk(x,y+ W(t)) dWk(t)

k=l i=0

where W (W, Wd’) is a d’-dimensional standard Wiener process and U(t) an
admissible control, 0 T, with T fixed.

The problem is to minimize a given criterion by choosing a suitable admissible
control. Namely, we treat stochastic optimal controls for distributed parameter systems.
The SPDE (1.1) describes intuitively a physical object governed by a partial differential
equation with random perturbation, which has been investigated from various view-
points (cf. Fujita [5], Krylov and Rozovskii [8], [9], [11], Kunita [12], Pardoux [16],
Walsh [20]). But another important example is the Zakai equation for controlled
paially observed diffusions (cf. [1], [2], [4], [14], [17]). In this case, inhomogeneous
terms f and gk are zero and bk arises from the correlation between system and
observation noises. Moreover, the Wiener process W is the observation process, and
the coefficients a J and bk depend on W (cf. [4], [21]).

The main aim of this paper is to show the existence of an optimal relaxed control
for systems governed by the SPDE (1.1) under the ellipticity condition (see (A.2)); in
particular we assume that (a(x, y, u)-d’k= b(x, y)b(x, Y)),j=,...,d is nonnegative
definite and some regularity conditions on the coefficients. In particular, if b k 0 for

1, , d, k 1, , d’, then the matrix (a o (x, y, u)) ,= ,...,a may be degenerate.

* Received by the editors August 10, 1988; accepted for publication (in revised form) May 1, 1989.

" Department of Mathematics and System Fundamentals, Division of System Science, Kobe University,
Rokke, Kobe 657, Japan.
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Let F be a compact convex subset of EL. We call it a control region. A denotes
the set of all measures on [0, T] F, such that , ([0, t] F)= for any [0, T]. The
relaxed control, which is introduced in [2] and [3], is a A-valued random variable (see
Definition 2.1) and acts linearly on coefficients. Thus a relaxed control tx has a density
Ix’, namely Ix(dr, du)=ix’(t, du)dt, and when we apply a relaxed control Ix, the
coefficients a and fi are replaced by the following dj and f, respectively,

diJ(t, x, y+ W(t), Ix)= f a(x, y+ W(t), u)ix’(t, au)

and

f’(t, x, y+ W(t), Ix)= frf’(x, y+ W(t), u)ix’(t, du).

Moreover, the system moves according to the following SPDE:

,_-oX a(x,+ w(, ox q(’ x+](x’+ w(,

(.
(x,+ 2 2 b y+W(t))q(x,t)+gk(X,y+W(t)) dWk(t).

k=l i=0

Now A becomes a compact metric space, by being endowed with the weak convergence
topology, and the set of all relaxed controls turns out to be a compact metric space
by being endowed with the Prohorov metric. Consequently, for our purposes, it is
enough to show that the solution of the SPDE (1.2) depends on the relaxed control
continuously. But this is a difficult problem. We overcome this obstacle by using a
method similar to that used by Nagase [14] and the evaluations for SPDE given by
Krylov and Rozovskii [10]. By this means, we can prove the existence of an optimal
relaxed control. Moreover, by applying our existence theorems to the Zakai equation,
we can obtain an optimal control for partially observed diffusions with correlated noise
(see 7). This result is new, and is a generalization of [1]-[4] and [14].

In 2, we will introduce several metric spaces that are appropriate to our control
problems and define a relaxed system in a wider sense as a generalization of an
admissible control. In 3, we study the way in which the solution depends on the
initial data and the relaxed system. In particular, we will prove the continuous
dependence of the solution on the relaxed system, when we endow it with the weak
convergence topology on the space of image measures of relaxed systems (Theorems
3.1 and 3.2). Section 4 is concerned with existence theorems (Theorems 4.1 and 4.2).
In 5, we will construct an approximate optimal control which is adapted to a Wiener
process. Since the Wiener process in the Zakai equation is nothing but the observation
process, we have an approximate optimal control, which is a function of the observed
data, for partially observed diffusions. The Bellman principle will be proved in 6 and
some applications will be discussed in 7.

2. Preliminaries. Let us define the operators L and M (M1,’’ ", Ma,) by

(2.1)

and

(2.2)

d

L(y, u)(x) 20i(aiJ(x, Y, u)Oj(x)+fi(x, Y, u))
i,j =0

d

Mk(y)q(x) E b,(x, y)O,(x)+ gk(x, y)
i=0

for x la, y la’, u F,
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respectively, where 0o identity and 0i O/Oxi, i= 1,. ., d and a o, fi, b and gk are
bounded and uniformly continuous.

We denote by LZr, r-> 0, the space of real valued Borel functions on Ed with the
norm defined by:

]]f[Io, I(1 / Ixl2)/=f(x)l 2 dx

Let H be the subspace of L consisting of functions whose generalized derivatives
up to the order m belong to L. Clearly H becomes a Hilbert space with the inner
product

(X g)m,r d (1 +lxl)Df(x)Dg(x) dx,

where (, , ) is a multi-index with nonnegative integer ,
and D (O/Ox)’ (O/Ox)". Let us set Ilfll m,= (X f)m,r and, for r 0, L L2,
H Hm, (.,.)m.0 (’,")m and II" I1" lira, for simplicity, if no confusion occurs.

Now we introduce the following conditions.
(A.1) D a j, D b (0<]<==re+l, i,j=O, 1,...,d, k=l,...,d’) are bounded

and uniformly continuous.
(A.2) ellipticity condition: a j a, i, j 1, d, and (aJ-b. bJ),=,....e is a

nonnegative definite matrix, where b (b, , b,) and "." means the inner product
in Re’.

(A.3) f(., y, u), g(., y) gm+, i=0," "’, d, k 1,’’’, d’, and their
Hm+-norms are bounded in (y,

(A.4). f(., y, u), g(., y)H and their Hr+-norms are bounded in y and u.
(A.4) For some r > 0, (A.4),r holds.
Hereafter we always assume (A.1) (A.3) and, for simplicity, we say

D b(x, Y)I K,
(2.3)

IIf’( , u)[[+ K, Jigs(’, Y)I] + K.

To study relaxed systems (in a wider sense), we need the following spaces.
By A we denote the set of all measures on [0, T] x F such that

(2.4) ([0, s]xr)=s, for sN T.

Endowing with the weak convergence topology, we have the following proposition.
POpOSWON 2.1. A is a compact metric space (cf [6]).
Proof By applying the Prohorov metric, A becomes a separable metric space.

Suppose , A tends to weakly as n. Then (. x F) (. x F) weakly as a
measure on [0, T]. Since I,(. x F) is Lebesgue measure by (2.4), (. x F) also satisfies
(2.4). Since A is tight, by virtue of compactness of [0, T]xF, this completes the
proof.

Let us set B(F) Borel field on F, ,(A)= the -field generated by {I ([0, s] x A);
s N t, AB(F)} and (A)=r(A). Let (A) be the space of probabilities on
(A, (A)), endowed with the weak convergence topology. Then Prohorov’s theorem
asserts the following proposition.

PROPOSITION 2.2. is a compact metric space.
By virtue of (2.4), has a ,(A)-adapted kernel ’, namely, (dr, du) 1’(t, du) dr,

and A’(t, is a probability on F for almost all t. Moreover, if A* is a kernel of , then
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h’(t," h*(t, for almost all t. Let us set

t, x, y, h f h(x, y, u)h’(t, du)
dI

for h a i2 and fi

and

(2.6)

(2.7)

and

L( t, y, h )O(x) L(y, u)O(x), ’( t, du)

d

2 Oi(aiJ( t, X, y, t )OjO(X __]i( t, X, y, 1 )).
i,j =0

Now we introduce a relaxed system, according to [2] and [3].
DEFINITION 2.1. (f, if, ot, P, W,/z) is called a relaxed system, if

(f, o, ,, P) is a probability space with filteration o%;

W is an t-adapted d’-dimensional Wiener process with W(0)=0;

(2.8) /x is an fit-adapted A-valued random variable (A-r.v. in short). Namely,
/z (B1X B2) is t-measurable whenever B B[0, t] and B2 o(F) (=topologi-
cal o--field on F).

For simplicity, we put W,/z), if no confusion occurs, and sometimes we call

/z a relaxed control.

(f, -, ,, P, W, U) is an admissible system, if (2.8) is replaced by (2.9) below.

(2.9) U is a F-valued t-adapted process.

Remark. Since U(t) is regarded as/’(t,. )= 6t(,, where 6x means 6-measure at

x, is also a relaxed system.
,t and lI denote the totalities of relaxed and admissible systems, respectively. Let

() be the image measure of (W, x) on C(0, T; Rd)X A. Again endowing with the
weak convergence topology on the space H={Tr(); }, we have the following
proposition.

PROPOSITION 2.3. II is a compact metric space.
Proof The proof is easy, since W is a Wiener process and A is a compact metric

space.
DEFINITION 2.2. We say n converges to , (put ,->) if, 7r(n) 7r()

weakly.
Consider the SPDE (2.10) for

dq(t)=(t,y+ W(t),tx)q(t) dt+ M(y+ W(t))q(t) dW(t)
(2.10)

q(O) qb Hm).

An H-valued ,-adapted process q q(., b, ) is called a solution of (2.10) (or
a response for Y), if (2.11) and (2.12) hold.

(2.11) E [Iq(t)l] 2 dt <oo1,0
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and, for any / C (smooth function on d with compact support) and almost all t,

(q(t), 7) (, /)+ (L(s, y+ W(s), l)q(s), 7) ds

(2.12)

+ (M(y+ W(s))q(s), q) dW(s).w.p. 1

holds, where (.,.)= L(Nd)-inner product and (.,.)= duality pairing between H-and H under H= (H)* (= dual space of H), namely

(L(s, y+ W(s), i)q(s),
d

(--1)]il(iJ(s, ", y+ W(s), tx)Ojq(s), Oi’q),
i,j =0

where [i[ =0 (for i=0), =1 (for i= 1,. ., d).
Clearly (2.12) does not depend on any special choice of derivative ’. The SPDE

(2.10) can be regarded as an H--valued SDE. (See It6 [7] for the general theory of
Hilbert space valued SDE.)

According to [10] and [11], we see the following theorem.
THEOREM 2.1 (Krylov and Rozovskii). (I) Suppose the conditions (A.1)---(A.3).

Then, the SPDE (2.10) has a unique solution

q e L([O, T] x ; H") n L(a C(O, T;

q(t) is a Borel function of {, W(s)s <- t,/x([0, s]x B) s-< B e o’(F)} and there exists
a constant N, depending only on T and K in (2.3), such that

E {sup,__<r Jlq(t)ll z}l,O
l,o+Sup IIo,f (’, Y, u)lJ,,o+sup Ilg(’, y)ll+,,o

y,u =0 y

/=0,1,...,m.

(II) Besides (A.1)---(A.3), we assume (A.4)t, and 6Hr. Then the following
evaluation holds.

E {supt____r q(t) 2)l,r
(2.14)

/,rWSUp Y [Io,f( ", Y, u)ll 2l,r+SUpllg(’,y)lll+l,r
y,u =0 y

where N’= N’(T, K, r).
(III) Suppose

Fi. [0, T]Xd X "---> [ 1,
and

Gk’[0, T]Xd xfl-R,
are -adapted and

E [[Fi(t)l[ dt <c,re+l,0

i=0, 1,... ,d,

k-l,...,d,

E G,(t)ll dt <.m+l,O
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Let be a solution of the following SPDE:

(2.15)

d

d(t) . Oi(to(t, y+ W(t), tx)Oj(t)+ Fi(t)) dt
i,j =0

+(i=o bi(t’ y+ W(t))Oi(t)+G(t)) dW(t)

:(O)--qgHm.
Then, satisfies the following evaluation.

(2.16)

(1=0, 1,.’’, m) where N= N( T, K ).
Remark. Krylov and Rozovskii proved Theorem 2.1, replacing (A.2) by a weaker

condition

(A.2’) a ij aJi, i, j 1,. , d

and (ai-1/2b i. b)i3=l,...,a is a nonnegative definite matrix.
But we state all of our theorems under the condition (A.2), since we need (A.2)

for Proposition 3.1, etc.

3. Continuous dependence of q( 4i,y,) on 41, y, ;. Since we are mainly
concerned with the probability law 7r(), we may assume the following canonical
form, if necessary:

12 C(0, T; Rd’) x A, o-(12) the topological 0--field on 12;
W=the first coordinate function on 12, W(t, w)= W(w)(t);
/x the second coordinate function on 12,
Ix(B, to) tx(w)(B), B 0-([0, T] x F);
o, 0-{ W(s), s -< t, /z(B1 x B2), B, (5 B[0, t], B 0-(F)};
P r().
First we see the following lemma, which is crucial to the SPDE with ellipticity

condition (A.2). It will be proved in the Appendix, according to [10].
LEMMA (special case ofLemma 2.1 of [10]). For any t[0, T], yRd’ and A cA,

put a o (.) a (t, ., y, A and b (.) b (., y), for simplicity. Under the conditions (A. 1)
and (A.2), there exists a constant N, depending only on K in (2.3), T, and
(= O, 1,..., m ), such that

2 2 (-1)l’lDVO,uDV(aOju+f’) +3
i,j =0

D/ bOu+
i=0

=0 k =0

for any fixed three functions u, i :,k Hl+l and ff (1 ,’’" d’)
Remark. (1) When we takefi(., y,/x) and g(., y) of(2.1) asf’ and , respectively,

(*) turns out to be in the following form:

2((t’ y’Iz)U’ U)’+31M(y)uli<- N{ Ilull+ =o IlOifi(" Y’tX)ll[+ =o Ilgk(’,Y)ll+l}-
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(2) Reference [10] says that Lemma holds under conditions (A.1) and (A.2’), if
we replace "3" of the integrand of the left-hand side with "1." So a stronger condition
(A.2) yields a stronger evaluation (.), which is necessary for Proposition 3.1.

PROPOSITION 3.1. There is a constant C C( T, K, l) such that

(3.1)
sup E{llq(t)]l} C (llbllT+sup l]oifi(’, y, u)ll4t +sup l[g(’, y)l]+l),
t T y,u i=O y

l=0, 1,. , m- 1.

Proof. For simplicity, we put f(t)=f(t, y+ W(t),/z), g(t)= g(y+ W(t)), L(t)=
f(t,y+ W(t), tz), M(t)= M(y+ W(t)) and (,)/=duality pairing between Hl-1 and
Hl+l under Hl= (Hi)*. Then q satisfies

(3.2)
(q(t), ’r/)l (b, ’r/)l + (L(s)q(s), n)ds+ (M(s)q(s), rl)dW(s

for r/ H/+1, T.

So Ito’s formula derives

(3.3)

I]q(t)ll-]14,]l/2 ((s)q(s), q(s))ldS

+ IIM(s)q(s)lli ds+2 (M(s)q(s), q(s))dW(s).

Thus we see

(3.4)

appealing to the lemma. Hence we have

(3.5)

So Gronwall’s inequality completes the proof.
Now we will study continuous dependence of q(., th, y, ) on ,0t. For the following

Theorem 3.1, we endow with the weak topology on L2(0, T; Hm) and H"-1. Later
Theorem 3.2 is concerned with strong topology on these spaces.

From now on, we always assume m _>-3.
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THEOREM 3.1. Suppose - . Then, for ch H" and y Rd, we have

(3.6) Wn,/x, q(., th, y, ,)) W,/x, q(., b, y, )) in law as C(O, T; Rd’) A x
[w- L(O, T; H")]-r.v.

(3.7) W,,/x,, q(t, b, y, ,)) W,/z, q(t, &, y, )) in law as C(O, T; a’) x A x
[w H’-I] r.v.,

where w-X denotes the space X carrying the weak topology.
Proof This theorem is an extension of Theorem 3.1 in [14] to the elliptic case

(A.2) and we can apply the same method as [14], using the evaluation (.). First we
introduce two spaces r(D) and W(D, T). Let D be a bounded open set of d, with
smooth boundary. Define Wr(D) and Wr(T, D) as follows (cf. [13]).

(3.8) r(D) {o L2(-oo, oo; H’-I(D)) I_o [zl2r[lq3(r),, 2, dr < oo}
with the norm

dr

where, for simplicity, we put q3(r)=

_
exp (-27rirt)q(t)dt in this proof and II"

norm of (H"-(D))* (= dual space of H’-I(D) under H’-E(D)= (H’-E(D))*) and

(3.10)

with the norm

(3.11)

respectively.

r(T, D)= {qlto, Tq; r(D)}

II[lx(,o) =inf{ll,llg(o; ,p= a.e. on [0, T]},

Now we divide the proof into three steps. The first step is the preliminary lemma,
which is useful for proving the compactness of space of solutions.

LEMMA 3.1. For any fixed ), (0, 1/4),
(3.12) q( 6, Y, ) 6 Ygv(T, D), w.p. 1

holds, and there is a constant K1- KI( T, K), such that

E{llq( 4, Y, )[[(7",D)}--<-- K,I,(dp, f, g), for V ,
d

(3.14) Im(qb, f, g)= I1 11 = +sup [Io,f’(’, Y, u)[I +sup [[g(’, y)[[2m-+-I
y,u =0 y

Proof. Put

t[0, T]
h(t)=

0, t[0, T],

for h(t,)=q(t,d,y,),f(.,y+W(t),tx) and g(.,y+W(t)). (t) and M(t), t
(-oo, oo), are defined in the same way as (2.5) and (2.2), respectively. Since q is a
solution, the following equality (3.15) holds, for any 7 H’,

(q(t), r),_l (4, r),_ + {[_,(s)q(s), n}-i ds

(3.5
+ (M(s)q(s), r),-i dW(s).

(3.13)

where
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Therefore, we have

2’i’((’), r)_= --exp (-2-irt) (q(t), r)_ dt

(3.16) (4, r)m_-exp (-2rirr)(q(r), )m- +(Lq(r), )m-

+ exp (-2-i-t)(M(t)q(), r),_ dW(t).

Let r C(Ne), j 1, 2,... be a complete orthonormal system of Hm. Then we
get

(3.17)

4-2rZE[llq(’r)llG-2] 47/272 2 E{l(q(,,r), Tj)rn_l[2}
j=l

m_2 + E{llq(T)[[m-2}+

+ IIMk(t)q(t)ll dt--2
=1

Since [].[[,=

E[)[] = C( 11 m--1 + E[llq(T) _1]

+ E (]]q(t)ll = + IIg(t)]] =

Hence, for any fixed (1, ),

E[llq()ll] dr+ E IIq()ll dr
1 >1 +1 *

c(, X g)

where C G(T, K). From this we get

(3.18) E[llqll .o] K,I(6, g),

and complete the proof of Lemma 3.1.
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Second step. Let Dk (k 1, 2,...) be a bounded and open subset of Rd with
smooth boundary, Ok c Ok+ and I.Jk=l Dk--Rd. Define a metric d by

d(p, q)= -min 1, IIp(t)-q(t)llH.,-2(ok)2 dt
k=l

for p, q L2(0, T; Hm-2). ’-2(0, T) denotes the completion of L2(0, T; Hm-) with
respect to the metric d. Put $1= C(0, T;d’)xAY("-(0, T) and S=
C(O, T;d’)A[w-L(O, T;Hm-2)]. For =(W,/x), ml() and m2() denote
the image measures of (W,/x,q(., b,y,)) on $1 and $2, respectively. Br
{qL2(0, T; H’-2); Ilqlle(r,ok) <-- (2kr) 1/, k=l,2,’" "} is compact in Ygm-2(0, T),
because the injection Yg(T, Dk) L2(0, T; Hm-2(Dk)) is a compact operator (cf. [13]).

On the other hand, Lemma 3.1 asserts

P(q(., c, y, ): Br)KlIm() f g)/r.
Hence, {ml(),} is relatively compact by Proposition 2.3. Moreover,
{m2(), } is also relatively compact by (2.13) and Remark 3.3 in [14].

Third step. Suppose n-* . Then we can choose a subsequence {nj}, such that

ml(n) and m2(,) converge to some probability measures m and m, respectively.
So their marginal distributions on C(0, T;d’)A coincide with 7r() and
ik(ml(,))=jk(m(,)) and ik(ml)=jk(m2) (k= 1,2,’’ "), where

ik :S C(0, T; d’) X A L2(0, T; H"-2(Dk))
and

jk" S2 "-) C(0, T; [d’) X A L2(0, T; H"-2(Dk))
are the canonical injections.

ml(C(0, T; Id’) A L2(0, T; Hm-2))-- 1

holds by (2.13).
Endowing with the metric d, we can apply Skorokhod’s theorem. Hence, there

exist S-valued random variables (I.,,/2n, ,,) and (,/2, ) on a suitable probability
space (1, ,/3), such that

(3.19) the law of "vv’,/2n,, )= m()
The law of Iv",/2, )= rn (= limit measure of rnl(,)),

(3.20) with probability 1,

(I) Wn,-* W uniformly on [0, T]
(II) /, -->/2 weakly

(III) ,-* in Ygm-2(0, T).
Moreover, since (3.1) implies the uniform integrability, we have

(IV) ,1/ - 1o in L([0, T] x f; H’-(D)) for k 1, 2,. .
Hence, from (I) and (II), we see, for all xa

d/( t)t( t, x, y + W,,( t), I,) dt
0

(3.21)

b(t) a(x, y+ Wn(t), u)’(t, du) dt

O(t) a(x, y+ l(t), u)l’(t du) dt

(t)(t, x, y+ l(t), ) dt
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for any bounded continuous function tO on [0, T]. Namely, we have

(3.22) (.,x,y/ l,,,nj)-.(.,x,y/ I,/2) in [w-L2(0, T)].

Since tnj is a response for gn-(,/2.), we see, for any bounded absolutely
continuous function with ’ L(0, T) and (T)= 0, and C,

j’T @(t)d(,(t), )
o

=-@(0)(, n)- ((t), n)@’(t) dt

(3.23) r
Jo (L(t, y+ W.(t), ),(t), n)(t) dt

+ (t)(M(y+ ,(t))(t), ) d(t).
o

Hence, we get, as n

((t), .)’(t) dt

(3.24) (0)(, n)+ ((t, y+ (t), )(t), n}(t) dt

whenever supp c D for some k
Equation (3.24) yields that is a response for , ). Since (, )= (), we

obtain
m the law of( , , )= m() and also m= m(). This fact concludes (3.6).
In the same way we can prove (3.7). S
Now we will deal with L(0, T; H-2) and H- instead of [w- L(0, T; H-)]

and [w nm-2]. Put n H-2, r > 0, with the norm ]. ] ]]. Jim + [1" -=,. By
applying [11], we evaluate q(t, x) for large Ixl,

TnzogzM 3.2. Suppose (A.4)m-, besides (A.1) (A.3). enfor , we have

(3.25) q(’, , y, ,) q(’, , y, ) in law as L2(0, T; Hm-) r.v.,

and for any fixed
(3.26) q(t, , y, ,) q(t, , y, ) in law as H--r.v.,
whenever , ,

Proof By Theorem 2.1, there exists a constant C depending only on T, K, r, and
such that

(3.27) E [In (l +]xl2)r{Dq(t, x, , y, )}2 dx] C

for all t, a; OtT, 0[alm-2 and. Hence, we have

(3.28) E[ Dq(t,x)dx] C

1>p (1 + p2)"
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By virtue of Skorokhod’s theorem, there exist L:(0, T; Hm-:)-valued random
variables , and on a suitable probability space (1, o%, P), such that

(3.29) , and have the same laws as q( , y, ,) and q( , y, ), respectively,

and with probability 1

(3.30) , in L2(0, T; Hm-(D))

for any bounded subset D of d.
On the other hand, we see from (3.1)

(3.31) E {Dq(t,x)} dx E[llq(t)_]C’ for 0lal m-2,

where C’ is independent from D, t, and .
Since this implies the uniform integrability, we get

(3.32) E {D(t, x) D(t, x)} dx dt O.
D Ilm--2

Combining (3.32) with (3.28), we obtain

E ll4(t)-4(t)ll
_

dt 0.

This concludes (3.25).
For the proof of (3.26), we can apply the same argument.
Putting

(3.33) = U ,
r>0

we see the following corollary.
COROLLARY 3.1. Suppose , W,, tz,) tends to W, tx). Then, under the

conditions (A.1) (A.3), (A.4),,_: and ea , there existS, I?V,, 12,) and (v, ),
on a suitable probability space, such that

(I) 7r( W.,/x.) 7r( W,/2.), 7r( W, tz) 7r( ,/2)
and with probabili.,ty 1,

(II) W.- W uniformly on [0, T]
(III) /2, -/2 weakly
(IV) t. -> t in L:(O, T; Hm-2)
(V) t,(t) t(t) in H"-2

where , and are responses for o, and , respectively.
Next we will study the dependence of q on the initial (b, y).
THEOREM 3.3.

(3.34) E[sup IIq(t, 49, y, )-q(t, , y,  )113 NIle-

(/= O, 1,..., m), where N is the constant of (2.13).

(3.35) E [sup q( t, th, Yl, q( t, b, Y2, )11 N1 1 + I1+:( dp, f, g))ly y212)
tT

(/=0, 1,’’’, m-2), where N1 NI T, K ).
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Proof Put p q(., b, y, ) q(., , y, ). Then p satisfies the following SPDE
d

dp(t) Z Oi(l( t, Y+ W(t), p,)Ojp(t) dt
i,j=0

d(3.36) + , bi(t, y + W(t))Op(t) dW(t)
i=O

p(O)= -.
Therefore, (2.13) derives (3.34).

Put q q2 where q q(-, , y, ). Then we have

d(t) {1(t)(t)+(1(t)-2(t))q2(t)} dt

(3.37) +{Ml(t)(t)+(Ml(t)-M2(t))q(t)} dW(t)

(o) =o
where (t)= (t,y+ W(t),) and M(t)=M(t,y+ W(t)), i= 1,2. So (2.16) asses

E sup[[(t)[[ NE I[(i(t)-2(t))q2(t)ldt
tT

(3.38)

Thus we see, from (A.1),

(3.39) E [sup (t)] N Nly-y(1 + I+(, Z g))
NT

(/=0, 1,..., m-2), where N N(T, K). S
CooA 3.2. ere is a constant N N( T, K) such that

NT

(3.40) N(y-,lll +min (4+, +)+sup Ig(’, Y)ll+3
y

y,u =0

4. Ofil relxe systems. Let F" L(0, T; H-) N and G" H-N be
uniformly continuous with linear growth, namely

(4.1) for any e>0, there is (e)>0 such that

G()- G()I < e if <

and there is > 0 such that

(4.

For e , we will define the pay-off function J and the value function V by

(4.3) J(, y, )= [F(q(., , y, ))+ G(q(T, , y, ))]
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and

V(b, y)= inf J(th, y, ),

respectively. Then, Theorem 3.2 and Proposition 2.3 assert the existence of an optimal
relaxed system. Now we have Theorem 4.1.

THEOREM 4.1. Under the conditions (A.1)(A.3) and (A..4),_2, there exists an
optimal relaxed system * *(, y) for (see (3.33)), namely,

(4.4) V(,y)=J(,y,*)
holds. Moreover, for any r O, we can choose *(, y), so that (*(, y)) is a Borel
map from x d into (C[O, T] x A).

Proo Suppose . Putting q q(., , y, ) and q q(., , y, ), F(q)
and G(q(T)) converge to F(q) and G(q(T)) in law, respectively. On the other hand,
(3.1) derives

sup E[F(q)2]=< C l+sup E IIq(t)ll m_ dt <.

Thus, the uniform integrability asserts

E[F(q)]E[F(q)].

In the same way, we can prove

E[G(q(T))] E[G(q(T))].

Hence, J(, y, ) is continuous in Thus, Proposition 2.3 concludes (4.4).
For the proof of the latter half, we apply the same arguments as in Chapter 12

of 19]. Putting

(4.5) (6, y)= {(); v(6, y)= (6, y, )),
we show the following lemma.

LEMMA 4.1. (, y) is nonempty and compact.
Proo (, y) is nonempty by (4.4). So we will prove the closedness of (, y).

Suppose ()(,y) and converges to () weakly. Then J(,y,)
(6, y, ).

Hence J(,y, ) V(, y), namely, "() (, y)."
Let in r andy y. Suppose () (,y) and () () weakly.

Then we will show () (, y), which completes the proof.

IJ(,y,)-J(,y,)l
(4.6)

(6, y, )-(6, y, )1 + 1(6, y, )-(6, y, ).
We see, from (3.1), (3.40) and (4.1), the following"

1st term of the right-hand side of (4.6)
2e + E[[F(q(, y, ))- F(q(, y, ))l; A]

(4.7)
+ g[IG(q(T, , y, ))- G(q(T, , y, ))1; l]

with C independent from e and n, where

A (llq(, y, )-q(, y, )ll =o,-= )
and

B={I]q(T, ,y,)-q(T, , y, )11_> ).
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Since J(b, y, ) is continuous in , (4.6) and (4.7) yield

(4.8) J(b,, y,, n) J(th, y, ).
Using V(b,, y,)- V(b, y)l-< sup IJ(b,, y,, )-J(b, y, )1, (4.7) derives

(4.9) V(b,, y,) V(b, y).

Thus, we have

J(b, y, )= lim J(b,, y,, ,)= lim V(b,, y,)= V(4, y)

Namely, 7r()6 Y(b, y).
Therefore, we can take a Borel selector Sr of (4,Y), i.e., Sr’dOrxd’

(C[0, T] x A), Borel map, such that S(4, y) 3(b, y) ([19, Chap. 12]).
So Sr(b, y) 7r(*(b, y)) holds. This completes the proof of Theorem 4.1.
Since a relaxed control turns out to be an admissible control under the Roxin

condition, we can get an optimal admissible control. Now we introduce the convexity
condition for coefficients of (2.1). Put c(y, u)= (a( y, u),fi( y, u); i, j=0,..., d)
and C (y, F) { c(y, u); u F}.

CONVEXITY CONDITION (Roxin condition). For any y d’, C(y, F) is a convex
subset of C(a" (d+l)(d+2))

Endowing with the compact uniform topology on C(ffd., (a+l)(a+2)) we have
Proposition 4.2.

PROPOSITION 4.2. Under the convexity condition, C(y, F) is compact and convex.

Proof c(y,. is continuous in F. Since F is compact, C(y, F) is compact.
Let us set Y(.,y, 9)=Jr c(.,y, u)u(du) for u (F), namely, Y(.,y, 9)=

(ti(., y, u),f(., y, u)). Putting F(y, 9) {u F; (., y, u) c(., y, u)}, we see Proposi-
tion 4.3.

PROPOSITION 4.3. F(y, u) is nonempty and compact.
Proof Since C(y, F) is convex and compact, (., y, 9) C(y, F). So F(y, u)

Now we will show that F(y, 9) is closed. Suppose u, F(y, 9) and u, u. Then
c(’, y, u,) c(., y, u). Thus c(., y, u)= (’, y, 9). This completes the proof.

Again appealing to [19, Chap. 12], we see Prop.osition 4.4.
PRoPOSrriON 4.4. There exists a Borel selector S of F(y, 9), i.e., " d’x (F)- F

Borel map, such that S(y, 9) F(y, 9).
Proof Suppose 9,- 9 weakly and Yn Y. Then

[Y(x,y,,u,)-Y(x,y,,)l

l’<-- Ic(x, y, ul c(x, y, ulch, + I(x, , , (x, y,
(4.10) r

--_<sup Ic(x, y,, u)-c(x, y, u)] + [t(x, y, 9,)- t(x, y, 9)1
X,

holds. By the uniform continuity of c, the first term tends to 0 as n . The second
term also tends to 0 by the assumption 9, 9 weakly. Hence, as n c, [Y(., y, 9,)-
?(., y, 9)1 0 uniformly in any compact set of a, by virtue of uniform continuity of
c. This derives

(4.11) t(.,y,,9,)Y(.,y, 9), as n-.

Suppose u, F(y,, 9,) tends to u. Since c(., y,, u,) c(., y, u), (4.11) yields
"u F(y, 9)." This concludes the proof of Proposition 4.4.

For (12, o%, o%, P, W,../x), we define an t-adapted process U by

(4.12) U(t) S(y + W(t), I’( t)).
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Then we have

(4.13) (x, y+ W(t), tx’(t))= c(x, y+ W(t), U(t))

and

(4.14) f(t, y+ W(t), Ix)= L(y+ W(t), U(t)).

Hence, q q( th, y, ) satisfies

dq(t)= L(y+ W(t), U(t))q(t) dr+ M(y+ W(t))q(t) dW(t)
(4.15)

q(0) b.

Since (4.15) has a unique solution, q turns out to be the response for the admissible
system M (fl, , , P, W, U).

Although an admissible system can be regarded as a relaxed system, we denote
the pay-off function by J(4’, Y, M), stressing an admissible system M. Recalling Theorem
4.1, we get Theorem 4.2.

THEOREM 4.2. Supposing (A.1)- (A.3), (A.4),,_l and the convexity condition, there
is an optimal admissible system M*, for dp alp, such that

(4.16) V(6, y)= inf J(6, Y, M) J(6, Y, M*).

Proof Put U*(t) ,(y + W*(t),/z*’(t)) for an optimal relaxed system *
(12, , , P*, W*,/x*). Then M*= (12, , t, P*, W*, U*) satisfies

(4.17) V(6, y) J(6, Y, *) J(6, Y, *) >= inf J(6, Y, )

Since V( 4), y) <- infou J( 4), y, M), (4.17) derives (4.16). I3
For 5 and 6, we will introduce a subsidiary relaxed system. W,/x) is called

a constant relaxed system, if tx’(t, du, to)= u(du) for any and to. In this case, we will
call/x a constant relaxed control u and denote W, u). Stressing the terminal time
T, we put

p(T, th, y, v)=J(T, b,y,/x), if/x’= v ((F))

(4.18) v(T, 4, Y)= inf N(T, b, y, v)
v(F)

3( T, b, y) { v e (F); v( T, b, y) ( T, b, y, v)}.

Appealing to the fact "tn Wn, v,) converges to W, v) if and only if v. - v
weakly," we get Theorem 4.3.

THEORESa 4.3. Under the conditions (A.1)-(A.3) and (A.4),_2, (T, ok, y) is

nonempty and compact. Moreover, there is a Borel selector ’-T,r of (T , y), for
(tb,y)xd’.

We consider the following usual pay-off function for the Bellman principle. Let
h:H-2xd’--> be quadratic growth and satisfy (4.19), namely,

and

(4.19)

h(4,, Y)I :< C(14-I111 -_2 + ly =)

c((ll (1 +  =11  =11 m--2 - (lyll + ly2l)lyl y l).
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By we denote the set of functions g" H a’ 1, which satisfy (4.20) and (4.21)
below,

(4.20)

and

Ig(4,, y)l Cg(1 + lid)l[ 2._2 + [y 12)

(4.21) for any e,b>O, there is 6=6(e,b,g)>O such that, for (dpi, Yi)Bb
(={(4),Y)H’xlta’; 114’11.,-=< b, lyl<b})

holds, whenever
Define J and V by (4.22) and (4.23), respectively,

(4.22) J(t, , y, , g)= E h(q(s), y+ W(s)) ds+ g(q(t), y+ W(t))

where q q( 6, y, ), and

(4.23) V(t, 6, y, g)= inf J(t, 6, y, , g).

For a constant relaxed system, we define and in the same way.
Poposwoy 4.5. J(t, ., ., , g), V(t, ., ., g), p(t, ., ., , g) and (t, ., ., g)

belong to

Proof From (2.13), we see

IJ(t,,y,,g)lE C {l+l[q(s)l]

(4.24) + C{ -+ lY + W( t)[}

_+ lyl

where C(t, g) is independent of . So L V, , and also satisfy the quadratic growth
condition (4.20).

Recalling Corollary 3.2, we will show (4.21). Put q q( , y, ) for (, y) Bb.
Then we have

E [h(q(s),y+ W(s))-h(q:(s),y2+ W(s))l ds

CE I[q(s)llm-2}qa(s)-qz(s)llm-2+ lye+ W(s)IlYl-Y21 ds
i=1 i=1

4.)
i=1

)i=1
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E[[g(qi(t), yi+ W(t))[; [[qi(t)ll,,,_2> n]

<- CgE [1 + IIq,(t)ll ,,__/ [y, / W(t)l;l[q,(t)][,,_=> n]

(4.26) <=Cg(E[l+llq,(t)ll4,,_=+ly,+ w(t)14])/=(E[llq,(t)ll_=/n=])

C3(g t)(1 + b)3/n
E[[g(q(t), y+ W(t))[; lye+ W(t)[ > n]

(4.27)

Taking a large enough n n(e, b, t, g) such that

(4.28)

we get

(4.29)

(Ca(g, t)+ C(g, t))(1 + b) < en/4,

+ E[lg(q,(t), y, + W(t))-g(q2(t), y2+ W(t))l;
IIq(t)llm_<n, lye+ W(t)l<n, i= 1,2]+e.

From the continuity condition (4.21) for g, we see

the middle term of the right-hand side of (4.29)

(4.30) <e+2C(l+2n2)P{llql(t)-q2(t)ll,,_2>6(e,n,g)}
< e + 2Cg(1 + 2n2)E[llq(t) q2(t)ll2m_2/62(e, n, g)],

whenever lY-Y2I < 6(e, n, g).
Using (3.48), (4.29) and (4.30), we can choose a positive constant 6 6(t, e, b, g),

independent from , such that

(4.31) IJ(t, alp1, Yl,

whenever ta- 211-2 < g and [y- y2l <
Since

"l V(t, thl, yl, g) V(t, th2, y2, g)l sup IJ(t, 1, yl, , g) -J(t, th2, y2, , g)l,"

we can complete the proof.
Now, applying arguments similar to (4.6)-(4.9), we get the following theorem.
THEOREM 4.4. Under the conditions (A.1)-(A.3) and (A.4),,_2, there exists an

optimal relaxed system *(ch, y), such that r(*(49, y)) is Borel measurable with respect
to (b,y)rxNd’, i.e.,

J(t, , y, *(, y), g) inf J(t, , y, , g).

Example. Quadratic loss. (I) Put h(,y)=l]ll = (=ll llg) and g=0. Then h
satisfies (4.19). So there exists an optimal relaxed system *= *(, y), i.e.,

[Iomin E q t, , y, )11 dt q t, , y, *)11 dt
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(II) Put h =0 and g(b)= II[I =, Then g . So there exists an optimal relaxed
system (b, y), i.e.,

min E[IIq(T, 49, Y, E[llq(T, b,y,

5. Approximation. In this section, we will show that there exists an approximate
optimal control which is adapted to a Wiener process.

We call =() a step relaxed system, if ’(t)=’([t/A]A) with a positive
A, where Gauss symbol. By we denote the totality of step relaxed systems
with A 2-s. For we define an approximate derivative as follows"

.) for
(5.1) ;(t, .)=

t-([0, t) x. for 2-".

Put

(5.2) ;,(t,. )= ;([2t]2-,
A) ds. Then, for a suitable sequence k(n), n 1, 2,. .,and ,.k([0, t] X A) o ,,k(S,

we have, with probability 1,

(5.3) ,,,) weakly.

Hereafter, we consider a pay-off function J as (4.22). Therefore, (5.3) yields

(5.4) V(t, 6, Y, g)= lim inf J(t, , y, , g).
N

Putting

(5.5) ={=(W,)N; is W-adapted},

we have the following theorem.
THEOREM 5.1. Under the conditions (A.1)-(A.3) and (A.4)m_2, we have, for

(5.6) inf J( t, , y, , g)= inf J(t, , y, , g).

Proof Since u , it is enough to show

(5.7) J(t, , y, , g)inf J(t, , y, , g)

Putting A=2-u and jA<t(j+ 1)A, we will evaluate I, defined by (5.8),

(5.8) I=N h(q(s),y+ W(s)) ds+g(q(t),y+ W(t)).

where q q( ,y, ). Under the conditional probability P(.I a), W(.)
W(. +j)- WU) becomes a new Wiener process which is independent of and
’(O+j,. )= ’(j,. ), ON 0 N t-j, can be regarded as a constant relaxed control.
Moreover, the uniqueness of solution derives

q(O +j, , y, ) q(O, q(j, , y, ), y + W(j), ’(j))
(5.9)

for 0 N 0 N t-j.

Hence, we see

(5.10)

I_-> inf (t-jA, q(ja, 49, y, :), y+ W(jA), v, g)
ve(F)

z(t -jA, q(jA, , y, 1), y + W(jA), g).
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Defining v(s): - d by z,(s,., g) (s)g, we see from (5.10)

J(t, d, y, , g) >- h(q(s), y+ W(s)) ds

(5.11)
+(t-jA)g(q(jA), y+ W(j)).

By the same argument, we calculate E[... (-] and obtain

J(t, , y, , g)e E h(q(s), y+ W(s)) ds

(5.12)
+()(t-j)g(q((j- 1)), y+ W((j- 1)))[.

Repeating this evaluation, we get

(5.13) J(t, dp, y, , g)>-z,J(A)z,(t-jA)g(dp, y).

We assume that (A.4),-2.ro holds. Then (2.14) asserts that q(t, d, y,) dpr with
probability 1, whenever th r for r <- ro. According to Theorem 4.3, we can take a
Borel selector 6e(t, g) of

3(t, th, y, g)= {r(); v(t, b, y, g)= J(t, qb, y, , g)}.

Let ([2i, i, Pi), i= 1,..., (j+ 1) be a probability space and W/ be a Wiener
process on it. Let us set

j+l j+l j+l

O=l-I fli, ;=l-I i, P=I-[ P
i=1 i=1 i=1

and

(5.14) W(t)

Wl(t) for 0<- t<A
W(A)+ W2(t-A) for A-<__ t<2A

J
Wk(A) + W+I(t-jA) for jA-< < (j + 1)A.

k=l

Then W becomes a Wiener process on (O, , ,, P), where , o-,(W). Fix
’1 y(A, b, y, vJ-l(A)z(t-jA)g) arbitrarily and ql denotes the solution of (5.15).

dql(t)= (y+ W(t), ul)ql(t)dt+M(y+ W(t))ql(t) dW(t),
(5.15)

ql(0) t 0<t-<A.

So ql is W-adapted.
Put u2= r(A, v-2(A)v(t-jA)g(ql(A), y+ W(A)) and q2 denotes the solution

of (5.16).
dq2(t)= L(y+ W(t), u2)q(t) dt+ M(y+ W(t))q2(t) dW(t),

(5.16)
q2(A) ql(A A<t<-2A.

Putting v3 5e(A, zfl-2(A)v(t-jA)g(q(2A), y + W(2A)), we repeat the same argument.
Now define/x’ by

(5.17) ’(t)-’/,’k for t[(k-1)A, kA).
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Then ’ is W-adapted and (f, , t, P, W,/z) N. Moreover, putting q qk on
[(k-1)A, kA), we get

E h(q(s),y+ W(s))ds+g(q(t),y+ W(t))
A

(5.18)
)E h(qj(s), y+ W(s)) ds+ g(qj(t), y+ W(t))

=v(t-jA)g(q(jA), y+ W(jA)),

h(q(s), y+ W(s)) ds+(t--jA)g(q(jA), y+ W(jA))

=u(A)u(t-jA)g(q((j- 1)A), y+ W((j- 1)A)),

and so on. Thus, we have

J(t, b, y, , g

(5.19)

From (5.13) and (5.19), we can conclude (5.7). [3

Recalling (5.4), we obtain Corollary 5.1.
COROLLARY 5.1. Under the same condition of Theorem 5.1,

(5.20) V(t, q, y, g)= lim inf J(t, c, y, , g)

holds. In other words, there is an approximate optimal step relaxed system, which is
adapted to a Wiener process.

Using the chattering lemma [3], N can be approximated.by admissible
controls which are adapted to a Wiener process. Hence, putting HN 1]fqffiN
{d (W, U); U is W-adapted and U(t)= U([2Ut]2-U)} and lt J4=l N, we have
Corollary 5.2.

COROLLARY 5.2. Under the same condition, there is an approximate optimal step
system t.
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6. Bellman pri.nciple. Now we are ready to prove the Bellman principle. For b r
and (W, U) LIN, we will evaluate (6.1):

J(s+ t, ch, y, s, g)

(6.1)
E h(q(O), y+ W(O)) dO

+E h(q(O),y+ W(O)) dO+g(q(t+s),y+ W(t+s))lt

Since W’(. W(. + t)- W(t) is a Wiener process independent from :T, we see

(6.2) conditional expectation of 2nd term-> V(s, q(t), y + W(t), g) w.p. 1.

This asserts

J(s+ t, if), y, sg, g)>-J(t, q(t), y-t- W(t), sg, V(s, ., g))
(6.3)

>- V(t, q(t), y + W(t), V(s, ., g)).

Now Corollary 5.2 yields

(6.4) V(s+ t, qb, y, g)>- V(t, q(t), y+ W(t), V(s, ., g)).

Next we will show the converse inequality of (6.4) by a standard argument.
Let 6el(b, y) denote a Borel selector of

3(tb, y)= {Tr(); V(s, oh, y, g)= J(s, 49, y, , g)}.

For any s (12, , oft, P, W, U) ftr, we put 1 C([0, s]; Rd’) x A, I7’= first coordin-
ate function/2 second coordinate function, if= tr( W,/2), 0 o0( W,/2) 12" f,

* -x .
Define P* by

(6.5) P*(( I,/2) B o%)=9r(q(t, 49, y, sg), y+ W(t))(B),

namely,

P*((ITC, 12)B,(W, tx)C)=I (q(t,f),y,s),y+ W(t))(B)dP.
(w, )c}

Hence, is a Wiener process on (12", *, P*), independent from W. Thus, putting

’W(0), O<=t
W*(0)=

W(t)+ if(O-t), t<-O<-_s+t

tSu(0)( ), O<--t
/x*(0, ")

/2(0- t, "), t<--O<--s+t

o* o( w*, *),

we see * W*,/x*) and its response q* satisfies

[I ]E h(q*(O),y+ W*(O)) dO+g(q*(t+s),y+ W(t+s))l*t
(6.6)

V(s, q(t, 49, y, s), y+ W(t), g)

V(s, q(t, qb, y, 1*), y + W*(t), g).
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Therefore,

(6.7)

holds. This asserts

J(s+t, qb, y,*,g)=J(t,b,y,*, V(s,.,g))

J(t, oh, y, g, V(s,., g))

V(s + t, d, Y, g) J( t, oh, y, d, V(s,., g)).

Again, Corollary 5.2 concludes the converse inequality of (6.4).
Thus, we obtain Theorem 6.1.
THEOREM 6.1. Under the conditions (A.1)-(A.3) and (A.4),_2, we have

(6.8) V(t, ", g) whenever

and the Bellman principle holds, i.e.,

(6.9) V(s+t, qb, y,g)=V(t, qb, y,V(s,.,g)) fordp6dp and g.
Remark. The Bellman principle is formulated by some nonlinear group 1].

7. Applications. (1) Temperature control. Let us consider a heat system in a
random medium. The field of temperature q(t, x) is governed by the following SPDE.

dq(t, x) (Aq(t, x) +f(x, U(t))) dt + g(x) dW(t), > O, x Rd,
with the initial data q(0, x)= b(x), where A is the Laplacian operator for x and W a
d-dimensional Wiener process. So the temperature is controlled through the external
force f(x, U(t)). The problem is to minimize the deviation of temperature distribution
from the assigned distribution m at a given time T (cf. Sakawa [18]), namely, the
pay-off function J is defined by

J( U) E [iR ’q( T, x)- m(x)12 dx ].
Hence, Theorem 4.4 concludes the existence of an optimal relaxed control, iff and g
satisfy the condition (A.4)1.

(2) Nervous system. In Chapter 3 of [20], Walsh deals with the following SPDE
as the dynamics of nervous system,

dq(t,x)= q(t,x)-q(t,x) dt+(q(t,x)-g(x)) dW(t), 0<x<L, t>0,

with Neuman boundary condition, where W is a one-dimensional Wiener process,
and also considers the barrier problem.

Since a medical treatment acts as an external force, here we will consider the
following SPDE as its variant,

dq(t, x) q(t, x) q(t, x) +f(x, U(t)) dt

+(q(t,x)-g(x)) dW(t), x1, O<t<= T,

q(O, x) ch(x).

Although we want to keep q(t, x) near an assigned level h at a given spot y, we need
some smooth modifications. For given two positive constants b and c, we put

p(t) =cc q(t,y+x) dx
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and

h(x)

1, xC_(A-b,A+b)

h-b<x<h
b

x-A
b

A<x<A+b.

Now the problem is to minimize E[o h(p(t)) dt] and our theorems are applicable.
(3) Stochastic control with partial observation.
Let B and/ be independent Wiener processes with values in d’ and d, respec-

tively. Suppose that the d-dimensional state process X and the d’-dimensional observa-
tion process Y are governed by the following stochastic differential equations (SDE
in short) with bounded and smooth coefficients:

dX(t)-7(X(t), Y(t), U(t)) dt+a(X(t), Y(t), U(t)) d(t)
(7.1) + b(X(t), Y(t)) dB(t), 0< t_--< T

x(0)

and

(7.2) dY( t) -f(X(t)) dt + dB( t), Y(O) O,

where U is an admissible control. So in our model the state and observation noises
may not be independent.

Let h and G’d d’_)[l, be bounded and Lipschitz continuous. The problem
is to minimize the pay-off function J, defined by

(7.3) J(U) E h(X(t), Y(t)) dt + G(X(T), Y(T))

by a suitable choice of U.
In the customary version of stochastic control with partial observation, U(t) is a

function of the observation process Y(s), s <= t, namely, admissible control in the strict
sense. Here we treat some wider class ofadmissible controls, according to [4], as follows:

A (, , t,/7,/, y, U) is called an admissible control system, if
(I) (f, , , fi) is a probability space, with tr,( Y, U)

(II) Y is a d’-dimensional t-Wiener process
(III) U is a F-valued process
(IV) B is a d-dimensional Wiener process on I, independent from (Y, U).
Let sc be a random variable independent from (/J, Y, U) and b be its probability

density. For an admissible system A, we consider SDE,

(7.4)

dX(t)=(3,(X(t), Y(t), U(t))-b(X(t), Y(t))f(X(t))) dt

/ a(X(t), Y(t), U(t)) d(t) / b(X(t), Y(t)) dr(t)

x(0) .
Put

(7.5) p(t) exp f(X(t)) dY(t)-- If(x(t))l at
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and define a new probability P by

(7.6) .dP p(T) d’.
Then, Girsanov’s theorem asserts that, under the probability P, B(t)=

Y(t)-tof(X(s)) ds, 0<= <- T, turns out to be a Wiener process independent from/,
and (X, Y) satisfies (7.1).

Moreover, the pay-off function J(U) of (7.3) can be written by

where/ means the expectation with resopect to
On the other hand, A (fl, , t, P, B, Y, U) derives an admissible system sg

(f, , t, P, Y, U), and an admissible system turns out to be an admissible control
system when we add an independent Wiener process/. For s (f, , ,/5, y, U),
we consider SPDE,

(7.7)
dq(t)= L(Y(t), U(t))q(t) dt+M(Y(t))q(t) dY(t)

q(0) b (83)
where

a a a d a
L(y, u)q 2 a,j( ", Y, U) s-- q- Z (j( ", Y, u)q),

i,=l Oxj oxi =10x
d 0Mk(y)q 2 b,k(’, y) q+f(’, y)q,

(7.8) =

and

a(x, y, u)=(b(x, y)b*(x, y)+a(x, y, u)a*(x, y, u))/2,

dj(x, y, u)= yj(x, y, u)- oaij

i=i-xi (X’ Y u)’

d Obikfk(X, y)=fk(X)-
i=1

(X, y).

Then, under the conditions (A.1)-(A.3), J(A) can be represented by

[Io ](7.9) J(A)= (h(., Y(t)), q(t)) dt+(G(., Y(T)), q(r))

Now we have the following theorem, appealing to Theorems 3.1 and 4.2.
THEOREM 7.1. Suppose (A.1)-(A.3), (A.4)1 and the convexity condition for the

coefficients of the SPDE (7.7). Then, for 49 dp, there is an optimal admissible control
system A*, namely

(7.]0) J(A*) inf J(A).
A

Appendix. Let us prove the lemma in 3. Here we use the following notation,
according to [10]:

For a (i ,..., it), O" 0,, 0il IO1--
() (I)""" (;) is the binomial coefficient
(for y (jl ,’’’, j,), 0 <=jk <- ik)
Iil-0 for i=0, =1 for i= 1,..., d,
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ing only on K, T, and l, and repeated indexes are assumed to be summed from 1 (not
0) to d.

We will estimate the principal part of J defined by (1). For u C(Ed), we put

(1)

J Z f {-2D’/(a202u)D’/Oiu +3DV(b’O,u)DV(biOju)} dx
t1<-1

-2 f tOiuOu dx

+ f {-2D(aiSOsu)D’Ou+3D’(bOu)Dr(bSOju)} dx,

where 3ij= aO_.b b.
Using integration by parts, we get

f -2D(aOu)DOiu dx

f -2aDVOjuDVOiu dx + 2

(2)
+2 2

Icl=>l

+2 2
+/3 =,
Io,1_->2

I1=1

Appealing to I/3[+ 1 -< in the third term and 1 1+ 2-< in the fourth term,

-<first term + second term + N1 u ft.
Since DV(biOu)-bDOu is independent of the (/+l)th order derivative of u, we
obtain, in the same way as (2),

3DV(biOiu) DV(bJOju) dx

f 3lb’DVO,u+(DV(b’Oiu)-b’DVO,u)l2 dx

(3)
f 3bDVOu bD’ou ax + f 6

+13

+ f 3[D’(b’O,u)- b’D’O,ul )- dx

first term 6
a+/3 =/

first term- 3

Il=l

( Ta) DabiDOiu. bDVOu dx
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(1), (2), and (3) yield

J-2 f t;DrO;uDVOu dx
Iv[---/

On the other hand,

IOOOOu[ S4OOOuOOOu

holds, by virtue of d0 C(d) and matrix () 0, (see Lemma 1.7.1 of [15]).
Noting 2[ablea[+lbl/e, we get

S- OoOo,udx+(S+ S6/lull.
d

So J N llullff holds, putting e2= 2/N5. Applying the same calculation to the other
terms, we can prove the lemma for u C(d). Since .C(d) is dense in H1+, we
can conclude the proof of the lemma by the routine method.
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DUAL ASCENT METHODS FOR PROBLEMS WITH STRICTLY CONVEX
COSTS AND LINEAR CONSTRAINTS: A UNIFIED APPROACH*

PAUL TSENGt

Abstract. Consider problems of the form

(P) min {f(x) lx >- b},

where f is a strictly convex (possibly nondiiterentiable) function and E and b are, respectively, a matrix
and a vector. A popular method for solving special cases of (P) (e.g., network flow, entropy maximization,
quadratic program) is to dualize the constraints Ex >= b to obtain a ditferentiable maximization problem
and then apply an iterative ascent method to solve it. This method is simple and can exploit sparsity, thus
making it ideal for large-scale optimization and, in certain cases, for parallel computation. Despite its
simplicity, however, convergence of this method has been shown only under certain very restrictive conditions
and only for certain special cases of (P). In this paper a block coordinate ascent method is presented for
solving (P) that contains as special cases both dual coordinate ascent methods and dual gradient methods.
It is shown, under certain mild assumptions on f and (P), that this method converges. Also the line searches
are allowed to be inexact and, when f is separable, can be done in parallel.

Key words, block coordinate ascent, strict convexity, convex program

AMS(MOS) subject classifications. 49, 90

1. Introduction. Consider the problem

(P) Minimize f(x)

(1.1) subject to Ex >- b,

where f:’ --> (-oe, +oe], E is an n rn matrix having no zero row, and b is a vector
in fit". In our notation all vectors are column vectors and superscript T denotes
transpose. We denote by eij the (i,j)th entry of E and by bi the ith coordinate of b.
We also denote by (.,.) the usual Euclidean inner product and by I1 its induced
norm. On occasion, we will treat in parallel the equality constraint problem

(pE) Minimize f(x)

subject to Ex b.

(Extension to the case of mixed equality and inequality constraints is straightforward.)
Denote by $ the effective domain of f, i.e.,

S {X Qfm If(x) < +o),

by int (S), ri (S) and cl (S), respectively, the interior, the relative interior, and the closure
of S, and by X the constraint set for (P), i.e.,

X={xem]Ex>-b}.
(For the equality constraint problem (PE), we replace X by {x mlEx= b}.) We
make the following standing assumptions.

* Received by the editors October 7, 1988; accepted for publication (in revised form) May 1, 1989.

" Center for Intelligent Control Systems, Room 35-205, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts 02139. This research was partially supported by United States Army Research Office
contract DAAL03-86-K-0171 (Center for Intelligent Control Systems) and by National Science Foundation
grant NSF-ECS-8519058.
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Assumption A. f is strictly convex, lower semicontinuous, and continuous within
S. Moreover, the conjugate function of f defined by

(1.2) f*(t) sup {(t, sc)-f(:) : R"}

is real valued, i.e., -oo<f*(t) +oo for all tt ".
Assumption B. S-SI S2, where S and S2 are convex sets in ’ such that

cl (S1) is a polyhedral set and Slri (S2)X j.
Assumption B is the usual feasibility assumption for (P), i.e., S X , plus an

additional constraint qualification. The constraint qualification, which is necessary for
establishing the convergence of our algorithm (see 3), is almost always satisfied. For
example, cl (S) (but not necessarily S) is a polyhedral set iff is separable [55], [59].
(In this case cl (S) is a box.) Assumption A implies that, for every t, there is some

’ achieving the supremum in (1.2) and f(x) +oo as [Ixll - -boo. It follows from
the latter that f has bounded level sets. Because f is lower semicontinuous, its level
sets are compact. This, together with the feasibility of (P) and the strict convexity of
f within S, implies that there exists a unique optimal solution to (P), which we denote
by x*.

A dual program of (P), obtained by assigning a Lagrange multiplier Pi to the ith
constraint of Ex >-b, is

(D) Maximize q(p)
p0

where

(1.3)
q(p) min {f(x)+(p, b- Ex) x e ’}

=(p, b)-f*(ETp).

(For the equality constraint problem (pE), the dual program is identical to (D) except
that it does not have the nonnegativity constraints on p.) Problem (D) is a concave
program with simple nonnegative orthant constraints. Furthermore, strong duality
holds for (P) and (D), i.e., the optimal value in (P) equals the optimal value in (D)
(see [60, 1]).

Since f* is real valued and f is strictly convex, f* and q are continuously
ditterentiable ([54, Thm. 26.3]). Using the chain rule, we obtain the gradient of q at
p, denoted by d(p), to be

(1.5)
X(P)=Vf*(ErP)

arg max {(p, Es) -f(:)l ,0t" }.

We will also denote by di(p) the ith coordinate of d(p) and, for any I c_ {1,..., n},
by d(p) the vector (..., d(p),...). Note from (1.5) that X(P) is also the unique
vector x satisfying

(1.6) ErpOf(x),

where Of(x) denotes the subdifferential off at x [54].
Note that p,t is an optimal solution for (D) if and only if p=[p+d(p)]/,

where [. ]/ denotes the orthogonal projection onto the nonnegative orthant. However,

where we denote

(1.4) d(p)=b-Ex(p),
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(D) is not guaranteed to have an optimal solution. Consider the following example:
n=m=l, E=-I, b=0, and

2-(x)
1/2 ifx>_-O,

f(x) +oe otherwise.

It can be verified that Assumptions A and B hold, but f does not have a dual support
at the optimal primal solution x*= 0.

Differentiability of q motivates a block coordinate ascent method for solving (P)
and (D) whereby, given a dual vector p, a block of coordinates are adjusted to increase
the dual functional q. Important advantages of such a coordinate ascent method are
simplicity, the ability to exploit problem sparsity, and the potential for massive
parallelization. As an example, suppose that f(x) is quadratic of the form (x, Qx)/2 +
(c, x), where Q is an m x m symmetric positive definite matrix and c 9". Then two
coordinates Pi and pj are uncoupled and can be iterated upon simultaneously if the
(i,j)th entry of EQ-IE T is zero (another example is iff is separable and the (i,j)th
entry of EE is zero).

Coordinate ascent methods for maximizing general differentiable concave func-
tions have been well studied [5, 3.2.4], [20], [40], [51], [52], [56], [63], but convergence
typically requires compactness of the level sets and some form of strict concavity of
the objective function--neither of which holds for q. Coordinate ascent methods for
maximizing dual functionals of the form q, on the other hand, have been studied for
certain special cases only (e.g., f is differentiable strongly convex, and exact line search
is used). More general results are given in [59] and [60], but these results are applicable
only for single (not block) coordinate relaxation and for a special type of inexact line
search. This lack of a general theory is unfortunate given that dual coordinate ascent
methods are among the most popular (and sometimes the only practical) methods for
large-scale optimization, e.g., network flow [3], [6], [11], [13], [14], [45], [58], [64],
[65], entropy maximization [2], [8], [11], [21], [23], [24], [31]-[33], [37], [41], [48],
[57], linear [43] and quadratic programming [12], [15], [18], [27], [28], [38], [39],
[42]. Another dual method whose convergence properties are not well understood is
the dual gradient method [22], [25], [34], [39], [49], [50], [61], [62]. In this method,
the dual vector p is moved along the gradient direction (or an approximation of) at
each iteration instead of along a coordinate ascent direction. This method can take
advantage of second-order derivative information and, in certain cases, is more efficient
than dual coordinate ascent methods.

This paper represents an attempt to fill the existing theoretical gaps for the above
dual ascent methods. In particular, we (i) propose a general class of (block) coordinate
ascent algorithms for maximizing q, (ii) prove various convergence properties for this
class, and (iii) show that the dual methods proposed in [2], [6], [8]-[10], [13]-[15],
[18], [21], [23], [24], [27], [28], [31]-[33], [37]-[39], [41], [42], [45], [48]-[50],
[57]-[60], [62], [64] are in this class. We also present some new algorithms from this
class and propose a technique for parallelizing the line search step whenf is separable.

This paper is organized as follows: in 2 and 3 we present a coordinate relaxation
algorithm and prove that it converges. In 4 we present an extension of this algorithm
for the case where f is strongly convex. In 5 we consider implementation issues and
in 6 we show that this algorithm contains as special cases a number ofknown methods.
In 7 we present a technique for parallelizing the line search step in this algorithm
when f is separable. In 8 we give our conclusion and discuss extensions.

We will use the following notation. For any k x matrix A, any vector c in k,
and any I {1,. ., k}, J

___
{1,. ., l}, we denote by A the matrix [aij]i......,
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the matrix [ao]ii.j, and ci the vector (..., ci,...), where a0 is the (i,j)th entry
of A and c is the ith coordinate of c. For any finite set I and any J

_
I, we denote by

I\J the complement of J relative to I and by [J[ the number of elements in J. For
any x and z in Nm, we denote by f’(x; z) the directional derivative of f at x along z
([54, pp. 213 and 217]), i.e.,

(1.7)
f’(x; z)= lim (f(x + Az)-f(x))/A

x$o

max {(z, rt) 7 e Of(x)}.

2. Block coordinate relaxation algorithm. In this section we present our main
algorithm, called the block coordinate relaxation (BCR) algorithm, for solving (P) and
(D). In this algorithm, we choose a collection ( of nonempty subsets of N { 1, n)
such that their union equals N and, for each I (, we choose continuous functions

bi :n x [0, +oo) -* [0, +c) and 6i :" xn
_

[0, +00) satisfying

(2.1a) bi(7, r) is bounded away from zero
(zZ 7/" 7/" -- T] ]4- is bounded away from zero,

We also fix a relaxation parameter y (0, 1]. Each iteration of the BCR algorithm
generates a new dual vector p’ from the current dual vector p as follows.

Block Coordinate Relaxation (BCR) Iteration.
Given a nonnegative p ", choose an I
Find any nonnegative p’" satisfying

(2.2a) P Pi, Vi /,

(2.2b) (3’- 1)(q(p’)- q(p)) <- 3"(p’-p, d(p’)),

(2.2c) 6,(d(p’), d(p)) >-_ Chl(d(p’), p’).

Roughly speaking, (2.2a) ensures that only coordinates corresponding to I change
value; (2.2b) ensures that a dual ascent occurs; and (2.2c) ensures that the change in
the gradient of q, namely d(p’)-d(p), is nonzero if p’ is not optimal with respect to
the coordinates corresponding to I (i.e., p [p + di(p’)]+). The scalar 3’ controls the
amount of under/over-relaxation in the iteration. (3’ > 1 (3’ < 1) implies under-relaxa-
tion (over-relaxation).)

For solving the equality constraint problem (pE), we modify the BCR iteration as
follows: We replace (2.1a) with "bi(r/, 7r) is bounded away from zero :> r/is bounded
away from zero" and remove the nonnegativity constraints on p and p’. (The extension
to mixed equality/inequality constraints is straightforward.)

To ensure that the BCR iteration is well defined (i.e., for any nonnegative p "and i c, a p’ satisfying (2.2a)-(2.2c) exists), additional assumptions on bi and tl
are required. We will see in 5 and 6 that the choice of bx and 6x is very important:
different choices lead to different methods and, for special cases of (P), the appropriate
choice can significantly reduce the work per iteration. We will also see in 5 that very
little needs to be assumed about bi and 6i either to make the BCR iteration well
defined or to implement it. (For example, if p’ is obtained from p by maximizing q(p)
over all p, 6/, with the other coordinates held fixed, then p’ can be shown to satisfy
(2.2a)- (2.2c).)

The BCR algorithm that consists of successive applications of the BCR iteration
is not guaranteed to converge, unless the coordinates are relaxed in some order. (We
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say a coordinate is "relaxed" if the BCR iteration is applied with an I c that contains
the index of that coordinate.) We will consider the following two orders of relaxation.

Essentially cyclic order. There exists T-> 1 such that every coordinate is chosen at
least once for relaxation between iterations r and r+ T, for all r 0, 1,. ..

Gauss-Southwell order. At each iteration, choose an I c satisfying

Chl(d(p), p) >- p max {thj (d(p), p)},

where p is a constant in (0, 1].
The above two orders of relaxation are extensions of those discussed in [40, 7.8]

and [56]. We will weaken the essentially cyclic order in 4. If c is a partition of N
(i.e., the elements of are mutually disjoint) and the essentially cyclic order of
relaxation is ued with T lcl- 1, then we will say that the order of relaxation is cyclic.

3. Main convergence theorem. Let p denote the iterate generated by the BCR
algorithm at the rth iteration and let x= X(p) (r 0, 1,. .). In this section, we show
that, under either the essentially cyclic or the Gauss-Southwell order of relaxation,
the BCR algorithm converges, in the sense that {x}- x*. We also provide sufficient
conditions under which {p} converges. To simplify the presentation, let I denote the
set of indexes of the coordinates relaxed at the rth iteration and let d= d(pr)
(r 0, 1,. .). Our argument will follow closely that in 3 of [60] (in fact, to simplify
the presentation, we will borrow certain results from [60]).

We precede our proof of convergence with the following four technical lemmas.
LEMMA 1. (a) For any y in S and any sequence of vectors {yl, y2, ...} in S such

that {f(yk)+f,(yk; y_yk)} is boundedfrom below, it holds that both {yk} and {f(y)}
are bounded, and every limit point of {yk} is in S.

(b) For any y S, any z ,91" such that y + z S, and any sequences {yl, y2,...} y
and {z 1, z, .} z such that yk S and yk + Z

k S for all k, it holds that

lim sup {f,(yk zk)} <=f,(y; Z).

(C) For any y S, there exists a positive scalar e such that {x SI IIx-yl[ <- e} is
closed.

Proof Parts (a) and (b) follow from, respectively, the proofs of Lemmas 2 and 3
in [60]. Part (c) follows from the proof of Proposition l(b) in [60].

LEMMA 2. For r=O, 1,’.’,

(3.1a) q(p+) q(p) >= y[f(x+) f(x) f’(x; x+ x)],

(3.1b) f(x) +f’(x; x* xr) q(pr).

Proof We first prove (3.1). From (1.2), (1.3), and (1.5) we have that

(3.2a) q(pr)=(p, b)+f(xr)__(ET-p,x), ’dr=0, 1,’’’.

Since (cf. (1.4)) d= b- Exr, this implies that, for any r,

(3.2b) q(pr+l)--q(pr)=f(xr+l)--f(xr)--(ETpr, xr+l--xr)+(pr+l--pr, dr+l).

Multiplying both sides by (y-1) and using (2.2b), we obtain

T(pr+l--p r, dr+)__ (y- 1)[q(pr+l)--q(pr)]

(y 1)[f(x+1) -f(x) -(E rpr, x+l_ x)]

+(y-1)(pr+l-p,d+l).
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Hence

(pr+l __pr, dr+l) e (’), 1 )[f(xr+l f(x) -(E 7"p, xr+l xr)],

which, together with (3.2b), implies that

q(p"+x)- q(p") >__ y[f(xr+l)-f(x")-(ET"p ", x"+_x")]
-> y[f(x+1) -f(x")-f’(x"; x+1- x)],

where the second inequality follows from (1.7) and the fact (cf. (1.6)) ET"p of(xr).
To prove (3.1b), note that since p->0 and x* satisfies (1.1), then

q(p") <= q(p’) + (p, Ex* b)

--f(xr)+(ETpr, x*--Xr)

<--f(x")+f’(xr;x*--xr),

where the equality follows from (3.2a) and the second inequality follows from (1.7)
and the fact (cf. (1.6)) Erp

Note that, by (3.1a), the sequence {q(p)} is monotonically increasing. Lemma
l(a), (b) and Lemma 2 imply the following two lemmas.

LEMMA 3. (a) {xr} and {f(x)} are bounded and each limit point of {x r} is in S.
(b) (X+--xr}o.
(C) {prr--[prr+ dr]+}-->0.
Proof Since {q(p)} is monotonically increasing and x is in S for all r, (3.1b)

and Lemma l(a) imply part (a). Now, if part (b) does not hold, then there must exist
a subsequence R for which {X}rR converges to some point x and {X/I}R converges
to some point x" x. Let z x"-x (z 0). By part (a), both x and x+ z are in
S. Then from (3.1a), the continuity off on S, and Lemma l(b), we obtain

lim inf {q(pr+l)--q(pr)} >- T[f(x+z)--f(x)--f’(x; Z)].
+ R

Since q(p) is nondecreasing with r and f is strictly convex (so the right-hand side of
above is a positive scalar), it follows that

{q(p’)}+.

This, in view of the strong duality condition

max {q(p)[p _-> O} min {f(x) lEx >= b},

contradicts the feasibility of (P), i.e., S 71X .
If part (c) does not hold, then there exist scalar e > O, coordinate block I c, and

subsequence R for which

Ir=I and [[p-[p+d]+[l -_> e, VrR.

Then (2.1a) implies that {hi(d , P)}rR is bounded away from zero, i.e., there exists
some scalar 0 > 0 such that

It follows from (2.2c) that

(3.3)

qbl(d, pr) >= O, Vr R.

6i(d , dr-l)>= O, Vr R.
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Since (cf. (1.4)) d r= b-Exr, {d r} is bounded by part (a). This, together with (2.1b),
(3.3), and the continuity of 61, implies that

r--1I]E1(xr-xr-1)ll=lldt-dl [1=>0, ’qrR,

for some scalar 0’> 0. This contradicts part (b).
LEMMA 4. Under either the essentially cyclic or the Gauss-Southwell order of

relaxation, ifx is any limit point of {xr}, then x S f’) X and there exists a subsequence
{xr}g x satisfying

(3.4) bi- Eix < 0 :=> {PT}rg 0.

Proof. We will first prove that

(3.5) {pr-[pr+dr]+}O.

Suppose that the essentially cyclic order is used. Fix any coordinate index i N and,
for each r =>_ T, let ’(r) be the largest integer h not exceeding r such that Ih-1. Then

r-1

d d(r) + Z Ei(x h xh+l), Vr>_- T.
h =’(r)

Since r- ’(r) -<_ T for all r >- T, this, together with Lemma 3(b), (c) and the fact P7 p(r)
for all r->_ T, implies (3.5). Now suppose that the Gauss-Southwell order is used. Then
(2.1a) and Lemma 3(c) imply that {p_[pr + d]+}_0 for all I c. Since the union
of the elements of equals N, (3.5) holds.

Since [pT-[pT+ dT]+l d7 if dT_->0, it follows from (3.5) that limr_+ sup {dT} <-0
for all i. Hence every limit point of {xr} is in X. This, together with Lemma 3(a),
implies that x e S f] X.

Next we prove (3.4). Let d b-Ex. Since xe X, we have di-<0 for all i.
Consider any such that di < 0 (if no such exists, we are done). Since x is a limit
point of {xr}, there exists subsequence R such that {X}rR X. Then {d}rR di < O,
which, together with (cf. (3.5)) {pT-[pT+ dT]+}, +0, implies that

Lemmas 1 and 4 allow us to prove the main result of this section.
PROPOSITION 1. If {p r} is a sequence ofdual vectors generated by the BCR algorithm

under either the essentially cyclic or the Gauss-Southwell order of relaxation, then the
following hold"

(a) {X(pr)} x*.
(b) If cl (S) is a polyhedral set, and there exists a closed ball B around x* such

that f’(x;(y-x)/lly-xll) is bounded for all x, y in B f]S, then {q(p)}-f(x*).
(c) If int (X) fq S , then {pr} is bounded and every one of its limit points is an

optimal solution for (D).
Proof. We prove part (a) only. The proof of parts (b) and (c) is identical to that

of Proposition 1 in [60]. Let xr= X(pr) for all r, let x be a limit point of {xr}, and
let R be a subsequence of {1,2,...} satisfying (3.4). Also let d b-Ex and I-=
{i N d < 0}. By Lemma 4, x S f)X. Suppose that x x* and we will reach a
contradiction.

Let y be any element of Slfqri (S)FqX (y exists by Assumption B). Fix any
A (0, 1) and denote y(A)=Ay+(1-A)x*. Then y(A)Slfqri(S2)fqX. By Lemma
l(c), there exists an e>0 such that {xSlllx-xll<=e) is cosed. Since cl(S1) is a
polyhedral set and y(A) x belongs to the tangent cone of S at x, this implies that
there exists 6 (0, 1) such that, for all r R sufficiently large,

(3.6) x + 6z S1,
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where z y(h)- x. On the other hand, since y(h) ri (S2), X S2 for all r, and
{Xr}rR- X, we have that, for all r R sufficiently large,

(3.7) x + tZ S2.

Since y(h) X, Eiz >- 0 for all I-. This implies that (since p >_- O)

(p, Ez) >- Y, p(Eiz), Vr R, if I-#,
iI-

p r, Ez) >-- O, V r R, otherwise.

In either case, we have (cf. (3.4))

(3.8) lim inf{(pr, Ez)}>-O.
r-+o,r R

Since x+6zS and (cf. (1.7) and the fact ETp Of(x)) f’(xr; z)>=(pr, Ez) for all
r, (3.6)-(3.8) and Lemma l(b) imply that

f’(x; z) >--_ O.

Hence f(x)<=f(y(h)). Since the choice of he(O, 1) was arbitrary, by taking
arbitrarily small (and using the continuity off within S), we obtain that f(x) Nf(x*).
Since f is strictly convex and x S f X, this contradicts the hypothesis x # x*.

We remark that a result analogous to Proposition 1 also holds for the BCR
algorithm modified to solve the equality constraint problem (pE).

Extensions.
1. Note from its proof that Proposition 1 still holds if Assumption B is replaced

by the following more general assumption: S f-)X and, for any x S f’)X, any
y S fqX, and any sequence {yk} in S such that {yk}_y, it holds f’(y’, x-y)>=
limk_+ sup {f,(yk X y)}.

2. Consider a mixed algorithm whereby in between BCR iterations are inserted
other dual ascent iterations (these other dual ascent iterations need not be convergent
on their own). For this mixed algorithm, Proposition 1 can also be shown to hold,
provided that (i) there exists a bound T’_-> 1 such that a BCR iteration is executed at
least once every T’ consecutive iterations (the coordinates are assumed to be relaxed
by the BCR iterations in either the essentially cyclic or the Gauss-Southwell order)
and that (ii) each inserted dual ascent iteration generates the new dual vector p’ from
the current dual vector p with the property

(3.9) q(P’) q(P) >= P,[f(x(P’)) f(x(P)) f’(x(P); X(P’) X(P))],

where is some fixed positive scalar. (The condition (3.9) is satisfied by most dual
ascent iterations. For example, it is satisfied by the BCR iteration (cf. (3.1b)) as well
as by any iteration that maximizes exactly q along some direction in " (cf. (3.2b)).)
In such a mixed algorithm, the BCR iteration may be viewed as a spacer step to enforce
convergence of the iterates. We give an application of this mixed algorithm below.
Other applications are discussed in 6.2. Other extensions Of the BCR algorithm are
discussed in Proposition 10 and in 8.

3. It is easily seen that every limit point of the sequence {p} is an optimal solution
of (D). Hence {pr} diverges if (D) does not have an optimal solution. On the other
hand if the set of optimal solutions for (D) is nonempty but unbounded, {pr} can still
diverge (and thus cause numerical difficulty). To remedy this, we can modify the BCR
algorithm by, for example, replacing p with

(3.10) p’ argmin {][zr[[ ETzr ETp, (b, 7r) (b, p), r >= 0}
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at periodic intervals. Because E rp, E rp and (b, p’) (b, p), it follows from (1.3) and
(1.5) that q(p’)=q(p) and g(p’)=X(p). Hence iteration (3.10) satisfies (3.9) and the
modified BCR algorithm is convergent. In some cases (e.g., network flow), the mini-
mization (3.10) can be performed quite efficiently.

4. Convergence for strongly convex costs. In this section we consider the special
case where f is strongly convex, in the sense that there exist scalars r > 0 and w > 1
such that

(4.1) f(y) f(x) f’(x; y x) >-- o’l[y x[[to, Vx e S, Vy S.

We show that, for this special case, the essentially cyclic order of relaxation can be
weakened further. (Note that (4.1) is a generalization of the traditional definition of
strong convexity (called uniform convexity in [47, p. 83]), where to is taken to be 2.
As an example, f:- (-, +] given by

x if x -> 0,
f(x)= +c otherwise,

satisfies (4.1) with to 4, o, J, but does not satisfy (4.1) with to 2 for any positive or.)
Consider the following order of relaxation that is weaker than the essentially

cyclic order.
Quasi-cyclic order. Every coordinate is chosen at least once for relaxation between

iterations "rk and "rk+l, for k 1,2,. ., where {z, r2,’" "} is a sequence of integers
given by

"r --0 and Zk+l "fk + bk, k 1, 2, ,
and {bk} is any sequence of integers satisfying

bk >- I1, k 1, 2,. ., and (bk)l-t +030.
k=l

(For example, bk n" k/(to-1) is a valid choice.) The above order of relaxation, first
proposed in [59], is similar to the essentially cyclic order but allows the length of the
cycle to grow without bound. It is an open question whether this order can be weakened
further, say, to one that only assumes that each coordinate is relaxed an infinite number
of times.

By using Lemmas 1 and 3 in 3 and an argument analogous to that for Proposition
2 in [60], we can show the following result that is analogous to Proposition 1 (which,
for simplicity, we state without proof).

PROPOSXTION 2. Suppose that (4.1) holds and let {pr} be a sequence ofdual vectors
generated by the BCR algorithm under the quasi-cyclic order of relaxation. Then the
following hold:

(a) There exists a subsequence R c_ {1, 2,. .} such that {X(pr)}R - X*.
(b) If cl (S) is a polyhedral set, and there exists a closed ball B around x* such

that f’(x;(y-x)/lly-xl]) is bounded for all x, y in Bf’IS, then {q(p)}-f(x*) and
{X(pr)}--> x*.

(c) If int(X)flS, then {q(p)}-->f(x*), {X(pr)}-> x*, and {p’} is bounded.
Moreover, each limit point of {p} is an optimal solution for (D).

Note that the conclusion of Proposition 2(a) is weaker than that of Proposition
l(a). Only for the special case where f is separable and c {{1}, ., {n}} has it been
shown that {x"}-> x*, assuming only that (4.1) holds and that the quasi-cyclic order
of relaxation is used [59].
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5. Choosing i and i. We have seen from 3 and 4 that the BCR algorithm
converges, provided that each BCR iteration is well defined. In this section we will
consider choices of bi and i that ensure that the BCR iteration is well defined. In
particular, we will show that it is well defined if either a certain constraint qualification
holds or if bi and satisfy a certain growth condition. We will also consider particular
implementations of the BCR iteration for, respectively, single coordinate relaxation
and gradient ascent.

5.1. Exact coordinate maximization. In this subsection we show that the BCR
iteration (2.2a)-(2.2c) is well defined if the dual functional q(p) can be maximized
exactly with respect to the coordinates Pi, I, while the other coordinates are held
fixed. To ensure that such an exact maximization is possible, the following constraint
qualification on f and X will be considered.

Assumption C. The function f is of the form f h + c, where h :m _> (_, +C]
is a strictly convex function such that ri (dom (h)).f3 X and c is the indicator
function for a polyhedral set C in " (i.e., c(x)=O if x C and c(x)=
otherwise).

We have the following result.
PROPOSITION 3. Under Assumption C (in addition to Assumptions A and B), the

BCR iteration (2.2a)-(2.2c) with y (0, 1] is well defined for any functions
satisfying, respectively, (2.1 a) and (2. lb).

Proof. Consider any nonnegative vector p n and any I % Let us define the
following relaxed problem

(5.1)
Minimize f(X) i:IE Pi (EiX)

subject to Etx >-_ b.
Since (P) is feasible, so is (5.1). Since the cost function of (5.1) has compact level sets
(cf. Assumption A), this implies that (5.1) has an optimal solution which we denote
by x’. It then follows from Assumption C and Theorem 28.2 in [54] that x’, together
with some Lagrange multiplier vector associated with the constraints Ex >- b, satisfies
the Kuhn-Tucker conditions for (5.1). Let Ai, i/, denote the coordinate of this
Lagrange multiplier vector associated with the constraint Eix >- bi. Define a new dual
vector p’n to be the vector whose ith coordinate is

A if/z/,
(5.2) P:

Pi otherwise.

We claim that p’>-0 and satisfies (2.2b) and (2.2c) (clearly p’ satisfies (2.2a)). To
see this, note from the Kuhn-Tucker conditions for (5.1) that Ai->-0, for all /, and

(5.3a) Eix’: bi if Ai > O, /,

(5.3b) Eix’>= bi if A 0, I,

(5.3c) ., (Ei)T/kiGOf(x’)

_
(Ei)Tpi.

i iii

Hence p’=>0 and (by (1.6), (5.2), (5.3c)) X(p’)=x’. This, together with (1.4) and (5.2),
implies that

(p’-p, d(p’)) (p’-p, b Ex’)

Z (Ai-pi)(bi- Eixt)
il

>-0,
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where the inequality follows from (5.3a), (5.3b). Therefore, q(p’)>-q(p). Since
(0, 1], this implies that (2.2b) holds.

To see that (2.2c) holds, note that (cf. (5.3a), (5.3b) and the fact d(p’) bi Eix’)
p’=[p’i+ d,(p’)]+. Hence, by (2.1a), ch,(d(p’), p’)=O.

From the proof of Proposition 3 it can be seen that the dual vector p’ given by
(5.2) is obtained equivalently by maximizing exactly the dual functional q(p) with
respect to pi, while the other coordinates of p are held fixed. If q(p) has bounded
level sets and is strictly convex in PI for all I in c, then the convergence of such a
nonlinear Gauss-Seidel iteration follows from Proposition 2.5 in [5, 3.2.4]. However,
the conditions under which q has this property are very restrictive.

It is an open question whether the hypothesis in Proposition 3 can be weakened
further. For example, would the conclusion of Proposition 3 hold if it is only assumed
that (D) has an optimal solution?

5.2. 41 and satisfy a growth condition. If Assumption C does not hold, then
we need to impose some growth conditions on bt and 6 to ensure that the BCR
iteration is well defined. We state this result in the following proposition.

PROPOSITION 4. If in the BCR iteration, it holds that

then the BCR iteration with y (0, 1] is well defined.
Proof. Let p n and I c be as in the BCR iteration and let chi(d(p), p).

If/3 =0, then the BCR iteration is well defined (since p’=p satisfies (2.2a)-(2.2c)).
Suppose that/3>0. Let Oi=di(p) and I-={iIlOi<O}, I+={iIlOi>O}. Let/.t be
any scalar in (0, 1/2].

Consider the following relaxed problem

maximize f(x) Z pi(Eix)
ii-

(5.4) subject to Eix >= b Oit.L Vi I+,

Eix >- bi, Vi I-.

First note that the interior of the constraint set for (5.4) intersects S. To see this, let
’(A) AX(p)+(1-A)x*. Then (since 0i bi-Ex(p))

Ei(A)-bi-- A(-Oi)+(1-,)(Eix*-bi)>->_-AOi, Viii+,

Ei(A)-bi--A(-Oi)+(1-A)(Eix*-bi)>---AOi>O, Viii-,

so that, for A sufficiently small, ’(A) is in the interior of the feasible set for (5.4). On
the other hand, since X(P) and x* are both in S and S is convex, sr(A S for all A [0, 1 ].

Since the interior of the constraint set for (5.4) intersects S, the convex program
(5.4) is strictly consistent ([54, p. 300]). It then follows from Assumption A and
Corollary 29.1.5 of [54] that there exist an x’ ,9i and a Lagrange multiplier vector
associated with the constraints in (5.4) that, together, satisfy the Kuhn-Tucker condi-
tions for (5.4). Let Ai, I+ (i I-), denote the coordinate of this Lagrange multiplier
vector associated with the constraint Eix >: bi- Oi[J (Eix >= bi). Define p’ " to be the
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vector whose ith coordinate is

(5.5) PI= +A ifieI+,
otherwise.

We claim that p’>= 0 and satisfies (2.2b) and (2.2c) (clearly p’ satisfies (2.2a)). To
see this, note from the Kuhn-Tucker conditions for (5.4) that A _> 0, for all I/ t_J I-,
and

Eix’= bi- Oi].ll, if A > 0, I+,
(5.6a)

Ex’= bi if A > 0, I-,

(5.6b) Eix’>- bi if Ai 0, I-,

(5.6c) Z (E)rA,Of(x’) ., (E,)7"Pi
il+[_J i_i-

Hence p’->_0 and (by (1.6), (5.5), (5.6c)) X(p’) x’. The latter implies that (cf. (1,4))
di(p’) b- Ex’ for all i. This, together with (5.5), (5.6a), (5.6b), and the positivity of
0/x, implies that

(p’-p, d(p’))= (p’-p, b Ex’)

(A- p,)(bi- Ex’)+ , A,Oit,
i I-,Ai=O i I+,Al>O

>=0.

Hence q(p’)>= q(p). Since 3/ (0, 1], this implies that (2.2b) holds.
We now show that (2.2c) holds. First note from (5.6a), (5.6b) that Ai=

[A + bi- Eix’]+ for all I- Hence (cf. (5.5))

(5.7) p’-[p’i+ d,(p’)]+ =0, Vi i-.

From the nonexpansive property of [. ]+ and p’>-0, we also have

(5.8) IP-[P + d(P’)]+[ -< Id(P’)l, /i i.

Since 0= di(p) for all I\(I-U I+), (5.8) implies

(5.9) Ipl-[p+d,(p’)l+l<-Ia,(p)-d,(p’)l, Vie I\(I-t.J I+).
For each I+, since d(p’) <- Otz and/z (0, 1/2], we have from 0- d(p) that

Id,(P’)l--< Id,(p) d,(p’)l, Vi I+,
and hence (cf. (5.8))

(5.10) [p-[p+d,(p’)]+l<--Id,(p)-d,(p’)l, Viii+.
Combining (5.7), (5.9), and (5.10), we obtain that IIp’i-[p’+d,(p’)]+[I <-
IId,(p)-d,(p’)ll, which, together with our hypothesis, implies (2.2c).

The proof of Proposition 4 also suggests an implementation of the BCR iteration--
by way of solving (5.4). In fact, from the proof of Proposition 4 we see that (5.4) can
be solved inexactly, i.e., it suffices to find any nonnegative p’n for which

d(p’)<=O, Viii-,

d(p’) <-_ d,(p), Vi I+,
p=p, Vi(I+l,.J I-),
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where 8 is any fixed scalar in (0, 1) (this corresponds to choosing thx(r/, 7r)= I]rrx-
[r, + r/,]+ll and 6,(r/, r/’)=max {1, /(1-)}. Ilrh-r/]]). With this implementation,
the BCR algorithm can be thought of as solving (inexactly) a sequence of subproblems
of the form (5.4). The fact that (5.4) can be solved inexactly makes this implementation
quite practical.

5.3. Single coordinate relaxation. By choosing the coordinate blocks so that any
two coordinates from different blocks are weakly coupled, the BCR algorithm can
perform substantially faster than its single coordinate counterpart (the amount of
improvement depends on the computational effort per iteration). Nevertheless, for
problems that are large and sparse, single coordinate algorithms are often favoured;
they are simpler to implement, use less storage, can readily exploit problem sparsity,
and converge quite fast. In fact, most of the dual coordinate ascent algorithms are
single coordinate algorithms (see 6).

We will presently consider a specialization of the BCR iteration for the single
coordinate case, i.e., c {{1),..., {n)), that is both simple and powerful. For each

N, let a be any scalar in (0, 1) and let q ,t - ,t be any continuous, strictly increasing
function satisfying q(O) O. Consider the following iteration that generates a new dual
vector p’ from the current dual vector p (e denotes the sth coordinate vector in ").

Single Coordinate Relaxation (SCR) Iteration.
Given a nonnegative p ", choose any s N and let/3 q(d (p)).
Set p’=p + es, where A is any scalar satisfying

(5.11a) as,8->ps(ds(p’))>-O if/3->0,

(5.11b) a<=d/s(d(p’))<=O if/3<0 and q,(d,(p-peS))<-_as,B,

(5.1 lc) -p otherwise.

(For the equality constraint problem (pE), we modify the SCR iteration as follows:
We replace (5.1 lb), (5.11c) by "a <-_ $(d(p’))<-O if/3 <0" and remove the nonnega-
tivity constraint on p.) To see that the stepsize , is well defined, note that d(p) is
nondecreasing in ps (since q is concave and, by (1.4), d(p)=oq(p)/Ops) and 0s is
strictly increasing. Hence , > 0 (<0) if/3 > 0 (/3 < 0) and is well defined when it is
given by either (5.11b) or (5.11c). If A is not well defined when it is given by (5.11a),
it must be that p(d(p + 0 e))> aft for all 0 -> 0. This, together with the properties
of @s, implies that d(p + 0 e) -> e for all 0 -> 0, where e is some positive scalar. Hence

lim q(p + 0 e) +az,
0q-cx

a contradiction of the feasibility of (P).
Now we show that the SCR iteration is a special case of the BCR iteration

with I={s}, 3, =1, 4(rt, r)=(1/as-1)[[r+qs(rt)]+-Tr[, and 6(r/, /’)=
[q()- q(r/’s)[. Since A >0 (<0) if/3>0 (/3 <0), it follows from (5.11a)-(5.11c) and
the properties of qs that )td (p’) >- 0. Since (d (p’), p’ p) ,d (p’), this implies that p’
satisfies (2.2b) with y= 1. Also from (5.11a)-(5.11c) we have that

either aslfl-q(d(p’))[>-_ (1-as)l(ds(p’))]
or p’ 0, q(d(p’)) < 0,

which, together with the nonexpansive property of [. ]+, implies that

either 6s(d(p’), d(p)) >-_ chs(d(p’), p’)

or 4,(d(p’), p’)=O.

Hence (2.2c) holds.
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Since the SCR iteration is a special case of the BCR iteration, it follows that the
algorithm based on successive applications of the SCR iteration converges (in the
sense of either Proposition 1 or Proposition 2).

Notes and extensions.
1. If Assumption C holds, then as 0 is also allowable (in this case the choice

of @s is inconsequential). This is because the SCR iteration with as 0 is equivalent
to (5.2) with ! {s}. In this case we obtain that P’s [P’s + ds(p’)]+ and the SCR iteration
can be interpreted as an exact line search along the sth coordinate direction. We will
see in 6 that most of the single coordinate relaxation methods use exact line search
(see [2], [8]-[10], [13], [21], [24], [27], [28], [31]-[33], [39], [41], [45], [48], [50],
[57], [58], [64]).

2. In the SCR iteration, A is always between 0 and the line search stepsize; hence
the SCR iteration uses under-relaxation. It is possible to also use over-relaxation (i.e.,
A exceeding the line search stepsize), if a condition analogous to (2.2b) is imposed.

3. General techniques for computing the stepsize A in the SCR iteration can be
found in [7], [35], [44], [59] (see also [26], [46] for the special case wheref is separable
and quadratic over a box). In some very special cases, A can be computed very easily
(see 6.3). If f is separable, then A can be computed in parallel (see 7).

5.4. Dual gradient iteration. Consider the equality constrained problem (pE). A
classical method for solving this problem is the dual gradient method, whereby at each
iteration, the dual vector p is moved along the gradient direction Vq(p) (or an
approximation of) in order to maximize the dual functional q. This method was one
of the first dual methods proposed to solve (pE) [22], [61] (also see [4], [25], [34],
[39], [40], [49], [50]) and yet, despite its long history, very little is known about its
convergence properties. In this subsection, we show that this method is a special case
of the BCR algorithm, from which it immediately follows that this method has the
convergence properties stated in Proposition 1.

We describe the dual gradient method below: We fix scalars 01 (0, 1] and
02 (0, 1). At each iteration, we compute a new dual vector p’ from the current dual
vector p using the following iteration.

Dual Gradient Iteration.
Given p ,", choose a vector u " satisfying

(5.12a) (d(p), u>_>- OIId(p)II" Ilull,

and set

(5.12b) p’=p+Au,

where A is any positive scalar satisfying.

(5.12c) 0--< (d (p + Au), u) <- O2(d (p), u).

The stepsize A can be computed using, say, the Armijo rule [4]. (If Assumption C
holds, then exact line search, i.e., 02 0, is also allowable.)

The above dual gradient method seems to be quite different from the coordinate
relaxation methods but, as we show below, it is a special case of the block coordinate
relaxation algorithm. (Hence it is convergent in the sense of Proposition 1.)

PROPOSITION 5. The iteration (5.12a)-(5.12c) is well defined and is a special case

ofthe BCR iterationfor solving (pE), with y l, I N, bN(r/, r) r/11, and 6N(rl, rl’)
(1/(1 02)01
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Proof. If the iteration (5.12a)-(5.12c) is not well defined, it must be that (d(p+
Au), u) is bounded away from 0 as A - +oe. In that case q(p + Au)
a contradiction of the feasibility of (pE).

It is clear that p’ satisfies (2.2a) and since (d(p’), u)>=O, p’ also satisfies (2.2b)
with y 1. To see that p’ satisfies (2.2c), note from (5.12a)-(5.12c) that

(d(p)- d(p’), u)e (1 O.)(d(p), u)

(1 O)01[[d(p)[l" I}u}J.
Hence, by the Cauchy-Schwartz inequality,

lid(p)- d(p’)ll e (1 o=)olld(p)ll.

This in turn implies

IId(P’)II -< IId(p)ll / lid(p)- d(p’)ll
-<_ (1/(1 02)01 + 1)11 d(p)- d(p’)ll.

There are a number of choices for the dual ascent direction u. One such choice,
proposed in [50] (also see [39, Thm. 4.4.1]), is

(5.13a) u Hd(p),

where H is any n x n symmetric matrix satisfying

(5.13b) Ey = <_-- (Ey, HEy) <=
and /.,1,1, /i,2 are two positive scalar constants. To see that this choice of u satisfies
(5.12a), note that since (pE) is feasible, there exists ,m satisfying b- E. Hence

(5.14) d(p)= E(g-Vf*(ETp)).
This, together with (5.13a), (5.13b), implies that

(d(p), u)= (d(p), Hd(p))

>- Xllld(p)ll
> ,lld(p)ll Ilull/=,

where the last inequality follows from (cf. (5.13b), (5.14)) IIHa(p)ll <-_ lld(p)ll. There
are a number of choices for the matrix H. For example, H can be computed using a
quasi-Newton scheme. Because the matrix E is not assumed to have full row rank,
this condition is in general weaker than the requirement that H is positive definite
over the entire space.

The identification of the dual gradient method with block coordinate relaxation
methods motivates a number of new algorithms. For example, we can consider a block
coordinate relaxation algorithm in which each block of coordinates is relaxed either
by maximizing the dual functional with respect to all of the coordinates in the block
or by performing a one-dimensional line search in the direction given by the partial
derivatives of q with respect to these coordinates. The type of relaxation iteration to
use for each coordinate block can then be chosen according to the problem structure.
As another example, consider the case where the dual functional q(p) has a negative
curvature with respect to only a subset of the coordinates of p. In such a case we can
take advantage of this structure by alternating between a second-order iteration for
these coordinates and a first-order iteration for the remaining coordinates. We illustrate
this scheme below.
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Suppose that the problem (pE) has the following separable form

Minimize g(y)+ h(z)

subject to Ay + Bz d,

Cz e,

where g m, (_, +C], h 9] "2 (-, +c] are strictly convex functions (m + m2
m) and A, B, C, d, e are matrices/vectors of appropriate dimensions. By attaching
Lagrange multiplier vectors u and v to, respectively, the constraints Ay + Bz d and
Cz e, we obtain the following dual functional (cf. (1.3)):

q(u, v) (d, u)+(e, v)-g*(Aru)-h*(Bru+Cv),
where g*, h* denote, respectively, the conjugate function of g and h (cf. (1.2)).

Then, if h* has a positive curvature, we can use a second-order iteration to update
the multiplier vector v. For example, suppose that h is quadratic of the form h(z)=
(z, Qz)/2, where Q is an m2x m2 symmetric positive definite matrix. Then h*(t)=
(t, Q-1 t)/2 and

Voq(u, v) e- CQ-’(BTu + Cv),
V2q(u,, v) -CQ-1C,

where Vq and zVq denote, respectively, the first-order and the second-order partial
derivative of q with respect to v. Hence we can update v by moving it along, say, the
Newton direction w, given as the solution to the system of linear equations

CQ-1Cr)w e-CQ-’(Bru + Cry),
to maximize q while u is held fixed. This iteration is a special case of the dual gradient
iteration (cf. Proposition 5 and (5.13a), (5.13b)). The other dual vector u can be
updated by a different type of BCR iteration.

6. Relation to known methods. In this section, we show that the dual methods
proposed in [2], [6], [8]-[10], [13], [15], [18], [21], [23], [24], [27], [28], [31]-[33],
[37]-[39], [41], [42], [45], [48]-[50], [57]-[60], [64] are special cases of the BCR
algorithm (under the essentially cyclic or the Gauss-Southwell or the quasi-cyclic order
of relaxation) and that the conjugate gradient methods in [39], [62] are special cases
of the mixed algorithm discussed at the end of 3. Hence convergence of these methods
follow from either Proposition 1 or Proposition 2. We also prove convergence of a
general Block S.O.R. algorithm for the solution ofthe symmetric linear complementarity
problem. A mixed version of this algorithm contains as a special case the S.O.R.
algorithm proposed in [14].

6.1. General costs and constraints.
PROPOSITION 6. The methodsproposed in [50] are special cases ofthe BCR algorithm

for solving the special case of (pE) where S is a polyhedral set andf is uniformly convex
(i.e., satisfies (4.1) with to 2) and differentiable on ri (S).

Proof The periodic basis ascent method ([50, p. 10]) is a dual single coordinate
ascent method that uses exact line search and essentially cyclic order of relaxation.
Hence it is a special case of the SCR algorithm with cs =0 for all s. (Although this
method allows arbitrary basis vectors to be used for ascent, it can be viewed as a
coordinate ascent method, but in a transformed space.) The gradient-type method
([50, p. 11]) is a special case of the gradient method given in 5.4 where the gradient
direction is given by (5.13a), (5.13b) and the line search is exact. (Also see [39], [49]
for specialization of this latter method to quadratic programs.) [3
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PROPOSITION 7. The methods in [9] and 10] are special cases ofthe SCR algorithm
with a--0 for all s.

Proof. Both methods use exact line search. The one in [9] uses cyclic relaxation
while the one in [10] uses essentially cyclic relaxation. These methods further require:

(i) S is closed and f is continuously differentiable in ri (S);
(ii) {xSID(x,y)<=a} and {y ri (S)l D(x, y) <- a} are bounded for every y

ri (S) and every x S, respectively, where D(x, y) =f(x)-f(y)- (Vf(y), x-y);
(iii) argmin {D(z, y)lzS, Eiz=b,}ri (S), Vyri (S), k/i N.
(The conditions (ii), (iii) do not typically hold, except for special cases such as

when f is strongly convex and S ".)
PROPOSITION 8. The methods in [59] and [60] are special cases ofthe SCR algorithm

with d/ (7/) r/for all s.

Proof. The proof is straightforward from the algorithm description in [59] and
2 of [60]. In [59], f is further assumed to be separable. (However, the convergence

results obtained in [59] are stronger than those obtained from Propositions 1
and 2.) D

6.2. Quadratic costs. In this subsection, we consider the special case of (P) where

f is quadratic:

(6.1) f(x)=(x, Qx}/2+{c, x},

where Q is an m x m symmetric positive definite matrix and c is a vector in 81". It is
easily seen that, under the assumption that (P) is feasible, both Assumptions A and
B hold (f is in fact uniformly convex). Direct calculation using (6.1) and (1.2)-(1.5)
gives

(6.2)

(6.3)

q(p) -(p, Mp)/2+(w, p},

X(p)= Q-l(Erp-c),

(6.4) d(p) w- Mp,

where we denote M EQ-IE 7- and w b + EQ-c.
The first dual coordinate ascent method for solving (6.1) was due to Hildreth [28].

He considered the special case where M is positive definite and proposed a single
coordinate cyclic relaxation method with exact line search for its solution. This method
was later extended to inexact line search [14], [18], [42], essentially cyclic order of
relaxation [27], [38], and block coordinate relaxation [14], [15]. In [14], [27], [38],
[42], M is not required to be positive definite.

The general form of this method can be stated as follows: We fix a collection cg
of nonempty subsets of N such that their union equals N. We also fix two relaxation
parameters to and tOz satisfying w2 (0, 2) and to (0, min { 1, o2}]. At each iteration,
we generate a new dual vector p’ from the current dual vector p as follows.

Block S.O.R. Iteration.
Given p [0, +oo) n, choose an I % Set

(6.5) p’= (1-a)p+aA,

where A is any vector in [0, +oo)" satisfying

(6.6a) AI [AI + w, MIA]+,
(6.6b) AN\ --PN\I,

and a is any scalar inside [to, w2] satisfying (1-a)p+aA>--0.
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Note that h is well defined since A >__ 0. (It can be seen that A is equivalently a solution
of the problem max {q(cr) r->_ 0, rN\1 Pro\I}.) Below we show that the Block S.O.R.
iteration, under certain conditions, is a special case of the BCR iteration.

PROPOSITION 9. If O01 002 1 or if MII is positive definite for all I c, then the
Block S.O.R. iteration is a special case ofthe BCR iteration, with 3/- 2/w2-1, d(q, or)
,i[zr,-[zr,+/,]+l, and 6,(’q, "rl’)-p[[’ql--’ql[[, where p is some positive constant
depending on M, wl, and to2 only.

Proof. We will show that p’ given by (6.5)-(6.6b) satisfies (2.2b), (2.2c) ((2.2a)
clearly holds). First we prove that (2.2b) holds. From (6.6a), (6.6b) we have

(6.7) (w-MA, A-p)>--O,

and from (6.2) and (6.5) we have

(p’-p, d(p’))- (p’-p, w- Mp’)

(6.8) (p’’p, M(A-p’))+(p’-p, w- MA)

=(1/h-1)(p’-p,M(p’-p))+h(A-p, w-MA).

Also, (6.2) and (6.4) imply

q(p’)- q(p)=-(p’, Mp’)/2 +(w, p’)+ (p, Mp)/2-(w, p)

(6.9) =(p’-p,M(p’-p))/2+(p’-p, w-Mp’)

=(p’-p, M(p’-p))/2+(p’-p, d(p’).

Multiplying both sides by 2(1/A- 1) and using (6.7), (6.8), we obtain

2(1/h 1)[q(p’)- q(p)] (1/h 1)(p’-p, M(p’-p))+ 2(1/h 1)(p’-p, d (p’))

<=(p’-p, d(p’))+2(1/h- 1)(p’-p, d(p’))

-(2/h-1)(p’-p,d(p’)).

Since h -<_ to and 2/h 1 is a decreasing function of h, (2.2b) holds with 3/- 2/w_- 1.
Now we prove that (2.2c) holds. First suppose that Wl- w2 1. Then h- 1 and

it follows from (6.5)-(6.6b) that

p’i p’ + w, Mp’]+.
Hence 4(d(p’), p’)=0 and (2.2c) holds. Next suppose that Mn is positive definite.
Denote {i I ]p + w- Mp’ < 0} and {i I IA 0}. Then we have

(6.10) Pi-[Pl + w,- M,p’]+ p’,, Vi I,

(6.11) p-[p+ w- Mp’]+ Mp’- w, Vi I\.
Also, using the fact (el. (6.6a)) w- MA=0 for all i6 I\/, we obtain

p’ (1-h)p, Viii,

w-Mp’=(1-h)(w-Mgp), ViI\.
This implies

(6.12)

(6.13)

hp;=(1-h)(p-p’i), Viii,

h(wi-Mip’)=(1-h)Mi(p’-p), Vi.I\I,

which, together with the definition of I, implies

(6.14) p<-Mip’-wi=(1-1/h)Mi(p’-p), Vi (I\),
(6.15) wi-Mip’>--p=(1-1/h)(pi-p), Vi(l\)f3.
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Also we have that, for all ii, wi-Mip’<-(1-A)(wi-Mip) (since wi-MiA<--O and
p’= (1-A)p+AA). Hence

(6.16) A(w,-M,p’)<-_(1-A)M(p’-p), ViK,

where we let K {i (I\) f’) -[wi-Mp’>O}. Combining (6.12)-(6.16), we obtain

p=(1-1/A)(p-p,),

p <= (1-1/A )Mi(p’-p),

w,- Mp’>- (1 1/A)(p,-p),

w Mp <- (1 1/A)M(p-p’),

w, Mp’ (1-1/A )M(p -p’),

ViNI,
Vi n (I\),
ti e ((I\Il fq ll\K,

ViK,

Vie(I\)fq(I\).

Combining the above with (6.10), (6.11) and using (6.4), we obtain

6,(d(p’), p’)<=ll/A -111p,-p$l,

ck,(d(p’),p’)<-_ll/A-1llM(p-p’)l, ViI\(_\K),

where bi(r/, 7r)= lTr-[Tr + r/,]+l. This, together with (6.6b), implies that

(6.17) ck(d(p’), p’) <=ll/A llpllp, -p’ll,
il

for some positive constant p depending on Mn only. Since Mn is positive definite,

liP,-pll =--< p= <p,-p’t, M,t(p,-p’))

-P2" [[PI-P’III lidl(p)-d,(P’)ll,

where P2 is some positive constant depending on Mu only, and the equality follows
from (6.4). This and (6.17) imply that

Y.. qb,(d(p’), p’)<=ll/A -1lp p2 IId,(p)-d,(p’)l[.
iI

SinceA[to,to], I1/A-11_-<max{1/tOl-l,l-1/to2}.
COROLLARY 9. The methods in [15], [18], [27], [28], [38], [42] are special cases

of the BCR algorithm.
Proof. The methods in 15], 18], [28] require M to be positive definite, in which

case Mu is positive definite for any I_ N. The methods in [27], [38], [42] use single
coordinate relaxation, in which case Mn is always positive definite (since E has no
zero row). Each of the above methods uses either cyclic or essentially cyclic order of
relaxation.

If Mu is not positive definite and A 1, then it is possible that d (p) di(p’) and
p [p+ di(p’)]+, in which case there is no continuous i and b satisfying, respec-
tively, (2.1a) and (2.1b) for which (2.2c) holds. However, the Block S.O.R. algorithm
can still be shown to converge by modifying the proofs in 3 and 4. To the best of
our knowledge, this is the first proof of convergence for this algorithm that makes no
assumption on the problem other than that it be feasible.

PROPOSITION 10. Let p be the iterate generated by the Block S.O.R. algorithm at
the rth iteration. Then, under either the quasi-cyclic (with to 2) or the Gauss-Southwell
order of relaxation, {X(p)}-> x* and {q(p)}->f(x*).
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Proof From the proof of Proposition 9 and Lemma 2 we have that (3.1a) holds
with y=2/to2-1. Since (3.1b) and Lemma 1 clearly hold and the proof of Lemma
3(a), (b) depends only on Lemmas 1 and 2, it follows that Lemma 3(a), (b) hold.
Suppose that Lemma 3(c) also holds. Then since the proof of Proposition l(a) depends
only on Lemmas 1 and 3 and both these lemmas hold, Proposition l(a) must hold.
Similarly, because the hypothesis of Proposition l(b) is satisfied (f is everywhere
differentiable), Proposition l(b) also holds. Since f is uniformly convex (i.e., f satisfies
(4.1) with to 2), an analogous argument shows that parts (a), (b) of Proposition 2
also hold. Therefore it suffices to prove that Lemma 3(c) holds.

Suppose that Lemma 3(c) does not hold. Then there exist a scalar e>0, a
coordinate block e and a subsequence R

_
{1, 2, "} for which the coordinates

e I, are relaxed at the rth iteration, for all r e R, and

(6.18a) [[p-[p + d(pr)]+[] _-> e, ’qre R.

Let x"=g(p"). Since (cf. Lemma 3(a)) {x r} is bounded, by further passing into a
subsequence if necessary, we will assume that {xr-},.R--> X for some xe fit". Let
d b-Ex and let h r, A denote the A, A generated (cf. (6.5)-(6.6b)) at the rth
iteration. Then (cf. (1.4), (6.4))

(6.18b) w Mp" dg(p") b Exr, ’r.

Since {xr-1}rR-"> X, this implies that

(6.19a) {w Mp"-l}rR "-> d.
Since (of. (6.5), (6.18b)) E1(x"-x"-1) M(p"-p"-) h"M,,(Ar-pr-) and h _-> to >
0, it follows from (6.19a) and Lemma 3(b) that

(6.19b) {wI M,A"}rR-> dI.
Now, by (6.6a), w-MAr<:o for all r eR. Hence by (6.19b), d-<0. Let I-=
{ielIdi<O}. Then

(6.19c) d =0, /ie I\I-,

and (of. (6.6a), (6.19b)), for all re R sufficiently large,

(6.19d) ’=0, Vie I-.

Also, from (6.8) we have that, for all r e R,

(p-p-, d(p))=(1/h-I)(p-p-, M(p-p-))+h(A-pr-1, w-Mzr),

which, together with (6.9), (6.6b), and h e (0, 2), implies that

q(p,.)_ q(p,.-) (pr_pr-, M(p,._p,.-))/2 +(pr __pr-1, d(pr))

=(1/h"-l/Z)(pr-p"-,M(p"-pr-’))+hr(A"-p"-, w-MA")
>- h r(A -p-, wt

Since h -> to > 0 for all r and the right-hand side of the above is nonnegative by (6.6a),
__p-We have {(Z w- MIAr>}rsR-’>0. This, together with (6.19a)-(6.19d), implies

that

{p}e-> 0, ieI-,

{w Mpr},.e -> O, 8i e I\I-.

Hence {p-[p + d(p")]+},.R 0, a contradiction of (6.18a).
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Analogous to the mixed algorithm discussed at the end of 3, we can consider
an algorithm whereby other dual ascent iterations are inserted between the Block
S.O.R. iterations at regular intervals. It can be shown that Proposition 10 also holds
for this mixed algorithm, provided that the inserted dual ascent iterations satisfy the
condition (3.9). An interesting special case of this mixed algorithm is the Cottle-Pang
algorithm proposed in [14]. This algorithm can be seen to be a special case of the
Block S.O.R. algorithm using (.O min { 1, to2} and cyclic order of relaxation. The only
difference is that a "reduction" step is inserted at the end of each cycle. This reduction
step generates a new iterate p’ from the current iterate p by the formula:

(6.20) p’= p Ou,

where u is some nonnegative vector in " satisfying

(6.21) ETu =0, (b, u)=0,

and 0 is the largest scalar for which p’ given by (6.20) is nonnegative (if u 0, 0 is
set to 0). From (6.20), (6.21) we see that ET"p ET"p and (b, p) (b, p’). Therefore (of.
(1.3) and (1.5))

q(p)=q(p’), X(p)=x(p’),

and the iteration (6.20), (6.21) satisfies (3.9).
Notes and extensions.
1. For each I N, the matrix MII is positive definite if and only if E1 has full

row rank.
2. The vector A satisfying (6.6a), (6.6b) can be computed either approximately

using iterative methods [39], [43] or exactly using direct methods [16], [17], [36].
3. If the dual functional q given by (6.2) has bounded level sets on the nonnegative

orthant in 9t" (which can be seen to hold if and only if there exists z " such that
Mz- w > 0), then the sequence of iterates {pr} generated by the Block S.O.R. iteration
is bounded and each of its limit points is an optimal dual solution. If E does not have
full row rank, the technique discussed at the end of 3 may be used to maintain {pr}
to be bounded. On the other hand, if w2 6 (0, 1] and b lies in the column space of E,
the Block S.O.R. iteration can be implemented working with E rp instead of p. By (6.3)
and Lemma 3(a), {ETp r} is bounded.

4. Consider the special case of (pE) where f is the sum of a strictly convex
quadratic function and the indicator function for a polyhedral set in 9m. In [39, 4]
a conjugate gradient method with periodic restart (with a gradient iteration as the
spacer step) was proposed to solve this problem, and convergence for this method was
established for the Polak-Ribiere-Polyak [4] formula. (Also see [62] for computational
results on network flow problems.) However, because each conjugate gradient iteration
maximizes exactly the dual functional q along some direction, this method is simply
a special case of the mixed algorithm discussed at the end of 3. Hence it immediately
follows that this method converges for any conjugate gradient formula and for the
general problem (pE). Furthermore, instead of the gradient iteration, we can use any
BCR iteration as the spacer step.

6.3. Entropy costs. In this subsection we consider the following special case of
(ptS):

(6.22)

Minimize fl (x) Y xj In (xj/ uj)
J

subject to Ex b, x >= O,
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where E is an n x m matrix, b is a vector in 9t n, and the uj’s are given positive constants.
(Here In (.) denotes the natural logarithm.) It is easily verified that Assumptions A
and B hold for this problem (assuming that it is feasible). This problem, called the
entropy maximization problem (-fl is the classical entropy function weighted by the
uj’s), has applications in matrix balancing [2], [8], [21], [24], [31]-[33], [41], [48],
[57], ([5, 5.5.4]), image reconstruction [11], [12], [23], [37], [53] and maximum
likelihood estimation [19].

PROPOSITION 11. The matrix balancing methods in [2], [8], [21], [24], [31]-[33],
[41], [48], [57] are special cases of the SCR algorithm for solving (6.22) with a =0 for
all s.

Proof In [33] it was shown that the matrix balancing methods in [1], [21], [24],
[31], [32], [41], [48], [57] are special cases of Bregman’s method [9], [10] for solving
(6.22). The RAS-algorithm considered in [2], [8] can also be seen to be such a special
case. (The modified RAS-algorithm in [2] uses essentially cyclic instead of cyclic order
of relaxation.) Therefore, by Proposition 7, they are special cases of the SCR algorithm
with a 0 for all s.

Consider the following special case of (6.22):

(6.23)

Minimize f2(x) x In (xj)

subject to Ex b, x >= O,

where (for each i) bi > 0, eij [0, 1 for all j, and eij> 0 for at least one j. The following
method for solving (6.23) was proposed in [23] and [37]. It begins with any x 9t"
satisfying xj =exp (i eop-1), for all j, for some p n. (Here exp (.) denotes the
exponential function.) Given an x ’, it generates a new estimate x’ as follows.

Multiplicative ART Iteration.
Choose an index s N and set

(6.24) xj xj bs ekXk Vj 1," ", m.

(The index s is chosen by the essentially cyclic order.) The iteration (6.24) is also a
special case of the SCR iteration, as we show below.

PROPOSITION 12. The multiplicative ART method is a special case of the SCR
algorithm with a 1 min {ej ej > 0} and

bi( rl { ln b/ b rl otherwise.if bi rl > O’

Proof Straightforward calculation finds the conjugate function off2 to be Y g(tj),
where gj(t)= exp (tj-1). Hence Vgj(t)= exp (t- 1) and (cf. (1.4) and (1.5))

(6.25a) X(P) exp (tj 1),

(6.25b) bi-dg(p)= ei exp (tj- 1),

where tj Yi ejp and Xj(P) denotes the jth coordinate of X(P).
Given p 9" and s N, consider the single coordinate relaxation

(6.26) p’= p + h e,
where e denotes the sth coordinate vector in " and A is the scalar satisfying

(6.27) bs/(b-d(p))=exp (h).



236 PAUL TSENG

Then (el. (6.25a))

X.(p’) X(p+ h e)

=exp(Eep’+eh-1)i
X(p) exp (h e‘

X;(p)(b,/(b,- d(p)))%.

Comparing the above equation with (6.24), we see that the two iterations (6.24) and
(6.26), (6.27) are equivalent.

We now show that p’ generated by the iteration (6.26), (6.27) satisfies (5.11a)-
(5.11c). For simplicity we assume that d(p)>-_O (the case where d(p)<0 can be
treated analogously). Then, by (6.27), exp (3,)>-1. Since (cf. (6.25b))

b-d(p’)=b-d(p+Ae)

(6.28) esj" exp (b + esjA 1)

ej. exp (t 1). exp (A)%,

we obtain from the facts exp (A) 1 and ej 1- a that

b d(p’) ej exp t 1). exp (A)
J

=(b-d(p)).exp(A)-.
This, together with (6.27), implies that 1 d(p’)/b (1 d(p)/b), or, equivalently,

(d(p’)) O(d(p)).

On the other hand, since e [0, 1] for all j, we have from (6.28) and the fact exp (A) > 1,

b d(p’) e exp t 1). exp (A

ej exp (tj 1). exp (A)

=(b-d(p))exp(A)=b.

Hence (d(p’))0 so that A satisfies (5.11a).
There is, however, a slight difficulty with the choice of given above, namely,

that is not continuous everywhere. This difficulty can be circumvented by redefining
on the interval [b-e, +) to be a continuous (and strictly increasing) extension

of itself, for some e > 0. For this choice of , the proof of Proposition 12 still goes
through, provided that it holds

d,(p)b-e, d(p-)b,-e, Vr=0,1,...,

where p denotes the iterate generated by (6.26), (6.27) at the rth iteration and s is
the index of the coordinate relaxed at the rth iteration. (Hence the value of e depends
on pO.) To see that this indeed holds, let q denote the dual functional (cf. (1.3)) given
by

q(p) min {A(x) + (p, b Ex)}
x0
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Hence, for any p n, any s N, and any A given by (6.27), we have

q(p + A es) q(p) bsA +. exp ( eiPi- 1 (1-exp (%.))

bsA +2 Xj(p)(1 -exp (%1))

>- bsA -Z X(p)%(exp (A)- 1)

bs(A 1 +exp (-A)),

where the second equality follows from (6.25a) and the inequality follows from the
fact to<=l+O(to-1) for all w>=0 and all 0[0,1]. Since the function r/

1-1 +exp (-r/) is nonnegative for all positive 7 and attains the value zero at r/= 0
only, this, together with the observation that {q(pr)--q(pr-1)}--O and b>0 for all s,
implies (cf. (6.26), (6.27))

{pr--pr--1}"O, {(b,,.-ds,.(pr-1))/b,}.- 1.

It then follows from (6.25a), (6.25b) that {d(pr)-d(p"-)}-O and {dsr(pr)/bs,’}O.
Hence both {bsr-d,r(pr)} and {bs-ds,.(pr-)} are bounded away from zero. (The
above argument is based on one given in [37] for Lemma 1 therein.)

6.4. Network flow constraints. In this subsection we consider the special case of
(pE) where E is the nbde-arc incidence matrix for a generalized network (i.e., each
column of E has at most one positive entry and at most one negative entry). An
important special case of this problem is the pure network flow problem, for which
each positive entry is +1 and each negative entry is -1.

PROPOSITION 13. The network flow methods in [13], [45], [58], [64] are special
cases of the SCR algorithm with as 0 for all s.

Proof These methods are all dual single coordinate relaxation algorithms that
use exact line search and cyclic order of relaxation. In [13], [45], [64], the cost function

f is further assumed to be separable. In [58] the cost function f is assumed to be
strongly convex. (The references [45], [64] do not contain convergence proofs. In [58],
to prove convergence, it is also assumed that an optimal dual solution exists and is
unique, and that the dual functional q is twice differentiable.)

PROPOSITION 14. The network flow method in 2 of [6] is a special case of the
SCR algorithm with s(r/)= r/for all s.

Proof The proof is straightforward from the algorithm description in 2 of [6].
The cost function f is further assumed to be separable. (However, [6] allows arbitrary
order of relaxation and further establishes convergence to an optimal dual solution
(assuming only that an optimal dual solution exists).)

Note. By applying the results in 4 and 5, we can readily extend many of the
methods discussed in this section. As an example, since (cf. Lemma 3(a)) the sequence
of primal vectors generated by the BCR iteration remains in a compact subset of S
and the entropy cost f is strongly convex in any compact subset of S, the methods
described in [2], [8], [21], [23], [24], [31]-[33], [37], [41], [48], [57] can also be
implemented using the quasi-cyclic order of relaxation.

7. A parallel line search procedure. In this section, we present a technique for
parallelizing the inexact line search step in the SCR iteration when f has a certain
separable structure. This technique is most suited for problems where the constraint
matrix E has relatively sparse rows.
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(7.1)

Suppose that f is block separable, in the sense that

f(x) f(xj),
Je

where is a collection of nonempty, pairwise disjoint subsets of M {1,. ., m} and
each fj ,91111- (-oe, +oe] is strictly convex function (@ {M} is a valid, but uninterest-
ing choice). We will show that the stepsize A in the SCR iteration, with qs(r/) r/, can
be calculated in parallel using at most [@1 processors. (Extensions to arbitrary q, and
to the BCR iteration are straightforward, but for simplicity we will not consider them
here.)

Denote by f* the conjugate function of fl and, for each i N, denote

9(i) {J @1% # 0 for some j J}.
For each e N, let {pij}j() be any set of positive scalars satisfying

OJ 1.
Je(i)

Let / be any scalar in the interval (0, 1). For any nonnegative p ,t and s N
satisfying [3 d(p)>=0 (the case where fl <0 may be treated analogously), consider
the following procedure for computing an inexact line search stepsize A.

1. For each J(s), let h:[0,+ee)[0,+oe) be the function hi(0)=
Esj(Vf*j(tj+O(E,j)r)-Vf*(tj)), where t=(ENj)rp. If hj(O)<-Ixpsj for all
0->_ 0, set Aj +oe; otherwise, compute a )tj satisfying

(7.2) Iflp <- h(A) <=/p.

2. Set

(7.3) A min {Aj}.
J(s)

(If Assumption C holds, then 1 (i.e., exact line search) is also allowable.) Each
step in the above procedure can be seen to be parallelizable among IN(s)] processors.
We have the following main result.

PROPOSITION 15. For any p [0, +co)" and any s N such that fl d(p) > O, the
scalar A given by (7.2), (7.3) satisfies
(7.4) (1 -/x min {psj})/3 >= ds(p + A es) >- O.

Proof Since f satisfies (7.1), we obtain from (1.2) thatf*(t)=Zf*(tj) for all
e,". Hence (of. (1.4), (1.5))

(7.5) d(p+Oe)=b EsjVf*j(tj+O(E,j)r), VO,
J(s)

where tj (ENj) rp.
We claim that each Aj is positive and < +ee. Each Aj is positive because hi(0) 0

and (by convexity off*) hj(0) is monotonically increasing with 0. To see that
suppose the contrary. Then it must be true that

Ej (Vfj*(tj + O(Ej) r) Vfj*(tj)) hj(0) </x/3pj, V0 _-> 0,

for all J @(s). By summing the above inequality over all J e @(s) and using (7.5)
and 2j( pj 1, we obtain

-d(p+OeS)+ </x/, V0=>0,

or, equivalently,

d,(p+OeS)> fl(1-tx)>O, V0>-0.
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Hence q(p+OeS)-+oo as 0-+c, a contradiction of the assumption that (P) is
feasible.
Now we prove (7.4). To prove the second inequality in (7.4), note that (cf. (7.2),

(7.3), and the fact that hj is an increasing function)

from which it follows that

ds(p + A eS) fl

VJe(s),

h.,(x)>-_O.
J(s)

To prove the first inequality in (7.4), note that since , < +oo, there exists some J (s)
for which

/xflp sy ----< h(, ).

Since (cf. ,>0, hj(O)=0, and hj(O) increases with O) hj(h)_->O for all Je@(s), this
implies that

ds(p + A es) /3 Y h.(A)
Je(s)

<-_ fl flp.

From Proposition 15 and (5.11a) we see that, for the case/3->_0, the procedure (7.2),
(7.3) implements the SCR iteration with G(r/)= 7 and

To illustrate one computational advantage of the procedure (7.2), (7.3), suppose
that {{1}, ., {m}} andf(b c exp (b), where each c is a positive scalar. Then,
instead of computing A as an approximate zero of h(0)=s esc exp (b / 0G),
say, using an iterative method, we simply set (again assuming that /3>0) A
min(s) {h}, where

Aj (ln (exp (tj)--ktflPsj/(esjcj)-- tj)/esj,

if the quantity inside the In is positive and Aj +c otherwise.
The line search procedure (7.2), (7.3) is particularly well suited for implementation

on fine-grained SIMD (Single Instruction Multiple Data) multiprocessors such as the
Connection Machine [29]. To see this, note that this procedure uses the same sequence
of calculations for all coordinates (this is not true for exact line search). Hence we
can execute this procedure simultaneously for any subset of coordinates. (In particular,
we can choose these coordinates to be pairwise uncoupled.) The communication cost
for this procedure depends on the architecture of the machine. On the Connection
Machine, by assigning I(s)] processors to each s N and using an implementation
technique similar to that used in [65] for network flow problems, the communication
cost can be kept very low.

A potential disadvantage of the procedure (7.2), (7.3) is that the stepsize that it
generates is too conservative. Initial computational tests on quadratic cost network
flow problems suggest that this is not the case, provided that the row of E operated
on is relatively sparse. For dense rows, we can use either exact line search or some
refinement of the above procedure. For example, we can dynamically adjust the weights
{psJ} by giving higher values to those psJ for which hj has a high growth rate near 0
(ideally the Aj’s would be equal). An interesting research topic is that of finding efficient
algorithms for performing this adjustment. Also, instead of choosing A to be the smallest
of the Aj’s, we can choose A to be the Aj that yields the largest improvement in the
dual cost.
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8. Conclusion and extensions. In this paper, we have presented a general algorith-
mic framework for dual coordinate/gradient ascent and have unified a number of
existing methods under this framework. There are many directions in which our results
can be extended. For example, we can use a linear convex combination of directions
generated by the BCR iteration for dual ascent. Such an approach was proposed in
[11], [12], [30] in the special cases of single coordinate relaxation for quadratic
programming and for entropy maximization, but it also applies to the more general
case of the BCR iteration for problems where the cost function is differentiable in the
relative interior of its effective domain. Alternatively, we can study specialization of
the BCR algorithm to special cases that exploit the structure of the problem. For
example, can the conjugate gradient method be efficiently adapted for entropy maxi-
mization? It is also worthwhile to implement some of these algorithms (on either a

sequential or a parallel machine) in order to test their practical efficiency.
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ERRATUM: Optimal Control of Strongly
Monotone Variational Inequalities*

SHUZHONG SHI?

I thank Professor V. Barbu for showing me that in my paper entitled "Optimal
Control of Strongly Monotone Variational Inequalities" [SIAM J. Control Optim., 26
(1988), pp. 274-290], the inequality (4.10) is wrong (except K V) and the second
relation of (4.5) is false. This is a serious error; in fact, I must replace NK (37) in (4.5)
by a significant "directional derivative" of N/(. as in Theorem 3.1 of Barbu’s book
[2], which, unfortunately, I did not read well enough before.

The corrected second relation of (4.5) is as follows:

(1) F’(.9)* -DpNK (.9, -F(.9) E a))(p) +

where Nr (.) is the normal cone to K that, as a set-valued map from K to V*, has a
closed graph for the norm topology of K and the weak topology of V* and where,
for (y, y*) graph (N)"

q* DpNK(y, y*)(p)

(2) =lhk -- 0+ :lpk --- p ::l(yk, Y’k) graph (Nr) (,w) (Y, Y*),

:lyP NI(Yk + hkPk) such that w- lim (y*kP-- y*k)/hk q*.

Certainly, (1.14), (2.7), (4.42), etc. must also be corrected.
Definition (2) is one "generalized directional derivative" of N/(. and it also

justifies and states precisely the formal notation D2ck(y*)p* in Theorem 3.1 of [2]
(note that this p* corresponds to our -/5).

There are two definitions of a derivative of a set-valued map, proposed by [1].
However, they are not suitable for (2). Replacing contingent and Clarke’s tangent
cones and the norm topology, we adapt the paratingent cone and the weak topology
for proposing another definition of a derivative of a set-valued map.

Let X be a Hausdortt topological linear space and K c X. For any x X,

(3) P/(x):= lim sup(K-x’)/h
hO+, x’-

is called paratingent cone to K at x [3], where lim sup is a Kuratowski limit and

(4)
=lxaKx

v P,(x)

::lhO+ ::l v v Va, x + hv K.

Let Y be another Hausdorff topological linear space and F a set-valued map from X
to Y. Then, the paratingent derivative of F at (x, y) graph (F), noted by PF(x, y), is
a set-valued map from X to Y, defined by

graph (PF(x, y))= Pgraph(F)(X, y).

* Received by the editors September 1, 1988" accepted for publication February 6, 1989.
? Nankai Institute of Mathematics, Nankai University, Tianjin, People’s Republic of China.
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From (3) and (4), it is easy to see that

v PF(x, y)(u) =
(6) ::lh, 0/ ::lu,, u

ty e F(x, + h,u,,)

l(x, y e graph (F),

such that lim (y- y,,)/ h, r.

(9)

DpN: (y, y*) c PNr (y, y*), i.e.,
(7)

graph (DeNr. (y, y*)) graph (PNr(y, y*)).

However, if X (V, 1}. 11), the inclusions in (7) are inverted.
When V V* X is a Hilbert space, Proposition 7.2.11 of 1 also holds for PNK

or DeNK, i.e., for instance,

q DpN:(x, p)(u) : u DpTr:(x +p)(u + q)

where err" X K is the projector of best approximation onto K. Furthermore, noting
that pc Tr(fi) and (-F(y)-E(),)v.,v=O, (1) is quite interesting in this case.

To prove (1), we also need the conception of coditterential for a set-valued map
with closed convex graph. According to Definition 4.2.1 of [1], the coditterential
DS(y, x)* of a set.valued map S from Banach space Y to Banach space X with closed
convex graph at (y, x) is defined by

(8) p DS(y, x)*(q) (p, -q) Ngraph(s)(Y, X).

The following proposition is Corollary 4.5.3 of [1].
PROPOSiTiON 1. Let X and Y be two Banach spaces, U:X- RU {+m} a proper

lower semicontinuous, convex function and S a set-valued map from Y to X with closed
convex graph. We assume that

0 e Int (Ira S- Dom U).

Let W: Y- R U {+} be the marginal function defined by

W(y)= inf U(x)
xeS(y)

and let S(fi) achieve the minimum of U on S(). The subdifferential of the marginal
function W is equal to

0 W(y)= DS(, )* O U().

Proof. At first, for simplicity, we assume that M,(-,. ), defined by (4.9), is a
continuous single-valued map for the norm topology of K x Uaa and the weak topology
of N,Bv, If K and Bv are strictly convex, this assumption holds. Then, setting

pWk M. (y. + tkS, Un + tkw),

we must replace (4.10) by

g(yn + tkS)+ h(u. + tkW)--(F(y. + tkS)+ E(U. + tkw), pwk)V..v
> g(y.)+ h(u.)-(F(y.)+ E(u.), pWk)v..v--  .t (llsll / wll )
+ inf (F(y.)+ E(u.), p)v.,v
pc Nn[ K -Yn -1ks )f-) By]

inf (F(y,)+ E (u,), P)v.,v.
p Nn[(K-yn)CIBv]

Comparing (2) and (6) and letting X =(V, or(V, V*)) and Y= (V*, tr(V*, V)), we
obtain that
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Define a set-valued map Sn from V to V by

(10) S,(x) := N,[(K-y,-x)fqBv],

a function U," VR by

(11) U(p) := (F(y,) + (u,), p),,..,

and a marginal function W," VRU {+} by

(12) Wn(x):= inf U,(p).
peS,,(x)

Then, (4.15) must be replaced by

gO(y.; s)+ h’(un; w)-(F’(y.)s+ E’(u)w, P.)v.,v- W’(0; s)
(13)

--> -,,,(11 , + w ,/
where Pn M,,(y,, u,,). Thus, replacing (4.19) and (4.20), we have that

(14) lsK-yn, gO(y,; s)-(F’(y,,)*p,,s)v..v- W;(0; )->-1111,
(15) Vw Uad--Un, h’(u,,; w)-(E’(u,,)*p,, w>..-->-,llwll.

Applying Proposition 1, we have that

(16) OW,(O)=DS,(O, pb)*(F(y,)+E(u,)).

So, from (14) and (16), we obtain that

(17) F’(y,)*p,Nr.(y,)-DS,(O,p,)*(F(y,)+E(u,,))+g(y,,)+e,,Bv..

By using the same method as in our paper, we still have (4.29), i.e.,

(18) yn fi in K strongly.

We must show that {p} is bounded and after that, we can assume that

(19) p,/ in V weakly,

and deduce (4.34), i.e.,

(20) un in Uad strongly,

provided by extracting a subsequence. In fact, by (14) and (4.31), we have that

(21) g(y;p)+e.lJPllv- W’(O,p.)>-_(F’(yn)p.,p.}v.,v>-CIIp.llEv.
We must show that

(22) W’(0; p) -< o(11 p ).

Indeed, for > 0 and for any x S.(tp), by (10), we have

x+tN.p.Nn(K-y.)

and

x + tN,p, N,Bv + tN,,p,, c N(1 + tllp.llv)n,

and then,

x+ tN,p,, N,,(K-y,) fq N,(1 + tllP.llv)nv N,(1 + tllP.llv){(g-y) O nv}

(1 + tllp.ll)s.(o).,
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Hence,

S.(tp.)c (1 + tllp.llv)s.(o)- tN,,p.

and thus, from (11) and (12), we have that

W’.(0, p.)= lim
infps.(tp.) U.(p)-inf.s,,(o) U.(p)

to

infp+,llp,,ll s,,o U.(p)-infes,,o U(p)-tNU(p)

=-[[P.llv" N.II F(Y.)- E(u.)} + N.(-F(y.)- E(u.)Yn

-Ilp,[lv" N, II-F(y,)-E(u,)II

By using (4.22), we deduce (22), and from (21) and (22), it follows that {p,} is bounded.
Now we consider (17). From (18) and (19), we know that (F’(y,)*p,} converges

weakly. On the other hand, since Og(. is locally bounded, {Og(y,)} is relatively weakly
compact. Hence, by extracting a subsequence, we can assume that there are two
sequences uN(y.) and vDS.(0, p.)*(F(y.)+E(u.)) such that w-

lim. (u- v)= w* exists. We show that for large n,

(23) vN.. N y.+ p.

In fact, from (8), we have that

(24)

Set

(25)

(v*. F(y.) E(u,,)) Ngraph(Sn)(O, Pn)"

S.(v):= N.(K-y.-v) and B.(v)=- NnBv.
Then from (10) it follows that

(26) S.(v) S.(v) f3 B.(v)

and, joining up with (25) and Theorem 4.1.16 of [1],

(27) v*. -F(y.) E (u.) Ngraph(..)(0 p.) + Ngraph(Bn)(O, p.).

But {p.} is bounded, and so for large n

(0, p. Int graph B. ).

Hence,

Ngraph(Bn)(0, Pn)-- {0}

and thus from (27) we obtain that, for large n,

(28) (v*. -F(y.)- E(u.)) Ugraph(,,)(0 Pn).

By (25), it means that

(29) Vv V VwN,,(K-y,,-v), (v*.,V)v.,v-(F(y,,)+E(u,.),w-p,,)v.,v<-O

and follows that

(30) v.* -N.(F(y.)+ E(u.))
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and

(31) Vw6N.(K-y.), (-(F(y.)+E(u.)), w-p.)v..v<=O, i.e.,

which, indeed, is the definition of p. Therefore, from (30) and (31), (23) holds.
Finally, since we also have u/N e N(y), by the definition (2), we conclude

w*e-DeN(,-F()-())(), i.e., we complete the proof for the case in which
all M(.,.) are single-valued.

Now we exclude the singleton assumption of M(.,. ). Define

L,(y, u):= N,I[-F(y)- E(u)ll y"

Then, by using Proposition 3.2.24 of 1 ], it is easy to see that L, (y, u) is locally Lipschitz
in a neighborhood of K x Uaa. Hence, (4.15) may be replaced by

(32) gO(y; s)+h’(u.; w)+L(y., u; s, w) -(1111+ Ilwll) ’/=

where L(y., u; s, w) is a Clarke directional derivative of L., and thus, for any
s e K -y. and w e Uad-- U, there exists qW. OL.(y, u.) such that

(33) gO(y; s)+h’(u.; w)+(q*, (s, w)>..,-(llsll+llwll)’/.

Consider the function Q’[(K -y.) x (Uao-- u.)]xOL.(y., u.) R, defined by

(34) O(s, w; q*):= g(y;s)+h’(u; w)+(q*,(s, w)>...+(llll+llwll)/=.

Then, by using the same method as in our paper, we can conclude that there exists
q e OL.(y., u.) such that

inf Q(s, w; q)
(s,w)

inf [gO(y; s)+ h’(u" w)+(q (s, W))v.v..wv+ (llsll+ Ilwll)*/=] 0,
(s,w)

VsK-y. VwUao-U.,
(35)

gO(y; s)+ h’(u; w)+ <q.*, (s, w)>..,_-> -(llsll],+ Ilwll) */=,

We must know what OL.(y., u) is. We will use a proposition as follows.
PROPOSITION 2. Let S(’," be a set-valued map from V x V to V, defined by

S.(x, z) := N[(K y z- x) f-l Bv]

U(z, v,p):=(F(y+z)+E(u+v),p}v..v

and a marginal function

W.(z, v, x):= inf U.(z, v, x).
pS,,(z,v,x)

Then W. is a locally Lipschitz function on a neighborhood of (K-y.) x (Uaa-u.)x {0}
and its partial generalized gradient with respect to x at z, v, 0), O,W. (z, v, 0), is locally
bounded and upper semicontinuous with respect to (z, v) for the norm topology of
(K -y, x gad- Un and the weak .topology of V*.
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The first part of this proposition is also from Proposition 3.2.24 of [1] and its
second part is well known.

Now, suppose that for tk 0/, Zk V O. and Vk U O,

Since

Ln(y. u." s, w) lim {L.(y. + Zk + tkS, U. + Vk + tkW) L.(y. + Zk, U. + Vk)}/ tk.

Ln (yn + Zk 4t" tkS, Un q- Vk + tkW) L. (y. + Zk, U + 1)k

=<(--F(y. + zk + tkS)-- E(u. + Vk + tkW), Pnk2V*,vAsw"
-(-F(yn + Zk)- E(u. + Vk), wk)V*,V

inf (F(y. + Zk) + E(u. + Vk), P)v*,v
p Nn{(K --yn--Zk --tks)(’qBv}

+ inf (F(y. 4t- Zk)’JI E(u. + Vk), P)v*.v
pC Nn{(K --y,,--z )CI By}

(-F(y. + Zk + tkS) E(u + Vk + tkW), Pnk2V*,V^SW"
-(-F(y. + Zk)-- E(u. + Vk), wk)V*,V-- W.(Zk, Vk, tkS)+ W.(Zk, Vk, O)

where/ M.(yn + Zk + tks, U. + Vk + tkW) and W(., .,. is defined as in Proposition
2. Obviously,

lim {(-F(yn + Zk dl- tkS E(u. + Dk -1" tkW), SnWk)v.,v
k

-(-F(y + Zk) E(u. + Vk), wk)V*,V}/ tk (-F’(y.)s E’(u.)w, PW)v*.v
where p’ M(y., un). On the other hand, by the Mean-Value Theorem, there exist
0g (0, 1) and r*kOxW.(Zk, Vk, OktkS)such that

W. Zk, Vk, tkS Wn Zk Vk, O) r*k tkS V*. v-

Using Proposition 2 and extracting a subsequence, we can assume that

w- lim r*k r* a OxW(O, O, 0) 0W.(0)
kcx3

where W.(.) is defined as (12) and

lim { W.(Zk, Vk, tkS)- Wn(Zk, Vk, 0)}/tk (-r*, s)v.,v <= W’(0; s).
k

Thus, we obtain that

L(y, u.; s, w)<=(-F’(y)s-E’(u.)w, pWS)v.,v W’.(0; s)

with p ’s M. (y., un), and then, for any s and w,

L.(y., u; s, w)<- sup {(-F’(y)*p, S)v.,v +(-E’(u.)*p, w)t:..v}- W’(0; s).
p M,, (y.u,,)

It follows that

OL,,(y,,, u,,) (-F’(y,,)*p, -E’(u,,)*p)-(OW,,(O), 0).
pM.(y.u)

Therefore. for any q* OL.(y, u.), there exists a p. M.(y., u.) such that

q*, (-F’(y,,)*p,,, -E’(u,,)*p,,)-(O W,,(O), 0).



ERRATUM 249

Joining with (35), it deduces that (14) and (15) hold again. Furthermore, by using
Proposition 1, (16) holds for every Pn M,(y,, u,). Hence (17) holds also. Thus, it
reduces to the first case.
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ERRATUM AND ADDENDUM: Positive Semidefinite Matrices:
Characterization via Conical Hulls and

Least-Squares Solution of a Matrix Equation*

J. C. ALLWRIGHT" AND K. G. WOODGATE

Contrary to Theorem 3.1, the optimization problem

(P1) min F AG
AS_

does not necessarily have a solution when rank [G]< n, where F, G Rnxm and
$"__> {A Rn"" A’= A _>- 0}. For example, consider Woodgate’s counterexample, which
initiated this note"

for which infAs IIF-AGII-- 1 but is not achieved by any A S.
Theorem 3.1 should actually have been as follows.
THEOREM 3.1’. The minimum in (P1) exists when rank [G] n.
The error in the proof of Theorem 3.1 for the case rank [G] < n is caused by the

incorrect statement in the penultimate paragraph of page 546 that the set vec (SBco)
is closed, where SBco, of (3.31), is defined by

Sco= C’ C’ D
S_

This set, and hence vec (Sco), is not closed because, for any nonzero C, the matrix
c
,

oc] is a limit point of SBco which is not in SBco.
Suppose now that rank [G] < n.
If (P1) actually has a minimum, then the results of 3 apply. If (P1) does not

have a minimum, then it is easy to check that those results, and their proofs, still apply
when all occurrences of the nonexistent minimal value [[F-.J.G[[F are replaced by
inf{llF-AG[[v" A S">=}. Then the methodology of 3 for finding an S"__> which
solves (P1) to prespecified accuracy actually yields an/ such that [IF-.GIIv approxi-
mates inf{[[F-AGIIF" A S} to prespecified accuracy--which, from the practical
point of view, is just as good.

It is possible to say more for the case when rank [G] < n.
From (3.37), for A S">__,

(A1)

when A is partitioned as

* Received by the editors July 18, 1988; accepted for publication (in revised form) May 26, 1989. SIAM
J. Control Optim., 26 (1988), pp. 537-556.

" Department of Electrical Engineering, Imperial College of Science and Technology, London SW7 2BT,
United Kingdom.

t University of Twente, Post Office Box 217, 7500 Enschede, the Netherlands.
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Since rank [G1] =q and B c S, it follows from Theorem 3.1’ above that there is a
which minimizes lIFt- BGIlzv with respect to B c S. If 7 (F2G*)’ and R[(] c R[/],
then

is optimal for (P1) for any DS-q such that D ’*. This occurs because it
follows from (3.36) that A* S and from (A1) above that and minimize the
right-hand side of (A1) with respect to B S and C Rqx(n-q). Hence (P1) certainly
has a minimum when R[C]c R[B]. In fact the following holds.

TEOREM A1. If rank G] < n, then (P1) has a minimum if and only if R[ C]

Proo In view of the above, it just remains to be shown that there is no minimum
when R[] R.

Suppose that R[ R[ and that there is a minimum, say at A S. Paition
A as

Co, Do

where, from (3.36), Be S and R[C] c R[B].
If C= then B . For suppose B= . Then R[Cc R[B] R[], so that,

because the case C= is beingonsidered, R[]c RIB], which contradicts the
initial assumption that R[] R[B]. Since rank [G] q, Theorem 3.2 reveals that
is the unique global minimizer of F-Ba with respect to B S so, since B S
and B , 1F B G > f a .

On the other hand, if C d then F2 C’G > F d’a , because, since
rank [G] q, d is the unique minimizer of IF2-C’GI with espect to C eqx(n-q).
Also F Ba F a owing to the optimality of B.

Hence, whether C= C or C C,

inf {IlF- Aall: A
where the first equality is from (A1) and the last equality is from (3.12) with liE-
replaced by inf {liE- Aall" A S;}, as mentioned earlier in this note. This contradicts
the optimality of o and therefore contradicts the existence of a minimum for (P1)
when R[C] R[B], which completes the proof.

A final point is that it is possible to slightly modify the peurbations made in
Theorem 3.5 in order to cause B to be positive definite, as it is only necessary that
they cause B to be positive semidefinite with R[C]c R[B].
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OPTIMAL CONTROL FOR AN INFINITE-DIMENSIONAL PERIODIC
PROBLEM UNDER WHITE NOISE PERTURBATIONS*

CONSTANTIN TUDOR"

Abstract. In this paper a result of the type of "law of large numbers" is obtained for the infinite-
dimensional version of the linear quadratic cost problem in the periodic case if the deterministic optimal
feedback law is used in the presence of white noise perturbations.

Key words, optimal control, periodic problem, law of large numbers

AMS(MOS) subject classifications. 49B, 93E

1. Introduction. In this paper we are concerned with a stochastic linear infinite-
dimensional control system of Ito type with periodic coefficients.

We associate an optimization problem, which is natural for the periodic case, with
the cost o y(t)dt, where 0 is the period and y is a process depending quadratically
on the control. Now it is clear in the usual deterministic situation that

io y( t) dt lim y( t) dt

and this suggests that in the stochastic case we use results of the type of the "law of
large numbers" by considering cost functions of the form li---n_ (I/n)y(t)dt.

In the finite-dimensional case such results of the "law of large numbers" type
have been considered by Mandl [15] for stationary systems and by Halanay, Tudor,
and Morozan [11] for almost periodic systems. The periodic infinite-dimensional
deterministic case with a cost of the form y(t) dt has been considered by Da Prato
[5]; the periodic infinite-dimensional stochastic case with a cost of the form E y(t) dt
has been considered by Da Prato and Ichikawa [7], [8]; Da Prato and Ichikawa I-6]
have also considered the case of almost periodic forcing terms, with the cost
limr_. (1/T)E y(t) dt. The optimal control has been obtained by Da Prato in [5]
as an affine function of the state with the aid of the periodic solution of a Riccati
equation and it has been seen that this control is still optimal in the corresponding
stochastic setting with expected cost.

The main contribution of the present paper is that it shows that the same control
is optimal almost surely with respect to the cost limn_ (1/n) o y(t) dt.

2. Notation and hypotheses. Let M, K, U be real separable Hilbert spaces and let
0 > O. L(K, H) (shortly L(H) if H K) denote the Banach space of all bounded linear
operators from K to H. Z(H) {II L(H); H H*}, E+(H) {I1 E(H); H_->0}, where
II* represents the adjoint of II. By Ex we denote the expectation of the random variable
x,-by Tr II the trace ofthe operator H and if X is a topological space we will denote
by x the or-algebra of Borel sets in X. Let (f, , P, (,)tR) be a filtered probability
space and let { w( t)}tR be a K-valued o%rWiener process with W as covariance operator
([16]).

DEFINITION. U(’, "):{(t, s)’, Os t}-. L(H) is an evolution operator if

(2.1) U(t, t)= I, the idenity operator, for all t,

* Received by the editors December 4, 1987; accepted for publication (in revised form) April 24, 1989.
t Faculty of Mathematics, University of Bucharest, Street Academiei 14, 70109 Bucharest, Romania.
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(2.2) U(t,r)U(r,s)= U(t,s),O<=s<-_r<-_t,

U(t, s) is strongly continuous in s on [0, t] and strongly continuous in on
[s, o),

(2.4) For every T> 0 there is a constant C7- such that

U(t, s)[lL<,)_-< C7-, 0=< s<= t---< T.

It should be noted that (2.4) does not follow from (2.1)-(2.3) as is sometimes supposed
(see [10] for a counterexample).

DEFINITION. A strong evolution operator is an evolution operator for which there
exists a closed, linear, densely defined operator A(t), >-0, with the domain D(A(t)),
such that

U(t, s): D(A(s)) D(A(t)) for > s,

0
(2.6) --U(t,s)h=A(t)U(t,s)h forhD(A(s)), t>s.

Ot

We will assume the following hypotheses (such as Da Prato [5]):

(2.7) (a)

(b)
(c)

For every R, A(t) is a closed, linear, densely defined operator and the
map t- A(t) is 0-periodic;
A(t) generates a strong evolution operator { U(t, s)};
There exists the Yosida approximation A,(t)= n2[n-A(t)]-l-nI for n
sufficiently large. Moreover, if g L2([0, 0], H) and z(t) U(t, 0)x +
’o U(t,s)g(s)ds, z, is the strict solution of z’( t) An( t)zn( t) + g( t),
z,(0) x, then sup,=<0 Iz.(t)-z(t)l-o.

Remark 2.1. From (2.7)(a)-(c) we have that U(t + 0, s + 0) U(t, s) for all > s.
Remark 2.2. Conditions (2.7)(b), (c) are fulfilled if the usual hypotheses ofTanabe

and Kato-Tanabe are satisfied 19]:

(a)
(b)
(c)

B R L( U, H), G: R L(K, H) are 0-periodic and strongly continuous,
f: R - H is 0-periodic andf L2([0, 0], H),
M R - E/(H), N: R Y./(U) are 0-periodic, strongly continuous, and
N(t)>= 3"I, 3,>0, for all t.

(2.9) 1 belongs to the resolvent set of U(0, 0).

(2.10) Stabilizability. There exist a 0-periodic function C:R L(H, U) strongly
continuous and a,/3 > 0 such that ua_c(t, s)ll,.)-< , exp {-(t- s)} for
all s <- t, where UA-BC is the evolution operator relative to A-BC.

(2.11) Detectability. There exists a 0-periodic function CI:R - L(H) strongly con-
tinuous and Cgl, jl >0 such that UA-C,M/2( t, S)II<H>---< 01 exp {-/3,(t- s)}
for all s <= t, where UA_C,41/ is the evolution operator relative to A C1Mlle.

3. A class of random processes in Hilbert spaces. Let : be a H-valued a-measur-
able random element (a R) and let {V(t, s)} be an evolution operator that is
0-periodic, i.e., V(t + 0, s + 0) V(t, s) for all s -< t. Let g R --> H be continuous,
0-periodic, and let G:R-> L(K, H) be strongly continuous and 0-periodic.
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PROPOSITION 3.1. Under the above assumptions the process

(3.1) x(t, :) V(t, a)+ V(t,s)g(s) ds+ V(t,s)G(s) dw(s), tea

is a Markov process with the transition function P(s, h, t, A) O-periodic, i.e., P(s+ O, h,
+ O, A) P(s, h, t, A) for all a <-_ s <-_ t, h H, A i4. Moreover, if V is exponentially

stable, i.e., if there is 32, 2 0 such that

(3.2) IIV(t,S)llL(n)<--a2exp{--2(t--s)} foralls<--t,

and E (114) < oo, then supt>__a E (Ix(t, :)l4) < oo.
Proof. The Markov property of x(t, ) is shown in [1]. Let x(t, s, )t>=s be the

process defined by

(3.3) x(t,s, )= V(t,s)+ V(t, u)g(u) du+ V(t, u)G(u) dw(u).

Then P(s, h, t, A)= P(x(t, s, h)A) and the 0-periodicity of the transition function
follows at once from the 0-periodicity of V, g, G and the stationarity of w.

Assume now that V is stable and E(II4) <. We have

E(IV(t, a)l4) =
V(t, s)g(s) ds _-<2suplg(s)l.s

Recall that if y is a Gaussian random element with mean zero and covariance II, then

(3.4) E(ly]") <= (2n 1)!! (Tr II)"

for any integer n, where (2n-1)!!= (2n-1)(2n-3)... 5.3.1.
Since the stochastic integral o V(t, s)G(s) dw(s) is Gaussian with mean zero and

covariance

o
V(t, s)G(s) WG*(s) V*(t, s) ds,

then by using (3.4) we obtain

E V(t, s)G(s) dw(s)

<-3 Tr V( , s)G(s) WG*(s) V*( t, s)] ds

-<_ 3(Tr W)2sup G(s)llI.-) V(t, s)ll. as

3a(Tr W)
_< sup [[G(s)[[ 4

4fl (:’/-/)"

Now it remains to apply the inequality Ix + y+ z14<=27([x[4+[y[4+[z[4), x, y, z H.
PROPOSITION 3.2. Let {x,(t)}t>__, be the process defined by (3.1) for a =-n and

O. Then we have the following:

(a) For every t, x,( t) converges in L2(f/, , P) to x( t) and the process {x(t)},R is

measurable, t-adapted, and --> x( t) R L2(O, , P) is continuous.
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(b) The following inequality holds:

(3.5) sup E (Ix( t)] 4) < c.

(c) {x(t)} is a O-periodic Markov process and for >= s

(3.6) x(t)-- V(t, s)x(s)-F V(t, r)g(r) dr+ V(t, r)G(r) dw(r) P-a.s.

We will denote the process x( t) by

(3.7) x(t)=f_I V(t,s)g(s)ds+I V(t,s)G(s)dw(s).

We proceed as in [17].

Proof. (a) Recall that

(3.8) sup E([xn(t)14)<= yl <o (see Proposition3.1).

If t--> -n > -m we have

E(Ix,(t)-xn(t)l) E(IV(t -n)x,,(-n)[2)
<_- a exp {-2/3(t + n)}E(Ix,(-n)l)
--< 3’ exp (-2/3n) 0

as n , uniformly on every interval [t, ), ce R. Then the process x(t) lim_ x(t)
(L-limit) is measurable, adapted and t- x(t)" R L-(, if, P) is continuous.

(b) Inequality (3.5) follows from (3.8).
(c) If > s _->-n, then we have

x,(t) V(t, s)x,(s)+ V(t, r)g(r) dr+ V(t, r)G(r) dw(r)

where from letting n- oe we obtain (3.6).
The Markov property follows from (3.6) as in [1]. The transition function is given

as in Proposition 3.1 and is 0-periodic. Next, for every e R, h H, we have

lim E(exp (i(h,x(t))))= E(exp (i(h,x(t)))),

lim E(exp (i(h, xn+o(t+O))))= E(exp (i(h,x(t+O)))),

E(exp(i(h,x+o(t+O))))= I exp(i(h,z))P(n+O,O, t+O, dz)

I exp (i(h, z))P(n, 0, t, dz)

E(exp (i(h, x,(t)))).
Therefore

E (exp i(h, x(t)))) E (exp (i(h, x( + 0))))

for all h H, so that x(t) and x(t + 0) have the same distribution for every t. This fact,
together with the Markov property, implies that {x(t)} is 0-periodic.

LEMMA 3.3. Let {h(t)},_>_o be an H-valued process such that

sup E(lh(t)12)<



OPTIMAL CONTROL UNDER WHITE NOISE PERTURBATIONS 257

and let {R(t)},eo be an L(K, H)-valued progressively measurable process such that

sup E(IIR(t)II 4L(K,H))

Then P-almost surely we have
(a) lim,_oo (1/n)h(n)=O.
(b) lim,_.oo (I/n) Ig R(t) dw(t)=O.
Proof (a) By Chebyshev’s inequality for e > 0 we have

P Ih(n)l > e E(lh(n)l).
Since 1/n<, we may apply the Borel-Cantelli Lemma.

(b) By using the inequality (see [13])

( fO 4) fO’()aw() r4t (ll()ll,.)a

and the Markov inequality, we obtain

( fO ) 1
E ( Io 4)P R(t) dw(t) e

n4e4 R(t) dw(t)

4

3 E(IIR(t)IIL(,H) dt

n2

and we use the Borel-Cantelli Lemma again.

4. The deterministic optimization problem. We consider the following Riccati
equation:

(4.) ’+A*O+A- BN--’B*+M =0.

DNTON [5]. A strongly continuous function Q’[O, 0] - E+(H) is a 0-periodic
solution of (4.1) if there is SE+(H) such that Q(O)=Q(O)=S and for every hH

O( t)h U*( O, t)SU( O, t)h

(4.2) j-o U*(s, t)[Q(s)B(s)N-(s)B*(s)Q(s)-M(s)]U(s, t)hds.

TOM 4.115]. (a) Assume (2.7), (2.8), (2.10). en there exists a O-periodic
solution Q of (4.1).

(b) Assume (2.7)-(2.10) and

(4.3) 1 belongs to the resolvent see of the evolution operators U(o, U.(o generated
b L()=A-Ng-lN*, L*()=A*-Ng-lN*.

Consider he following control problem. Minimize the cost functional

(4.4) J(u) [{M(t)y(t), y()}+{N(t)u(t), u(t)}] dt

over all u e L([0, 0], H) subject to

(4.5 y’( (y(+(u(+f(l, (o (o.
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Then the optimal control is given by

(4.6) a=-N-B*(Qy+ r)

and the optimal cost by

(4.7) ](t) [2(f(s), r(s)}-(N-l(s)B*(s)r(s), B*(s)r(s)}] ds

where r is the unique solution of
(4.8) r’+(A*-QBN-1B*)r+Qf=O, r(0)= r(O)
and y is the unique solution of the equation

(4.9) y’= (A- BN-IB*Q)y BN-1B*r+f, y(O) y(O).

THEOREM 4.2. Assume (2.7), (2.8) and either (2.10), (2.11) or

(4.10) M(t)>-_aI, or>0,

for all t, and for each sR, xH there is u strongly measurable such that
[(M(t)y(t),y(t))+(N(t)u(t),u(t))]dt<oo. Then there exists a unique O-periodic
solution Q of (4.1) and the evolution operator UL<Q) is exponentially stable.

Proof. Under (2.7), (2.8), (2.10), and (2.11) the first part of the theorem is proved
in [5]. From Lemma 3.5 of [5] it follows that there is C > 0 such that for all s

UL(Q(t, s)X[ 2 dt <- Clxl for every x H.

Therefore by a result due to Datko (see [9] or [14]) Uo) is exponentially stable.
Under (2.7), (2.8), and (4.10) the result is proved in Theorem 4.9 of [10].
Remark 4.1. Hypothesis (4.3) in Theorem 4.1 can be replaced by the following:

(4.11) ULo), UL.o) are exponentially stable.

Indeed (4.3) has been used only to obtain a 0-periodic solution of (4.8)
and (4.9). Under (4.11) r(t)= U.o)(s,t)Q(s)f(s)ds and y(t)=t_oo ULQ)(t,s)"
If(s)--B(s)N-(s)B*(s)r(s)] ds are the required solutions of (4.8) and (4.9).

Remark 4.2 [3, Lemma 1.2, Thm. 2.4]. Suppose (2.7), (2.8), (2.10) are satisfied.
Moreover, assume that s-->(U(t, s)A(s)x, y) is integrable for all y H and x @
(’lo<_t<__o D(A( t)).

If Q is a 0-periodic solution of (4.1), then Q satisfies the following inner product
Riccati equation"

d
(4.12) -(Qh, h)+([A*Q+QA+M-QBN-1B*Q]h,h}=O for all h @.

We remark that a sufficient condition for s (U(t, s)A(s)x, y) to be integrable is that
it be measurable and sup,<=0 ]A(t)xl < oo for each x 9, and this condition is usually
satisfied in the applications.

Remark 4.3. For affine and 0-periodic controls u for which the linear part is
stabilizing, existence of periodic dynamics is ensured and we have that Y(u) given by
(4.4) satisfies

Y(u) lim
1 I [(M(t)y(t), y(t))+(N(t)u(t), u(t)>] dr.
l do

This is the reason we consider the cost functional (5.5) in the periodic stochastic
case below.
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5. Main result. In this section we will consider a stochastic control problem with
the cost calculated pathwise.

We consider the controlled stochastic evolution equation

(5.1) dx( t) [A(t)x(t) + B( t)u( t) +f( t)] dt + G( t) dw( t).
DEFINITION. A measurable, adapted process x with values in H is a mild solution

of (5.1) on R if for every _-> s

x(t)- U(t, s)x(s)+ U(t, r)[B(r)u(r)+f(r)] dr

(5.2)
+ U(t, r)G(r) dw(r) P-a.s.

We denote by Uad the space of all measurable, adapted, and 0-periodic processes
{u(t)}tR in U with

(5.3) sup E(lu(t)[4) < oe

for which (5.1) has a unique (up to a modification) 0-periodic solution with

(5.4) sup E(lx(t)l4)

The statement of the control problem is the following. Find u Uad that minimizes
over Uad (in the sense of the almost surely inequality) the random cost functional

(5.5) J(u) lim
1 -I’ [(M(t)x(t), x(t))+(N(t)u(t), u(t))] dt.
Jo

It is not clear if there exist any admissible controls. In this sense we have the following
results.

PROPOSITION 5.1. Suppose that {y(t)}t__>o is a real measurable and O-periodicprocess
with supE([y(t)l)<c. Then (1/n) y(s) ds converges P-almost surely to a finite
random variable.

PROPOSITION 5.2. Suppose (2.10) is satisfied. Then the feedback control u(t)=
-C( t)x( t) + v( t), where v R - U is continuous and O-periodic, is in Uad, and in particular
J(u) is finite P-almost surely. Moreover, if {Xl(t)}t__>o is any solution of (5.1) on R+ with
E(Ixl(0)[2) < c corresponding to the affine control u(t) -C(t)xl(t)+ v(t), then the
cost li--n_, (1/n) o [(M(t)Xl(t), x(t))+ (N(t)u(t), u(t))] dt isfinite P-almost surely
and does not depend on the initial condition x(O).

Proof of Proposition 5.1. Define

fk y(s) ds= y(s+(k-1)0) ds,
(k-l)0

f= -y +(k- 1)0
i=0

It is clear that lim,_ (f’+p,’’’,f+p)--(fl+p,’’’,fq+p) P-almost surely for all p, q.
From periodicity the repartition of (f’+p,’’’,f+p) does not depend on p. Then the
repartition of (f+p,. .,fq+p) is independent on p, i.e., the sequence (fk) is stationary.
The result is now a consequence of the ergodic theorem (see [2, Thm. 6.28] or [18,
Thm. 3]).

Proof of Proposition 5.2. According to Proposition 3.2 the process

X(t)= [’ UA-Bc(t,s)[f(s)+B(s)v(s)] ds+ 1’ UA-BC(t,s)G(S) dw(s)
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is 0-periodic and is a mild solution of (5.1), which satisfies (5.4), and in particular,
(5.3) also holds.

If y is another 0-periodic mild solution of (5.1), then for fixed and for all s <
we have

E[lx( t) y( t)12] E[l Ua-c( t, s)(x(s) y(s))l]
_<-- ce exp {-2(t-s)}E[lx(s)-y(s)l2]
<- 3’7 exp (2/3s) 0 as s -00,

so that x(t) y(t) P-almost surely.
Next we can write x(t) x(t)+ z(t), where x(t) is the 0-periodic solution of (5.1)

and z(t) UA-BC(t, 0)[X(0) X(0)].
-If J(u) is the cost defined in Proposition 5.2 then by a simple computation we have

I IoJ(u) lim yl(t) dt+- ye(t) dt y3(t) dt

where y is a 0-periodic process with sup, E(ly(t) l) < 00, y2(t) <= vlz(t)[ + vlz(t)l:, and
y3(t)<=y(t)lz(t)l, with y 0-periodic and sup, E(ly(t)12)<00. From Proposition 5.1 we
have that (l/n) $y(t) dt a.s.f Also it is easily seen that (l/n) y2(t) dtO.

Define

g= exp (-flt)y(t) dt<-exp{-(k-1)O} y(t+(k-1)O) dt
k-lo

exp {-Cl( k -1)O}h.

By Proposition 5.1 we have that (h) is stationary with E(h)< 00. Since

2 P(exp {-(n 1)0}h > e)N E(h)/e exp ((n- 1)0)<,
it follows that exp {-(n-1)0}h0 P-almost surely, where from

y3(t) dt 1 exp {-fl(k- 1)O}hk0 P-a.s.
n k=l

The main result is the following theorem.
THEOREM 5.3. Assume that the hypotheses of eorem 4.2 hoM. Moreover, suppose

that
(a) D(A(t)) D for all and supot=o [A(t)h < for all h D;
(b) 1 belongs to the resolvent set of U.o), where Q is the solution of (4.1).
en we have the following assertions"

(i) e optimal control is given by the feedback law

(5.6) a -S-B*(Q + r)

where r is the solution of (4.8).
e cost functional (5.5) satisfies P-almost surely the equality

(5.7)
J(a) [2{f(s), r(s)}-{N-(s)B*(s)r(s), B*(s)r(s)}

+ Tr (G*(s)Q(s)G(s) W)] ds



OPTIMAL CONTROL UNDER WHITE NOISE PERTURBATIONS 261

and the optimal dynamics ( t) corresponding to is given by

(5.8)

( t) I Ul(o)( t’ s)[f(s) B(s)N-l(s)B*(s)r(s)] ds

+f Ul(o)(t, s)G(s) dw(s).

(ii) Let us assume in addition that (4.10) holds. If u Uad is such that

solution of

dxx(t) {A(t)xx(t)+ AR(t)[B(t)u(t)+f(t)]} at

(5.10) + AR t)G( t) dw( t), >- O,

x (o) XR (0)x(0).

Let t =-N-IB*(Qx + r). It is known that for every

(5.11) x(t)->x(t)inprobability, asA-.c(see[4],[12],[13]).

By using Ito’s formula we obtain

lim._, (l/n) o lu(t)_a(t)l dt>O P-almost surely, then P-almost surely there exists n’
such that for n >- n’

[(M(t)x(t), x(t))+(N(t)u(t), u(t))] dt

> [(M(t)(t), (t))+(N(t)a(t), a(t))] dt

where x is the mild solution of (5.1) corresponding to u.
We need the following lemma.
LEMMA 5.4. Assume the hypotheses of eorem 5.3 are satisfied. Let u Uad, X be

the mild solution of (5.1) corresponding to u, and define =-N-B*(Qx + r). en the
following identity holds:

[(M(s)x(s), x(s))+(N(s)u(s), u(s)) ds

(g(sl[u(sl- a(sl], u(sl- a(s s

+ [2(f(s), r(s)}-(g-l(s)B*(s)r(s), B*(s)r(s)}

(5.9) + Tr (a*(se(sa(s wl
+((Ox(O, x(O-((x(, x(l

+ (r(, x(-(r(Olx(O, x(O

+ ((sx(s- r(s), a(s (s.

Proof of Lemma 5.4. Let R (t) be the resolvent of A(t), and let x be the strong



262 CONSTANTIN TUDOR

Q( t)xx t), x, t))

(Q(O)xx (0), x (0))

+ -ds(Q(s)x(s),x(s))+2(Q(s)x(s),A(s)x(s))o
(5.12)

+ 2(Q(s)xa (s), AR (s)[B(s)u(s)+f(s)]

+Tr[G*(s)AR*(s)Q(s)AR(s)Q(s) W]} ds

where from substituting d/ds{Q(s)x(s),x(s}} by (4.12) we deduce

ds

+

+ Tr G*IRQIR,GW)] ds + 2

Also we have

(5.14)

(Nu, u)= (N(u- ax), u- aa)- 2(u, B*Qx;)-2(u, B’r)

-(N-’B*Qx, B*Qx)-(N-1B*Qx, B’r)

-(N-’B*r, B*Qxa)-(N-’B*r, B’r).
Now from (5.13) and (5.14), we obtain

I(t) [(M(s)xx(s),x(s))+(N(s)u(s), u(s))] as

(Q(O)x (0), x (0))-(Q( t)xa (t), xa (t))

(5.15) + [(N(u-), u-)+2{Qx,IR(Bu+f)}+Tr(G*R*QARGW)
o

-2{u, B*Qx)-2(u, B*r)-2{N-B*Qx, B*r)-{N-B*r, B’r)] ds

+ 2 Ox, ARGdw}.

Next, by using Ito’s formula for {r()x(t),x()} and then substituting r’ by (4.8),
we arrive at

o’
(QBN-’B*r x) ds

(5.16)
(r(t), x (t))- (r(0), x;t (0))

+(Q(t)f(t), x(t))-(r(t), AR(t)[B(t)u(t)+f(t)])

+ r, ARG dw).
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Substituting (5.16) in (5.15), we get

Ix(t)= (N(u-;,), u-f,) ds

+ [Tr(G*IR*QARGW)-{N-B*r, B*r)+2{r, ARf}] ds
o

+ ((0x. (0, x. (0-(Q(x. (t,

(5.17) + 2(r(t), xa (t))- 2(r(0), xx (0))

+ [2{Qx,,,R(Bu+f)}-2{u,B*Qx,)-2(u,B*r}

2(Qf, xx)+2(r, ARaBu)] ds

+ 2 (Qx, r, ARG

Finally, letting I - oe and utilizing (5.11), we obtain (5.9).
Proof of Theorem 5.3. (i) If we take u a (=a), t= nO, we divide by n in (5.9),

and then we apply Lemma 3.3; we obtain (5.7). The equality (5.8) follows from
Proposition 3.2.

(ii) Part (ii) is a consequence of (5.9) and of Lemma 3.3.
Remark 5.1. The result in (5.7) is of the qimit theorem" type as mentioned in

[15] and a can be regarded as optimal with respect to the law of the large numbers.
Example. Consider the stochastic parabolic equation formally described by

dx(t,z)= "z-q(t) x(t,z)+u(t,z)+f(t,z) dt+G(t,z) dw(t),
(5.18)

x(t,O)=x(t, 1)=O

where o, f, G are continuous in (t, z), 0-periodic in t, =>0 and w is a real Wiener
process.

Let K R, H= U= L2((0, 1), R), A(t)=O2/Oz-p(t), D(A(t))= D=
{h H; h,/’ H, h(0)= h(1) 0}.

A(t) generates a strong evolution operator U with U(t, s)ll _-< 1 for all S =< t. The
evolution equation corresponding to (5.18) is

(5.19) dx( t) [A(t)x(t) + u( t) +f( t)] dt + G( t) dw( t).

THEOREM 5.5. The cost functional

(5.20) J(u) lim
1 Io,-o

[Ix(t)l + lu(t)l] dt

has P-almost surely the minimum value

(5.21) J(a)= [2{r(s),f(s)}-Ir(s)l+Tr(G*(s)Q(s)G(s))] ds

corresponding to the optimal control

(5.22) t(t) -Q(t);(t) r(t)
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where Q, r are the O-periodic solutions of
d

(5.23) -(Qh, h)+Z(ah, Qh)-IQhl+lhl=O, hD,

(5.24) r’ + (a- Q)r+ Qf=O,

and is the O-periodic process

(5.25) (t) I UA_p(t,s)[f(s)-r(s)]ds+I UA_p(t,s)G(s)dw(s).
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tions and Professor A. Halanay for helpful discussions.
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QUADRATIC OPTIMIZATION FOR INFINITE-DIMENSIONAL
LINEAR DIFFERENTIAL DIFFERENCE TYPE SYSTEMS:

SYNTHESES VIA THE FREDHOLM EQUATION*

E. BRUCE LEE" AND YUNCHENG YOU:I:

Abstract. A closed-loop solution for quadratic optimization is presented for control systems whose
model is given by infinite-dimensional linear differential difference equations:

ax(t)
dt

-Ax(t)+ Aix(t-hi)+Bu(t)+ E Bju(t-rj).
i=l j=l

A nonsemigroup evolution formula for the fundamental solution is given first. The system is then reduced
to a Volterra integral system. By the semicausality approach, a new optimality principle is established, and
the closed-loop optimal control is given by real-time state feedback plus retarded state integral feedback.
The feedback operator is determined by solving a linear Fredholm integral equation. The two crucial methods,
semicausal dynamical optimization for Volterra integral systems and nonsemigroup evolution property, are
brought together to generalize the syntheses results to infinite-dimensional cases.

Key words, optimal control, infinite-dimensional linear system, differential difference equation, semicau-
sality, Fredholm equation, synthesis solution

AMS(MOS) subject classifications. 49B22, 34K35, 45B05, 93C25

1. Optimal control formulation. The quadratic optimization theory of finite-
dimensional linear systems with delay in state and/or control variables has been
developed by many authors via several different approaches (cf. [1]-[4], [6]-[9],
[11]-[15], [18]-[23] and the references therein). Solving a Riccati type equation is a
standard way to provide the feedback operator when delays are not involved in the
quadratic formulation [10], and also in the finite-dimensional delay cases [8]. The
method used to provide the feedback operator for the infinite-dimensional delay type
system that is given here is based on the Fredholm resolvent theory. Schumitzky [22]
has described the connection between the Riccati equations and the Fredholm resolvent
theory. Manitius [20] has used the Fredholm resolvent theory to provide the feedback
operator for quadratic optimization for finite-dimensional systems with delays. You
[24]-[26] has now generalized this approach to certain infinite-dimensional systems
(partial differential equation (PDE) models). Background results on infinite-
dimensional systems can be found in [5]. Delfour [8] gives general results in the
finite-dimensional case along with associated coupled differential Riccati equations.

However, the methods based on some kind of Riccati equation are quite restrictive
for optimization with delayed output appearing in the quadratic criteria (cf. [18]), and
also in the infinite-dimensional case there are complications in deriving appropriate
Riccati equations, as well as a lack of effective analytic or numerical means to solve
the infinite-dimensional differential or integral Riccati equations that will be inherently
of the same dimension as the state space. In view of this fact, we have introduced [18]
a new approach based on the concepts of a truncation operator and semicausal
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trajectory to obtain a synthesis with time delays both in state and in output variables;
the latter appears in the cost functional. We have also applied this approach 16], 17]
to optimization connected with Volterra integral type systems and two-dimensional
systems.

In this paper, this semicausality approach, combined with the nonsemigroup
evolution formula of the fundamental solution, is further developed for the infinite-
dimensional differential difference type linear systems with delays in state and control
variables. A closed-loop synthesis will be presented with the feedback operator deter-
mined by solving a linear Fredholm integral equation, which possesses the same
dimension as the control variable space (usually finite even though the state space is
infinite-dimensional). Therefore, the obtained results will be more applicable theoreti-
cally and computationally.

Let X and U be real Hilbert spaces. T> 0 is finite and fixed. Consider a linear
system as represented by infinite-dimensional differential-difference equations:

(1.1) dx(t)-Ax(t)+ A,x(t-h,)+Bu(t)+ . Bju(t-rj), t>=O,
dt

(1.2) x( O) ch( O), -h<=O<O, x(0)=Xo, u()=q(:), -r-<_sc-<_0,

where O<h<h2<...<h, and O<r<r2<...<r,, with h=hn and r=r,,, 0<
max (h, r)<< T. Denote by Z X x L(-h, 0; X) x L(-r, 0; U) and assume that initial
data (Xo, 4, q) Z is arbitrarily given.

Assume that A:ff)(A)(cX)X is a densely defined and closed operator that
generates a Co semigroup ea’(t >-- 0), besides Ai ?(X), 1, , n, B (U; X),
and Bj_(U;X),j=I,...,m.

The state function is the mild solution of (1.1) with the initial data (1.2), i.e.,

(1.3) x(t)= AtXo eA(t_s)e + A,x(s-hi)+Bu(s)+ Y. Bju(s-rj) ds, t>=O.
i=1 j=l

The admissible control set is given by

(1.4) u(. e o//= L2(0, T; U).

Set a quadratic cost functional to be

(1.5) J(u)=(Qrx(T),x(T))+ [(Qx(t),x(t))+(Ru(t), u(t))] at

where Qr and Q (X) are nonnegative and R (U) is coercively positive.
Optimization involves finding a closed-loop optimal control that minimizes J(u)

over
Before considering the question of optimal control, it is necessary to make some

preparation for the appropriate reformulation of the system in this infinite-dimensional
case, as suggested by the following results.

LEMMA 1. The homogeneous differential-difference equation

(1.6)
dx( t)

Ax( t) + A,x( h,), >- O,
dt i=

x(O)=xo, x(O)=(O), -h<-_O<O
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admits a unique mild solution x(t), >=O, for any given (Xo, b) M2 X x L2(-h, 0; X).
Define V(t) :(Xo, b) --> (x(t), x,), where x,(O) x( + O),for -h <= 0 <= 0; then V(t) >= O)
is a Co semigroup ofbounded linear operators on the M2 space, which is called the solution
semigroup associated with (1.6).

The proof of this lemma is given in Theorem 1 of [25].
Define

ch AC([-h, 0]; X) and- L2(-h, 0; X)

with the M2-induced topology, where AC means strong absolute continuity and dch/dO
is the strong derivative of b.

LEMMA 2. Let be the infinitesimal generator of the solution semigroup V(t)
associated with (1.6). Then, (’) I2 and

(1.7) .(dpo)= (Aqb+
where

and

I’: {(6) W:" bo b(O) (A)}4,

with E P&I,
where P& :M2- L2(-h, 0; X) is an orthogonal projection.

The proof of this lemma is also given in Theorem 2 of [25].
By the definition, we see that the mild solution of (1.6) is expressed by

(1.8) x(t)= PxV( t) (x), >= O,

where Px:M2--> X is an orthogonal projection.
Define the fundamental solution G(t):[0, )--> (X) to be the mild solution of

the following operator equation:

(1.9)
dG(t)

AG(t) + A,G(t h,), --> 0,
dt i=1

G(0)=I and G(t)-0, t<0.

This mild solution G(t) (t->0) exists uniquely and is given by

(1.10) G(t)
eAt 4r eA(t-s)

i=1
AG(s h) ds, >= O,

[0, t<0.

Since there are multidelays involved in (1.9), the fundamental solution G(t) does not
possess the semigroup property, as in the single delay case [8]. However, we need a
precise evolutionary property of G(t), which will be used later in the closed-loop
syntheses.
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LEMMA 3. Let G( t) be thefundamental solution. Assume that g( C1([0, b]; X)
with null extension outside [0, b]. Then, for any >-O,

(1.11) G(t-o-)g(o-) do @(A),

where (A) is the domain of the generator A.
Proof. It is known [5],[23] that for any strongly continuous differentiable

g(" )’[0, b]- X (with null extension outside), Jo eAt-Sg(s) ds (A), and

(1.12) A eA(t-’)g(s) ds= eA’g(O)--g(t)+ eA(-s),(S) ds, t>=O.

Since G(t) is given by (1.10), it is enough to show that

(1.13) eA(t--AiG(s- hi)g(r) ds do’e (A),

Indeed,

Io Io’-’ eA"-’-AiG(s- hi)g(o’) ds do"

(1.14)

i-1,...,n.

eA(’-)A,G(,-o’-hi)g(o") ddo"

eA(’-e AG(- or- h)g(o’) do" d.

Now we see that fl()&oA, G(-a’-h,)g(o’)do’=CoA, G(rl-h)g(-n)d,rl is
strongly continuously ditterentiable (with possible discontinuity in connection with
null extension), so that (1.14) implies that (1.13) is true. Moreover, by (1.12) we obtain

A e(’--’AiG(s- h)g(o-) ds do-

(1.15) eA(t-) A,G(-o--h,)g(o-) do" d

A G(t- o-- hi)g(o-) do-.

LEMMA 4. Under the same assumptions as in Lemma 3.

dt

+ A G(t--h)g() d+g(t)
i=1

for 0 except at the connection point b with null extension, where g( t-O) appears
for the l@ derivative.

LMMA 5. For any (xo, )M, the unique miM solution of (1.6) is given by

(1.17) x(t)=G(t)xo+ a(t- )
i=1

where it is a convention that (t) 0 whenever > 0.
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Proof. First assume that (Xo, d) (A) x Cl([-h, 0]; X). Let

(1.18) g(o.)= Aiflp(o.-h,), o.>-O.
i=1

Then we see that g(. is piecewise strongly continuously differentiable as follows:

(1.19)

Now let

Aich(o.- hi),
i=1

A6(o.- h),g(o.) ,=2

Anb o. hn ),
O,

o- [0, hi],

(1.20) y(t)=
G(t)Xo+ G(t-o.) i=IE A,b(o.-h,) do’, t->0,

b(t), t<0.

By Lemma 4, y(t) is piecewise strongly continuous ditterentiable on [0, oe) except for

the finite points hi,... hn, where the left and right strong derivatives still exist.

Furthermore, with g(. defined by (1.18) or (1.19), it follows that for t_->0,

d d dfod--t y - G Xo+ --t G(t- o.)g(o.) do"

"--AG(t)xo+ AG(t-h)xo+A G(t-o’)g(o’) do"
i=1

+ Ai G(t-o’-hi)g(o’) do’+g(t)
i=1

=Ay()+ AG(t-h)Xo+ a G(t--h,)g()d+g(t)
i=1 i=1

A,(t-h,), for tel0, h,],
i=1

(’)
a,(G(-h)xo+ G(t--h)g() d)+ A(-h),

i=2

for e (h, h],
Ay(t)+

A(G(t-h)xo+ G(t--h)g() d)+A(t-h),

for e (h_, h],

A(G(t-h)xo+ G(t--h)g() d), for te(h,),
i=1

Ay( t) + A,y( h,)
i=1

where the first type of discontinuity exists at the points hi," ", h.
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On the other hand, it can be shown that the mild solution x(t) of (1.6) with the
same initial data (Xo, b)(A)x cl([-h, 0]; X) is also piecewise strongly con-

tinuously ditierentiable and

(1.22)
dx(t)

Ax(t) +
dt i=1

for t_->0 except at hl,’",h,. Thus z(t)=x(t)-y(t), t[-h,c), is a strongly
absolutely continuous function with its strong derivative dz! dt 0 almost everywhere.
This implies that z(t)=-O, so that (1.17) is valid for (Xo, b) in fi(A) x Cl([-h, 0]; X).

Finally, since (A)x Cl([-h, 0]; X) is dense in M2, we can always use some
sequence ((X(Ok) ((k))}=l C (A)x Cl([-h, 0]; X) to approximate a given (Xo, b)
M2 so that corresponding sequences {x(k)(’)}_- and {y(k)(’)}= will converge to
x(.) and y(.) with the same (Xo, b) as the initial data, respectively. That is,
limk_.o y(k)(t) y(t) and limk_ xk)(t) x(t) for >= 0. Since xk)(t) y(k)(t) for all
t=>0, it follows that (1.17) is valid for all (Xo, b) M2.

THEOREM 1. Let G( t) be the fundamental solution. Then it satisfies the following
relation"

(1.23)

G(t + s) G(t)G(s)+ min(t,hi)

i=1 d0

G(t-tr)AiG(s+o’-hi) dtr for t>-O,s>-_O.

Proof. By Lemma 5 and the definition of the solution semigroup V(t) associated
with (1.6), it follows that

(1.24)

0 I-h, 0]

where G(t) is the described fundamental solution. In particular,

G(t)Xo
t+O)xo, 0[-h, 0]

t=>O.

Now for t->_ 0 and s => 0, it follows that

G( + S)Xo
t+s+O)xo, 0[-h, 0]

(1.26)
G(s)xo )s+O)xo, 0[-h, 0]
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f min (t, hi)
G( t)G(S)Xo+ G( cr)AiG(s + cr- hi) dcr xo

i=1 JO

fmin(t+O,hi)
G(t + O)G(s)xo+ G(t + O-r)AiG(s+ or- hi) dcrxo,

i=1 JO

for any Xo e X.
The equality (1.26) indicates that (1.23) holds.

0[-h,0]

For the original linear control system (1.1), (1.2), by an argument similar to that
in Lemma 5, it can be proved that the state function of (1.1), (1.2) is expressed by

x(t)= G(t)Xo+ G(t-tr) Aip(o’-hi) dcr
i=l

(1.27)
+ G(t-tr)Bu(tr) dcr+ G(t-cr) E Bju(cr-rj) dcr, te[0, T].

j=l

Here and later it will always be a convention that

b(t) 0 whenever > 0,

(1.28) O(t) 0 whenever > 0,

G(t)=0 whenevert<0.

By this convention, the Volterra integrals with time-delayed control can be written as

a(-u(- = a( ( a

+ 6(t-)u(-
r(1.29)

=fo G(t-)BO(-) d+ yo G(t-rj-)Bu() d
for t, j=l,...,m.

If t< , then the last term Jo G(t--)Bju() d vanishes by (1.28).
Therefore, the state function x(t) is expressed by

Io fo(1.30) x(t)=o,,)(t)+ O(t-)Bu() d G(t--)Bu() d,

where

(1.31) f,o,6,,)(t)=G(t)Xo + G(t-o’) Aiqb(tr-h,)+ E B/(o--r) act.
i=1 j=l

Define

(1.32) F(t)=G(t)B+G(t-rl)BI+. "+G(t-rm)Br, t__>0;

then the state function is expressed by the following formula:

(1.33) x() =Jo,4,.,)(t) + F(t-r)u(o’) dr, re[0, T],

where Jo,4,(t) and F(t) are defined by (1.31) and (1.32), respectively.
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Therefore, the optimal control formulation is to find a closed-loop control function
u that minimizes J(u) over u OR, where J(u) is defined by (1.5) and the state function
is given by (1.33).

2. Open-loop optimal control. Denote by L2(0, T; X) and C C([0, T]; X).
Define operators F (OR; ) and Fr (OR; X) by

(2.1) (ru)(t) F(t-o’)u(cr) do’, t6[0, T],

T

(2.2) FTU F( T- o’)u(o’) do’.
o

Then the state (1.33) can be written as

(2.4) x(T) f,o,+,0)(T) + FTU.

Substitution of (2.3) and (2.4) into the cost functional (1.5) yields

J(u) (Ru, u)ou + O(Fu +fxo.g,,e,}), Fu +f,,o,,/,,o))

(2.5) + (Or(Fwu +fxo.,.,)(T)), FTU +fo,#,,,)( T))x

=(u, u) +2(F*Qfo.4,.,)+F*rQwfo,e.q,)(r), u)ou + const. (Xo, b, q),

where the operator e (OR) is defined by

(2.6) RLu + F*QF + F*rQTFr,

and is ,coercively positive, and here the same notation Q is used to denote the
operator Q () in the sense that

(Oy)(t) Oy(t) Vy ,
and const. (Xo, b, q) is a constant determined by Xo, tb, q,, i.e.,

const. (Xo, b, q) (Qfxo,V,.),f,o.,,,)}+(Qrf,o.4,,q,)( T), f,o,,q,)( T)).

THEOREM 2. For any given (Xo, c, ) Z X x L2(-h, 0; X) x L2(-r, 0; U), there
exists a unique optimal control The control process (u(.), x(. )) is optimal if and only if
it satisfies the following relation"

(2.7) u(t)=-R-l[F*(T-t)Orx(T)+ F*(r-t)Ox(cr) dr t6[O, T].

Proof From (2.5) with the dominant operator being coercively positive, we
obtain that there exists a unique optimal control u(.)e R that minimizes J(u) over
OR. Moreover, u(.) is optimal if and only if

(2.8) Ou -(r*Ofxo,,, + r*Qfo,,,,( T)),

or equivalently

(2.9) Ru -F*Qx( F*TQTX( T).

with the final value

(2.3) x( fxo,,,) + ru,
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Here the adjoint operators F* and F*r can be given explicitly by

(r*y)(t) .F*(o.- t)y(o.) do., [0, T] Vy ,
(2.10)

(r*y)(t) F*(T- t)y, [0, T] Vy X.

Substitute (2.10) into (2.9); then it follows that (2.7) is valid. [3

COROLLARY 1. For any given (Xo, 49, d,/) Z, the optimal control u(. is the unique
solution in 11 of the following open-loop equation"

Ru(t)+ K(t, o.)u(o.) do.:-F*(T-t)QTfxo,6,,)(T)
(2.11)

t" 7"

I F*(o.- t)Qfxo,,,,)(o.) do’, [0, T],
d

where the kernel operator function is defined by

(2"2(t, ) F*(r- Qf(r-l+ *(s-QF(s-)as, (t, o-)e [0, r].
Here we also use the convention that (see (1.32) and (1.28))

F( t) =- 0 whenever < O.

Proof. Since we can deduce that

this result is a direct consequence of the optimal control relation (2.8). The uniqueness
can be proved by the fact that > 0. [3

COROLLARY 2. The optimum of J(u) on is a quadratic form with respect to the
initial condition (Xo, qb, d/) Z and is given by

(2.13) J*(xo, 4, q)= min J(u; Xo, d, qt)= P
u

where P (Z) is a nonnegative operator given by

(2.14) P=y*Qy+f*Qy-(r*Qy+F*Qy)*o-’(r*Qf+F*Q?),
where f (Z; ) and fr (Z; X) are defined by

respectively.
The proof is simply a completion of squares and hence is omitted here.

3. Semicausal optimality principle. To implement the optimal control u(t) by the
attainable information involving only the past state {x(o’): 0_-< o’_-< t}, we must try to
transfer the effect of the future state segment {x(o’): < a <= T} to the real time optimal
control u(t) by seeking appropriate feedback. Similarly, as we have done in [18], there
are two important notions to be introduced here.
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DEFINITION 1. Define a truncation operator P by

u(t), O_<-- t_--< :,
(3.1) (Pu)(t)= O, < <- T,

where 0 _-< : _-< T is arbitrarily given.
Then, both PC and (I- P)() are projections and it is obvious that

PeR RP, I P R g I P),
(3.2)

g-1P PR-, R-(I P) (I- Pe)R-.
Denote

/ (I-p) c /.

DEFINITION 2. For a given (Xo, 4, g’) and admissible control u(.), define a
semicausal trajectory x,(. with parameter by

(3.3) x(t)=f,o,,.+)(t)+ F(t-tr)Pu(tr) dtr, te[0, T].

According to these definitions, the following relations are valid:

u Ptu + (I P)u, xt =xo,,,,)+ rPtu,
(3.4)

x=x+F(I-P)u, x(T)=x(T)+Fr(I-P)u,
where 0 <_- <_- T.

Define

(3.5)

where 0 =< : =< T is a parameter.
+Similarly to 18, Lemma 4], (a//e) is self-adjoint and coercively positive, so

that is invertible and, moreover,

(3.6) I1(+)-ll (%) -<- const.
where the constant is uniform for 0 <_-: <= T.

Now define another operator Ne e(x X) by

(3.7) N Iex-(T) ()-I(I- P)(F*Q, F*TQT-).

LEMMA 6. Let [0, T] be arbitrarily given. The optimal state trajectory x( and
the corresponding semicausal trajectory x(. are related by

(3.8) (x(.) (x(.))x(T)) N \xt(T)

Proof For any given initial data {Xo, 4), }, let {u(. ), x(. )} be the optimal control
process. From (2.9) and (3.4) it follows that

(3.9) Ru+(F*QF+F*vQTFv)(I-Pt)u=-(F*Qxt+F*vQvxt(T)).
Apply the operator (I-Pt) on both sides of (3.9) and use the invertibility of the
operator + then

+(3.10) (I-Pe)u =-(O)-’(I-P)(F*Q,F*Q) x(T)/"
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Substitute (3.10) into the expressions for x(.) and x(T) in (3.4); then (3.8) is
obtained.

Remark 1. If =0, then xe(t)=3xo,6.)(t), for any t (0, T]. We have

( r ) o-(F*Q, r*rQr),Ne== Irx-

since ((I)-=0) -1-" (I)-1 and I-Po L Hence it follows that when : 0,

{x(.) (.
o,,,,)( - , + *_( xo,,)(.)-ro (r 0o,, rOo,,)(T))

(by the open-loop relation (2.8))

( o,,,)(’)+ ro-’(o)
o,,)(T) r-l(u))

=( o,,)(.)+ru =(x(.))ko,,,)()+ru/ x()

where u is the optimal control corresponding to the given initial data (Xo, , if), and
x(.) is the optimal trajectory corresponding to u.

Therefore, even if 0, Lemma 6 and (3.8) still hold. The reason is that for the
optimal process, the optimal control u(.) is uniquely determined by the initial data
(Xo, , ), so the optimal trajectory x(. and its terminal value x(T), in turn, are also
uniquely determined by the initial data (Xo, , ) only.

THZOgZM 3 (Optimality Principle). u(. is an optimal control if and only if

(3.11) u(t)=-R-’(F*(t)Q,F*(t)QT)N,
x,(

where xt(" is the corresponding semicausal trajectory with parameter t, Nt is given by
(3.7), and the operators F*(t) (; U) and F*T(t) (X; U) are defined by

(3.12)

T

F*(t)y F*(o’- t)y(o’) do’,

r*(t)y, F*(T- t)yl, Vy, X,

respectively.
Proof. (i) If u(. is an optimal control, from (2.9) and (3.8) it follows that

(3.13) u =-R-(F*O, F*rOr)Ne xe(T)
where s e [0, T] is arbitrary. Note (2.10) and (3.12), and take for the real time
value u(t); then (3.13) reduces to (3.11).

(ii) Conversely, to show that if u(.) satisfies (3.11) then it must be the optimal
control, it is enough to show that the control u(.), which satisfies (3.11), is unique.
This amounts to showing that fxo,.,)= 0 and u(. satisfies. (3.1,1) only if u(t)= 0 on
[0, T].

Indeed, since f(xo..,)=0, we have x, FP,u. By (3.11), it can be estimated that

(3.14) Ilu(t)ll<--R-11111(F*(t)Q’F*(t)QT)li(x;t’)llN’ll(x
x,(T) x
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Since (1.32) implies F(t) is piecewise strongly continuous and uniformly bounded on
the finite interval [0, T], from (3.12), (2.1), (2.2), and (3.7), it follows that

(3.15)
(r*(t)Q, F*r(t)Qr)[l:e(ex.u <-- const.,

Nt IIL(x) const.,

and

(3.16)
x, x FrPtu] 2X

const. Pu ,

-< const. (llrll(;)/ IIrll(;))llP,ullo

where all the constants are independent of [0, T]. Finally, since

(3.17) IIP,ull , Ilu( )ll = as [0, T],

all these estimations imply that

(3.18) Ilu(t)ll=const, Ilu(s)ll - as, t[0, T],

which allows us to use the Gronwall-Bellman inequality to obtain that u(t)= 0.
This optimality principle has qualitatively demonstrated the causal dependence

of the optimal control u(t) on the past information xt(" or P,u.

4. Fredholm synthesis equation. Let : [0, T]. Define an operator function

(4.1) Me(t r)=-R-’(F*(t)Q,F*T(t)Qr)N
F(T-r)

where (t, or) s [0, T] x [0, T], and Me(t, or) (U).
LEMMA 7. The following identities hold:

(O-)-’(I Pe)(F* Q, I’*rO) (I- Pt)R-’(F*Q, F*rOr)Ne xX -> alle,(4.2)

and

(4.3) (r) (d)-’(I-Pe)= N () (I-P)R-" 91 TX.

Proof. The proof is simply a verification with the use of definitions, the idempotent
property of (I-Pe), and (3.2). Since it is similar to Lemma 6 of [8], it is omitted here.

THEOREM 4 (Synthesis Equation). For any given [0, T], there exists a unique
solution Me t, or) of the following equation:

(4.4)

Me(t, tr)+ R-1K(t,s)Me(s, tr) ds=-e-lK(t, tr), (t, o’)E [0, T] x[0, r],

where K t, tr) is given by (2.12). The solution is given by (4.1), which is strongly continuous
in and piecewise continuous in tr and such that

(4.5) liMe(t, tr)l{ -<_ const. V(, t, o’) [0, T]3.

Proof. First we show that Me(t, tr) given by (4.1) is a solution of the equation
(4.4). Besides, it is easy to see that this Me(t, or) does satisfy the required conditions
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of continuity and boundedness from the definition. We check that (4.4) is satisfied by
(4.1) as follows"

Me(t’ r)= -R-I(F*(t)Q’ F*(t)QT)N
F(T-r)

{ ( r ) (o)-’(- e)(r*O, r*O)}-R-’(F*(t)Q, r*T(t)Qr) Ix- Fr

F(T-tr)]

-R-(F*(t)QF(. tr) + F*T(t)QTF( T-

+ R-I(F*(t)QF+F*(t)QFT)(O)-’(I-P)(F*Q’F*Q)
F(T-o’)

-R-’(F*(t)QF(. tr) + F*T(t)QTF( T-

(by (4.2))

+ R-’(F*(t)QF+F*(t)QF)(I-Pe)R-’(I’*Q,F*Q)Ne
F(T-tr)

-R-X(F*(t)QF(. tr) + F*T(t)QTF(T--

(by (4.1))

(4.6) R-I(F*(t)QF + F*r(t) OTFT)(I Pe)Mt(’, tr).

From (3.12), (2.1), (2.2), and (2.12), it follows that

R-(F*(t)QF(. tr) + F*T(t)QTF(T-- o’)) R-1K (t, o’),

R-’(r*(t)Qr + r*(t)QrT-)(! P)M( r)
(4.8)

R-’K(t,s)(I-Pe)Me(s,o’)ds= R-’K(t,s)M(s,r)ds.
o

Substitute (4.7) and (4.8) into (4.6); then we obtain

M(t, o’)= -R-’ K(t, tr)- R-’ K(t, s)M(s, o’) ds.

This last relation shows that the Me(t, o-) given by (4.1) is exactly a solution of the
equation (4.4).

Next we prove the uniqueness. This can be done by showing that the corresponding
homogeneous equation

(4.9) /Q(t, r)+ R-’K(t,s)l/l(s, o’) ds=O, (t, o-) [0, T]2

admits only the null solution Me(t, r)-0. Indeed, (4.9) restricted on (t, r)
[sc, T] x [0, T] can be rewritten as

(4.10) //(., r)-0 for each r[0, r].

(4.7)

and
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Since @ is invertible in (e), we have

(4.11) M(s, cr)=-O for s[, T] and r[0, T].

Then substitute (4.11) into the integral term of (4.9); we finally obtain

(4.12) Me(t )-=o for t [0, T] and r [0, T].

Thus the proof is completed.
This result means that the inversion ()- has been transferred into solving a

linear integral equation (4.4) of Fredholm type. Thus it is possible to obtain the
following feedback optimal control by using the semicausal trajectory.

THEOREM 5. U(" is the optimal control if and only if
u(t) -R-’[r*(t)Qx, + F(t)QTxt(T)]

(4.13)
M,(t, )R-’[F*()Qx,+F()Qx,(T)] d, te[o, T],

where M( t, ) is the unique solution of the linear integral equation (4.4) of Fredholm
type, and x,(. is the corresponding semicausal trajectory with real time as parameter
value.

Proof If u(.) is the optimal control, by the previous results (3.11), (3.7), and
(4.3), it follows that

u() -R-I(F*()Q, F(t) Qr)N,
x,(T)

x, (T)

(?)-’(- P,)(F*Q, rQr)
x,(T)

(I- g)R-I(F*Q, FQr)
x,(T)

-R-’[r*( t)Qx, + r(t)Qx,( r)]

(4.14) + R-’(F*(t)Q, F(t)Qr)Y
T

F( )R-’[r*()Qx, +r()Qx,(r)]

F( r- )R-’[r*()Qx, +r()Qx( r)]

-R-’[r*(t)Qxt + r(t)Qx,( r)]

R-I[F*()Qx, + F}()Qrx(T)] d

M,(t, -[r*(x, +r(x,(r] a,
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where we have made use of the convention (1.28). Equation (4.14) shows that the
optimal control actually satisfies (4.13).

Conversely, if the initial data (Xo, 4, q) is given, then there exists only one control
u(.), which satisfies the relation (4.13). This can be shown in a similar way by the
Gronwall-Bellman inequality, as in the proof of Theorem 4. Thus it is concluded that
(4.13) is necessary and sufficient for u(. to be optimal. [3

THEOREM 6 (semicausal trajectory feedback), u(.) is the optimal control if and
only if

T

(4.15) u( t) -Tr( T, t)QT-x,( T)- 7r(s, t)Qx,.(s) as, [0, T],

where

(4. (s, -*(s-+ M,(,-*(s-l ,
and Me(t, ) and x,(. are described as in eorem 5.

Proo Substitute (3.12) into (4.13), to obtain

u(t) -R-1 F*( T- t)Qrx,(T) + F*(s t)Qxt(s) ds

R-1F*(r-)+ ,(,)R-1F*(r-)d rx,(r)-*(s t + M,(,-F*(s x,(s s

Conversely, (4.13) can be deduced from (4.15) so these two relations are equivalent.
Thus the conclusion is true.

Remark 2. Since the semicausal state trajectory x,(. with real time as a running
parameter is determined only by the past control {u(): t}, and the feedback
operator function (s, t) is known provided the solution Me(t, ) of the equation (4.4)
is available by any means (analytically or numerically), the obtained result (4.15) is
justified to be a closed-loop solution of the described optimal control problem.

5. Closed-loop optimal control. In this section, we present an expression for the
real time optimal control u(t) by state feedback that involves {x(): t}, based on
the semicausal trajectory feedback given by Theorem 6.

A clarification of the relationship between the state function x(t) and the corre-
sponding semicausal trajectory x(t) will pave the way to the closed-loop synthesis of
the optimal control.

LEMMA 8. Let G(t) be the fundamental solution associated with (1.6) and let F(t)
be defined by (1.32). en, the following relation holds:

(min(t’hi)(5.1) F(t+s)=G(t)F(s)+ G(t-)A,F(s+-h)d fortO,sO.
i=1 d0
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Proof The equality can be verified by the use of (1.23) and (1.32). [3

LEMMA 9. Let x( be any state function with an initial data (Xo, qb, d/) Z and an
admissible control u all, and let x(. be the corresponding semicausal trajectory with
parameter [0, T]. Then, the following relation holds:

min(t,+hi)x(t)
G(t-lx()+

i=1

i=1 (:,hi)

G(t r/)A,x(r/- hi) dr/

G( rl )A,ch( rl h,) an

in (:,rj)
G rl BO rl t) dr for t> .

Proof It is enough to prove (5.2) only for > :. In fact, for > :,

x(t) (.3)fxo.’,’)(t) + F( t- o-)u(o-) do"

(1.1) G(t)Xo+ G(t-o") Aidp(o’-hi)+ E Bjd/(o’-rj) do-
i=1 j=l

+ F(t-o’)u(o-) do-

(1.__3)_ G(t- :)G(:)Xo+ fmin(t-:,hi)
(5.1) i=1 d

G(t--s)AiG(+ s-hi) dsxo

+ G( ) G(- o-) Ai6(o-- hi) + Z Bjb(o-- r2) do"
i=1 j=l

t--[Iomin(t-"hi)i=l
dO

G( s)AiG( o" + s hi) ds

Ai(o"- hi)+ E Bjd2(o"- rj) do"
i=1 j=l

+ G( sc) F(: o-)u(o-) do"

+Io dO

G(t- -s)AiF(-o-+ s- hi) ds u(o-) do"

+ G(t-o") Aidp(o"-hi)+ Z B2d/(o"-rj) do"
i=1 j=l

=G(t-:) G()Xo+ G(-o") Ai(o--h,)+ Y’. Bj(o--r2) do"
i=1 j=l

j" }+ F(: o-)u(o’) do"
o
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+ G(t-o") Aidp(o’- hi)+ E Bjd,i(o"- rj) do"
: i:=1 j=l

(note that G(t) 0 and F(t) 0 whenever < 0)

G(t-rt)A,x(rt-hi)
i=1

+ G(t-rl)Aidp(rl-hi) drl
i=1 (:,hi)

+, j G(t_rl)Bj@(rl_rj drl.
rain (,rj)

Therefore, (5.2) is valid, fl

Based on these above results, the closed-loop optimal control is achieved as follows.
THEOREM 7 (closed-loop optimal control), u(.) is the optimal control if and only

if it is given by the following linear state feedback:

u(t) H(t, t)x(t)+ H(t, rl)Aix(r hi) drl
i=1 at

(5.3) + Im’ H(t, rl)Aix(r hi)drl
i=1 in(t, hi)

+ E H(t, rl)Bju(r -rj) d,
j=l min t, rj

where x(. is the corresponding state function, and

t[O, T],

(5.4)

H(t, ,)= rr(T, t)QTG(T-rl)+ fr 7r(s, t)QG(s-rl) ds, (t, r/) [0, T] x [0, T]

and 7r(s, t) is given by (4.16).
Proof. Substitute (5.2) into (4.15), then the optimal control u(t) is given by

T

u(t)=-Tr(T, t)QTxt(T)- "n’(s, t)Qx,(s) ds

=-Tr(T, t)Qr G(T- t)x(t)+
i=1 dt

O( T- rl)A,x(rl h,) dn

+ G(T- ,)A,rk(, hi) d,
i=1 n(t, hi)

+ G(T-)B4,(n-) d
j=l in (t, rj)

fT { fmin(s,t+hi)
or(s, t)Q G(s-t)x(t)+ G(s-rl)Aix(rl-hi) dr

i=1 dt
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i--1 n(t, hi)
G(s-n)A,ck(n h) dn

+ Y. G(s-n)B(n-)an ds
j=l in(t, rj)

7r(T, t)QT-G(T- t) + r(s, t)Qa(s t) ds x(t)

i=1 dt

Ax h) d._
(r, t)rG(r-n)+ (s, t)G(s- n) ds

i=1 n(t, hi)

A h,) d

2 (r,a(r-n+ (s,a(s-nas
j=l in(t,9

:6(n ) dn

g(, )x(t)+ N(t, n)x(n-h)
i=1 dt

i=1 n(t,h)

where 4(n-h)=x(-h) formin(t,h)Nn<h sothat-hNn-h<0, i= 1,..., n,
and (n-)=u(n-r) for min(t,.)Nn<r so that-rNn-rN0, j=l,...,m.
This indicates that the optimal control u(-) satisfies the feedback relation (5.3).
Conversely, if u(" satisfies (5.3), we can deduce that u(. satisfies (4.15). By Theorem
6, this u(-) must be the optimal control.
CooA 1. For e [max (h, r), T], the optimal control is given by

(5.5) u(t)=- g(t, t)x(t)+ H(t, n)Ax(n-h,) d

erefore the last two summation parts depending on the initial data and have effects
only on the small interval [0, max (h, r)].
Cooa 2. IfB B 0, i.e., there is no time delay in the control variable

of the system (1.1), then the optimal control is given by

L(t, )Ax(-h) d
(5.

i=l n(,hi)

where L( t, is given by

(5.7 (t, =-*(,+ M,(,-*(,v,
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where

(5.8) *(t, rl)=G*(T-t)QG(T-rl)+ G*(s-t)QG(s-) ds

and Me(t, r) is the unique solution of the following integral equation:

Me(c,+ -**(, sMe(s, s= _-1**(,,
(5.9)

(t, r) e [0, T] [0, T].

Proof. Let F(t)= G(t)B be substituted into (2.12), (4.4), (4.16), and (5.4); then
this result is a consequence of the main result described by Theorem 7.

COROLLARY 3. IfA A, 0, i.e., there is no time delay in the state variable

of the system (1.1), then the optimal control is given by

(5.10) u(t)=- g(t, t)x(t)+ g(t, .)Bju(.-) dr
in(t, rj)

where H(t, rl) is given by (5.4) and or(s, t) is given by (4.16), with

(5.11) F(t)--eAtBq-eA(t-r’)B1 d-. "d-eA(t-r")Bm
COROLLARY 4. IfAi =0 (i- 1,’’’, n) and Bj =0 (j 1,..., m), then the optimal

control is given by

(5.12) u( t) -H( t, t)x( t),
where

(5.13) H( t, t) r( T, t)QT-G( T- t) + [ T

in which

(5.14)

(5.15)

t[0, T],

7r(s, t)QG(s-t) ds

G(t)= eAt (G*(t)-- eA-t, >=0, is the dual semigroup),

r(s, t)= R-1B* ea*(s-t)+ .l[t Mr(t, o’)R-1B* ea*(s-) dr,

Me(t, r) is the unique solution of the equation (4.4), in which

(5.16) K(t, r)= B* eA*(T-t)QreA(T-)+ eA*(s-t)QeA(s-’) ds B.

To show that in this nondelay case (Ai 0, i= 1,. ., n, Bj 0, j 1,. ., m), the
closed-loop optimal control given by (5.12) does coincide with the standard result by
the state feedback with the solution of a Riccati equation, we need the following lemmas.

Later in this section, we denote G(t)= eAt, >=0, with the previous convention
that G(t) 0 whenever < 0.

LEMMA 10. Define an operator function W( t, ) by

(5.17)
G(" )

O< sC <= <= TW(t, )=G(t-)-F(t)()-(I-Pe)(F*O,F*Or) G(T-)]’
and it is a convention that

W(t, ) 0 fort<,
where F(t) w(-//; X) is defined by (see (2.1))

r(t)u G(t-o’)Bu(o’) do’.
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Then,
i) For any given initial condition, the optimal state trajectory x(. satisfies

(5.18) x(t)= W(t,,)x(), O<tT.
(ii) supo<,r w(t, )ll(> const.
(iii) W(t, V) W(V, ) W(t, ), 0 < T.
(iv) W(t, ) is strongly continuous in e [, T] and in (0, T], respectively.
Proo (i) Since

X(t)
(3.4)

x(t)+F(t)(I-P)u, O<tT,
(3.1o)

_((I-P)u -() t-P)(r*Qx+rQx(r)),

xe(t)(G(t-)x(), O<NtNT,

it follows that

x(=
a(r-)/

x()= W(t,)x().

(ii) By (3.6) and (5.17), W(t, ) is uniformly bounded in the (X) norm.
(iii) Let 0<NNCN T; then it follows from (5.17) and (4.2)that

r(n(,-( e(r*,rI a(r- e

r(( e - (r*,

(i-e-’(r*,re a(r-]
By (3.7), (4.2), and (4.3), we obtain

(5.0

( r ) (P P)R-(r*Q, rQ)N
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Substitute (5.20) into (5.19); then

W(t, rl) W(rl, ()= G(t-)-G(t-rl)F(rl)(I-Pe)R-I(F*Q,F*rQr)N
G(T-)]

-F(t)(I-P,)R-’(F*Q,F*rQr)Ne
G(T-)

O(t-sc)- + G(t-tr)BR-I(F*(tr)Q,F*T(tr)QT)N

.(a(’-eda(r-)]

* ( ( )
a(t- )-r()(e)-’(I- P)(r*o, rIo) O(T )/

W( t, ).

(iv) By the definition (5.17), it is clear that W(t, ) is strongly continuous in
e[, T]. Combination of this continuity with its uniform boundedness (ii) and its

evolutionary propey (iii) implies that W(t, ) is also strongly continuous in
(0, t].

LEMMA 11. Let H(t, t) be given by (5.13); then

(5.21) g( t, t) R-1B*p( t), tel0, r],

where P(t): [0, T]o (X) is given by

P(t)=O*(T-t)QG(T-t)+ G*(s-t)QG(s-t) ds

(5.22)

where *(t) and (t) are defined by (c (3.12))

P*(t)y *(- t)y() d Vy ,
(5.23)

*( t)y G*( T- t)y Yl X.

Proo From (5.13), (5.15), and (4.1), it follows that

H(t,t)=(r,t)QrG(r-t)+ (s,t)QG(s-t)ds

=R-1B* G*(r-t)QG(r-t)+ O*(s-)OO(s-,d

I-R-’* (P*(t)Q,P(t)Q)N
O(T-)

.BR-1B*G*(T-) dQG(T- t)

BR-B*G*(s-) dQG(s-t) ds
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{ I=R-1B* G*(T-t)QTG(T-t)+ G*(s-t)QG(s-t)ds

(5.24)
-(P*(t)Q,*r(t)Qr)N,

G(T-cr)

BR-I[B*G*(T-cr)QrG(T-t)
+ B*G*(s-)QG(s- t) ds d

=R-B* G*(T-)G(T-)+ G*(s-t)QG(s-t) ds

( e,-(r*,rI a(r-]

Formula (5.24) indicates that (5.21) and (5.22) are valid.
LMMa 12. Lee P() and W(t, ) be given by (5.22) and (5.17), respectively. en

the following relation holds:

(5.5 e( a*(r- lw(r, + a*( w(, , e (0, r].

Proo From (5.17) and (4.3), it follows that

*(r- w(r, + G*(-(,

G*(-r((,-’(-e,(r*,r
a(r-t)

a*(r- G(r-+ G*(-t)QG(-t) d

r
(-e,-(r*,rl

LEMMA 13. efollowing relation holds:

(5.26) W(t, ) a(t- )- W(t,)BR-1B*p()G(-)d, O<NtNT,

where W(, ) and P(t) are given by (5.17) and (5.22), respecively.
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Proof Let the function on the right side of (5.26) be denoted by A (t, :). It can be
verified that for any yX, both gl(t)= W(t, )y and g2(t)=A(t, )y, t[, T], are
strongly continuous solutions of the following Volterra integral equation"

(5.27) g(t)=G(t-()y- G(t-o.)BR-1B*p(o.)g(o.) do’, tell, T].

By the uniqueness of the solution, (5.26) is true.
LEMMA 14. Let P(t) be defined by (5.22). Then, P(t) is the unique strongly

continuous and self-adjoint solution of the following integral Riccati equation:

(5.a
e(l=a*(r-lOG(r-l+ a*(-

[Q-P(o’)BR-’B*P(o’)]G(o’-t) do’, t[0, T],

where O(t) eTM and (3*(t) eA*t.
Proof. By Lemma 12, P(t) can be expressed by (5.25). Substitute (5.26) into (5.25);

then it follows that

P(t) G*( T- t)QTW( T, t) + f T

G*(o’- t)QW(o’, t) do"

G*(T- t)QTG(T- t) + f T

G*(o’- t)QG(o’- t) do"

-G*(T-t)Qr W( T, o’)BR-1B*p(o’)G(o" t) do"

G*(rl t)Q W(q, o’)BR-1B*P(o’)G(o" t) do" d7

G*(T- t)QrG(T- t) + f
7-

G*(o’- t)QG(o’- t) do"

T

G*(o.- t)P(O.)BR-’B*P(O.)G(O.- t) do"

T

G*( T- t)QTG(T- t) + G*(o’- t)

[Q- P(o’)BR-’B*P(o’)]G(o’- t) do’, t[0, T].

Therefore, P(t) is actually a solution of the integral Riccati equation (5.28). By (5.25)
and Lemma 10(iv), P(t) is strongly continuous. In [5], it is proved that the strongly
continuous solution of (5.28) is unique. Besides, by transposition it can be seen that
P*(t) is also a solution of (5.28), then the uniqueness implies that P(t)= P*(t),
t6[0, T].

It is easy to show that the integral Riccati equation (5.28) is equivalent to the
following differential Riccati equation:

(5.29)
d
d-- (P( t)x, y) -(P( t)x, Ay)-(Ax, P( t)y)-(Qx, y)+ (P(t)BR-1 B’P( t)x, y)

Vx, y(A), t[O,T],

with P(T) QT.
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Thus, we obtain the following result that shows the synthesis via the Fredholm
integral equation and the synthesis via the Riccati equation are equivalent in the
standard case.

COROLLARY 5. IfAi-0 (i 1," , n) and Bj =0 (j 1,. ., m), then the optimal
control is given by

(5.30) u(t)=-R-1B*P(t)x(t), tel0, T],
where P( t) is the unique strongly continuous and self-adjoint solution of the differential
Riccati equation (5.29), and x(. is the corresponding state trajectory.

If Q- 0 in the quadratic cost functional, then the corresponding linear Fredholm
integral equation (4.4) can be solved explicitly to provide an explicit formula for the
feedback operator H(t, 7) in (5.4). Note that in this case,

(5.31) K(t, o-)= F*(T- t)QrF(T-r).

Hence the Fredholm equation (4.4) reduces to

(5.32)

Mg(t, r)+ R-IF*(T-t)QrF(T-s)Mg(s, r) ds---R-1F*(T-t)OTF(T-r).

It is easy to show that the solution of (5.32) can be given by an explicit form.
LEMMA 15. The unique solution of the equation (5.32) is given by

M(t, tr) -R-F*(T- t)v/-[I + A(sC)]-lx/QT F( T-tr),(5.33)
where

(5.34) A(:) x/- F(T- t)R-’F*(T- t)V/QT dt.

LEMMA 16. Assume that Q 0; then the optimal feedback operator is given by

(5.35) H( t, n) R-’ F*( T t) x/’QT (I + A( t))-’Qr G( T r/),

where A(t) is given by (5.34).
Proof. Substitute (5.33) into (4.16) then, in turn, into (5.4); it follows that (5.35)

holds by an easy rearrangement.
COROLLARY 6. Assume that Q--O so that there is no state integral term in the

criterion (1.5). Then, u(. is the optimal control if and only if
(5.36)

u( t) g- I F*( T- t)v/QT(I + A(t))-l G( T- t)x( t)

-1- f min(T’t+hi)
F,(T_ t)x/QT(i+A(t))-x/rG(T_rl)Aix(rl_hi)

i=1

i=1 n(t, hi)

Imi-" jl’= in (t, rj)

F*( T- t)x/Qw(I + A( t))-lx/r G( T- rl)A,x( h) dq

F*( T- t)x/QT( I + A(t))-’x/Qr G( T- q Bju(rl h) dq },
tel0, T]

where A(t) is given by (5.34).
Remark 3. There is an advantage in the above approach and the obtained closed-

loop syntheses, i.e., the dimension of the linear Fredholm integral equation (4.4) is



DIFFERENTIAL DIFFERENCE SYSTEMS 289

the same as dim U. In many practical control situations, dim U is finite even though
dim X is infinite. Therefore the analytic design of the optimal control reduces to solving
a finite-dimensional linear integral equation provided dim U < oo, which can be done
by standard numerical methods.

Remark 4. The approach taken in this paper can be applied to solve more
complicated problems for retarded functional differential systems with distributed
delay in control/state/output variables, neutral differential systems and time-variant
systems. It can be applied to tackle quadratic differential game problems as well. In
all these possible generalizations, the common link is the semicausal dynamical treat-
ment based on the general Volterra systems.

6. An example. As an example, we consider a control system having partial
differential equation model with delay"

u,(t,x)=Uxx(t,x)+u(t-l,x)+b(x)f(t)+b(x)f(t-2), t>=O, x [0, 1],

u(t,O)=u(t, 1)=O, t>=O,

(6.1) u(O, x) Uo(X) L2(O, 1) X,

u( O, x) ch( O, x) L2(-1, O;X), -1=<0<0, x [0, 1],

f(:) tfi() 6 L2(-2, 0), -2 <= s <- 0,

where we assume that b(x) and b(x) belong to L2(0, 1). Let U R andf( L2(0, T)
L2(0, T; R) where T> 0 is finite and fixed.

Set a quadratic cost functional as follows:

(6.2) J(f)=llu(T,.)ll2x+ []]u(t,.)l[2x+lf(t)]2]dt,

and the optimization task is to find a control f, L2(0, T) such that

(6.3) min J(f) J(f.).
feLz(O,T)

Define the operator A: @(A) X by

(6.4)
Au=uxx, u6(A),

(A)={uX" UxxX and u(O)=u(1)=O}=H2(O, 1)fqH(O, 1).

Then A is the infinitesimal generator of a self-adjoint and compact semigroup eA’,
which has an expression:

(6.5) eAtu Y’. eX"’( u, 6,)x6,, >= O,
n=l

where {A, -nZTr2: n 1, 2,. } or(a) and {b,(x) 4 sin (nrx); n 1, 2,. }, as
the complete eigenvectors of A, forms an orthonormal basis for X.

On the other hand, define

A1 I (identity on L2(0, 1) X),
(6.6)

B=b(.)(;X) and B=bl(.)([;X).

The task can be rewritten in optimal control formulation described in 1, with
the state equation

(6.7)
du(t)
dt

Au(t) + A,u(t- 1) + Bf(t) + Blf(t- 2)
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and the cost functional (1.5), where

(6.8) QT=I, Q=I, g-1.

The following are steps to find the optimal control.
Step 1. Find the fundamental solution G(t):+ (X) of (1.9). In this case, by

the induction and direct calculation, it is not difficult to obtain the following explicit
formula for this G(t):
(6.9)

I eAt h- eA(t-1)( 1) +" + eA(t-k)
k) k

k---. t[k,k+l], k=0,1,....
G( t)

/
I0, t<0,

Note that for k 0, G(t) eA’, [0, 1 ].
Step 2. Write down the expression of the mild solution of (6.7) as the following

Volterra integral system"

(6.10) u(t)=p(t)+ F(t-tr)f(o) dtr, t[0, T],

where p(t) and F(t) are given by

p()=G(t)uo+ G(t-o-)[d(o’-l)+b(o--2)]do-

where

(t,’),
and (t)=O for t>O; andb(t)

0, t=>0

(6.11) F(t)=G(t)B+G(t-2)B=G(t)b(’)+G(t-2)b(’), t>=O.

The concrete formula for (6.11) can be obtained by substitution of (6.9) and (6.5) into
(6.11).

Step 3. Synthesis equation (4.4). Now we can write the kernel operator function
K(t, tr) in (2.12) as

(6.12) K(t,o’)=F*(T-t)F(T-tr)+ F*(s-t)F(s-tr)ds for(t,o’)[0, T],
where F(t) is given by (6.11), so K(t, or) is known to us. As mentioned in Corollary
1, we have that F(t) 0 whenever < 0. More precisely, since F(t) (, X) for each, we have

(6.13)

(,=((r-,(-l+ ((s-,(s-s, (,le[0, r],
which is actually a bivariate scalar continuous function.

Since R 1, the synthesis equation (4.4) now becomes

(.4 Me(t, )+ (,sMe(s, s=-(,, e[,, 7"], (,, e[0, r],
where K(t, o-) is shown by (6.13). Note that (6.14) is a Fredholm integral equation
with scalar unknown function Me(. o’) on [:, T] where (, o-)e [0, T] are two para-
meters.

The feature of (6.14) is that this is a scalar integral equation. In general, as long
as dim U < oe, the synthesis equation is a finite-dimensional integral equation. Thus
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we do not need to solve an infinite-dimensional operator equation such as the Riccati
equation.

If in the special case Q--0, then the solution of (6.14) is given by the following
explicit formula"

(6.15) Me(t o.)=- F(T-t), I+ F(T-t)F*(T-t) dt F(T-O.)

If Q I, then (6.14) can be further solved approximately by numerical methods.
Step 4. Feedback operator H(t, o.) and the closed-loop optimal control. From

(5.4) and (4.16), we have the following expression. For (t, o.) [0, T]2,

H(,=rI(r, G(r-l+ n(s, a(s- s

+ F*(s-)+ M,(, n)F*(s-n) dn G(s-) ds

(6.16)
(F(T- t), G(T-O.)’)+ I M,(t, r/)(F(T- n) G(T-O.).) an

T

+ (F(s t), G(s o.)" ds

+ M,(t, n) (F(s n), G(s r).) ds dn.

Finally, substitute (6.16) into (5.3) in Theorem 7, to obtain the closed-loop optimal
control as follows:

(6.17)
I min (T,t+l)

f(t) H(t, t)u(t) /
.It

H(t, )u(- l) d

-" Imin (t,1)
H(t, sc)b(sc- 1) d:+ ffmin (t,2)

H(t, )B,f(sc-2) d:], [0, T],

where H(t, o.) is shown by (6.16).
Especially, for [2, T], we have the optimal control

f( ((r- , G(r-u(+ ((s- , G(s-u( as

I+ M,(, n ((r-nl, a(r-lu(l

+ (F(s-), G(s-t)u(t)) ds dn

fin(T,t+l)[ fiT(F(T-t), G(r- r)u(o’- 1))+ (F(s-t), G(s-)u(-l))ds

+ Mr(t, rl) (F(T-,), G(T-o.)u(o.-1))

+ (F(s-n),G(s-o.)u(o.-1))ds dr do’.



292 E.B. LEE AND Y. YOU

Therefore we see that for this example (and also for more general delays), the
only essential thing in getting the optimal control is to solve the synthesis equation
(6.14) for. M,(t, tr), which can be done by means of standard computational
methods. U
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BOUNDARY CONTROLLABILITY OF MAXWELL’S EQUATIONS
IN A SPHERICAL REGION*

KATHERINE A. KIME"

Abstract. This paper examines the question of control of electromagnetic fields in a three-dimensional
spherical region by means of control currents on the boundary of that region. The necessary theory of
divergence-free solutions of the vector wave equation is developed. By use of eigenfunctions of the vector

Laplacian in appropriate divergence-free domains and moment problem techniques, sufficient conditions
for controllability are set forth.

Key words, control, Maxwell, electromagnetic, boundary control
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1. Introduction. We consider Maxwell’s equations

OE
(1.1) TxH=

0t’

aH
(.2) vx=-,

(.3) v. U=0,
(1.4) V. E =0

in II the unit ball in R3, assuming no internal changes or currents. Here E(x, y, z, t)
and H(x, y, z, t) are three-dimensional vectors representing the electric and magnetic
fields, respectively, X7 denotes the curl operator, and V. denotes divergence.

We are interested in the possibility of controlling the fields E, H inside fl by
means of a current J(., t) flowing tangentially on 0fl -= F, the effect of which is described
by the boundary condition

(1.5) t H -J on F (a the unit outward normal vector).

Thus we may pose the following problem.
CONTROL PROBLEM. Given T> 0 and prescribed initial data, find a control current

J(., t) defined on F such that the solutions E, H of (1.1)-(1.5) with this initial data
also satisfy the terminal condition

E(., T)= H(., T)=0.

In [15], the control problem for f, a circular or rectangular cylinder, was treated,
under assumption of invariability of the fields in the axial direction.

Our plan in this paper is as follows. In 2, we will convert from Maxwell’s system
to the system of equations for the vector potential associated with the fields, the latter
being the vector wave equation with the additional constraint that the solution be
divergence-free for all time. It will then be natural to work in certain divergence-free
subspaces of

92([-) {( ((1, ()2, (3)" (i L2(II), i= 1, 2, 3}.

* Received by the editors April 13, 1987; accepted for publication (in revised form) May 26, 1989.
f Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio 44106.

This research was supported by Office of Army Research contract DAAG 29-80-C-0041, and in part by
National Science Foundation grant MCS-P215064 and Air Force Office of Scientific Research grant 85-0283.
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We will introduce necessary definitions and give some known, relevant results concern-
ing these subspaces.

In 3, we establish existence and uniqueness of a weak solution to the system for
the vector potential in the case in which the boundary input is in L2[0, T; :(F)], here
taken as the admissible control space. This is necessary before taking up the control
problem itself, which will be done in 4. By use of divergence-free eigenfunctions of
the vector Laplacian, the "multipole fields" [8], [12], we are able to reduce the control
problem to a collection of trigonometric moment problems. In {} 5, we establish
conditions that allow solution of the moment problems.

2. Conversion to potentials; function spaces.
2.1. Conversion to potentials. Let E, H be smooth solutions of (1.1)-(1.5). Then

we may see as in [5], [8], and 12], that there exists a smooth vector W with H V x W,
E -0 W/Ot, which satisfies

(2.1)

(2.2)

(2.3)

[-qW= 0
in f,

V.W=0

x(VxW)=-J onF.

If H(.,0)=Ho, E(.,0)-=Eo, W(.,0)-=Wo, 0W/0t(.,0)=-W then VXWo =Ho,
Wl -Eo"

To proceed without undue complication (due mainly to unwieldly limits of
integration), we assume E, H are smooth solutions of (1.1)-(1.4) in 1*, where 11" is
a slightly larger ball of radius ,/(1 + e) + e, e > 0. We may see by well-known arguments
that there exists a smooth vector A such that H V x A in f*x [0, T]. With f(x) any
smooth function (with H (H, H2, H3)), we can define

A1 f(x),

A:= g3(: y, z, t) d+ K,(y, z, t),
(l+e)

A3 -H:(, y, z, t) d+ K:(y, z, t)
-(l+e)

where K, K: are smooth solutions of

OK OK1
Oy Oz

Hi(-(1 + e), y, z, t);

we take

K 0, K2 I y

H,(-(1 + e), r/, z, t)) an.
We now set A= (A1, A:, A3). By (1.2),

VxE OH_ot __OtO (VxA)=-Vx(0)
or

(2.4) Vx E+ =0,
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which implies the existence of b such that

E+--=-V$.
at

We use V( to denote the gradient. By (1.1),

aE
at

which implies

or

V x H V x (V x A) grad div A- AA,

grad div A- AA ---at

02A
(2.5)

Ot2

By (1.4), (2.4), we have

which implies

(2.6)

+ div A

div Vq+ =0,

a
A4, =- (div A).

Observe that if W, 6 are defined by

(2.7) W=A+Vx,

where X is any smooth scalar field, then

and

Vx W=(VxA)+(Vx(Vx))=H,

aw
v6=

oA a(vx)_V6+v(a___x=E.
ot ot ot

The fields are thus invariant under such transformations, commonly called gauge
transformations. We now choose

X(x, y, z, t)= oh(x, y, z, s) ds + M(x, y, z)

where M is the solution of

AM -div A(x, y, z, 0) in

M=0 onF.

If fe H: (lq), then the solution u of

Au =f in f,

u=0 onF
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belongs to H(f) f’l H2+K (). Taking f -div A(x, y, z, 0) and applying the Sobolev
Lemma, we see that M is smooth. Now

0 fo dM
4 - (x, , z, ) d +-dS-= 0.

We have

and

V. W=V.A+divgrad

AX A c(x, y, z, s) ds +M

Ac(x, y, z, s) ds +

-Os (div A(x, y, z, s)) ds-div A(x, y, z, O)

-div A(x, y, z, t) + div A(x, y, z, 0) div A(x, y, z, O)

=-div A(x, y, z, t),

the third equality from (2.6). Thus

(2.8) V. W=0.

W is said to be in the Colomb gauge. Fuhermore, since

02
(vx) 0 (vx) (vx)

=v] -v(x)

the last equality from (2.5), we have

and thus W satisfies (2.1)-(2.3).
It is a matter of straightforward differentiation to see that if, given W satisfying

(2.1)-(2.3), we define H= V x W, =-OW/Ot, then E and H satisfy (1.1)-(1.5). For
example,

OW
VxH=Vx(Vx W)=-W=

Ot2 Ot

2.2. Function spaces. Considering (2.1)-(2.3), we now wish to work in divergence-
free subspaces of (fl), as mentioned above. The inner product on 2(fl) is given by

(u,v)=au" v
with norm denoted by
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Let e(12) denote the Hilbert space of vectors that belong to ,.92(-,) and have
derivatives up to and including the order g belonging to 2(f). The inner product is

(u, v)e Y (D’u, Dv) withnorm Ilull,

We have [9] the following subspace decomposition of :()"
J() =closure in 2() of{u" u C(O), div u =0},
() closure in 2() of {u" u C(O), div u 0},

G() {u" u V, H()},
() {u" u V@, H(O)},

Letting the subscript z denote tangential component, and the subscript n denote
normal component, we define

 f(n)

By J(O) and by J,(O) we mean J(O), and by J(O) we mean J(O). Note that
J,(O) is dense in J(O), } 1.

The following known theorems, Theorems 2.1-2.3, may be found in [9] or [16],
and the references therein (see especially [2] and [3]).

Let E(O) {u ()" div u z L(O)}, where div u is taken in the distributional
sense for u (). E is a Hilbea space when given the scalar product

((u, v))z(n (u, v)(n+ (div u, div v)c(n.
TnogzM 2.1 [16]. Let be a bounded @en set in R", with Lipschitz boundary F.

en

3(a) {u z L (O) u 0, 0}

where div u is taken in the distributional sense. Here T" E(O) H-/=(F) is a linear
continuous @erator (the existence of which may be shown) such that

Tu the restriction ofu. n to F

for every u z C().
Tnogn 2.2 [16], [17]. Let be a bounded @en set of class C=. en ()

J(a)K()(0), where

TnnogM 2.3 [2], [3], [9]. If is a bounded open setin R, with boundary F
belonging to Ce+, g>= 1, then the operator curl establishes a one-to-one correspondence
between the waces J() and J-(), and also between J() and je-,(), where for
all u J() and u J(), we have the estimates

(2.11) C,[[V x u[[_ [[u[ Cz]]V x u[[e-1,
the constants C and C2 being independent of u.

We will also have need of two additional facts given in [9] concerning these
spaces, which we state here as lemmas, giving proofs as the arguments are sho.



BOUNDARY CONTROL OF MAXWELL’S EQUATIONS 299

LEMMA 2.4 [9]. Let J*() {u" u J2,(l)), (V u)lr=0}. Then Jln(gl is the
closure ofJ* (l)) in y(1 (1).

Proof The indicated closure is clearly contained in J,(gl). It also contains J,(l)"
if h J,(l)), there exists J() such that h =curl :. As proved in [2], every vector

J(l) can be approximated by vectors " J(O) in 2(1-1). Let h be the solution
of the problem curl h ". Then

]]h h]] cll 11- o.
LEPTA 2.5 [9]. In the Hilbert space J(l"), the operator T curl curl with domain

D(T) J*() is self-adjoint and positive definite.
Proof As J2,,(l))c J*(fl), J*(l)) is dense in J(fl). Let u, v be elements of J*(12).

Then

(V x (T x u), v) Ia (T x (V x u)) v dV= Ia (V x u) (T x v) dV

u" (V x (V x v)) dV= (u, V x (V x v)).

Thus T is symmetric on J*(l).
Furthermore, the range of T, R(T), is )(1)" given v an element of .(1), by

Theorem 2.3 there exists q,, an element of Jl(l)), such that V x q v. Applying Theorem
2.3 to q, we see that there exists b belonging to j2,() such that V x 4 q. Thus
4 J*(l), and

V x(Vx 4) =V x q v.

It is well known [19] that if A is a symmetric operator in a Hilbert space H, and
R(A) H, then A is self-adjoint. Thus T is self-adjoint. Again employing Theorem
2.3, we have that T is positive definite:

(v x (v x ,,,), ,)- (v x ,.,). (v x ,,,) v-> I1,.,11,.

We recall the vector identity

(2.12) V x (V x u) grad div u Au.

From the fact that div u 0, for u J*(12), we see that Tu =-Au on J*(fi).
Lemma 2.5, along with the fact that the inclusion Y(I(I)- 2(1) is compact

implies that the spectrum of-A is discrete and positive and the eigenfunctions of-A
in J*(l) form bases for .(12), J,(l), and J*(12). From Theorem 2.3, we may show
that the eigenfunctions are in J,(l), t arbitrarily large, and thus, by the Sobolev
Lemma, that the eigenfunctions are smooth.

Remark 2.6. Denote the eigenfunctions of-A in J*(12) by { Us} (the subscript a

will be made precise in 4). If u CI(I)), y 6 C2(1)), then

div (u x (V x v)) (V x u)" (V x v)- u" (V x (V x v)).

Applying the divergence theorem to the left-hand side, we have the following Green
identity for vectors:

Let S denote the set of all linear combinations of the eigenfunctions Us; S is dense
in a(l)), J,(l), and J*(l).
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Let u, v e S. Then,

(2.14) Ia (V x u) (V x v) dV fa u Av dV.

For fixed v belonging to S, L(u) =in (Vxu) (Vx v)+u AvdV may easily be seen to
be a bounded linear functional on J(f). Since Lu 0 for every u belonging to S, by
continuity Lu =0 for every u e J,(f). Thus (2.14) holds for v S, u J,(f). If u
J,(f), L(v)=Ja (Vxu). (Vx v)+u avdV defines a bounded linear functional on
J*(f), and again by continuity (2.14) holds for every u belonging to J,(12), v belonging
to J*(f).

3. Solution withL2 laoundary input. In this section we wish to establish the existence
and uniqueness of a solution to (2.1)-(2.3), in the case in which J L2[0, T; 2(F)],
T> 0. The approach will be based on the method of transposition, as put forth in 10a].

Before proceeding, we show that existence and uniqueness of a solution of the
system (2.1), (2.2) with the homogeneous boundary condition

nx(VxW)=0 onF

may be obtained, for appropriate initial data, using semigroup techniques. This is of
independent but related interest to our result in the case of inhomogeneous boundary
data.

THEOREM 3.1. Given wW] e J*(f)x Jn(’}),l there exists a unique solution W of
E3W=0

in 12,
V.W=O

(3.1) nx(VxW)=0 onF,
OW

w(., o)= Wo, (., o)= w,
ot

with W C[O, ; J*(f)] f"l C’[O, ; jl,,(f)].
Proof We define

With inner product

/ is a Hilbert space. Now we define the operator

with D(F)=J*()xJI,(). Then, using Remark 2.6, we can see that F is skew-
symmetric on D(F)"

fa (V x v) (V xy)+Au, zdV

-Ia v. ay + (V x z) (V x u) dV
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By definition, Theorems 2.1, 2.3, and Lemma 2.4, D(F)c H and is dense in H.
Furthermore, the rangeof F, R(F), is equal to H" Given v e J(f), by Theorem 2.3,
there exists b e jl(f) such that V q =-v. Applying Theorem 2.3 to if, we see that
there exists $ J() such that V x $ . Thus $ J*(), and -(V x (V x $)) AS v.

As in the proof of Lemma 2.5, if A is a symmetric operator on a Hilbe space H
and R(A)= H, then A is self-adjoint. A straightforward adaptation of the proof of
this theorem shows that if A is skew-symmetric, and R(A) H, then A is skew-adjoint.
Thus we have shown that F is skew-adjoint on D(F). From [13], F generates a Co
group of unitary operators S(t) and we now have the desired solution W to (3.1).

As implied by the fact that F is skew-adjoint, if the energy of W is defined as
WI] then for smooth solutions W of the above system,

d w, w) (V x w). (V x w) + w. WaY

2 V x (V x W)+ t2 dV
n at a

i.e., we have conservation of energy. If we define, as is customary, the electromagnetic
energy to be n H. H+ E. E dq then we have conservation of the electromagnetic
energy, since W, W) H. H + E. E dE

We now turn to the inhomogeneous system (2.1)-(2.3), staaing by stating the
following general theorem.

T.OREM 3.2 [10a]. Let q H be Hilbert spaces, with

V H, V dense in H, Vseparable.

Identifying H with its dual and denoting V* as the dual of q we have

VcHc V*.

Let a($, $) be a bilinear form on E Let a be symmetric, and continuous, and assume
that there exists A e R such that

(,, ,) + II, , > 0 or eer, e q e 0, T].

en, given fe L2[0, T; HI, a e q e H, there exists a unique solution satisfying

d
(3.2) dS(6’(t), 6)+a(6(t), 6)=(t), ) v6e v

with $(., T) a, aS/at(., T) . eunmarked bracket (.,.) denotes the scalarproduct
in H and d/dt($’(t), ) is taken in the distributional sense. In addition,

a,
at

and the map { a, }{$,a$/at} is a continuous tinear map L2[0, T; H]x VxH
L[0, ; V] x L[0, T;

We may now establish the following theorem.
THZORZM 3.3. Let
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Then, givenf L2[0, T; .()] Y, there exists a unique ch belonging to C[0, T; Jn(f)],
with Odp/Ot belonging to C[0, T; a(l))], satisfying

d
(3.3) d---(q’(t), d/) + a( qb( t), q)=(f(t), ) V,eJ],,(D..),

with

(3.4) b(., T) =-- (., T) 0.

Proof. Jln(l))c (12) by Theorem 2.1, and Jn(12) is dense in (f) by definition.
By Theorem 2.3, the form a is continuous on J(12), and satisfies the coercive estimate
on Jl,(l)); a is clearly symmetric.

Therefore, taking V= J(fl), H (l-l), Theorem 3.2 applies and Theorem 3.3
follows.

Remark 3.4. Equation (3.3) may be interpreted further" as before, denote the
eigenfunctions of-A in J*(fl) by {Us}. Let g(t) belong to C[0, T], and denote the
collection of all products of such g(t), Us by P. The set Q of all linear combinations
of elements of P is dense in L2[0, T; .(f)].

Letf P, i.e., f(., t)= g(t)U. The solution of

=y,

b(., T)=--(., T)=O

may be obtained by separation of variables; th is of the form/3(t) Us,/3(t) e Co [0, T]
(see 4). Now

(o;, ,) (f, ,) v,

at2, +(-Ach, @)= (f, q,).

From Remark 2.6,

Thus b b, where b satisfies (3.2) forf= g(t) Us. Now letfe Y. If b is the correspond-
ing solution to (3.3), then b =f in the sense of distributions, on the function space

{ q" q, e C(I-I x [0, T]), V q 0}. We may see this as follows. Let {fk} C Q be an
approximating sequence for f; solve [S]bk =fk. Let q, e 9. Then

(, ,)-= (A, ,) -.
Integrating by parts,

(, F-me),, (A,

The map L:f- ch is continuous from Y- L2[0, T; Y.(f)]. Thus

(4,, ,),- (f,

We now apply the method of transposition [10a]. Let X be the collection of b
obtained as f runs over Y; from Theorem 3.3, b(., T)= 04/Ot(’, T)= O.

Give X the norm I11[,, -Ilfll ;then X is a Hilbert space. Let S: b -f; we know
S is an isomorphism from X to Y, and that $4 [214 in the sense of distributions.

Since S is bounded with respect to X norm, S* is an isomorphism from Y* to
X*, the duals of Y and X. Identify X and Y with their duals.
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Let L(ch) be any bounded linear functional on X. Then by the Riesz Representation
Theorem there exists g e X such that

L(4,)=(g,) VX.
From the above arguments, there exists W Y such that g S*W. Therefore,

(4, (g, 4,) (s* w, ) =(w, s)= w.

Given J e L[0, T; (F)] and [;] e ](a) x (J(a))*,

(6) " 6 as at+ w, 6(’, o)- Wo (., o) av

defines a bounded linear functional on X, as in [10a]. Thus we have the following
theorem.

Tnzoz 3.5. For L as] given above, there exists a unique W Y satisfying

(3.5) W. dVdt J. ds dr+ w o- Wo dV

for every X, where o (., 0), d/dt(., 0).
We take W to be a weak solution of (2.1)-(2.3). Any smooth solution W* of

(2.1)-(2.3) with initial data w, w, corresponding to a smooth solution of (1.1)-(1.5),
as in 2.1, would satisfy (3.5). We show this as follows. On X, define

L( W* dVdt- J. ds dt + w o-w dV

Since

W*. dVdt W* W*

L() is bounded on X. Let R be the collection of all solutions obtained by taking
f Q (Q as in Remark 3.4).

Let X, and let f correspond to via (3.2). As Q is dense in Y, there exists
{A} Q such that [IA-fll0. Solve 6=A; as before, 6 belongs to R. Then

{&} is an approximating sequence for in X. Thus R is dense in X.
On R, g() O:

W* dVdt W* ()- W* & dVdt
Ot2

dVdtw..,o W’k,, dV+
O. W* dVdt

" (n x (V x W*)) ds dt

(the last equality from integrating by parts, and applying (2.13))

J. . ds dt + w .,o- w ., d
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Thus, by continuity of L, L(b)=0 for every b X, and W* satisfies (3.5) for every
4X.

We are interested in controls that are L2 in time, as we will be using moment
problem techniques (see (4.23) and so on). We add that Theorems 3.2 and 3.3 may be
improved for inhomogeneous terms f LI[0, T; .(12)], leading to an improvement of
Theorem 3.5 with controls J LI[0, T; L2(F)]. We first have Theorem 3.6.

THEOREM 3.6 [10b]. Let V, H be two real Hilbert spaces with V dense in H, the
embedding of V into H continuous, and

VH V*.

Let a(b, d/) be a symmetric continuous bilinear form on V, such that

a(q’, q’)->- I[01l],, >o.

We do not restrict generality by taking

(3.6) a(, )= Ilffll.
We denote by A L( V, V*) the operator defined by

(A&, q) a(b, 0).

Then, given

f tl[0, T; V#], ((0)-- t H,

there exists a unique solution 49 satisfying

(3.7) b"+ Ab =f,

4’ L[0, T; H],

6(.,0)=a,

We may show that, if we take

f LI[o, T; HI,

then the solution satisfies

6 L[O, r; V],

b’(0) k V*,

(ll,’ll, / (A, )) (f, ’).

Define

h(t)--II ’11% / I1 I1.
Now (using 3.6)

ldh 1 d

2 dt 2 dt
(11’11 + (Ab, b)) <

1 d
2 dt

Multiply (3.7) by 4’. We make a small modification of the proof of Theorem 3.6 (in
which we multiply (3.7) by A-b ’, approximate f by regular functions, and follow
similar arguments). We have

b’ L[O, T; H].
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or

Then, by Gronwall’s Lemma,

with

dh
dr-

)I1 = < C exp Ilfll- at

x 4,(0)11 ],+ 4,’(0)11 , + Ilfll,dt.

We may reverse the direction of time in Theorem 3.6 and arrive at Theorem 3.7.
THEOREM 3.7. Let

a(, if)= f (7x). (7xff) dV V, 6 J’,(O)

A(b, q) a(b, q).

Then, given f LI[0, T; .(12)], there exists a unique d satisfying

c"+A6 f
L[0, T; J’,(O)], ’ L[0, T; ()],

&(., T)=(., T)=0.

By extension by continuity, , ’ are continuous in time.
Again, by transposition, since L[0, T; ()] is the dual of L[0, T; ()], and

since the map

J" dsdt

with J L[0, T; L=(F)] is bounded, we have Theorem 3.8.
THEOREM 3.8. Given

(a x ((a*

there exists a unique W e L[O, T; ()] such that

WdVdt J. ds dt + (w o- Wo ) dV

where o (., 0), , =/t(., 0).

4. Reduction of the control problem to moment problems. Given Wo[w,]
J() x (J(O))*, we now ask if we can find a control J belonging to L2[0, T; 2(F)]
such that the corresponding W given by (3.5) also satisfies

OW
w(., T) (., T) 0.
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Since W, a W/at are not well defined at T, we reformulate: first, take T1 > T, and
extend all J E L2[0, T; -2(F)] to be identically zero on T, T1]. This gives a subset
of L2[0, T 92(1P)]. NOW replace T by T1 in Theorem 3.5, and find J E such that
the corresponding W, which is thus well-defined on f [T, T1], satisfies W=0 on
IT, T1].

In this section the question of finding the desired control is reduced to the question
of finding solutions to a collection of moment problems. Our approach will be similar
to that used for the scalar wave equation with L2 Neumann. boundary input [7].

4.1. Equations for d. Now denote the normalized eigenfunctions of-A in J*(f)
by

{ Unmlk}, n 0, 1, 2, , m 0, 1, , 2n, 1, , k 1, 2

with eigenvalues (O,k)2. The U’s are basically products of Bessel functions and vector
spherical harmonics; they will be given explicitly in 4.2.

Let T > T and let h(t) be an element of C[ T, T]. Define h,,,tk h(t)U,,,k. The
set of all such hnmlk is complete in L2[ T, T1 J()].

The solution of

is given by

r-lb h.,k, b, Ix- 0,

6(., T,)=W(., T,)=O

b(’, t) r/(t)

where r/(t) satisfies

rl"( t) + (tO,lk)2rl( t) h( t), rl( T,) rI’(T,) O,

with denoting ordinary differentiation. Integrating gives

r/(t) =1 f’r, sin (tOnlk(o.-- t))h(o.) do’,
O)nlk ,J

r/’(t) cos (Wnlk(o’-- t))h(o’) do’;

thus

(4.1)

(4.2)

where

6 ". t) (, cos (o,.,t) +
(.Onlk

sin (rO,lkt)) U,,,Ik,

ab(.at t)= (ce2 cos (O,lkt)--Ce,Oa,lk sin (W,lkt))

(4.3)

(4.4)

1 17-, sin (W,lko’)h(o’) do’,
(-Onlk T

a2 f T,
cos (W.ko’) h (o’) do’.

T
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th is clearly in X, and thus for given control J and initial data [w], the corresponding
weak solution W must satisfy, for every four-tuple (nmlk)"

forlfr ( COS(tOnlkt)+--O2sin(tonlkt))UnmlkdVdt"(4.5) 1

tOnlk

Expand
2n 2

(4.6) W0 O,nmlkUnmlk,
n=0 m=0 /--0 k=l

2n

(4.7) W l,nmlk Ynmlk
n=0 m=0 /=0 k=l

(assuming W E J(’), which is contained in (J(fl))*). Use of (4.6), (4.7), and the
orthogonality of the U’s allows simplification of (4.5) to obtain

(4.8)

W. h..lk dVdt a J" [cos (tO.lkt) U.mlk ds dt + l,.mlk

Now, if there exists a J satisfying

d-a2 ( Ior fr J" [sin (tOnlkt) Unmlk]
ds dt O,nmlk

Ior I J" [sin (tO.lkt) U.,.lk]
ds dt o,.mtk(4.10)

Onlk

for every (nmlk), then the corresponding W will satisfy

Ir’fw’hnmlkdVdt=OT
for every (nmlk), which implies

W=0 a.e. on[T, T].

4.2. Explicit form of eigenfunctions. First, some necessary terminology will be
given. Let (r, 0, b) denote the usual spherical coordinates: r is the radial coordinate,
0-< r_-< 1; 0 is the "longitudinal coordinate," 0-_< 0 <- 2r, and b is the "latitudinal
coordinate," 0_-< b =< 7r. Thus

I’ IodV r2 sin b dr ddp dO.

The system of basis vectors corresponding to spherical coordinates will be denoted by
tir, ti0, 8. The vector ar is the same as , the unit outward normal.

Let Ym(O, dp) denote the spherical harmonics"

{ (cosmO)P’(coscb) m=O, 1 n } n=0,1,2,"Y.m(O,(b)
(sin[(m-n)O])P- (cosb), m=n+l,...,2n

where the P,7(cos b) are the Legendre functions [12].

(4.9)
FIF

J. [cos (O)nlkt) Unmlk ds dt l,nmlk
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Let Jn+l/2(Z) be the cylindrical Bessel function of order n + (1/2); J.+(1/2)(kr) satisfies

d2j 1 dJ [ke (n+)=l(4.11 dre +-r -r + --] J O.

Let j,(z)= x/Tr/2zJ,+(1/e)(z) be the nth spherical Bessel function,

/3,1 be the/th root ofjn (Trfl) 0, 1, 2, , and

d
ynt the/th root of-- ryjn (Try) 0, /= 1,2,....

Now, following (essentially) the notation of [12], define

fin,, Yn,,G, nm curl YnmG], /n, ar
These are referred to as the vector spherical harmonics 1], [4], [12] and are mutually
orthogonal. We have

P, P ds nm" Jutz ds Cnm" d ds

4"rr (n+m)!
e,(2n + 1) (n-m)!

Here Jv ds = Jo sin 49 d dO, 6 denotes the Kronecker delta, and E I when m 0,
two when m > 0.

We are now ready to give the explicit eigenfunction expressions. Define

//nmt curl [jn(’n’Tntr) Y.m( O, dp)rtr]
(4.12)

v/n(n + 1)jn (Tryn,r) n,,
Nn, =curl [curl [jn(Trnlr) Y,,,(O, b)rar]]

n(n+l)jn(zrflnlr)m+x/n(n+l) -rr[rjn(Trflntr)]7rnlr

If we define

(4.14) )2 n(n + )[jn (rCynlr)]2r2 dr,(a,t -=

then

]nml llnrnl dr-- (lnl)2("I’nm) 2,

i.e., h,znm is the normalization constant for Mnm. Similarly, if we define

[n(n + 1)jn(’rrflnr)]e + n n + 1){d/ dr[ rjn (,rrfln,r) ]}e r2 dr=- (O,a(4.15)
Trnlr)2

then

(4.16) 1Qn.,, 1Q,,,.,t dV= (Pnl)2(Tnm)2,
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and Pnlr.m is the normalization constant for Nnm1. Now let

C.m- B,,m- P,,,,,-
Trim "l’nm Trim

M,,l_x/n(n+_ 1)j,(TrT,tr)
C,m,

inl

On’ (7r,tr)
j" (7r,lr) P,, + xn n + 1 -r rj, (7rfl,,r) B,m

The M’s and N’s are the normalized eigenfunctions; Unmll Mnml, Onml2-- NnmI.

The M’s are sometimes referred to as the transverse magnetic fields, and N’s as the
transverse electric fields. The collection of M’s and N’s are referred to as the multipole
fields [1], [4], [8]. If we replace 7ry, and 7r/3, by k in the expressions for M,,I and
Nn,l, and denote these modified functions by M,,, and N,,,, then

We may show

(4.17)
v x (v x M...,)= -AM..., (O,.,)=M..,,,
V x (V x N.m,) -A N..,, (r#.,)= N...,.

Thus Wnl 71"/nl, O)nl2 7I’[3nl. The M’s and N’s satisfy the boundary condition of
zero, normal component and zero tangential curl. They are obtained by constructive
techniques [12]. It is apparently assumed that these are all the eigenfunctions of the
vector Laplacian that are divergence-free and satisfy

(4.18) u,]r=O, (V x u).lr 0

(boundary conditions of J*(12)). We use a theorem of Lamb [18] to verify this, in
Appendix A.

We refer to [18] for further discussion of the multipole fields. Also see [11] for
a useful summary.

4.3. Obtaining moment problems. From (4.9), (4.10), the desired J must satisfy

(4.19) J" COS (Trynlt)Mnm ds dt --l,nmll,
o

(4.20)

(4.21)

Ior fr Mnm ds dt O,nmll,

J. sin 7r]/nlt

7’tnl

forfrJ’cos(Tr[nlt)Nnmtdsdt---l,nml2,
fOI" fF Nnm ds dt O,nml2"

j. sin 7rnlt)
(4.22)

7T[nl

Equations (4.19)-(4.22) constitute a moment problem for J in L2[0, T; o2(l)].
We now derive conditions on the Fourier coefficients of J that must hold if J is to
satisfy (4.19)-(4.22). These conditions amount to a collection of moment problems;
the Fourier coefficients of J must be solutions to these.

Expand

(4.23)
2n

J= E E r,,,(t)C,,,+ nm(t)Bnm
n=l m=O
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(the C’s and B’s contain only tangential components). Now fix (nm) in (4.19):

E O’pqCpq -4- 7"l’pqBpq cos (rT.tt)
j" (7rT.lr) C.,,,

ds dt
q=O

cos (uy.tt) E vqCvq + v.Bvq C. ds dt
nl q=O

cos

Thus, for every 0, 1, 2,..., (t) must satisfy

Similarly, from (4.20), for every =0, 1, 2,..., (t) must satisfy

n(n+ 1)j(,)
(4.5

Anl(Ynl)
sin (WYnlt)nm(t) dt o..t

Now treating the pair (4.21), (4.22) similarly, we have

cos (fl,lt) wpqCpq + pqBpq
P.! = 4n(n+ l)

dsdt

(since d/dr[o.(u3.,r)]=j.(u3.,r)+ufl.,O(u3.,r)= v3.d(.,) at r= 1)

-p,,4n(n+ 1)
cos (U.lt)U.(t) dr.

Thus, for every 0, 1, 2,. ., u.(t) must satisfy

(4.26)
4n(n + 1)j(u3,1) [" cos (3,,t).(t) dt =-1..,.

3o

Similarly, from (4.22), for every 1=0, 1, 2,. ., u.(t) must satisfy

(4.27) Jo
Equations (4.24) and (4.25) may be put in the equivalent form:

(4.28)
o

exp [iy.lt]W.(t) dt={Cn( n + 1)j.(y.l)}/(A.l)-- a.i,

(4.29) exp [-iy.lt]w.(t) dt
{#n( n + 1)j.(y.l)}/(A.t) b.l.

Equations (4.26) and (4.27) may be put in the equivalent form:

(4.30)
o
exp [ifl.tt].(t) dt={4n( n + 1)j(fl.l)}/(p.l)- c.t,

iflnlO,nml2(4.31) exp [-ifl.lt].(t) dt={Cn(n + 1)j( flnl)}/ (flnl)
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Equations (4.28) and (4.29) constitute a moment problem for o-,,,(t); (4.30) and
(4.31) constitute a moment problem for rr,,,(t) (the reader may refer to, e.g., [7] and
[14] for further discussions of moment problems). In 5, we will show that, under
certain conditions, solutions to these moment problems exist.

5. Solutions of moment problems and sufficient conditions on initial data. In 5.1,
we prove that, under summability assumptions on the a’s, b’s, c’s, and d’s, the moment
problems (4.28), (4.29), and (4.30), (4.31) have solutions. These solutions may be used
in the role of the Fourier coefficients of J, and, under additional summability assump-
tions, the J so defined does belong to L2[0, T; 9’2(F)] and satisfies (4.19)-(4.22). In

5.2, we give sufficient conditions on the initial data Wo, wl to ensure satisfaction of
all the summability assumptions, culminating in Theorem 5.6.

5.1. Solutions to moment problems.
PROPOSITION 5.1. For n 1, 2, 3, , the intervals between the consecutive positive

roots ofd/dT[ Yjn (try)] 0 are bounded below by 7r, and decrease monotonically to rr as
loo’.

7rTn 2 7rTn > > gl’lln, l+ g’lln,! >

Proof As in } 4.3.
d

(5.1) dy
[TJ"(T)]=J"(T)+ YJ(Y)=0 for

Define

d d
f(r) rr rj, (rry,tr) j, (rry,tr) + r-dTr [j" rry,tr) ].

From 4.2,

Thus,

1
j,, (rry,tr)

x/’2 %,,r L+(,/2)(rrY,tr).

1
+(1/2)(rry.tr) + r. J+(l/2)(rry.,r)f(r) v/2y.tr

l[J.+{,/2)(rry.,r) {J.+,/2)(rry.,r)Try.,2v:.t [7 + r.
2r/7 +--r

1
(2T,lr

From (5.1), f(1) 0. Therefore, our equation assumes the form

J+(1/)(%t)+ /,lJ+(1/)(T,t) =0.

We now turn to the work of Graham [6], in which he defines, for real x, the
positive solutions of

(5.3 L(o+oJ’x(o =0
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as %, 1, 2, and the zeros of J) (to) to be g,, 1, 2, (we use gxl for Graham’s
jxl). Thus from (5.2), and the definition ofj,, we have

7]")tnl-- "l’n+(1/2),l, "ffnl-- gn+(1/Z),t.

Reference [6] contains the following result (Lemma 3.1). If x > , then the lengths of
the intervals between successive elements of the sequence

Tx,l--1 < gx,l--1 < Txl"

decrease monotonically to their asymptotic value of 7r/2,

g ’x > %,2- gl > --> 7r/2.
If x , then all these intervals are exactly 7r/2 long

The proposition follows
Remarks 52. (1) Graham’s Lemma 3.1 of [6] and the work of Watson (see [6])

give a lower bound of 7r on the spacings of the rrflnl’S.
(2) Lemma 3.1 of [6] ensures that d/dr[rj,(rrfl,tr)] and jn(Tr’y,ar) do not vanish

at r= 1, a fact that was implicitly assumed true in the derivations of (4.28)-(4.31). We
see this as follows. Clearly, j,(Tryn)# O. Furthermore, if we let

d
f r -r rJ "n’[3mr

then, computing as before, with x n + (1/2),

f(r) x/2/3,,,r J "lr[nlr -t- r,lrJ’ r,lr

Since

1
J(o) + oJ’(o,) 0

for to ,Fxl and ’l’xl and gxl (--7"I’[3ni) are separated by a gap of at least r/2, we see that
f(1) # 0.

(3) Separation of variables for the scalar Helmholtz equation AU+AU=0, in
the unit ball in R3, with the homogeneous elastic boundary condition 0 U/on + U 0
gives rise to (5.3).

THEOREM 5.3. Let n>= 1, O<-m<=2n. Assume the sequences {a,,,t}, {bnml}, {Cnmi},
and {d,ml}, 1, 2,. ., are square summable. Then, given T > 2:

(i) The moment problem (4.28), (4.29) has a solution or,,, (t), with

/:1

(5.4)

/----1

where A1,1711 are constants independent ofnm and the particular sequences a,,,t and bnml.
(ii) The moment problem (4.30), (4.31) has a solution rn,,(t), with

(5.5)
A2 E (I Cnmll2 +ldnmtl2) rnm (t)II L2[0,T]

/=1

l=l

where A2 and II2 are constants analogous to A and I-I.
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Proof By Proposition 5.1,

27/"

min (ry..+ Try.t)

Thus, if T> 2, a result of Ingham, as in [7], shows that hypotheses of a theorem of
Boas may be satisfied. Therefore, the solution ,m(t) exists, and (5.4) holds.

Similarly, the lower bound of r on the spacings of the r/3nt’s gives the existence
of ,,,(t), and (5.5).

THEOREM 5.4. Assume
2n 2n

n=l m=01=1 n=l m=0 /=1

If we define
2n

J-- E Z nm(t)Cnm A- r.m(t)Bnm,
n=l m=0

using the solutions ’,m(t), r,m(t) from Theorem 5.3, then J L2[0, T; 2(F)], and J
satisfies (4.19)-(4.22).

Proof Note first that

n=n m=0 L2[O,T;2(I’)]

2 2n

Z Z {ll.(t)llto,+ll.(t)llto,}
=1 =0

n=n m=0 !=1 n=n m=0 1=1

0 as ,20.

The inequality follows from (5.4), (5.5).
The fact that J satisfies (4.19)-(4.22) follows from the discussion preceding

(4.28)-(4.31).
$.2. Sueient conditions on initial data. We first simplify some notation. Let

Pnml O,nml2, nml l,nml2"
Thus

Wo= Z Z E p,,,m,M,m, +
=0 =0 !=1

2n

n=0 m=0 /=1

We will have need of simplified expressions for the constants hnl and pnt, defined
in (4.14), (4.15). These expressions are"

(5.6) (A,,)2_n(n+l)[1 n(n+l)].2(.,) J-(.,).

,t, ,(".ta2 n(n + l) .2(5.7)
2

They are derived in Appendix B.
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THEOREM 5.5.

(5.8) (i)
/-1 /=1

(5.9) (ii) [C,,m,[ 2 E (l’r/,,,,,,I 2 + [’rrfl,,,Vn,,[ 2)
1=1 1=1

(assume the right-hand sides of (5.8) and (5.9) are finite; Theorem 5.6 will address this
assumption).

Proof.

anml 12

<=2

nmt + iqT"YnllZnm!

{dn(n + 1)j,,(’rr%.,t)}/(A,,,)

R2
nl

where Rnl denotes the denominator of anmt.

IR"ll
( n(n + l ( l

___
)jz,(.n.y,,l))n(n -- 1/2"

2 7rTn

As l-, 1-(n(n+ 1)/(TrT,t)2)- 1. Therefore,

IRaqi > x/, and (i) follows.

Proceeding similarly for the proof of (ii)"

’l.ml 3
t- i,’lT"[3nll,,nm

{x/h(n + 1)j’.(Trl3.,)}/(p.,)

<=2

where Qnl denotes the denominator of c,,,t. From identity (2) (Appendix B), for the
spherical Bessel functions, we have

(2n+ 1)j(Trfl,,,) nj,,_,(.rrfl,,t)-(n+

Employing identity (1) (Appendix B), we have

(2n+ 1)j(Trfl,,,) nj,,_,(’rr[3,,t)+(n+ 1)j,-,(’fl,t).

Therefore

j(’n’[3,,t) j,,-1 (’rrfl,t).

We now have

x/n(n + 1) [j(

2

and (ii) follows.
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(5.10) (i)

THEOREM 5.6. Let T> 2, and let [o] E jan(f x j(f). Then
2n

2 2 I.,,<,
n=l m=0 /=1

n=l m=0 /=1

2n 2n

n=l m=0 /=1 n=l m=0 /=1

(iii) There exists J L2[0, T, (F)], which satisfies (4.19)-(4.22), and hence the
corresponding W, given by eorem 3.5, satisfies W 0 almost everywhere on T, T].

Proof Part (ii) follows directly from the fact that Wo J(O). Turning to (i), we have

wo MdV
-1

a (Tnt)2 Wo" AMnml dV
(5.12)

J. (v x Wo). (v x M.,) dE

As may be deduced from remarks in 4.2,

where N denotes the function that results from replacing ; by T; in N;. The
collection of N; is an ohonormal set in J(). The "Fourier coecient" of (V Wo)
with respect to N; is

x o)" v,(v M;)

which we see from (5.12) is equal to ;;. Since the "Fourier coecients" of
(VXWo) with respect to the *N; s must be square summable, by Bessel’s inequality,

2n

n=l m=0 /=1

Similar arguments apply to the terms ,U,l. Thus (i) is proved.
Now (i), (ii) and Theorem 5.5 imply that the hypotheses of Theorem 5.4 are

satisfied, and (iii) follows.
We remark that, by time reversibility of the wave equation, we are thus able to

steer from any given terminal data [] J,(O) x J*(O) to any given terminal data []
in the same space. We also note that the solution W given by Theorem 3.5 belongs to
L:[0, T; J(O)] and there is no guarantee that the electromagnetic energy

fn(Vx W)’(Vx W)+OW OWdv=In H" H+E"
Ot

remains finite, even when starting from finite energy states belonging to J() x j().
An analogous situation occurs in the case of control of the scalar wave equation via
L Neumann boundary controls in the unit ball [7].

Appendix A. Here we show that the collection of M’s and Ni’s are all the
eigenfunctions of the vector Laplacian that are divergence-free and satisfy

A1) ,=0, vx )=0,
i.e., are all the eigenfunctions of-A in J*().
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Suppose not, i.e., suppose there exists a smooth P that satisfies

-AP k2p, div P 0,

and (A1), and that is orthogonal to all M,ml, N,,,,l. Let

jn ry.,r Ynm @nmi, jn r,,r Y,,,

Then

M..., V x q,...,ra). N., V x (V x (X...,ra.).

omitting normalization constants for convenience. By assumption,

0= Ia P" Nn,,ldv=faP’Vx(Vx(xn,Irr))dV
-{/ (VxP).(VX(Xnmlrr)dv+f,. P. rX(VXXnmlrr)ds}
={fa (X’r)’(k2P)dV+IrXm’r" ( x (V x P))ds}.

The last equality follows from the fact that

Thus we have

(A2) Ja X,,,lr P,, dV 0

for every triple (nml). Since the set of X,ml is a complete orthonormal basis in L2(tl)
[14], we have

Also, by assumption

1
0= p. MnmldV=_2 (7 X (V x P))" (V x (nrnlrar) dV.

Let V x P R. Note that

Thus

V x (V x R)= V x (k2p) k2R.

(A3) Jn tp,,,,lrR,, dV 0

for every (nml). Since the set of On,,i forms an orthonormal basis for t2() (14) we
have Rn- 0 in tl. In [18], we have Theorem A.1.

Thus we have
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THEOREM A.1 (Lamb). Let A be a vectorfield defined and of class C in a domain
a < r < b, and suppose

V. A=0, r" A=0,

r’(VxA)=0 ina<r<b.

Then A O in a < r < b.
Now apply Theorem A.1, taking A= P, with a=0, b--1. Since P, =0, and

(V x P), 0, we have P--0 in f.

Appendix B. Here, the normalization constants )t,t and P.t, defined in (4.14),
(4.15), will be computed. The following identities for spherical Bessel functions [12]
will be needed:

(1)
2n+l
j,,(z) =j,,_,(z) +j.+,(z),

d
(z) nj._(z) (n+l)j.+(z).(2) (2n+l) dzj.

I z3
(3) [jn(Z)]2Z2 dz =- [j(z)-j._l(z)j.+l(Z)]

d [ r2
d ] k2r2"(4) n(n + 1)j,(kr)---r --drJ,(kr) j,(kr).

Computation of (A,/)2. We have

)2 f01(A,t n (n + [j, (cry,,tr) ]2 r2 dr

n(n+a) f =’’’’ (.t) 2

j(z) dz
"I"/ J 0

n(n + 1_____) [j.(crY.l)-j.-,(cr%,,)j,,+(cry.)].
2

Adding (1) and (2) gives

j.(z)+ zj’.(z)
2n+l

[(n + 1)j._,(z) nj.+,(z)].

From (5.1),

Thus

o (n + )j._,(v.,) nj.+,(rr.,).

(2n+ 1)2 {J"(crY"/)} 2

cr’Yn,
[j.-, (crY,,t) +j.+, (crY.,)]2

=J"-’(crY"’)
n + 1

J’+(crY"’) + 2j,,_,(cry.,)j.+,(cry.t)

_(2n+l)2

n(n + 1---------- j"-’(’rry’l)j"+l(Try"l)"
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Therefore.

(B1) (A.t)z_n(n+l)[1 n(n+l)](Try.i)2
j2,,(

Computation of (p./)2.

[n(n + 1)j. (Tr/3.tr)]2 + n(n + 1){d/dr[rj.(zrfl.ir)]}2r2 dr
(.,r) (0"’)"

Now (omitting at times the argument of j.)

rj. ’fl.lr ]" rj. (zrfl.,r) dr

d fot d 2

(,) rj. crfl r -r rJ. "n"fl r rj. r2 [rj. dr

rj,
dr--- rj, dr.

Since

we have that

(*) j. "n’.tr -r dr
j" ("n’.ir) dr

j. zrfl.,r zrfl.,r 2j. zrfl.,r n n + 1 )j. zr.,r dr,
o

These computations are similar to those in [12] used to compute normalization
constants for eigenfunctions that satisfy the "perfect conductor" boundary condition,
zero tangential component and zero normal curl on F. Interchanging the positions of
ry. and rfl. in our expressions for M and N gives these eigenfunctions. It is
advantageous that simple expressions for the normalization constants, which resulted
for the "perfect conductor" case, also result in our case.

By (1). jn_l( Tr[3n,) --jn+,(’rt’[JnI). Therefore

(B2) (phi)2__ n(n + 1) j.+l(zrfl.).
2

the last equality from (4). Thus,

(Phi)2__
n 7fibril-I- 1) fo)-------5- { n n + 1 )j2 (r,lr) n n + 1 )j rfl.,r + rfl.lr rfl.lr } dr

(by 3)
n(n + 1__.___) [j(’rr,)-j,_(r)j,+(,rr)].

2
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CONVERGENCE OF SUBOPTIMAL CONTROLS:
THE POINT TARGET CASE*

H. O. FATTORINI?

Abstract. Sequences of suboptimal controls are considered for arbitrary optimal control problems in
the setting of general input-output systems involving a point target condition. A sequence maximum principle
for these sequences is obtained using Ekeland’s variational principle. This sequence maximum principle
and other variants are upgraded to convergence principles and are applied to show convergence of sequences
of suboptimal controls for quasilinear distributed parameter systems, both of parabolic and hyperbolic type.
Some of the results apply, without convexity assumptions, on either the systems or on the control set.

Key words, optimal control, maximum principle, approximately optimal control

AMS(MOS) subject classifications. 93E20, 93E25

1. Introduction. Convergence of suboptimal (that is, close-to-optimal) controls
for general nonlinear input-output systems was considered in [9] and 10]. The optimal
control problems there involve a set target condition, that is, trajectories are supposed
to hit a target set Y. In this paper we continue the study of convergence of sequences
of suboptimal controls for general systems (see 2), this time for the point target
problem, where trajectories are required to hit a point 37. The strategy is about the
same as that in [9] and [10] and consists of three steps. In the first step, using Ekeland’s
variational principle, we establish a sequence maximum principle, that is, an independent
approximate maximum principle for each of the suboptimal controls in the sequence.
In the second step, we combine these separate maximum principles into a convergence
principle. The third step consists of translating the convergence principle into actual
convergence of optimal controls. Here, we work with particular classes of systems,
which we did as well in [9] and 10]. The most notable difference between the treatment
of set targets and that of point targets can be roughly summarized as follows. In the
set target case, the passage from the weak sequence maximum principle to the conver-
gence principle is automatic; no controllability assumptions are used, although approxi-
mate controllability (of the linearized system) plays a role in obtaining convergence
of suboptimal controls. In contrast, in the point target case treated here, the convergence
principle can only be deduced from the sequence maximum principle via controllability
properties of the linearized system and, in fact, may not be true unless controllability
is present. The situation here is roughly the same as that in the proof of the maximum
principle for general systems in [8] and makes the point target problem much more
demanding than the set target problem.

We note that the convergence results in this paper depend only on suboptimality
of the controls in question; thus, the particular way in which these controls are
constructed is irrelevant. Hence, our results justify existing computations for approxi-
mation of optimal controls (usually carried out by penalty methods [9]) rather than
proposing specific computational approaches. See also [1], [2], [14].

We note also that the final convergence theorems, when they can be obtained,
refer to strong convergence (that is, convergence in Lp norms, 1 <=p < ). When the
control set U is bounded, convergence (of suitable subsequences) in weak topologies
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t University of California, Department of Mathematics, Los Angeles, California 90024. This work was
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follows from weak compactness, but is not very useful from a computational point of
view.

Finally, it should be pointed out that the results refer not only to convergence to
optimal controls whose existence has been previously established; for instance, con-
structive existence theorems can be obtained in certain situations without any convexity
assumptions (see 5). The same is true, of course, of the set target problems considered
in [9] and [10]. Some results in this paper were announced in [11].

2. Systems. Optimal control problems. We denote by E, F arbitrary Banach
spaces, although most of the results in the following sections require both to be Hilbert
spaces. U is a subset of F called the control set. Given k->_ 0, T> 0, we define the
control space W(-k, T; U) as the set of all (equivalence classes of) strongly measurable
F-valued functions u u(t) defined in -k-<_ t-< T such that

u(t) U a.e.

The space W(-k, T; U) is a complete metric space equipped with the distance

(2.1) d (u, v) meas { t" u(t) # v( t)}

called the Ekeland distance.
The trajectory or output space C(0, T; E) consists of all E-valued continuous

functions y(t) defined in O-< =< T.
A system is, by definition, a map

(2.2) X" W(-k, T; U)-> C(0, T; E)

that satisfies the following postulates" (a) Causality. Let 0<_- 5_-< T. Then the trajectory

y( t, u) (Xu)( t)

in 0-< =< ? depends only on u in 0_<- <= ?. (b) Pointwise continuity. For ? as in (a), the
map

u( t) --> y( ?, u)
from W(-k, ; U) (endowed with the Ekeland distance) into E (endowed with its
original norm) is continuous. (c) Differentiability (with respect to spike perturbations).
For every u(t) W(-k,?; U) there exists a set e=e(u) of full measure in
such that, if s e, the limit

(2.3) :(?, s, u, v, u(s))= lim r-l(y(?, us,r,)-y(?, u))
rO+

exists; here u.,r,(t) is the spike perturbation of the control u(t) defined by Us,r,(t)= V

in s--r < =< s, U.r.(t)= u(t) elsewhere. We call : the derivative of X.
In this general setting, systems are meant to model (among other things) input-

output relationships generated by widely different state equations (such as ordinary
or delay differential equations, or partial differential equations with distributed or
boundary control). The constant k in the control space W(-k, T; U) accounts for
possible time delays in the control action (see [8] for systems where k>0). In the
examples considered in this paper controls act instantaneously, thus k 0.

We shall consider below the following optimal control problems. Let
X" W(-k, T; U)--> C(O, T; E) be a system as defined above and consider a second
system Xo" W(-k, T; U)-> C(O, T; R) ( the real numbers) called the cost functional
of the p.roblem. We denote by sCo(t, s, u, v, w) the derivative of Xo. The augmented
system X is defined by

(2.4) (Xu)( t) ((Xo, X)u)( t) (yo( t, u), y( t, u)),
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where yo(t, u) (Xou)(t). We also use the notation f(t, u) (.u)(t) for the trajectories
of the augmented system in x E; in the same fashion, we write (t, s, u, v, w)-
(sCo(t, s, u, v, w), so(t, s, u, v, w)).

Let 97 be a point in E (called the target). We consider the optimal control problem
of identifying the times and the controls t/in W(-k, ; U) such that

(2.5) y( , /) 37
and

(2.6) Yo( ’, ) m inf Yo( t, u),

the infimum taken over all times > 0 and all controls u(t) in W(-k, t; U) such that
y(t, u) 37; we assume that

(2.7) -oo< m <oo.

A sufficient condition for the first inequality (2.7) to hold is that the cost functional
yo(t, u) be bounded below in W(-k, T; U). The second inequality simply means that
there exists a control u that hits the target 37 at some time.

A control u(t) in W(-k, ; U) is called (, e)-suboptimal if
(2.8) u)-YlI----< Yo(?, u) <-m+e.

The present theory of convergence of suboptimal controls, be it in the set target
or point target case, is based on weak compactness properties of the system X; roughly
speaking, what is required is that if {u"} is an arbitrary sequence of controls,
W(-k, t.; U) then the corresponding sequence of trajectories {y(t, u")} should have
a subsequence convergent (in one sense or another) to a function y(t), not necessary
a trajectory of the system. A similar property is required of the variations. This will
be satisfied (in different ways) by the systems in {} 4 and 8.

3. The sequence maximum principle. In this and the following sections, E and F
are Hilbert spaces.

THEOREM 3.1 The sequence maximumprinciple). Let {u"} be a sequence of t,, u")-
suboptimal controls with { t,} bounded, e, O. Then there exists a subsequence of
(which we denote by the same symbol) such that

(3.1)
a second sequence {"} of controls with gt" W(-k, t.; U) such that

(3.2) d,(u", a") - O,

(d, the Ekeland distance in W(-k, tn; U)), a sequence {37"} {(/x,, y")} in x E such
that Ix, >- O, (tx,, y 1, and a set e, offull measure in 0 <= s <= t, such that

(3.3)
tX,o(t,, s, fit", v, "(s))+(y", (t,, s, gt", v,

=(f",(t,,s, gt",v, gt"(s)))>--6,O (v U, s6e,).

Proof Obviously, we can obtain the first two statements in (3.1) by passing to a
subsequence; the third follows from the definition of suboptimal control. To prove
(3.2) and (3.3) we consider the function

(3.4) F,(u) {(max (O, yo(t,, u)-m+e,))2+l]y(t,,
in the space W(-k, t,; U) (which is complete with respect to the distance (2.1), see
[4]). Obviously, F,(u)>0 (otherwise we could hit 37 with value m-e, < m of Yo).
Since yo(t,,

(3.5) F,(u") <= {(2e,)2 + (Sn)2} 1/2
8n CSn.
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Applying Ekeland’s variational principle [3], [4] we deduce the existence of a control

" W(-k, t.; U) such that

(3.6) Fn(an)<-F(u.)=ce.,

(3.7)

(3.8) F.(w)>-

We exploit inequality (3.8) for spike variations W=(n)s,r.v of tT" using (c) in the
definition of system. Note that if g is an arbitrary function, max (0, g)2 is ditterentiable
if g is differentiable, with derivative (max (0, g))g’. We consider two alternatives. If
we have y(tn, (t") # , then we obtain (3.3) computing the right-sided derivative at r=0
of the function Fn((Un)s,r,v); the vector
(’n, Xn)/[[(ln, xn)[[, where

(3.9) (h.,xn)=(max(O, yo(t.,gt")-m+e.),y(t.,a")-yn).

On the other hand, if y(tn, an) 97 we must have yo(t., n)_>_ m, so the maximum can
be omitted from the definition of F((un)s,r,) for sufficiently small r. This time we
obtain (3.3) with (/xn, yn)= (1, 0).

As usual, a separate theorem is required for the time optimal problem, where,
since o =0, (3.3) may be empty (in case/x. =0).

THEOREM 3.2 The sequence maximum principle for the time optimal problem). Let
{u n} be a sequence of tn, u n)-suboptimal controls with e. 0 and

(3.10) tn<L
Then there exists a subsequence of {u n} (denoted by the same symbol) such that

(3.11) tn

( the optimal time), a second sequence {) of controls n W(-k, tn; U) such that

(3.12) dn(un, ")-O,

a sequence {yn) in E such that [ly 1 and a set e offull measure in 0 <= s <= t such that

(3.13) (yn, :(tn, s, n, , n(s)))__> -Sn -0 (e U, s e,).

The proof is entirely similar to that of Theorem 3.1" this time we consider the
function

(3.14) Fn(u)

which satisfies Fn(u)> 0, since 37 cannot be hit in time t. < ?. The vector yn in (3.13)
is yn xn/II xn II, where
(3.15) x"=y(t,,a")-y.

For a similar argument, see [7], [8, 6].
Remark 3.3. Condition (3.10) (which is indispensable to guarantee positivity of

the function (3.14), required for differentiation of the norm) is somewhat inconvenient.
In some cases, it can be circumvented by simply replacing the sequence {tn} by a
second sequence { ?,}, with ’n < ? and

(3.16) Ily(?., u")-y(t,,, un)ll0 as n-oe.

In fact, if (3.16) holds, the (tn, en)-suboptimal sequence {u n} will be as well (?n, e,)-
suboptimal, and Theorem 3.2 applies. Since t, ?, (3.16) will hold if the set {y(t, u)}
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of all trajectories of X corresponding to all u W(-k, T; U) is equicontinuous. This
is in fact the case, for instance, when X is defined by a finite-dimensional differential
system. The sequence maximum principle has to be modified in obvious ways; in (3.12)
d, is the Ekeland distance in W(-k, ,; U), and (3.13) becomes

(3.17) (y",(?,,s,",v,,(s)))>-_-6,O (vU,se,).

4. Systems described by abstract differential equations. Generally speaking, a
sequence maximum principle becomes a convergence principle if we can show that the
sequence {(,, y")} in (3.3) has a subsequence (denoted with the same symbol) such
that

(4.1) (t,, y") (la., y) O.

The convergence principle is strong (respectively, weak) if the convergence in (4.1) is
strong (respectively, weak); note that, since [l(/,, Y")II- 1, in the first case, the require-
ment that (, y) 0 is unnecessary.

This definition is modified in an obvious way for the time optimal problem, where
the sequence maximum principle is (3.13); here, (4.1) becomes

(4.2) y" y 0.

In some situations (as seen below), the weak convergence principle implies strong
convergence of sequences of suboptimal controls, usually via compactness properties
of the system. The strong convergence principle implies strong convergence of sequen-
ces of suboptimal controls without any added compactness properties, but it is much
more difficult to prove.

Of course, in case E is finite-dimensional, the passage from the sequence maximum
principle to the strong convergence principle is automatic via the Bolzano-Weierstrass
theorem.

We consider below systems defined by a semilinear initial value problem

(4.3) y’(t) ay(t)+f(t, y(t), u(t)) (0 <- t<: T),

(4.4) y(O)- y,
where A is the infinitesimal generator of a strongly continuous semigroup {S(t): >_- 0}
in the Banach space E. By definition, a solution of (4.3)-(4.4) is a continuous solution
of the integrated version

(4.5) y(t)- S(t)y+ S(t-o-)f(o-, y(o-), u(o-)) do- (0 < <:- T).

We assume that U is bounded and that f(t, y, u) satisfies the following assumptions:
(F) f(t, y, u) has a Fr6chet derivative Oyf(t, y, u) with respect to y and f (respec-

tively, Oyf) is continuous (respectively, strongly continuous) and bounded on bounded
subsets of [0, T] E x U.

Under these hypotheses, (4.5) can be solved as usual by successive approximations:
setting yO( t, u) S( t)y,

m( u)), U(o-)) do" (0 < < T).(4.6) y"+l(t, u)= S(t)y+ S(t o")f(o", y o",

Since, in general, the approximations ym(t, u) in (4.6) will not be convergent in the
whole interval [0, T], we shall need to construct the solution "in pieces," that is, first
in an interval [0, T1], then in an interval [T, T2]," etc., so that, given Tk in the
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interval [0, T) we shall have to examine as well the sequence of successive approxima-
tions

(4.7) ym+l(t, u)=S(t- Tk)y( Tk, U)+ S(t-r)f(tr, y(tr, u), u(cr)) dtr
Tk

in >- Tk. Obviously, in order to extend the solution to the whole interval [0, T] it
suffices to show that the sequence {y(t, u)} is convergent in an interval [Tk, Tk+],
where Tk+I- Tk is bounded away from zero uniformly in k. To insure this, it is enough
to have an a priori bound

(4.8) Ily( t)ll <- C (0 <- <- To)

for any solution of (4.5) in an arbitrary interval [0, To], where C does not depend on

To or on u 6 W(0, T; U). In fact, assume that (4.8) holds. Let M be a bound for IIS(t)ll
in [0, T] and let K be such that

Ilf(t, y, u)ll <- K (O<- t<- T, Ilyll <- MC + l, u u).
Then we obtain from (4.8) that, if Ily(t, u)ll--< MC / 1 in Tk, Tk+] (which is obviously
true for yo(t, u)= y(Tk, u)), we shall have

Ily"+(t, u)II <-- MC + MK(t-- tk)<-- MC + 1,

if Tk+-- Tk <= 1/MK. Since the approximations defined by (4.8) are bounded in tk <= <--

tk+, (by MC + 1), it is clear that we can estimate I]y"+(t, u)-y"(t, u)ll in terms of
Ily(t, u)--ym-l(t, ti)l using the Lipschitz constant L for f(t, y, u) in Ilyll -< MC + 1,
thus the sequence {y"(t, u)} is absolutely and uniformly convergent in Tk <= t<= Tk+
if, in addition, Tk+- Tk < 1/L.

The way to establish (4.8) depends on the particular equation under study; see
[9] for quasilinear parabolic equations and [10] for the quasilinear hyperbolic case.

Under (4.8) and the rest of the assumptions on f(t, y, u) and A we can prove that
the map defined by

(4.9) (Xu)( t) y( t, u) y( t),

where y(t) is the only solution of (4.5), satisfies postulates (a), (b), and (c) in 2; the
derivative (t, s, u, v, w) in (2.3) is

(4.10) (t, s, u, v, w)= S(t, s; u){f(s, y(s, u), v)-f(s, y(s, u), w)}
where S( t, s; u) is the solution operator of the linearized equation z’( t) (A + B( t))z( t),
B(t; u) Oyf(t, y(t, u), u), that is, the only strongly continuous solution of the operator
equation

(4.11) S(t,s; u)z=S(t-s)z+ S(t-r)B(o’; u)S(cr, s; u)zdo" (O<-s<-t<- T).

For complete proofs, see [8]. In particular, we point out that, for u fixed, S(t, s; u) is
strongly continuous in its domain of definition (we shall need later in 5 and 6
information on the u-dependence of S(t, s; u)). If S(t) is a group, S(t, s; u) of course
exists and is strongly continuous in 0-<_ s, <_-T.

5. Convergence principles and strong convergence of suboptimal controls. We show
in this section how convergence principles can be used to establish LP-convergence of
sequences of suboptimal controls (1 < p <) for the system defined by the initial value
problem (4.3)-(4.4). We assume from now on that the control set U is bounded and
closed and that the nonlinear term f(t, y, u) in (4.3) is of the form

(5.1) f(t, y, u)=f(t, y)+ Bu,
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where B"F E is a bounded operator. Finally, we assume that either the semigroup
S(t) is compact for all > 0 or that B is compact.

The first manipulations do not use compactness of S(t). Noting the computation
of the function :(t, s, u, v, w) in (4.9), we can write the sequence maximum principle
(3.3) in the form

.o(t, s, 7, v, 7"(s))
(5.2)

+(y,S(t,s; an)B(v-n(s))}>=-nO (v U,se).

The sequence maximum principle (3.13) for the time optimal problem is

(5.3) (yn, S(t,,s; n)B(v-n(s)))-n--)O ()

LEMMA 5.1. Assume that either B is compact or that S( t) is compactfor > O. Then
the operator

(5.4) (1-Iu)(t) S(t- o’)Bu(o") do"

from L2(O, T; F) into C(O, T; E) (the last space endowed with its usual supremum norm)
is compact.

Lemma 5.1 for S(t) compact is Lemma 6.1 in [9]; the proof where B is compact
instead is essentially the same, since the kernel S(t)B in the integral (5.4) is compact.

In what follows, we shall consider convergence of sequences {u n} where each
control u lives in a different space W(-k, t; U). Assume that t to. We say that
{u} converges weakly to u W(-k, tn; U) if u ", extended to _-< t (if t < to) by setting
u"(t) =0 there, or chopped off at to (if t, > to) converges weakly in L2(0, to; U). A
similar meaning will be given to other types of convergence.

We write below

(5.5) V= cony (U),

where conv denotes closed convex hull.
THEOREM 5.2. Under the same hypotheses of Lemma 5.1, let {u} be a sequence

ofcontrols such that u W(O, t; U). Assume that tn - to. Then there exists a subsequence
of {u n} (which we denote by the same symbol) and aft W(O, to; V) such that

(5.6) u(t)- f(t) weakly in L(O, to; F),

(5.7) y(t, u)- y(t, ft) in C(O, to; E).

Proof. Let {u} be the sequence in the statement of Theorem 5.2, and let T> t;
extend each u to L2(0, T; F) by setting u(t) =0 in > tn. We may assume, by passing
to a subsequence, that {u "} is weakly convergent, so that (5.6) will hold. Since
W(0, T; V) is bounded, closed and convex (hence weakly closed) in L2(0, T; F), the
limit t7 belongs to W(0, T; V) as well. We take a look at the approximations y"(t, u),
m 1, 2,... used to compute y(t, u ") (see (4.6)): these are yO(t, u n) 0,

+ s(-o-)u() d.

Applying Lemma 5.1 inductively, we deduce that

(5.9) y’( t, u") y’( t, )
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uniformly in 0<--t <- T as n-, where the ym(t, ft) are the approximations to y(t, a)
defined by (4.6). On account of the fact that both {y’(t, u)} and {y’(t, u")} converge
absolutely and uniformly as m c (independently of n) in an interval 0-< -<- T (see
the observations after (4.6)), (5.9) shows that

(5.10) ym(t, un)"> y(t, a)

uniformly in 0=< t=< T1. Applying the same argument in the intervals [T, T2],
T2, T3], referred to after (4.7) (the lengths of these intervals do not tend to zero

in view of the a priori estimate (4.8)), we deduce that the convergence in (5.10) is
uniform in the interval 0 <= t-<- T. This ends the proof of Theorem 5.2.

Remark 5.3. We note that the conclusion of Theorem 5.2 can be made more
precise: if {u n} satisfies (5.6), then the same sequence {u n} will satisfy (5.7), without
need of passing to a subsequence. The proof uses a standard trick: if the full sequence
{u "} fails to satisfy (5.7) there exists a subsequence which stays at a positive distance
from y(t, a). Applying the argument in Theorem 5.2 to this subsequence, a contradiction
ensues.

In the following two results, we assume that S(t) is compact for all > 0; recall
that this implies that S(t) is continuous in > 0 in the uniform topology of operators.

LEMMA 5.4. Let h > O. The E )-valued function
(5.1) (t, s, u) - s(t, s; u)

is uniformly continuous (in the uniform topology of operators) in 0<-_ s<= t-h <-T,
u W(O, T; U) (u measured in the weak L2(O, T; E)-topology).

LEMMA 5.5. Let 0 <-- s < <-- T, u W(O, t; U). Then the operator S(t, s; u) E E
is compact.

For proofs of Lemmas 5.3 and 5.4, see [9, Thms. 6.3 and 6.4].
We show below how the weak convergence principle can be used to show strong

convergence of sequences of suboptimal controls. We note that in their present form,
both the weak and the strong convergence principles have been proved only in finite-
dimensional spaces. However, slightly modified versions of the sequence maximum
principle and of the convergence principles hold in infinite-dimensional spaces (see

6 and 7) and the arguments showing that the convergence principle implies conver-
gence of suboptimal controls are essentially the same, thus we take no advantage below
of the finite dimensionality of the space.

All assumptions are in force: the control set U is bounded and closed and the
nonlinear term is assumed to be of the form (5.1), with f(t, y) satisfying assumption
(F) in 4; we also suppose that either B is compact or that S(t) is compact for > 0.
For simplicity, we consider only the time optimal problem.

Assume that the weak convergence principle (5.3)-(4.2) holds for the sequence
{an} associated by Theorem 3.2 with a sequence {u n} of suboptimal controls. Write

(5.12) B*S(tn, S an)*yn=(B*S(tn, s; (tn)*-B*S(?,s; a)*)yn+B*S(?,s; a)*y.
Since each B*S(t, s; )* is compact we may assume, passing if necessary to a sub-
sequence, that B*S(?, s; )*y"- B*S(?, s; )*y strongly, y the limit in (4.2); on the
other hand, using Lemma 5.4 in case S(t) is compact or compactness of B* when B
is compact we deduce that (B*S(t,, s; )*- B*S(?, s; a)*)y" -* 0 strongly. In any case,

(5.13) z,(t) B*S(t,, s; ln)*y -’> z(t)= B*S(g, s; fi)*y strongly

and we obtain from (5.3) that

(5.14) (z(t), v--n(s))>----ln’-’)O (V U, s e,).
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For z 0 let U(z, 6) be the set of all u U such that

(5.15) (z, v-u)>--6 for all v U

(for the geometry of the situation see [9]). Then if the control set U satisfies

(5.16) diam U(z, 6)0 as 60

for all z with z0, it follows from (5.14) that the sequence {tT"(t)} will be pointwise
convergent in the set d where

(5.17) z(t) B’S(?, s; tT)*y # 0.

Since U is bounded, pointwise convergence in d is equivalent to LP(d)-convergence
for any 1 <p<c.

Naturally, no convergence results are obtained outside of d, thus it is important
to have conditions that guarantee that d has full measure in 0<= t_<-. Conditions to
that effect appear hard to come by for general quasilinear equations. In the linear case
we have S(t, s; u)= S(t-s) (S(t) the semigroup generated by A). If S(t) is analytic,
that d be of full measure in 0 <- _<- is equivalent to approximate controllability of the
system, one of whose formulations is

(C) if B*S( ?, s; a)*y 0 in a set of positive measure then y 0.

We note finally that the convergence conclusions are for the auxiliary sequence
rather than for the original sequence {u"} of suboptimal controls. However, this makes
no difference since by virtue of (3.2) and the definition of the distance d,

(5.18) meas {t: u"(t) a"(t)} 0.

It is easily seen ([9]) that assumption (5.16) implies convexity of U; in fact, (5.16)
is equivalent to strict convexity when F is finite-dimensional. However, convergence
results can be obtained even in the nonconvex case. Call the vector z 0 (that is, the
direction z) improper with respect to the control set U if (5.16) fails to hold for x, that
is, if

(5.19) lira sup diam U(z, 6) > O.

Assume that the set of improper directions is finite or at most countable. Then the
conclusions will still hold if we can show that the vector z(t) cannot be parallel to
any direction except in a null set. As an example, consider the linear case f= 0, with
S(t) analytic and

(5.20) B I

(which insures that the approximate controllability condition (C) is satisfied) and that
there exists a vector z 0 such that

(5.21) S(?- s)*y rl(s)z

in a set e of positive measure in 0 <-s <= ?. (It is enough to assume that e is an infinite
set.) Equality (5.21) means that S(-s)*y belongs to the one-dimensional subspace
H(z) generated by z, thus it follows from analyticity that S(?-s)*y belongs to H(z)
for all s<?. Hence, (5.21) actually holds for all s<?. If r/(?)=0, y=0, which is
impossible. Accordingly, it follows that z rt(?)-ly D(A) and

(5.22) a*s(?-s)*y= -r/’(s)z -’(s)/(?)y.
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Setting s ? we see that y (or, equivalently, z) is an eigenvector of A corresponding
to the eigenvalue r/ ’( ?)/ ?). Accordingly, if y, Y2," are the eigenvectors of A
corresponding to real eigenvalues, we obtain conversions without the assumption that
U is convex; we require instead that none of the yk be an improper direction with
respect to U. This requires knowledge of all the eigenvalues of A and is thus difficult
to verify, except when A has no real eigenvalues. We do not know of a characterization
of sets U having a finite or countable set of improper directions even in dimension 2.
It is possible that a set given by a polar equation

{(r, O); O<=r<=r(O), O<=O<-Zr}

where r(0) is sufficiently smooth has that property. That U has a finite set of improper
directions can be verified for many choices of r(O) (say, functions having a finite
number of local maxima).

Remark 5.6. Some obvious simplifications are available in the finite-dimensional
case. We may assume that A =0; a condition that guarantees (4.8) is

(y,f(t,y,u))<-_(l+llyll 2) (t[,yE,uF).

It can be easily shown that the set {y(t, u)} of all trajectories corresponding to all
u W(0, T; U) is equi-Lipschitz continuous.

6. The convergence principle: abstract parabolic equations. We show here that for
a certain class of quasilinear abstract parabolic equations, a modified convergence
principle can be proved that implies L-convergence (lp) of sequences of
suboptimal controls. However, the definition of suboptimal control will have to be
modified as well.

We consider again the system (4.9) defined by the initial value problem (4.3)-(4.4).
Translating A if necessary we may assume that

(6.1) s( t) ----< C e-t3’ (t _->0)

so that fractional powers (-A) exist for all a and are bounded for a < 0. (In particular,
A- is a bounded operator.) We require S(t) to be an analytic semigroup, so that for
every a > 0 we have a bound of the form

(6.2) [l(-J)"S(t)[[<--Ct e -t’ (t > 0).

We assume the nonlinear termf(t, y, u) is of the form (5.1). Assumptions (F) onf(t, y)
will have to be strengthened:

(F) For some a>0 (-A)f( t, y) has a FrOchet derivative Oy(-A)f( t, y) with
respect to y and (-A)f(t, y) (respectively, Oy(-A)f(t, y)) is continuous (respectively,
strongly continuous) and bounded on bounded subsets of [0, T] x E x U.

Since (-A) is a bounded operator, it is clear thatf(t, y) satisfies (F); in particular

(6.3) Oy(-a)f( t, y) (-a)oyf( t, y).

We make some changes in the theory in 5, beginning with the definition of suboptimal
controls. Approximation to the target will have to be measured in a stronger norm,
namely the graph norm of A. We assume now that the target point ) belongs to D(A),
the domain of A. A control u(t) is (’, e)-suboptimal (or, more precisely, (A, ’, e)-
suboptimal) if

(6.4) ]lAY( , u)-all <=e, Yo(, u) <=m+e.
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The graph norm of A in (6.4) has a simple interpretation when A is a second-order
partial differential operator

(6.5) Au(x) . E D(a(x)Du(x)) + E b(x)DJ(x) + c(x)u(x)
j=l k=l j=l

in a bounded domain of m-dimensional Euclidean space , defined on functions
that satisfy a boundary condition, for instance

(6.6) u(x) =0

on the boundary F of . Under minimal assumptions on 1) and on the coefficients of
ag(x), b(x) and c(x) (see [13] for details), D(A) is just the Sobolev space H2()o
(the subspace of H2() defined by the boundary condition (6.6)) and the graph norm
is equivalent to the H2() norm. Thus, the first inequality (6.4) means only approxima-
tion in the H2(1)) norm and satisfaction of the boundary condition. The same statement
holds for other boundary conditions (see again [13]).

Given a sequence of (A, t,, e, )-suboptimal controls we use instead of (3.4) the
function

(6.7) G,(u) {(max (O, yo(t,, u)-m+e,))z+[lAy(t,, u)-Afill2} 1/2

in the space W(0, t,; U); we define F,(u)=+ if y(t,, u) does not belong to D(A).
It is easily shown that the function F,(u) is lower semicontinuous ([8, Lemma 7.4]),
thus Ekeland’s theorem can be applied. We obtain in this way the following version
of Theorem 3.1.

THEOREM 6.1 (The modified sequence maximum principle). Let {u"} be a sequence
of (A, t,, u)-suboptimal controls with {t} bounded, e O. Then there exists a sub-
sequence of {u} (which we denote by the same symbol) such that

(6.8) t t-, Yo( t, u - m’ <= m, Ay( t, u - Aft,

a second sequence {} of controls with t W(-k, t,; U) such that

(6.9) F(a) < F,(u) < ee,

(6.10) d,(u, t) 0,

a sequence {37}={(/x,y)} in [RxD(A) such that (/x,):+ IIAylle= 1 and a set e of
full measure in 0 <= s <-t such that

/Zo(t,, s, , v, (s))+(Ay, AS(t, s; u)B(v- a(s))}
(6.11)

>=-,-0 (v U,se,).

An essential ingredient in the proof is the following lemma.
LZMMA 6.2. Let u W(O, ; u), s<?. Then (a) S(?,s; u)E D(A), (b) if r<?-s

then y(?, u,,,)-y(?, u) D(A), and

(6.12) AS(?, s; u)(v- u(s)) lim r-’a(y(?, u,,.,)- y(?, u))
pO+

in a set e offull measure in 0 <= s < ?.
The proof is in [8, 7]. It is based on the integral equation

(6.13) y(t, u)= S(t)yo+ S(t-cr)f(r, y(o’, u)) do’+ S(t-r)Bu(cr) do"

defining y(t, u); to exploit the assumptions on j; we write the first integrand in the form

(6.14) S(t-tr)f(tr, y(tr, u))=(-A)-S(t-o’)(-A)f(tr, y(o", u)),
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and use the estimate (6.2). We proceed in the same way in the integral equation (4.11)
defining S(t, s; u); here the integrand is written in the form

S(t-r)Oyf(cr, y(cr, u))S(cr, s; u)
(6.15)

(-a)-S(t r)(-a)Oyf(O, y(r, u))S(r, s; u).

Once (6.11) has been established we take v=v(s) and integrate in 0=<s-<,
assuming that

(6.16) s-* sc0(t,, s, n, V(S), ,n(S))

is integrable for any v W(0, T; U). The result is

z. o(., s, ", v(s), "(s)) as

t,,
g")Bv(s) ds A S(t,, S, tn)Bin(s) ds

(6.17) + ay,,a S(t,,s"

>--8. -.0.

However, (6.17) needs some clarification. We must show first that

(6.18) S(tn, s; an)Ba"(s) as D(A).

TO see this, observe that it follows from (6.7) that

(6.19) y( t,, (tn) 6 D(A).

We use then the integral equation (6.13) and (6.14) to deduce that

(6.20) S(t-r)B"(r) do D(A).

Finally, we exploit the integral equation (4.11) defining S(t, s; u), write the integrand
in the form (6.15) and use the assumptions on f(t, s, u) at the beginning of the section.

On the other hand, it is not necessarily true that

(6.21) S(t,,s; ")Bv(s) ds D(A),

thus we only claim (6.17) for those ve W(0, t,; U) that satisfy (6.21).
We bring into play some definitions and results of [8]. Let zX be a set in a Hilbert

space H. We say that A has finite codimension if and only if there exists a closed
subspace K _.c H of finite codimension (that is, with a finite-dimensional orthogonal
complement) such that

(6.22) AK II(conv (A))

has nonempty interior in K, where I1 denotes the orthogonal projection from H onto
K. A set with nonempty interior (or, more generally such that its closed convex hull
has nonempty interior) has finite codimension (take K H). In a finite-dimensional
space, any nonempty set has finite codimension, as we see taking K {0}.

The definition extends to families of sets. We say that a sequence {A,} has finite
codimension if there exists a closed subspace K c__ H with finite codimension in H such
that

(6.23) AK CI H(conv (A,))
nl
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has nonempty interior. The sequence {An} is called bounded if An
_
A for all n, where

A is a bounded set in H.
LEMMA 6.3. Let {A.} be a bounded sequence ofsets in H having finite codimension.

Let {y.} be a sequence in H such that

(6.24) 0 < c _-< I]Yn =< C.

Assume that

(6.25) (yn, z)>=-en->O (zAn, n 1,2,. ").

Then there exists a subsequence of {yn } that converges weakly to an element y H, y O.
For a proof, see [8, Lemma 5.6].
We denote below by A(t) the nonlinear operator

(6.26) A(t)u S(t, s; u)Bu(s) ds

defined in W(0, t; U).
LEMMA 6.4. Let {"} be the sequence in Theorem 6.1. Then A(t,)" D(A) for

all n and the sequence {AA(tn)"} is strongly convergent in E.
Proof Premultiplying (4.11) by A we obtain

(-A)S( t, s; u)z (-A)S( s)z

(6.27) + (-A)l-"S(t-o-)(-A)Oyf(t,y(t,u))S(o-,s; u)zdo-.

It follows from (6.27) and (6.2) that

(6.28) ]]as(t, s; u)-as(t-s)]] <- C(t-s)

in 0< s < < T. Write now (4.3) in the form

y’(t, u)={a+Oyf(t,y(t, u))}y(t, u)
(6.29)

+ {f(t, y(t, u))-Oyf(t, y(t, u))y(t, u)}+ Bu(t)

and express the solution y(t, u) of (4.3)-(4.4) using the solution operator S(t, s; u) of
the linearized equation" the result is

y(t, u)= S(t, 0; u)y+ S(t, or; u){f(o’, y(o’, u))-Oyf(O’, y(o’, u))y(cr, u)} do"

(6.30)
+ S(t, or; u)Bu(cr) do’.

On the left-hand side we use the fact that (6.4) implies

(6.31 Ay( tn, n) A.
On the right-hand side, we use (6.28) to replace (modulo a bounded operator)
AS(t,s; u) by AS(t-s) in (6.30), and then write the resulting integrand in the form

AS(t-o’){f(o’, y(o’, u))-Oyf(o, y(o’, u))y(o, u)}
(6.32)

=(-A)’-S(t-o){(-A)f(o", u))-(-A)Oyf(o, y(o-, u))y(r, u)}

and use the hypotheses (F) on f(t, y) and Theorem 5.2. This ends the proof.
THEOREM 6.5. Let the semigroup S(t) generated by A be analytic, and let the

nonlinearity f(t, y) be of the form (5.1) with B I and f(t, y) satisfying assumptions
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F). Let the control set U be closed and bounded and have 0 as an interior point. Assume,
finally, that (6.16) is integrable for any v W(O, T; U) and that the set of all elements
of the form

(6.33) o(t, s, u, v(s), u(s)) ds

with u a and v W(O, t; U) is bounded, uniformly with respect to n. Then the sequence
{(/xn, yn)} in Theorem 6.1 has a subsequence weakly convergent in R x D(A) to (tx, y) O.

Proof. Given ?>0 and u e W(0,-; U) we define (following [8]) the set
K (0, , u; U) c__ E as the set of all elements z E of the form

(6.34) z= A(t)u S(t, s; u)Bv(s) ds.

The set K (0, ?, u; U) consists of all elements of the form (r/, z)e R x E with z given
by (6.34) and r/ given by (6.33).

Making use of the integral equation (4.11) and the assumptions on S(t) andf( t, y),
we show that if y D(A) then s --> S(t, s; u)y is continuously differentiable in 0 <= s <
and satisfies

(S(t, s; u)y’= -S(t, s; u){A+Oyf(S, y(s, u))}y

(see [8] for details). Accordingly, if we define a control by v,(s)=
{y s(A + Oyf(S, y(s, tn)))y}/t, then

(6.35) S(t,, s; an)Bvn(s) ds= y.

Since v(s)e W(O, tn; U) for sufficiently small IIAy[I, it follows that the sequence of
sets A(K(O, tn, an; U)f’l D(A)) contains a common open set.

The proof ends applying Lemma 6.3 in the space H= x D(A), where D(A) is
endowed with the graph norm. The statement just proved above is that the sequence
of sets K(O, tn, an; U)fq D(A) contains a common open set in the space H. On the
other hand, the boundedness assumption for elements of the form (6.34) implies that
the sequence K(0, tn, n; U)fq(IxD(A)) is bounded in x D(A) (that elements of
the form (6.33) are bounded is a consequence of the other hypotheses). Hence,
K(0, tn, an; U)f3 (Rx D(A)) is of finite codimension there; in view of the convergence
relation proved in Lemma (6.3), the same is true of the sequence K(0, tn,
(NxD(A))-(O,A(t,)a"), thus Theorem 6.4 follows from (6.17) and Lemma 6.3.

A separate statement is needed for the time optimal problem. The function under
consideration here is not (6.3) but

(6.36) Fn(u) IlAy(t,, u)-AYll
in the space W(0, tn; U). Arguing in the same way as with (6.5) we obtain the following
theorem.

THZORZM 6.6 (The modified sequence maximum principle for the time optimal
problem). Let {u n} be a sequence of (A, tn, u n)-suboptimal controls with t < , en--> O.
Then there exists a subsequence of {u n} (which we denote by the same symbol) such that

(6.37) t, --> ’-<_ ?, Ay( t,, u n) --> Air,

a second sequence {t n} of controls with a W(-k, tn; U) such that

(6.38)

(6.39) dn(u n, an) __> O,
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a sequence {y"} D(A) such that Ilay"ll--1 and a set e, offull measure in 0 <- s <-t,
such that

(6.40) (Ay",AS(t,,s; a")B(v-t"(s)))>-_-6,-->O (v U,se,).

The following analogue of Theorem 6.4 is proved essentially in the same way.
THEOREM 6.7. Let the semigroup S(t) generated by A be analytic, and let the

nonlinearity be of the form (5.1), with B I andf( t, y) satisfying assumptions (F). Let
the control set U be closed and bounded and have 0 as an interior point. Then the sequence
{y"} in Theorem 6.5 has a subsequence weakly convergent in D(A) to y # O.

It can be proved (much in the same way as for the convergence principles in 5)
that the generalized convergence principles just established imply strong convergence
of sequences of suboptimal controls. Again we consider only the time optimal case.

We will need the following two results, where the assumptions on A and on f(t, y)
in Theorem 6.7 are in force.

LEMMA 6.8. Let h > O. The E)-valued function
(6.41) (t, s, u)--> AS(t, s; u)

is uniformly continuous (in the uniform topology of operators) in 0 < s<= t-h <-_ T,
u W(O, T; U) (W(O, T; U) endowed with the weak L2(O, T; E)-topology.

LEMMA 6.9. Let 0<= s < <= T, u W(O, t; U). Then the operator AS(t, s; u): E - Eis compact.
The proofs of both results are consequences of Lemma 5.4 and Lemma 5.5. We

use the integral equation (4.11) premultiplied by A:

AS(t, s; u)z AS( s)z

(6.42) + (-A)l-s(t-r)(-A)O,f(r, y(cr, u))S(r, s; u)z ds.

Lemma 6.8 follows immediately from the estimate (6.2), from the assumptions on
f(t, y), from the fact that AS(t) is continuous in the uniform topology of operators in
> 0 and from Lemma 5.4, which guarantees that S(r, s; u) is continuous in the uniform

topology of operators in s < r < T; we divide the domain of integration in (6.42) in
three parts, one s+3< t< T- where (E)-continuity of the integrand can be
exploited, and two residual intervals, s < s + 6 and T-6 < T, which yield an integral
as small as desired. To prove Lemma 6.9 we argue in the same way, using the fact that
AS(t)= S’(t) is compact for each t>0 and that S(cr, s; u) is compact in s<tr < T
(Lemma 5.5).

We rewrite (6.40) in the form

(6.43) ((as(t,,s; g"))*ay",v-"(s))>=-6,-->O (v U,se,).
Consider the following analogue of (5.12):

(6.44) (as(?,s; "))*ay"=((as(t,,s; "))*-(as(?,s; a)))*y"+(as(?,s; a))*y".

Using Lemmas 6.7 and 6.8, we deduce that

(6.45) z,(t)=(as(t,,s; a"))*ayn->z(t)=(as(?,s; a))*ay strongly

(where y 0 is the weak limit of y" in the space D(A)), so that

(6.46) (z(t), v-a"(s))>-_-6,-->O (v U, s e,).

From then on, all the arguments following (5.14) apply; the only difference is that z(t)
was continuous in 0 =< t-< ? there, while it is only continuous in 0_-< < ? here, but this
does not introduce any significant changes.



SUBOPTIMAL CONTROLS 335

7. The strong convergence principle: the noncompact case. The weak convergence
principle, as defined in 4, is based on two sets of hypotheses that work in opposite
directions. On the one hand, compactness (either of S(t) or of B) is needed; on the
other hand, results such as Lemma 6.3 require, roughly speaking, exact controllability
(ofthe linearized system), which is unattainable (except in finite-dimensional situations)
when S(t) or B are compact (for the latter case, see [6]). Thus, only modified versions
of the convergence principle work in very particular situations, such as the one treated
in 6 under the assumption of compactness of S(t). Compactness of B works in the
case (not treated in this paper) of hyperbolic equations, where exact controllability to
certain (energy) subspaces holds; however, the requirements on B essentially reduce
us to the case of one space variable.

A way out may be attempted giving up the compactness properties of B*S(t, s; u)*
altogether ’and trying to establish instead a strong convergence principle. However,
this only works in very particular situations, as seen in this section and in 8; on the
other hand, compactness in a weakened form is still necessary.

We consider again systems defined by the initial value problem (4.3)-(4.4) in a
Hilbert space E. We do not assume that A is compact, but only that R(IX; A)=
(ixI A)-1 is compact for some Ix in the resolvent set p(A). The nonlinear termf(t, y, u)
is assumed to be of the form (5.1) and satisfy assumptions (F) in 4.

LEMMA 7.1. Let S(t) be a strongly continuous semigroup such that R(IX; A) is

compact for some tx p (A). Let the operator H L2(0, T; E) C(0, T; E) be defined by

(7.1) (I-[u)(t) S(t-o.)u(o.) do’.

Let {u n} be a sequence in L2(0, T; E) converging weakly to an element u L2(0, T; E).
Then (a)

(7.2) !-Iu"IIu strongly in L2(0, T; E).

(b) If {t,} is a sequence in [0, T] such that t, to, then

(7.3) (IIu,)( t,) (I-[u)( to) weakly in E.

A sketch of the proof is in [10, Lemma 5.1]. We can write II as the convolution
IIu- S * u, where we have set S(t)=0 in < 0. Translating A if necessary, we may
assume as well that (6.1) holds for some 13 > 0. Denoting by the Fourier transform
operator, we have (Hu)(o’)- R(-io’; A)dPu(o’). For u E we have

(u,(o’), u) (u,( t), e -i=’ u) dt " (u( t), e- dt (dPu(o’),

(where we have set u(t)= u,(t) in > T) so that u,(o’)u(o’) weakly in E for
each o’. Since R(Ix; A) is compact for some Ix, it follows from the second resolvent
equation that R(-io’;A) is compact for every o’, so that R(-io’;A)un(o’)-
R(-io’; A)u(o’) strongly in E for -< o’<. Noting that by (6.1), R(-io’; A) is
uniformly bounded, (a) follows from the dominated convergence theorem and
Plancherel’s theorem. To prove (b) we only have to observe that, for u E,

io io(7.4) ((Hun)(t,), u) (u( t), S( t, t)u) dt (u( t), S( t)u) dt

((rlu)(t), u),

noting that S(tn- t)u- S(t-t)u strongly in L2(O, T; E). Of course, in this last step,
compactness of the resolvent R(Ix; A) is unnecessary.
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The following result is the analogue of Theorem 5.2 for the present hypotheses.
As in 5 we assume that the control set U is closed and bounded, and we denote by
V conv (U) the closed convex hull of U.

THEOREM 7.2. Let the semigroup S(t) generated by A satisfy the assumptions of
Lemtna 7.1, and suppose f(t, y, u) is of the form (5.1) with f(t, y) satisfying (F). Let
{u"} be a sequence of controls with u"6 W(O, tn; U). Assume that tn to. Then there
exists a subsequence of {u "} (which we denote by the same symbol) and a W(O, to; V)
such that

u"( t)- ( t) weakly in L2(0, to; F),

y( t, u") y( t, ) strongly in L2(O, T; U),

(7.7) y( tn, Un)
_

y(to, f) weakly in E.

Again, a sketch of the proof can be found in 10, Thm. 5.2]. We use the successive
approximation equation (5.8) to compute y(t, u n) as the limit of the sequence

(7.8) {y"(t, u"); m 1, 2,... }.

We have already observed in 5 that {y’(t, u")} converges absolutely and uniformly
(with respect to tr and n) as mc in some interval [0, To] independent of n. The
(analogously defined) sequence

(7.9) {y’(t, fi); m 1, 2,...}

used to compute y(t, t) enjoys the same convergence properties.
Select a subsequence of {u"} (denoted with the same symbol) such that u

L2(0, T; F) weakly; since W(0, T; V) is convex and closed (hence weakly closed) in
L2(0, T; F), t G W(0, T; V). Making use of (5.8) and of Lemma 5.1 and passing to a
subsequence, we deduce that {yl(t, u")} is strongly convergent in L(0, To; F) and
convergent almost everywhere in [0, To]. Using then the dominated convergence
theorem in the first term, Lemma 5.1 in the second term and passing to a subsequence,
we deduce that y(t, u") converges strongly in L2(0, To; F) and almost everywhere in
[0, To] to y(t, gt). Operating inductively in the same fashion (using at each step the
dominated convergence theorem in the first term of (5.8) and Lemma 7.1 in the second
term, and taking a diagonal subsequence at the end) we show that each of the terms
in the sequence {y"(t, u")} converges in L2(0, To; F) to the corresponding term of the
sequence {y"(t, t)}. Noting that

(7.10)
y(t, u")-y(t, fi) (y(t, u")-y’(t, u"))+(y’(t, Un)--ym(t, ))

+(ym(t, )--y(t,

and using the convergence properties just mentioned, (7.6) follows in the interval
[0, To]. To extend the result to all the interval [0, to] we proceed as follows. Since
y(t, u") y(t, fi) almost everywhere in [0, To], we may assume (if needed shifting To
to the left) that y(To, u") y(To, ). To solve in t-> To, we use the approximation
scheme (4.6), that is

y"+l( t, u") S( t)y( To, u"

(7. + s(-f(,ym(,u+ s(_u(
To To

in To. Arguing in the same way (and, of course, passing to a subsequence), we
show that y(t, u) converges in L2([ To, T]; F) and almost everywhere in To, T] to
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y(t; tT). Using the same argument in intervals T1, T2], T2, T3]," whose length does
not tend to zero because of (4.8) (see the arguments following (4.8)), we obtain (7.6)
in the whole interval [0, to].

The proof of (7.7) is similar. We start with the first equation (7.14) (m =0) and
use Lemma 7.1 (b) in order to show that yl( To, u ") -> yl( To, ) weakly in E. We then
make use of (7.11) inductively in the interval [0, To-], combined with the fact that,
passing to a subsequence we may assume that each sequence {y"(t, u n)} converges
almost everywhere in [0, To] as n-> to y(t, t) to show that, for each m-- 1, 2,...

y" To, u --> y To, ) weakly in E.

This, combined with the convergence properties as m -> eo of the sequence (7.8), shows
that

(7.12) y(To, u") --> y(To, ) weakly in E.

Using then (7.11) and arguing in the same way, we show (7.7) in the intervals T, T],
[T2, T3]," until the limit to and the sequence {t,} are eventually contained in an
interval Tk, Tk/ ].

Remark 7.3. Using an argument similar to that in Remark 5.3 we can show that
it is unnecessary to take a subsequence in Theorem 7.2.

LEMMA 7.4. Under the assumptions on S(t) and f(t, y) in Theorem 7.2 the (E)-
valued functions
(7.13) (t, s, u) --> S(t, s; u)

(7.14) (t, s, u) S(t, s; u)*
are uniformly continuous (in the strong topology of operators) in 0 < s <-t <-_ T, u
W(O, T; U)(W(O, T; U)endowedwiththeweakL(O, T; F)-topology).

The proof (which is also sketched in [10, Thm. 5.3]) uses the integral equation
(4.11) defining S(t, s; u), the integral equation

S(t,s; u)*z=S(t-s)*z+ S(tr, s; u)*B(tr)*S(t-cr)*zdcr
(7.15)

(O<=s<=t<--T)
obtained from (4.11) taking adjoints, the L-convergence of {y(t, u")} and the uniform
boundedness of [ly(t, u")[[. We omit the details.

The following result on the operator A(t)u defined by (6.26) roughly corresponds
to Lemma 6.4.

LEMMA 7.5. Let {"} be the sequence in (5.3). Then there exists a subsequence
(denoted with the same symbol) such that {A(t,)ff"} is strongly convergent in E.

The proof is based on (6.30) for t,, u if". Obviously, the left-hand side and
the first term on the right-hand side converge, the latter because of Lemma 7.4. In the
integrand we again use Lemma 7.4 for S(t, tr; u), uniform boundedness of {y(t, u")},
pointwise convergence of the same sequence (which can be achieved passing to a
subsequence) and the dominated convergence theorem.

At this point, there is no difficulty in upgrading the sequence maximum principles
in 5 into weak convergence principles, that is, in establishing the weak convergence
of (a subsequence of) the sequence {y"} to a limit y 0. However, this would not be
useful in the present situation, since the crucial uniform continuity-compactness proper-
ties of the operator S(t, s; u), present in the abstract parabolic case, are now lacking.
Thus, we need to establish strong convergence of a subsequence of {y"}, which we do
in the next section.
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8. The convergence lrincille: the noncomlmct case. Let A be an arbitrary set in a
Hilbert space H, and let S(y, p) be the closed sphere of center y and radius p. We say
that a point y in the space H is A-regular if and only if there exists a hyperplane

(8.1) H(y, .9)= {v; (v-y,)7) 0}

(where we assume that the generator )7 of H(y, )7) satisfies IlY[[ 1), a number p > 0
and a map

(8.2) H" S(y, p)0 H(y, fi) A

such that

(8.3) IIH(z)- zll N r([lz-y])(][z-ell p),

where the function r() is defined in 0 < N p and satisfies

(8.4) r()=0() as 0.
Example 8.1. Let A B(0, R) be the sphere of center 0 and radius R in H, and

let y be a point in H. If y[ R then it is obvious that y is not A-regular. If [y[ R
then y is A-regular (we may take p R-[lyl[ and H(y, ) an arbitrary hyperplane).
The only nontrivial situation is that where y belongs to the boundary of A, that is,
Ilyll R. In this case we take = y/llyll and define the map H by

(8.5) n(z) (g/llzll)z.

Let z H(y, ). Trigonometry in the two-dimensional subspace generated by y and z
reveals that Ilz-yll/R=tan o, Ilz-yll/llzll =sin 0, where 0 is the angle between y and
z. Accordingly,

(8.6) Iln(z)-zll=II(R/llzll)z-zll=llzll-R={(1-cos O)/sin oIllz-yl[,

and it follows that y is A-regular.
LEMMA 8.2. Let y be a A-regular point, and let {y"} be a sequence in H such that

(8.7) (y", z- y) -e, 0 (z e A).

en
(8.8) y" fi strongly in H,

where fi is the generator of the hyperplane H(y, fi) in (8.1).
Proof Let z H(y, fi). We have

(y", z-y)=ty",n(z)-y)-ty",n(z)-z)-e,- IIn(z)- zll

Let 6>0. Choose so small that r()/ <6/2 and then n so large that e/ <6/2
for m n. Taking ][z-y[[ = and writing w= (z-y)/liz-yll we obtain the relation

(y, w)- ([[wll 1, (w, )=0, m .).

This is easily seen to imply (8.8).
In the following result we consider a sequence {,} of sets in H and a sequence

{y,} in H. We say that {y,} is {,}-regular if and only if there exists a sequence
{H(y,, y,)} of hyperplanes (with generators ,, ]]fi,] 1) and a sequence of maps

(8.9) n,. S(y,, p) H(y,, y,) .
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such that

(8.o)
with

IIrI,,(.)- .11 ,’(11 .- y. II)(1[ z,,-y.ll <= P),

(8.11) r(ix) o(ix) as ix 0,

where r(ix) is defined in 0 < ix < p. The definition of course implies (but is not equivalent
to) the fact that each y, is A,-regular; note that p and r(ix) are assumed to be
independent of n.

LEMMA 8.3. Let {A,} be a sequence of sets in the Hilbert space H, and let {y,} be
a {A,}-regular sequence. Assume the sequence {37,} ofgenerators of the cones H(y,, )
satisfies
(8.1 2) .9 strongly in H.

Let {yn} be a sequence such that IlY" 1 and

(8.13) (y",z.-y.)>=-e.O (z. A.).
Then

(8.1 4) y" strongly in H.

The proof is an obvious generalization of the proof of Lemma 8.2. Let z, e
H(y,, ,). Then we have

(y’, z. -y.)= (y’, rl. (z.)- y.)-(y’, H. (z.)- z.)-> -e. -IIrI. (z.)- z.II

We again take 6 > 0 and choose ix so small that r(ix)/ix < 6/2 and then n so large
that era < 6/2 for m => n. Taking IIz -y. and writing w,, (z,, -y)/llz,. -y.,ll
we obtain the relation

(8.15) (y’,

which is easily seen to imply (8.14).
In what follows, we work under the assumptions in 8, that is, we require R(IX; A)

to be compact for some ix e p(A). We prove a convergence principle pertaining to the
time optimal problem.

THEOREM 8.4. Assume that R(ix; A) is compactfor some ix p A and thatf t, y, u)
is of the form (5.1) with f(t, y) satisfying conditions (F) in 4. Assume that, for every
convergent sequence {t,} and every weakly convergent sequence {fin} in W(O, t,; U) the
sequence {Aff"(t,)} is {K(0, t,,, t; U)}-regular. Assume further that

(8.16)
where ft, is the generator of the hyperplane H(y,, ft,) in (8.9). Then the sequence {y’}
in the sequence maximum principle (5.3) is strongly convergent.

The proof is an immediate consequence of Lemma 8.3.
The {K(0, t,, if"; U)}-regularity assumption in Theorem 8.4 is difficult to verify,

since very little is known about reachable sets {K (0, t,, if"; U)} in infinite-dimensional
spaces. An example where {K(0, t,, if"; U)}-regularity holds is the following.

COROLLARY 8.5. Let A andf satisfy the conditions in Theorem 8.5. Assume that

(8.17) B I, U= B(0, R)= {u E; [lull <= R}.
Assume in addition that A+Oyf(t, y(t, u)) is skew adjoint for every in 0<= <- T and
every u W(0, T; U). Then the sequence {y"} in the sequence maximum principle (5.3)
is strongly convergent.
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Proof Since each A + ayf(t, y(t, u)) is skew adjoint, the solution operator S(t, s; u)
is unitary (isometric and invertible) for each s, t. (In particular, ]IS(t, s; u)]l 1.) It
follows that, for each Y and each u W(0, ; U) we have

(8.18) K(0, ?, u; U)= -B(0, R)= B(0, -R).

In fact, it is obvious that every element of K(0, ?, u; U) has norm -<- -R; on the other
hand, if v6 B(0, ?R) then K(0, ?, u; U), since

v S(t, s; u)u(s) ds

with u(s)= -lS(t, s; u)-Iv US(s, t; u)v.
We show that the sequence {At"(tn)} is {K(0, t,, t"; U)}-regular. We know from

Lemma 7.6 that {at"(t,)} y strongly; under the present hypotheses [[aa"(t.)ll-<-R,
so that ]]y]] =< R. We argue essentially as in Example 8.1. If ]]y]] < R then we may use
the sequence of hyperplanes H(y,, ) with )7 arbitrary and H the identity map. When
]IY[[ R we take , Y,/[[Y, and we denne n(z)= Rz/llzll. Using (8.6) for 0 0, the
angle between y and z, (8.10) follows. This ends the proof.

By way of conclusion, we note that the difficulties in proving convergence principles
(and, through them, strong convergence of optimal controls in the point target case)
are essentially the same as those difficulties involved in proving the maximum principle
with point target (see [8]). The results available make evident that in infinite-
dimensional spaces, either the maximum principle or convergence of suboptimal
controls will only hold in very particular situations, two of which were treated in this
paper. A way out of this difficulty is to give slackness to the target condition (as done
in [8] for the maximum principle and in [9], [10] for convergence of suboptimal
controls).

For a different approach to the convergence problem see [12], which covers some
cases where the maximum principle does not hold ([5]).
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WELL-POSEDNESS OF H OPTIMAL CONTROL PROBLEMS*

MALCOLM C. SMITH

Abstract. This paper considers the effect of perturbations of a nominal single-input/single-output linear
plant, or a band of uncertainty, on the solution to certain frequency domain optimal control problems.
Weighted H sensitivity minimization, mixed, and robust sensitivity minimization will be considered along
with problems of more general type. A brief discussion of H p optimal control problems will also be given.
Typical examples will be presented where optimal sensitivity does not depend continuously on the plant
(ill-posedness) and conditions for well-posedness will be given. It is demonstrated that similar discontinuities
can occur for more general problems. Also suggested are ways of defining an optimization problem so that
continuous dependence of the infimum is ensured.

Key words, feedback, frequency domain design, sensitivity minimization, H-optimization, uncertainty,
perturbations, continuity, approximation, delay systems
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NOTATION

D(/))
0D
c+(c+)

H(X)
HP(X)
U’

R

p,.(s)
,,(s)

open (closed) unit disc
unit circle
open (closed) right half plane
C.U{}
the holomorphic functions on X
the standard Hardy p-space (1 =<p=<c) on X (if not explicitly stated H means HP(C+))
the standard Lebesgue p-spaces
{f H "(X)" f(s):/(g)}
the rational functions in
{f/(C+)" f is continuous on +}
{f/(X) for some r > 0, where X is the half plane Re (s) >_- -or}
the proper (i.e., no poles at ) rational functions
the strictly proper (i.e., having a zero at ) rational functions

1. Introduction. The H framework was introduced into control by Zames [16]
principally because it is natural for studying problems involving uncertainty. In classical
theory, plant uncertainty is represented by a tolerance band on the frequency response,
which is exactly a "weighted" ball in H. For the problem of optimal disturbance
attenuation there is a natural H formulation for disturbances whose spectra are not
fixed 17], and many other problems involving sensitivity and robustness optimization
can be posed in an H framework [5]. To date, much work on H optimization has
been devoted to obtaining explicit solutions to various classes of control problems.
Contributions have been made to understanding the capabilities and limitations of
feedback, and new possibilities have opened up for design.

An aspect of H optimization which has remained unexplored to date is the
question of well-posedness. By well-posedness we mean roughly that a vanishingly small
change in the problem specification will result in a vanishingly small change in the
solution. Of course, this has to be defined more precisely in particular cases, but we
will mostly be concerned with the effect of perturbations of the nominal plant (or the
tolerance band) on the performance measure and the optimal control. After an initial
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study it seems that the H formulation is rather susceptible to the phenomena of
ill-posedness. It is the purpose of this paper to point out and analyse some of the
circumstances when this occurs and to suggest remedies. This paper is an expanded
version of [12].

Before proceeding it is worth giving reasons why we consider well-posedness to
be an important property. Clearly, well-posedness is not the same as the ordinary
notion of robustness, which requires the computed controller to perform satisfactorily
for some neighbourhood of the nominal plant. The latter property must be satisfied
as a matter of course. First, we can see that well-posedness is desirable purely from a
computational point of view. Obviously if the problem solution is critically dependent
on small changes in the plant parameters it will be very difficult to obtain satisfactory
computational procedures. Second, it is clear that ill-posedness could be caused by
neglecting certain constraints in the problem formulation. In this respect a knowledge
of how to achieve well-posedness would be a useful guide when selecting a performance
criterion. A third motivation is the desire to be able to tune a controller on-line in
cases of parameter drift. Assuming that a family of controllers is designed off-line to
satisfy certain performance criteria, a successful implementation will undoubtedly
require that the mapping from plant to controller defined by the design problem be
continuous.

The paper is organized as follows. In 2 we consider the problem of H weighted
sensitivity minimization for stable plants. In the finite-dimensional case and for delay
systems, typical examples are presented showing discontinuity of the infimum with
respect to plant perturbations. A general condition is then derived characterizing plants
at which we have continuity (Theorem 1). One important requirement is that the
optimum for the plant equals the optimum for the inner (all-pass) part of the plant.
We give a general condition for this to hold for a wide class of infinite-dimensional
plants (Theorem 2). Finally we show continuity of the optimum with respect to
perturbations of the weighting function. In 3 we obtain similar results for the case
of H p weighted sensitivity minimization. In 4 we present some ways in which the
sensitivity minimization problem can be modified to ensure continuity of the infimum
(with respect to plant perturbations) for arbitrary plants in H. In 5 we consider the
problem of minimizing the supremal weighted sensitivity over a ball of plants. We
show that the optimum does not depend continuously on the radius of the ball, and
suggest a modified problem which has continuous dependence. In 6 we consider a
general design problem for (possibly) unstable plants in which the infimum of a
weighted combination of closed loop transfer functions is sought. A sufficient con-
dition is obtained for the optimum to depend continuously on the plant (corollary to
Theorem 7).

2. H weighted sensitivity minimization. We begin by recalling the H optimal
sensitivity problem. Consider a plant P(s)IYt+pr(S) in the standard feedback
configuration of Fig. 1 where the controller F(s) IY-I+pr(S) is to be designed. The
feedback loop is defined to be stable if all four closed loop transfer functions xi ej
are L2 bounded-input/bounded-output stable (i.e., elements of/-)). This is equivalent
to

(2.1) P(1 + FP)-1, F(1 + PF)-I E I-Ic.
In this section (and through to 5) we assume P(s) H in which case (2.1) is
equivalent to

(2.2) Q := F(1 + PF)-’ IY-I.
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The H weighted sensitivity minimization problem is to find

(2.3) /z(P) := inf
F stablz.

where W(s)IYl is outer and the infimum is taken over all controllers F(s)
IICx3-]-Rpr(S which stabilize the feedback loop. If Pc then (2.3) reduces to

(2.4)

/z (P) inf W 1 PQ)II
Q/

Q (1 PQ) IYI+pr(

=> inf IIW(1-PQ)ll=:u(P).
Q/

It is usually assumed that (2.4) holds with equality. However, this is not immediate
for nonrational P and does not seem to have been established for completely general
P H. One problem is that 1-PQ could have infinitely many C/ zeros with the
consequence that F Q/(1- PQ) has infinitely many C/ poles. If W is rational and
P is continuous on C/ then equality can be established as in the proof of Theorem 2.
For the sake of generality, we will not assume in this paper that (2.4) holds with equality.

We wish to consider the effect of perturbations of P on/x(P) (and the correspond-
ing optimal F). In particular we want to investigate if the mapping P/x(P) (and
P- F(P)) is continuous. Now if P we have a natural topology on plants defined
by the H norm, which is also physically meaningful (see concluding remarks). In
this case our problem reduces to: does lIPs-PIIo 0 imply/x(Pi) /z(P)? The answer
is clearly no, and the following is a simple example which shows this.

Example 1. Let
s 1

P(s) W(s)
s+l’ s+l

Clearly tz(P)-> W(0)I 1. In fact ix(P)= 1 and there are a large number of F’s which
achieve the minimum, e.g., F 0. We note however that P- PII 0 as 0 where
P(s)=(s+e)/(s+l), and that /z(P) =0 for all e>0. Thus /x(.) is not continuous
at P.

The discontinuity in z(P) can be removed in Example 1 by selecting a weighting
function W(s) with W(0)=0. However this may be in conflict with a choice which
appropriately reflects the spectrum of possible disturbances. There is also no discon-
tinuity if we minimize the 2-norm of the weighted sensitivity rather than the w-norm
(see 3). But again there may be strong reasons for preferring a minimax approach.
Also, neither of these modifications allows us to choose an optimal F continuously as
a function of P. A second instance of discontinuity is the following example.
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Example 2. Let

e 1
e(s) W(s)

s+l’ s+l

In this case it follows as in [17] (see also Theorem 2) that

/x (P) inf W- e-SQ I[.
Q

Now from [4] we have ix(P)= (1 +y2o)-1/2 where Yo is the unique root of tan y+y=0
lying between r/2 and r. We note however that liP,- PII- 0 as n- m where

(2.5) P,,(s)
(s+)(+s/n)"

and clearly /x(Pn) =0 for all n, since Pn is outer (see Theorem 2). Thus /x(.) is not
continuous at P.

Example 2 causes more concern than Example 1 for two reasons. First, there is
no obvious way of modifying the weight to ensure even that (.) is continuous. Also
the discontinuity in tz(" remains when the m-norm is replaced by, for example, the
2-norm (see ( 3). Second, Example 2 represents a plant which is strictly proper and
has a delaymthis is a very typical situation in practicemwhereas a plant which has an
imaginary axis zero is more special. Thus Example 2 questions the validity of
approximating infinite-dimensional plants by finite-dimensional ones when considering
optimal sensitivity (see concluding remarks).

Our first objective is to obtain conditions on P to ensure that x (.) is continuous
at P. In fact we will show (Theorem 1) that the above examples are the only two types
of situations in which (.) can be discontinuous. We begin by establishing the simple
fact that x(. is upper semicontinuous on .

LEMMA 1. If P,, P I and P, P I1 0 as c then

(2.6) lim sup/x (P) _-</z (P).

Proof Observe that the infimum in /z(P) can be taken over Q H such that
Q/(1-PQ) IYI+pr(S) has no poles on the imaginary axis. For such a Q, Q/(1-
PQ) IYt+pr(S) implies that Q/(1-PQ) IYt+p(s) for sufficiently large i. Thus

lim sup inf
Q/-

Q/(1- PiQ) lYI+lpr(

w(1 P,Q)II lim sup w(1

w(1- PO)II
for any (o such that O/(1-PO)ffIq-pr(S has no poles on the imaginary
axis. The result now follows by taking the infimum over Q. [3

To proceed further we need some standard facts about the factorization of H
functions. We recall that any P can be written uniquely as P--BL where B,
L H B is inner or all-pass (IB(jo)l= almost everywhere), and L is outer or
minimum phase (L(s) has no zeros in C+ and log IL(s)l can be expressed as the Poisson
integral of log IL(joo)l)msee [6] and [7] for details. Furthermore we can always write
B BbBs where Bb, B H Bb is a Blaschke product and B is a singular innerfunction.
Transforming the right half plane to the unit disc by setting z=(s-1)/(s+ 1) we can
always write
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where c, is a sequence of complex numbers in the disc such that E(1- Ic,[)< oo. We
also have

where dA is a positive singular measure. We will denote the closed support of the
measure by A.

Returning to (2.4) we see that

u(P) inf W(1- BLQ)II
(2.7)

Q/

-> inf w(1 BQ)II (B).

Furthermore we can show the following lemma.
LEMMA 2. For any rational outer W(s) I2I

(2.8) ,(B) inf W-BOlI.

Proof This proof generalizes an argument of [17]. Obviously ,(B)->_
inf W-B011. Now if we can find an inverting sequence L, such that

(2.9a) IItWll_-< 1,

(2.9b) I1(1 LW) Wll- 0 as n --> oc

then we can establish (2.8) with equality. To see this observe that for any

W(1 BOL. L. W( W- B() + (1 LnW W

and so

which implies

w(1 BOLn)II <- w- B( II+ I1(1 L. W)

inf w(1 BO)lloo inf W- B(II.

Now for a rational outer W(s) we can easily find an inverting sequence L,. Let W(s)
have imaginary axis zeros wi of multiplicity ri (i--1,..., l) and r zeros at infinity.
Setting

L.(s)
n s +joo W(S)_I

i=1 s +-l/ n +joi
we see that L.(s)e 121 and (2.9a) holds. To verify (2.9b) we note that tn(S W(s)
tends uniformly to 1 on any compact subset of the imaginary axis not containing any
zeros of W(s).

Remark. This lemma holds for considerably more general outer functions than
just rational ones, in fact, for any W(s) for which an inverting sequence satisfying
(2.9) exists.

Now (2.8) is a standard mathematical problem which has an extensive literature
(see [1], [9], [11]). We can write (2.8) in Nehari problem form as follows:

,(B) inf WB* 0I1 =: d WB*, H),
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where d(f, H) denotes the distance of the L function f from H. Now for any

f L we can define a multiplication operator Mf:L2--> L by Mfx =fx. If we denote
by H the orthogonal projection from LH2-, the Hankel operator Hy" H2 H2z is
defined by

H := HMfl,

Now Nehari’s eorem [9] says that d(f H) IIHII, so (B)= IIH*II. Moreover
the infimum in (2.8) is achieved for some 0 H (not necessarily uniquely).

To date, much work on weighted sensitivity minimization has been concerned
with problem (2.8). However it is possible that (P)> u(B) and so the optimal
sensitivity for P is not obtained by solving (2.8). Example 1 is precisely such a case,
since P(s) s/ (s + 1) is outer and u(B) u(1 0. Moreover it is clear that the satisfac-
tion of (P) u(B) with equality or inequality is closely tied up with the question of
the continuity of (. ). In fact, if the outer part L of P is continuous on + then it is
easy to see that (P)> u(B) implies discontinuity of (. since L can be uniformly
approximated by invertible outer functions. On the other hand it is clear that (P)=
u(B) is not sufficient for continuity as is shown by Example 2. This example is
characterized by the fact that the inner part of the plant is singular and L(s) vanishes
on the suppo of the singular measure, namely s =. Again P(s)= e-’/(s+ 1) is
continuous on + and can be arbitrarily closely approximated by invertible outer
functions. At first sight one might be tempted to conjecture that if e is replaced by
an infinite Blaschke product Bb then (-) will again be discontinuous, but this is not
the case. If P- Bb/(S + 1)[ 0 as i then the zeros of P in C+ tend to those of
Bb by Rouch6’s theorem. Thus lim inf (P) (Bb,r) where Bb,r is any finite truncation
of Bb. But sup (Bb,r)= (B), where the supremum is taken over all truncations (see
[15, p. 291, Thm. 9]). Hence lim inf (P) (B) (P), which together with Lemma
1 establishes continuity.

We are now in a position to derive a general condition for the continuity of (.).
THEOREM 1. Let W(s) outer be chosen so that (2.9) holds for any B (e.g.,

W(s) rational). en (.) is continuous at P ifthefollowing conditions are satisfied"

(2.10) (P) u(B),

(2.11 L is bounded awayfrom zero on A,

where A denotes the closed support of the singular measure of B.
Before proving the theorem we introduce some notation and prove a lemma. Let

c C be symmetric with respect to the real axis and define

n(P) := inf W(1-PQ)I],a
Q()

where IIf(s)l],n := suplf(s)l" s
LEMMA 3. IfP H() is bounded awayfrom zero on OO then va(" is continuous

at P.
Proo Let [[P P[[,a 0 as . As in Lemma 1 we have lim sup va(Pi) N va(P).

Write

0< := inf IP(s)l

and choose n such that lIP,- PIl,n </2 for all i n. Next take any Qe H(a) such
that there is an m e n with w( Pm)ll, (P) + , Then IPm(S)l> /2 for s
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and we deduce that

6/2 WQ , WPmQ

<= WII,+ vn(P) + 1 =: k

i.e., WQII, 2k/6. Now for any i n

liP- P, II 2.
It thus follows that liminfvn(Pi)>=vc(P) and so vn(Pi)-v(P), completing the
proof, l-]

Proof of Theorem 1. Let PeHbe such that [IP,-p[l-0 as -,. We wish to
show that/z (P)/z (P) as o. First we transform to the unit disc using the substitu-
tion z=(s-1)/(s+l). Now let AcOD be the set of points where L is not bounded
away from zero. By assumption D A b. Next we construct a sequence of regions
D c D... D such that P is bounded away from zero on OD and

From Lemma 3 we have

(2.12)

U Dj=D-A.
j=l

VD(Pi) vo,(P as ic

for all j. In a straightforward way we obtain

(P)_>-inf IIw(1-P,Q)II
Q I-I( D)

_-> inf W(1-P,Q)llo.o,
Qe HC(D)

-> inf W(1 PiQ)ll.o., o,(,)QeH(Dj)

for any j. Thus, combining with (2.12) we get

(2.13) lim inf/z (Pi) -> vo(P)
for any j. Now let Bk be the inner function obtained from B by dividing out all zeros
of B outside Dk. From (2.13) we obviously have

(2.14) lim inf/z (Pi) =>
for any j and k. Our next step is to establish that

(2.15) sup/ZD(Bk) V(Bk).

Suppose to the contrary that we can find a sequence S W- BkQ where Qj e O(D)
and 6 > 0 such that Sj I1,., <-- (B) or all j. Then in D,, the sequence S,, S,+1,
forms a normal family (see [10, p. 300]). Thus we can find a subsequence converging
uniformly on compact subsets of D, to some S H(D,). But S can be continued
analytically to D,+I since the subsequence is a normal family in D,+I. In fact S can
be continued analytically to D and moreover [[S][_-< V(Bk)- t% But we also have that
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a subsequence of Qj (W- Sj)B- converges uniformly to Q := (w- S)B- on any
compact subset of D. Thus Q H(D). Moreover

Since Bk is analytic on A we have infz0O.,lBl-l as j-. Thus IQ(z)-<

wll /  (Bk) for all z D from which we conclude that Q 6/. This means that
(n) <_-IIsIl , which is a contradiction. Hence (2.15) holds and together with (2.14)
we get

(2.16) lim inf/z (Pi) _>- u(Bk)

for all k. The final step of the proof is to show

(2.17) sup tX(Bk)= ,(B).
k

We proceed in a similar way to the above. Fist we can find a sequence Sk W-BkQk
where Sk II u(Bk) <- u(B), and Qk IY-I. Again the Sk form a normal family in D
and there exists an S/-) with [IsIl-<sup (B)_-< u(B) such that (without loss of
generality) the sequence Sk converges to S uniformly on compact subsets of D. But
(W-Sk)B-{ converges in the same way to (W-S)B- for any fixed I. Since (W-
Sk)B- IY-I with norm less than or equal to wll + (B) then W- S)B- I?t. But
from (2.11) the singular inner part of B divides B for all sufficiently large 1. This
means that (W-S)B- I(D). Hence we have u(B)<-_IISII from which (2.17)
follows.

Combining (2.16), (2.17), and (2.10) gives

lim inf/x(Pi) >_-/x (P)

which together with Lemma 1 shows that/x (P) /x(P) as . [3

To apply Theorem 1 we need to be able to check conditions (2.10) and (2.11) for
a given P and W. Condition (2.11) is straightforward. Condition (2.10) can be checked
using the following theorem (see Corollary 1) which is a generalization of results of
Zames and Francis [17] and Flamm [3].

THEOREM 2. Let W(s) I?t be a rational outerfunction and write P(s) B(s)L(s)
where B(s) is inner and L(s) is outer. Assume that B(s) has no essential singularities
on jR and that L( s is bounded awayfrom zero on jR (.J {oo} except at finitely many zeros

z. Then

(2.18) /x(P) max {u(B), W(z,)l}.

Proof If B is rational the result is straightforward and the methods of [17] apply
immediately. So assume B has an essential singularity at c. Then w()l--< (B) since
W()I is the essential spectral radius of the Hankel HwR. which is bounded above
by IIHc*[I--tz(n). It is also clear that W(z,)l<-_z(P) for each i. Thus /x(P)>_-
max {(B), W(z,)l}=: A. We first show that

(2.19) A >_- inf W-BOllo.
Q RIYI
Q(oo) =0

Consider a Q/ such that IIW-BQII=z(B)<=;t. Following Flamm [3] we let
J, [1/(s+ 1)] 1/"/ (with Jn(0) 1). Then

(2.20) W-BQJ,= W(1-J,)+J,(W-BQ).
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Since w()l =< , for any e > 0 we can find an too such that [W(jto)[ < h + e for to -> too.
Now for to [0, tOo] it follows from (2.20) that

(2.21)

But I1-J,I tends to zero uniformly on [0, tOo] so the upper bound in (2.21) tends to A
as n-oo. Further, for tO [tOo, o) (2.20) gives

I( W- BQJ.)(jtO)l <-_ (A + )11 J, (ja,)l + A IL (jo.,)l

<(A + e)(1 IL(jo)l) + A IL (jo)l

+ (h + e )[J (jtO)l- [J, (JtO)[

=<(A+e) l+nnlJ.(jtO)[
Thus,

(2.22) lim sup W- BQJ. IIo ,
Now for any n we can find an N such that IQ(s)J.(s)l < 6/2 for Isl > N, s e C+ and so

(2.23) [(QJ,)(jtO + e)-( WB*)(jtO)l <-[( QJ,)(jtO)-( WB*)(jtO)[ + 6

for ItO] > N and any e. Also it is clear that

I(QJ,)(jtO + e)-( WB*)(jtO + e)l <= W- BQJ,]I
for tO [-N, N] and any e. Since WB* is analytic on jR then (WB*)(jtO+ e) tends
uniformly to (WB*)(jtO) on [-N, N], and we deduce

(2.24) limsup sup I(QJ,)(jtO+e)-(WB*)(jtO)I<-IIW-BQJ,,]I.
eO eo[--N,N]

(2.23) and (2.24) together give

(2.25) lim sup W(s)- B(s)(QJ,)(s+ )11=< w- BQL I].
e-->0

But (QJ,)(s + e) is continuous on C+ for any e and can thus be approximated uniformly
by rational functions (Mergelyan’s Theorem; see [10]). Further we can ensure that the
approximants vanish at oe. This together with (2.25) and (2.22) establishes (2.19).

We next show that (2.19) holds with the additional constraint that Q(zi) =0 for
all i. There are several approaches here (e.g., [17] where X W-BQ is modified
multiplicatively). The above approach for oe can also be used. For simplicity assume
Z --0 and let J, =[s/(s+ 1)] 1/n. Then since IJ.(jtO)]-lJ.(jto)] tends to zero uniformly
we again have

lim sup

for any Q. We can then approximate QJ, uniformly with rational functions which
vanish at both 0 and infinity. Each of the zi can be dealt with similarly.

Next we observe that (2.19) holds with Q constrained to have zeros at the z
and of arbitrary multiplicity. This follows since, for example, if Q(0)=0, then
[s/(s+ e)]lQ tends to Q uniformly as e->0. We have thus shown that

A => inf W- BQ [[
QRI

(s+)Q/WL h

inf
Q’/-m

Q L lY-t f’) lt

W(1- PQ’)II>= I(P).
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The last inequality follows since Q’L e ITIf"1Rsp(S) implies (1- BLQ’)- e I -["Rpr(S).
Together with the obvious inequality/x(P) _-> h this completes the proof.

COROLLARY 1. For W(s) and P(s) satisfying the conditions of Theorem 2 we have
/z(P) v(V) if and only if [W(zi)[<= v(B) at all zeros zi of L(s) onjEtA{c}.

If we write/x(P, W):=/x(P) =inf W(1 + PF)-[[ we can deduce the following.
COROLLARY 2. If P(s) and W(s) satisfy the conditions of Theorem 2 and Wk iS a

sequence ofrational outerfunctions such that [1Wk-- W[[o- 0 as k - c, then/x(P, Wk)-
w).
Proof. Certainly IW,(z,)l- lW(z,)l as Also IIW n*-Wn*ll - 0 as

and so d (WkB* H) - d(WB*, H). The conclusion now follows from (2.18).

3. He weighted sensitivity minimization. In this section we consider the problem:

(3.1) /2(P) := inf
F stablz.

where l<_-p<, P(s)eITI and F(s)eIYf+Ep(S). We take W(s) to be a rational
outer function such that We (sO- 1)-//-) where is the least integer with l> 1/p (so
that We/rp). We will again consider the question" when does IIPi- PII-O as i-
imply that /2(Pi)-/2(P)? As for the case p=c it is easy to show /2(.) is upper
semicontinuous. Also we have in an obvious way that

/2(P) inf IIw(1-PQ)II
Q/

Q PQ IZl +l

(3.2) _-> inf [1W(1- PQ)[I
Qa/-

>- inf W(1 BQ)[I p =: (B).
Q/

In fact we can prove the following result.
THEOREM 3. For any P(s) satisfying the conditions of Theorem 2

(3.3) /2(P) (B) inf WB*- Qll inf WB*- Qll
Q/ Q(s+ )-N_

(where N > 0 can be chosen arbitrarily).
Proof. Since WQ e IYt p for any Qe/ it immediately follows that

(3.4) (B) >_- inf 11WB*- Q)ll p.
Q IY-I

But (s + 1)-v_ is dense in p for any N (see [6, pp. 59-60]), which shows the third
equality in (3.3). Now given any Qe(s+ 1)-N we have [[[s/(s+e)]rQ-QIIp-O as
e- 0 by Lebesgue’s dominated convergence theorem [10]. Thus

inf WB* Q p inf WB* Q p
Q(s+ N/_ Q( + )-N_

Q/ wL ;I

>-I(P)inr W(1 BLQ’)[[ p
Q,t

Q’L(s+ )-NITt

_
which together with (3.2) and (3.4) completes the proof.

Theorem 3 shows that, for 1 <=p <, Example 1 is no longer ill-posed. More
generally we have the following corollary.

COROLLARY. If P(s) eltpr(S) then [IP,- Pll-o implies i(Pi) l(P).
Proof. Write P =_BL where B is inner and L is outer. Now Rouch6’s Theorem

shows that the C+ zeros of P tend to those of P as . Thus we can write Pi BL
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where B, is a finite Blaschke product (L, not necessarily outer) and lIB,-BII--)0 as
--) . Now/2 (Pi) --> fi(B,) and, since 11WB wn, - o as --) oc, t2(B,)--) 12(B) 12(P).
Thus lim inf fi(P)-</2(P) from which the result follows by the upper semicontinuity
of/2(.).

However, the ill-posed in Example 2 remains, as we now show.
Example 2 (continued). Assume l<p<c, P= e-/(s+ l) and W=l/(s+l).

Then

/x(P)= in.f s+i -QQH p

Since eS/(s+l)C:Hp, /2(P)>0. In fact, for p=2 we can explicitly compute/2(P) as
follows. For any Q /_)2

2 s+l 2 2

_->(l+e-2)=/2(P)2.
But P P - 0 as n - o where P, (s) is given by (2.5), and moreover, from Theorem
3, I(P,)= 0 for all n. Thus/2(. is not continuous at P.

Once again we can establish a general condition for continuity which parallels
Theorem 1.

THEOREM 4. For any P H I( is continuous at P if (2.11) holds.
Proof (sketch). It is convenient to transform to the disc. This gives

fi(P)= inf
O(D)

inf r-1/plJCv’(1-()ll p
OGflP(D)

where (’V’--(z-1)-2/PIV. As before, Lemma 3 holds (this time we have to bound
w’Q p). The proof now follows that of Theorem 1 with some modifications. We note

that Jlfl}, >--Ilfll,,D foUows from the subharmonicity oflfl (see [10]). The two normal
family arguments also go through if we work with compact subsets of the disc.

4. Achieving continuity of performance measure. So far we have considered the
problem of sensitivity minimization and have shown that optimal sensitivity is not a
continuous function on H. One might expect that this problem would not arise if
other terms were included in the objective function, e.g., if a trade-off were sought
between sensitivity and complementary sensitivity. However the problem can still occur
in the latter case. Consider the following example.

Example 3. Let P(s)= s/(s+ 1), set

/x(P) inf (11 W1PF(1 + PF)-’II/ W2(1 + PF)-’II)
F stablz.

inf (ll WlPQ II+ w2(1 PQ
QH

and suppose w, ll < w=(0)[. Certainly/(P) w=(0)l by considering the second term
only. But P PII- 0 as - 0 where P (s + e)/ (s + 1), and furthermore/x(P) <=
wllo (just by taking PQ 1). Thus we have discontinuity at P(s).

On the other hand, certain optimization problems do behave continuously. By
considering the proof of Lemma 3 we can discover a way to force continuity of the
performance measure. Consider a problem of the following type:

(4.1) /x(P) inf m(P, Q)
O
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where 5 c and m (., is a nonnegative function on , x be. We remark that many
frequency domain optimization problems take the form (4.1). In the theorem below
we will show that/z(. is continuous on , at P if in some neighbourhood of P there
are minimizing sequences Qi which are uniformly bounded.

THEOREM 5. Let Po ,o and suppose for any P := {P ,: P Pol[o < e}
(some e > O) and Q we can find c > 0 and W H such that

(4.2) Im(P, Q)- m(Po, Q)I
whenever WQ 171P. Then if there exists M > 0 such that for any P we can find a
sequence Qi be with WQi II, < M m(P, Qi) 1-6 (P), then (.) is continuous at Po.

Proof Let IIP -Poll  0 as Then m(P,,O)m(Po, Q) shows that
limsup(P,)(Po). But for any n, we deduce from (4.2) that (P,)
(Po)-cMIIPo-PII. Hence (P,)(P).

It is now easy to write down problems which are well-posed in the sense that
(. is continuous on A.

COROLLARY. Define (P) as in (4.1). en (.) is continuous on for the
following choices of and m(.,.

" (P’Q)=
W2(1-PQ)

(4.3) H ,m

(4.4) ={Q n" IIQII< M}, m(P, Q)= IIw(I-PQ)II
for any lp, W, W?R and WPsp(S).

For p , problem (4.1 + 3) represents a desirable choice of design problem since
there are procedures for solving this exactly in the rational case (e.g., [5], [8], and
[13]). Since we are considering P A it follows as in Theorem 2 that problem (4.1 + 3)
is precisely"

(4.5) (e)

(and similarly for (4.1 +4)).
Problem (4.1 +4) can be viewed as H p weighted sensitivity minimization with a

constraint on Q II. Such a bound does make good physical sense. In the first place,
Q as defined in (2.2) is the transfer function from x2 e. So (4.1+4) represents a
disturbance attenuation problem subject to a disturbance to plant input power limitation.
Second, IIQII < M guarantees a measure of robustness. If F= Q/(1- PoO) stabilizes
Po then F stabilizes any P with IIP-Poll<l/M (since F(I+PF)-=
Q(1- (P- Po)Q)-’).

5. The robust sensitivity minimization problem (RSMP). In light of the observation
in 4, that weighted sensitivity minimization subject to a constraint on ]1Qllo is weU-
posed, it is natural to turn our attention to the problem of robust weighted sensitivity
minimization. For stable plants this can be defined as follows. Let Po(s) H and define

(5.1) (a)={P(s)I: [(P-Po)(jto)[<=ar(jto)}

where r(jto) is a nonnegative L-function. Then we are required to find:

(5.2) /.t(a) inf sup W(1 + PF)-II[
F which stabilize PoO(a)

all P(a)

for a given rational outer function W. The question arises whether /x(c) and the
associated optimal control are continuous functions of a. The answer is no, as we now
show.
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Example 4. Let Po(s) 1/(s + 2), r(jw) 1/11 +rio[ and W(s) 1/(s + 1). We claim
that (a) is discontinuous and in fact

={0>_ for a <1/2
(5.3) (a)

1 fora_>-.

Clearly if a _-> then

1 1 1 s
P @(a).

s+2 2s+1 2(s+1)(s+2)

Therefore for any stabilizing F, ]]W(I+PIF)-’]IIW(O)I--1. Thus (a)l. Now
suppose a < 1/2. We first claim that F k (for any k > 0) is a stabilizing feedback for
all P (a). Write

(5.4) (l+Pk)-1= 1+,, l+akA 1+
s+ s+2

where A(s) and I(J)l 1/1 +j[. Then

(s +2+k) s+2+k =
Thus from (5.4) we see that (1 + Pk)-. Furthermore

(5.5) sup
P(o)

W(I+Pk)-III 1+sl 1-2a

But the right-hand side of (5.5) tends to zero as koe. Thus/x(a) =0.
Owing to the difficulty of solving the RSMP in general a complete analysis of the

well-posedness issue here seems rather hard. In the above example

lim sup []k(l+Pk)-l{[oo
k-eo P()

tends to infinity as a ’ 1/2. This forces a new control strategy to be adopted for a->_5.
Once again it turns out that if we keep

sup IIF(1 + PF)-’IIo
P Ost3

bounded then we can ensure continuity. This is the essence of the following result.
THEOREM 6. Let Ix (a) be defined by

(5.6) /z(a) inf sup m(P, F)
F which stabilize

all P(a)

where

(5.7) re(P, F)= W(1 + PF)--’ II+ WF(1 + PF)-I [l
and W2W IY-I. Then I a is continuous on [0, 0).

Proof It is immediately clear that/z(a)-</z(a2) for a _-< a2. We now show that
/x (a) is upper semicontinuous. Let a $ ao. Then lim/z (a) ->/ (ao). Now take any F
which stabilizes all P (ao). Then F stabilizes all P (a) for sufficiently large
since (a) is closed. Furthermore, defining

r/(F, a):= sup re(P, F)

we see that r/(F, ai)-* rt(F, ao) as i- co, because m(P, F) depends continuously on P.
Thus lim/x (ai) -/x (ao).
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Now the form of (5.7) allows us to show that z(a) is lower semicontinuous. First
note that if c <_- a0 and F stabilizes all P e 33 (c) with (F, k) N (0) + 1 then

(5.8) sup IIF(I+PF)-III<(a)+ 1

We now claim that, for the same F,

(5.9) sup IIF(a+PF)-’II2c
P(+d)

where d := (2c sup r(jw)) -. To see this take any P
where P,=Po+(P-Po)/(+d)6() and =(P-Po)d/(+d)H,
(2c)-. Then

F(1 +(P, + )F)-" F(1 + P,F)-’(1 + F(1 +

and it follows that [IF(1 + PF)-’]] c(1 1/2)-’, which establishes (5.9). Now consider
a sequence a ao such that a > ao-d and take a sequence of F (stabilizing all
P6 (a)) such that (F, a)(a)+ 1/(i+ 1). Then each F stabilizes all P6 (ao)
from (5.9). But for any P (a), P2 (do) and F

Ira(P1, F)-re(P2, F)] Wl(1 + P,F)-’(P2-P,)F(1 + P2F)-’ []

+ W2F(1 + P,F)-’(P2-

A nl [

for some positive constant A. This means that

(ao) (a,)+ 1/(i+ 1)+B(ao-

for some positive constant B, and we conclude, since ()(ao) for all i, that
(a)" (o) as i-. We have thus shown lower semicontinuity, which completes
the proof.

Remark. The theorem holds for any re(P, F) which guarantees a bound of the
form (5.8).

6. Unstable plantscontinuity of performance measure. We now consider the class
+(s). If P then there exists A H B H and X, Y with

A
(6.1) P-

B
AX + BY= 1

We define a topology on plants P as follows ([2], [14]). We say P. P if we can
find sequences a., B. such that P.=A./B. and [[A.-A[+[]B.-B[O. It
follows that for sufficiently large n there exist X., Y. such that A.X. + B.Y. 1
and X. X ][+ Y. YI] 0 as n .

It is easy to see that keeping [[F(1 + PF)-’[[ bounded is no longer sufficient to
ensure continuity of a general optimization problem.

Example 5. Let P(s)=(s+ 1)/s and consider

(P) inf (]]F(I+P)-*II+
F stablz.

where W(0) 0. Considering the second term at s =0 shows (P) ]W(0)[. But
P (s + 1)/(s + e) P as e 0 and (P) 0 since F 0 is a stabilizing feedback.
Thus (. is not continuous at P.
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(6.3a)

(6.3b)

(6.3c)

(6.3d)

Now define

To motivate a sufficient condition for continuity of the performance measure we
recall that the feedback system of Fig. 1 is stable if and only if

(6.2) F(1 + PF)-’ I7-I and P(1 + PF)-’ t7I.
We would therefore expect that keeping the norms of both transfer functions in (6.2)
bounded would force continuity. This is indeed the case for a very general class of
performance criteria. To see this we observe that any stabilizi.ng feedback for P can
be written in the form F (X + BQ)/( Y- AQ) for some Q H. If we substitute for
F we find that any closed loop transfer function is an affine function of Q:

T, := (1 + PF)-’= BY-ABQ,

Te := F(1 + PF)-’= BX + B2Q,

T3 := P(1 + PF)-’ AY- A Q,

T4 :-- PF(1 + PF)-1= AX + ABQ.

where

/x(P)= inf m(P, F)
F stablz.

4

m(P, F)= Y IIW/T/II= r(Q)

and W R/- are outer functions (possibly zero). Once again, we can show as in
Theorem 2 that taking the infimum over realizable F’s is equivalent to taking the
infimum of r(Q) over all Q H i.e.,

(6.4) /x(P)= inf r(Q).
O

Now, using the same reasoning as in the proof of Theorem 5 we can show the following
result.

THEOREM 7. Consider any sequence P V . en (P)(P) iffor some
k 0 and any n suciently large there exists a minimizing sequence Q, (i.e., m(P,
Fn,i) (P.) asi where F.,=(X. + B.Q.,)/(Y.-A.Q.,)) with

COROLLARY. If W, W; then (. is continuous at all P
Proof Consider any P . Then we can find an e such that for any P A/B

with A1X + B Y 1 and

IIa-a[[, IIB-BII, [[X-Xil, Y-YII <
there holds (P)(P)+ 1. Now if Q is any minimizing sequence for P such that
r(Q) (P)+ 1, then we certainly have

IIA Y AQ,[[ ((P)+ 2)11W [[.
2IlBX + nQill ((P)+2)/1[

We therefore deduce that

sup }Q,(s)[([A,(s)[ 2 + IB,(s)l 2) M
sC+

for some constant M. But from (6.1) we have

inf ([A(s)l2 + In(s)l2) > 0
sC+
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for some a. Thus by taking e sufficiently small we obtain [[QiII<-2M/6 for all i. l-I

7. Concluding remarks.
7.1. Choice of topology. In this paper we have defined two stable plants to be

close if the absolute error in their frequency responses is uniformly small. Alternatively
we could define a stronger topology on plants by requiring that the relative error in
their frequency responses be uniformly small, i.e., Pn P if

(7.1) sup (P"-PI(jw) --->0
\ r/

as n-*. From (7.1) it is easyto show that/z(P,)-*/z(P) for H weighted sensitivity
minimization (or any other problem we have considered). To verify this we need to
show, as in Lemma 3, that lim inf/z(P) ->/x(P). So take any sequence Q, /-) such
that Ilw(1-P.Q.)llo<-p(P.)+l/n. Then clearly IIWPQ.II<=M for some positive
constant M. But

Ill W(1 P.Q.)II-[I W(I PO.llo[ <--II W(P- P,)Q,i[

--<_sup, (’P"pP")(joo)[IWPQ.[[
which implies that liminfllW(1-nQ,)ll<=liminftz(P,). Hence iz(P,)l(n).
However, to strengthen the topology in this way does not really resolve the ill-posedness
problem satisfactorily from the engineering point of view since the topology is too
strong to be relevant in most physical situations. To obtain a close approximation in
the sense of (7.1) would require accurate magnitude and phase information at frequen-
cies where the magnitude of the frequency response was arbitrarily small.

7.2. Approximation of delay systems. In Example 2/z(P) was shown to be discon-
tinuous at P(s) e-/(s + 1) by approximating P(s) with a sequence of outer functions.
On the other hand, if we have a sequence P, B,/(s+ 1) such that [[P,-PII-O as
n-* c, and further, if B,, is inner and satisfies

(7.2) W(B* e) ll- O

as n c, then/.t (P,)/x (P). Thus/z(P) could be computed by a sequence of (rational)
approximants to P, given appropriate choices of B,. Such a choice is given by
Bn (1 s/2n)/(1 + s/2n) in case W(s) is strictly proper. If W(oo) 0 then (7.2)
fails and it is no longer clear how to guarantee/z(Pn)-/z(P).

7.3. Continuous dependence of control on plant. This paper has been concerned
with the continuous dependence of the infimum/x (P), defined by certain minimization
problems, on the plant P. A more challenging problem is to arrange for the optimal
control Fopt to depend continuously on P. Continuity of/z (P) is by no means sufficient
for this. In the H optimal sensitivity problem it is certainly possible that a rational
plant satisfies/z(P) ,(B) and that the infimum in (2.3) is not achieved (e.g., consider
a plant which is strictly proper or has a zero on the imaginary axis). In this case the
map P Fopt is not even well-defined. If we relax the condition that the infimum be
achieved exactly, the problem then becomes to select an appropriate F from among
infinitely many which are within an arbitrary e of optimality, and moreover to do this
continuously as a function of P. A similar difficulty arises if the infimum to the design
problem is not achieved uniquely (which typically occurs, for example, in multivariable
H optimization problems).
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QUADRATIC CONTROL FOR LINEAR TIME-VARYING SYSTEMS*

GIUSEPPE DA PRATO? AND AKIRA ICHIKAWA$

Abstract. An infinite-dimensional linear time-varying system on the interval (-, ) is considered. We
introduce three quadratic problems: the infinite horizon problem, and one-sided and two-sided average cost
problems. A Riccati equation on (-c, c) is considered first and sufficient conditions for the existence and
uniqueness of a bounded solution are given. Then by dynamic programming the quadratic problems are
solved. Similar problems in the stochastic case are considered.

Key words, linear quadratic control, time-varying systems

AMS(MOS) subject classifications. 49, 49C20

1. Introduction. Consider the usual quadratic control problem:

(1.1) y’ A( t)y + B( t)u, y(to) Yo,

(1.2) J(u)= [IM(t)yl2+(N(t)u, u)] dt
to

where A, B, M, and N, are continuous matrices on (-, ) of appropriate dimensions
and where and (,) denote, respectively, the norm and the inner product of vectors.
The Riccati equation associated with this problem is the following [28]:

(1.3) Q"+A*Q+QA+M*M-QBN-1B*Q=O,
(1.4) Q(T)-- 0.

There exists a unique solution to (1.3), (1.4) on [to, T]. Since to is fixed but otherwise
arbitrary, we can always find a solution on (-c, T]. Of course Q may not be bounded
on (-, T]. If we wish to solve the infinite horizon problem (1.1), (1.2) with T +,
then it turns out that we need a bounded solution of (1.3) on [to, ). Since to can
vary, we require a bounded solution on (-, c). If our system is defined only on a
semi-infinite interval To, ) (thus, to_-> To), then we need a bounded solution of (1.3)
on To, ) (a semi-infinite interval in the positive direction). If all matrices are periodic
with a common period 0 and if (A, B) is stabilizable and (A, M) detectable, the
existence of a 0-periodic solution to (1.3) is known [31], [34]. This result remains true
also in infinite dimensions [12], [14]. But the existence problem for general bounded
continuous matrices seems to be new.

In this paper we consider (1.3) in infinite dimensions. We assume that A(t)
generates an evolution operator in a Hilbert space and that other operators are bounded
and continuous. We give a necessary and sufficient condition for the existence of a
bounded solution to (1.3). We have uniqueness if (A, M) is detectable. If these two
hypotheses are fulfilled, there exists a unique bounded solution Q. We show that the
optimal control for (1.1), (1.2) with T= c is given by the usual feedback control
involving Q. We introduce two quadratic problems of different kind. If (1.1) is
replaced by

(1.5) y’ a( t)y + B( t)u +f( t),
(1.6) y(to)=Yo,

* Received by the editors August 14, 1987; accepted for publication (in revised form) March 24, 1989.
? Scuola Normale Superiore, 56100 Pisa, Italy.
$ Faculty of Engineering, Shizuoka University, Hamamatsu 432, Japan. This work was done while the
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then a more natural cost functional is

(1.7) Jl(u) lrirn- |,o [IM(t)y[2 +(N(t)u, u)] dt.

With (1.5) we also associate

(1.8) J2(u) lim
1 f [IM(t)yl+(N(t)u, u)] dt.

T2T J_T

We will show that Q also haraterizes optimal ontrol of these problems. This is a
generalization of the averag ost riterion (usually for time-invariant systems) to
time-varying systems.

In 2 we give basi assumptions on our system (1.1), (1.2).
In 3 we establish the existence of a bounded solution to the Riati equation

(1.3). We then characterize optimal ontrol using Q. We will show that the optimal
losed-loop system for (1.1) is exponentially asymptotically stable. In 4 we consider
the stohasti as and obtain similar results. W also onsider the partially observable
ase and show that the sparation principle holds [20], [40].

An important spial class of time-varying systems is that of periodic systems. See
[7], [8], [22], [35], and [37] for various examples of periodic systems and their
optimization problems. We have studied 17] the quadrati problem (1.5)-(1.7) and
its stoehasti version for priodi systems. We may allow for almost periodi inputs
such as in [16].

This paper is an extension of the last two papers. Hence ifw assume 0-periodicity
of our system, we reover earlier results in [16] and [l?].

2. Preliminaries. Let Z be a Hilbert spae ((,) inner product, norm). We will
denote by (Z) the Banah spae of all linear bounded operators S" Z Z endowed
with the norm IS] sup {Sz]" z Z [z 1}. If S (Z) then S will represent its adjoint
operator. S is alled nonnegative (S0) if S is self-adjoint and (Sz, z)O for all z e Z
We set +(Z) {S e (Z)" S0}. If L" D(L) Z Z is a linear operator we denote
by (L) (respetively p(L)) the spectrum (respectively, the resolvent set) of L and
by R(, L), p(L) the resolvent operator of L.

For each interval J in we denote by Cs(J; (Z)) the set of all mappings
S(t)’J (Z) that are strongly ontinuous, that is, S(t)z is ontinuous on J for any
z Z. If J is losed and bounded, then due to the Uniform Boundedness Theorem,
Cs(J; (Z)) is a Banah spae with respect to the norm:

lsl up (s(); J}.

Weset Cs(J; +(Z)) {S Cs(J; (Z)); S(t) 0, J}. IfX is another Hilbert space,
we denote by (X, Z) the set of all bounded linear operators from X into Z and by
Cs(J; (X, Z)) the set of all strongly ontinuous mappings from J into (X, Z).

Let Y be a Hilbert spae. We consider the initial value problem

(2.) x’= A()+(), (s)=0, s

where o Y and Lo(0, ; Y), the st of locally squar integrable functions. We
assume the following on A(t)"
(H1) (i) For any , A(t) is a linear operator in Y with a onstant domain D

dens in Y. There exist numbers >0, (/2 ), such that

S,={C’arg(-)]<}p(A(t))
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and the resolvent operator satisfies

[R(h,A(t))l<--_lfl/[A-6] VA

(ii) There exist numbers a (0, 1) and N such that

IA(t)x A(s)x[ <- llt- sl[A(O)x[ Vx D.

Remark 2.1. The hypothesis (H1) has been introduced by Tanabe [36] to study
the abstract equation y’--A(t)y where A(t)’s are infinitesimal generators of analytic
semigroups with constant domains (parabolic equations). In fact, in the sequel we will
only need the existence of an evolution operator U(t, s) relative to A(t). Thus our
results can be easily arranged to cover hyperbolic equations as well as parabolic
equations with nonconstant domains D(A(t)). If A is constant, (HI) is interpreted as
A being the infinitesimal generator of a Co-semigroup. Then functional differential
equations can be covered [10].

The following result is proved in [36].
PROPOSITION 2.1. Assume (H1). Then there exists a family of operators U(t, s)

L( Y), >= s such that

(i) g(s, s) I, s ’,
(ii) U(’," )x is continuous for any x Y,
(iii) For > s, U( t, s) (Y) D and U( t, s) is differentiable in with

OU(t,s)
=A(t)U(t,s).

Ot

U(t, s) is called the evolution operator relative to A(t). It is called (exponentially)
stable if there exist positive numbers M, o such that U(t, s)[-<_ e -’(t-s) for any >_- s.

We denote by An(t)=n2R(n,A(t))-nI the Yosida approximations of A(t) and
by Un(t, s) the evolution operator relative to An(t) (that clearly exists since An(t)’s
are bounded). By using the results in [36] it is easy to prove that

(2.2) lim Un(t, s)x= U(t, s)x Vt>=s, Vx Y

uniformly on the bounded sets of N2.
We define the mild solution of (2.1) by

(2.3) y(t)= U(t, s)yo/ U(t, r)f(r) dr.

It is continuous on [s, ). Let y, be the classical solution to the problem"

(2.4) y’, An( t)yn +f( t), yn(s) Yo.

Then, by (2.2) Yn(t) y(t) uniformly on any bounded subset of Is, ).
Assume that A(t) is stable. Then for each f L([s, ); Y) (the set of bounded

measurable functions in Y) y(t) defined by (2:3) is bounded. We now consider for
each f L(’, Y)

(2.4’) y’=a(t)y+f(t)

on [-, ). We say that y(t) is a mild solution on (-, ) if it satisfies the integral
equation

(2.5) y(t) U(t, s)y(s)+ U(t, r)f(r) dr
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for any t-> s. A mild solution y(t) is called bounded if it is bounded on (-oo, o). If
A(t) is stable, then there exists a unique bounded mild solution of (2.4’). In fact it is
given by

(2.6) y(t)=f U(t,r)f(r)dr.

If A, f are 0-periodic, then y is also 0-periodic. If A is 0-periodic and f is almost
periodic, then y is almost periodic [16].

3. Optimal quadratic control in the deterministic case.
3.1. Bounded solutions of a Riccati equation. We consider the usual Quadratic

control problem.

(3.1) y’ A( t)y / B( t)u, y( to) Yo,

(3.2) Jo(u) {[M(t)yl2+(N(t)u, u)] dt
to

where A(t) satisfies the condition (HI) and
(H2) (i) B Cs(’, ( U, Y)) f) L(ff’, ( U, Y)), M e Cs(’; (Y)), N Cs

([; +(U)) and there exists an e>0 such that N(t)>=e for any t.
(ii) sup, JIM(t)[ + IN(t)l]

We wish to minimize J(u) over the set of admissible controls

(3.3) o-lla={ueL2([to, oo); U)" the corresponding mild solution y(t)-->O as t-->oo}.

To solve this problem the following Riccati equation is useful:

(3.4) Q’(t)+a*(t)Q(t)+Q(t)a(t)+M*(t)M(t)-Q(t)B(t)N-l(t)B*(t)Q(t)=O.
We say that Q is a mild solution of (3.4) on the interval J c[ if Q e Cs(J, +(Y))
and if it satisfies the integral equation

Q(t)x= U*(s, t)Q(s)U(s, t)x
(3.5)

+ U*(r, t)[M*(r)M(r)-Q(r)B(r)N-(r)B*(r)Q(r)]U(r, t)xdr

for any x Y and _-< s, t, s J. If sup,, [Q(t)[ < o, we say that Q is a bounded solution
of (3.4)..Even if Q is a solution of the integral equation (3.5) we cannot in general
prove that Q(t)x is differentiable for x Y. Thus Q is not a classical solution to (3.4).
Therefore it is useful to introduce approximating systems

(3.6) Q’+A*Qn+QnAn+M*M-Q,BN-B*Qn=O,

which have classical solutions. The following result is proved in [4].
PROPOSiTiON 3.1. Assume (HI) and (H2). Let T and Qo g+( Y). Then there

exists a unique mild solution Q of (3.4) on (-o, T] such that Q( T)= Qo. Moreover,
there exists a unique classical solution Qn Cs((-, T]; +(Y)) to (3.6) with Q,( T)=
Qo and Qn(t)x--> Q(t)x as n-->c for any x Y uniformly on any bounded subset of
(-, T].

In the sequel we set Q(t)=A(t; T, Qo), Q,(t)=A,(t; T, Qo). The following
monotonicity property of A(A,) is well known:

(3.7)
A(t; T, Qo) -< A(t; T, Q1),

An(t, T, Qo)_An(t, T, Q) if Qo <- Q,.
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Now we will establish a bounded solution to (3.4). Let Cb(Nl; Z) be the space of
all bounded continuous functions from 1 to Z. The fundamental hypothesis for the
existence of a bounded solution is the following:

(H3) For any toeN and yoe Y there exist ue Cb(Nl; U) and Co>0 such that

[IM(t)yl2 + (N( t)u, u)] -< Colyol 2dt
to

where y is the mild solution to (3.1).

Hypothesis (H3) is slightly weaker than the existence of an admissible control. It is
satisfied, as we will see below, if (A, B) is stabilizable, that is, if there exists K
Cs(l; ( Y, U)) bounded such that the evolution operator relative to A- BK is stable
(such an evolution operator does exist since BK is bounded [10]).

Assume that (A, B) is stabilizable so that for some K

(3.8) IU(t,s)l<=Moe-’-), t>s= for some Mo >= 1 and w > 0

where UK is the evolution operator relative to A-BK. Now we will show that the
hypothesis (H3) is fulfilled. Set

y( t) Ur t, to)Yo, u(t)=-K(t)Ul(t, to)Yo.

Then

[lM(t)ylZ+(N(t)u, u)] dt<=M
to 2--- ([IM 2 + S K

where II" II- suptl [.
The main result for our Riccati equation is the following theorem.
THEOREM 3.1. Assume (HI) and (H2). Then a nonnegative bounded solution to

(3.4) exists if and only if (H3) holds.
Proofi Ifi Assume (H3). For any a1 set Q A(.; a, 0). By (3.7) we have

(3.9) Q(t)<=Qt(t) if (-, c] and a -< ft.
Thus {Q} is increasing in a. We will now show that IIQ(’)II is bounded. Let
Q,,, A,(.; a, 0) and let y, be the classical solution to the initial value problem:

(3.10) y’. A.( t)y. + B( t)u, y.( to) Yo

where u is the control function given in (H3). We then have

(3.11)

d
d--t (Q,.(t)y.(t) y.(t))= [[N1/2(u+ N-1B*Q,.y.)i2-[M(t)y.(t)[

-(N(t)u(t),u(t)).

Integrating this from to to a and letting n-> o, we arrive at

(3.12)

[IM(t)yl2+(N(t)u, u)] dt
1o

=(Q,.(to)yo, yo)+ INI/Z(u+ N-1B*Q,.y.)I dt,
to

which yields

(3.13) (Q(to)yo, yo) <- Colyo[ forany yo Y.
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By a classical argument we can show that there exists Q(t) such that

(3.13’) lim Q,(to)yo Q(to)yo forany toe and yo Y.

To prove that Q is a mild solution of (3.4) on (-, ) it suffices to let a in the
equality"

Q( t)x U*(s, t)Q,(s) U(s, t)

(3.14) + U*(r, )[M*(r)M(r)

-Q(r)BN-1BQ(r)]U(r, ) dr

for
Only if. Let Q be a bounded solution to (3.4). For a fixed but otherwise arbitrary

T e N, let 0, A(- T; Q(T)). Set K BN-B*, L A KQ, L A KQ and let
U and U,, be evolution operators relative to L and L, respectively. Then

(3.15) Q’,, + L* Q, + Q,L +M*M+ QKQ O, O,( T) Q( T).

Hence, for any to =< =< T, we have

d

(3.16) d-t (O(t)U,(t, to)Yo, U,,(t, to)Yo)

=--IM(t)UL,,(t, to)yol-Ix/K(t)Q(t)UL(t, to)Yo[.
Integrating this from to to t and letting n- o, we obtain

[IM( t) gL( t, to)Yol2 + lv/K( t)Q( t) Ul( t, to)Yo[ 2] dt
(3.17)

+ (Q(t) U( tl, to)Yo, UL( tl, to)Yo) (Q( to)yo, yo).

Now set

y( t) UL( t, to)Yo, u( t) -N-l(t)B*(t)Q(t) Urn(t, to)yo.

Then u Cb(l; U) and y is a mild solution of (3.1). Moreover,
tl
[lM(t)yl2+(N(t)u, u)] dt<=sup [Q(to)llyol2 to<--_ t<- T.

to

Since t is arbitrary, we have shown (H3).
If (H1)-(H3) hold, we will denote by Q the bounded solution of (3.4) defined

by (3.13). We remark that Q is minimal among all solutions Q>_-0 of (3.4) on ,
that is,

(3.18) Q(t) _>- Qo(t), 1.

In fact if Q is a solution of (3.4) on , we have

Q(a)>_- Q(a) 0

so that

Q(t)>=Q(t) for any (-oo, a].

Letting -> we obtain (3.18). We will call Q the minimal solutiou of (3.4) on .
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Next we will examine the stability property of a bounded solution Q of (3.4).
Set L=A-KQ, K=BN-1B* and for a fixed TR let QI(.)=A(.; T,S), where
S /(Y). Then we can easily check that Z Q1 Q is a mild solution of the equation

(3.19) Z’ + L*Z + ZL- ZKZ O, Z(T) S- Q(T).

If U/ is stable, the usual linearization arguments show that Q is uniformly asymptoti-
cally stable as -c [23]. But as we will see below we can show that Q is attractive
from above, and hence it is maximal among all bounded nonnegative solutions of
(3.4). This will imply, in particular, the uniqueness of a nonnegative bounded solution
for which L is stable. We say that a bounded solution Q of (3.4) is stable if A-KQ
is stable.

PROPOSITION 3.2. Assume (HI) and (H2) and let Q be a stable bounded nonnegative
solution to (3.4). Let TR, S=Lt’+(Y) be arbitrary and set Q(.)= A(.; T, S). If
S_-> Q(T), then

lim (Q(t)x Q( t)x) 0 for any x Y.

Q(. with arbitrary S >-0 is bounded on (-, T].
Moreover, if Q2 is a bounded solution, then Q2(t) <= Q( t), .
Proof. Let Z Q- Q, Qn An(’; T, Q(T)), Qn An(’; T, S), and define Zn

Qln Qn, Ln An KQn. Then

Z’. + L*.Zn + ZnLn ZnKZ. O,

from which follows

(3.21)
d
d--(Zn(t)Ul,(t, to)Yo, Ul,,(t, to)Yo)=lx/K(t)Z(t)U.(t, to)Yol.

Integrating from to to and letting n- c, we obtain

(3.22) (Z(t)UL(t, to)Yo, Urn(t, to)Yo)>-_(Z(to)Yo, Yo), to<= t.

Now, if S>_-Q(T) then Z(to)>=O for any to<= T. Letting to-C in (3.22), we obtain
(Z(to)Yo, yo)O as to-. Hence lim,_,_Z(t)x=O for any x Y. Assume now that
Q is another nonnegative bounded solution of (3.4). Then replacing Q by Qz in (3.22)
and letting - we find (Z(to)Yo, yo) <= 0 so that Q2(t) <= Q(t). [3

Now we give a sufficient condition for a bounded nonnegative solution of (3.4)
being stable"

(H4) There exists a K Cs([l; (Y)) bounded such that A-KM is stable.

If (H4) holds, we say that (A, M) is detectable.
PROPOSITION 3.3. Assume (HI), (H2), and (H4). Then any bounded nonnegative

solution of (3.4) is stable. Thus the Riccati equation (3.4) has at most one bounded
nonnegative solution.

Proof Let toE be fixed and let yo Y. Then by (3.17) we have

(3.23) M(t)Ul(t, to)Yo, v/K(t)Q(t)U(t, to)Yo6 L2(to, c; Y).

Let S= A- KM; then L= S + K1M- KQ so that

(.4 u(, oyo u(, olyo g(, r(M Qg(r, oyo r.
o
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Since Us is stable, it follows from (3.23), (3.24) that UL(t, to)YoL2(to, oo; Y). By
Datko 19] U. is stable.

The uniqueness follows from the fact that a stable solution is maximal.
In practice it may be more natural to assume that the system (3.1) is defined only

on [To, ) so that To <- To<. In this case we restrict the hypothesis (H1)-(H4) on
To, o). We need to modify the definitions.

For example, we say that (A,B) is stabilizable if there exists K
Cs([To, oO); L(Y, U)) bounded such that [Ua_s:(t,s)[<=mo e-’(’-’), t>--s >- To for
some Mo--> 1 and to > 0. Now all the results restricted on To, ) are true. In fact, we
have the following corollaries.

COROLLARY 3.1. Assume (H1) and (H2) on To, oo). Then a nonnegative bounded
solution of (3.4) on To, oo) exists if and only if (H3) holds on To,

COROLLARY 3.2. Assume (HI) and (H2) on To, oo). Let Q be a stable nonnegative
bounded solution of (3.4) on To, ). Then for any bounded solution Q2>=O of (3.4),
Q2(t) <= Q(t), To, oo), that is Q is maximal.

COROLLARY 3.3. Assume (HI), (H2), and (H4) on To, oo). Then any nonnegative
bounded solution of (3.4) is stable. Thus the Riccati equation (3.4) has at most one
nonnegative bounded solution on To,

Finally, we consider two special cases of (3.4): the periodic case and the time
invariant case.

In the former we assume (HS).

(H5) There exists a number 0>0 such that A( + O) A( t), B( + O) B( t),
M(t + 0) M(t), and N(t + 0) N(t) for all R 1.

In this case we say that these operators are 0-periodic. We say also that the system
(3.1) is 0-periodic. If Q is a bounded solution to (3.4), then Qo(t) defined by

Qo(t)=Q(t-o), tR

is also a bounded solution. Thus if (3.4) has a unique nonnegative bounded solution
Q (for example, if (A, M) is detectable) we have Q(t)= Q(t-0). In fact, we have
Proposition 3.4.

PROPOSITION 3.4. Assume (H1), (H3), and (H5). Then the minimal solution Q
of (3.4) is O-periodic. If, further, (H4) holds, then Qo is the unique nonnegative O-periodic
solution to (3.4) and it is uniformly asymptotically stable.

Proof Let n be an integer and set

(3.25) V(t)=Q,o(t-O), t(-oo,(n+l)O]

where Q,o A(. ;nO, 0). Since the coefficients of (3.4) are 0-periodic, V is also a
solution of (3.4) on (-o, (n+ 1)0]. Moreover, V((n+ 1)0)= Q,o(nO)=O so that

(3.26) V(t) Q(,+,)o(t)= Q,o(t-o).

Now, letting n --> we obtain Q(t) Q( 0). Thus Qis 0-periodic. Other assertions
follow from Proposition 3.2. [3

Next we show the global orbital attractiveness of Q.
PROPOSITION 3.5. Assume (H1)-(H5). Let So +(Y) and set Q A(.; 0, So).

Then

(3.27) lim Q(t- nO)x= Q(t)x Vt (-oo, 0].

Proof Let m be an integer such that

So<= mI and Q(O) <-_ mL
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Let V(.) =A(.; 0, ml). Then

Q(t) >- Oo(t)

Q( nO) >- Qo( nO) Qo( t)

This implies

It<-- nO.

Q,,o( t) <-_ Q( nO) <= v( nO).

But Qno(t)x Q(t)x as no and V(t- nO)x Q(t)x by Proposition 3.2. Thus
(3.27) follows. [-1

Remark 3.1. In Da Prato [12] the existence of a periodic solution to (3.4) is shown
under (HI), (H2), (H5), and stabilizability of (A, B). Hence, Proposition 3.4 gives a
weaker condition. Proposition 3.5 is also an improvement of Lemma 3.1 [17]. See [31]
and [34] for finite-dimensional results.

Now consider the time-invariant case: A, B, M, and N are independent of t.
Then (HI) can be replaced by the hypothesis that A is the infinitesimal generator of
a Co-semigroup e tA. Hypothesis (H2) simply implies Be (U, Y), M . (Y), and
N, N- 6 w+(U). Hypothesis (H4) is the usual detectability condition [39], [41]. Hence
we recover the results of Zabczyk [41].

PROPOSITION 3.6. Suppose that A is the infinitesimal generator of a Co-semigroup
e ta and that B ( U, Y), M (Y), and N, N- +(U). Suppose (H3) holds. Then
Q(t) Q is independent oft and is the minimal solution ofthe algebraic Riccati equation

(3.28) A*Q+QA+M*M-QBN-B*Q=O.

If, further, (A, M) is detectable, then Qo is the unique nonnegative solution to (3.20) in
+( Y). Moreover, for each Q A(.,., So) with So +( Y)

lim Q( t)x Qx /x Y.

3.2. Quadratic control on the infinite horizon. Let -o __< To < o and let to To, )
be arbitrary. If To =-, we mean by [To, ), the whole real line (-, ). Now
consider our control problem

(3.1) y’ A( t)y + B( t)u, y( to) Yo,

(3.2) Jo(u) [[M(t)yl2+(N(t)u, u>] at.
to

We assume (H1)-(’H4) on [To, o) and wish to minimize Jo(u) over

(3.3) o={uL2(to, o; U)" the corresponding mild solution y(t)0 as t-}.

In view of (H3), (H4), this problem is nontrivial. Let Q be the unique stable
nonnegative bounded solution of (3.4) on To, ). The main tool we will use is the
following identity.

LEMMA 3.1. Assume (H1)-(H3) on [To, ). Let u Le([t, t]; U), to<= t < t and
let y be the mild solution of (3.1) on Its, t]. Then

[IM(t)y +(N(t)u, u>] dt+(Q(t2)y(t), y(t))
tl(3.29)

IN1/(u+ N-1B*Qy)I dt+(Q(tl)y(t,), y(t,)).
tl
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Proof Let Q, A,(.; t2, Q(t2)) and let y, be the solution of the initial value
problem

y’,,:A,(t)y,+B(t)u, y.(t,):y(t).

Then we have

d
d--t (Q,(t)y,(t), y,(t)):[N’/2(u+ N-’B*Q,y,)[Z-[M(t)y,,lZ-(N(t)u, u).

Integrating this from t and tz and passing to the limit n-, we obtain (3.29).
Now it is easy to solve our control problem.
THEOREM 3.2. Assume (H1)-(H4) on [To, ). Then the optimal control is given

by the feedback law

(3.30) t -N-B*Qo

and the optimal cost by

(3.31) Jo( Q( to)yo, yo).

The optimal closed loop system is stable. If, further, (H5) holds, then Q is O-periodic. If
all operators in (3.1), (3.2) are time invariant, then Q is constant.

Proof We set t to and pass to the limit t-. Since y(t) 0 as t2- we obtain

Jo(U) ]N’/2(u+ N-’B*Qoy)] dt+(Qo(to)yo, yo).
tO

Thus the conclusion follows immediately.

3.3. The optimal control problem with average cost. Assume (H1), (H2) on To, ).
Here we are concerned with a more general system

(3.32) y’ A( t)y + B( t)u +f( t), y( to) Yo

where to To, c) is fixed but otherwise arbitrary andf Cb ([ To, c), y). In this case
we cannot expect that the cost Jo(u) is finite. Instead we take a more reasonable cost

(3.33) Jl(U) lim
1 1"| ’+r [IM(t)yl2+(N(t)u, u)] dt

Toc T ,o

and we wish to minimize it over

(3.34)
0//d {U 1--l f ’+7

lu(t)[ 2 dt < and the mild solution
Tcx 7" ,o

y(t) of (3.32) is bounded on to, c).

We further assume (H3) and let Q be the minimal bounded solution of (3.4) on To, ).
Let L= A-KQ, K BN-B* and consider the following equation:

(3.35) r’+L*r+Qf=O.

Then we have a similar result to Lemma 3.1.
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LEMMA 3.2. Assume (H1)-(H3) on [To, c). Let uL2([fi, t2]; U), to<-_q <t2,
and let y and r be mild solutions of (3.32), (3.35) on Its, t=l, respectively. Then

[[M(t)yl2+(N(t)u, u)] dt +(Q(t)y(t2), y(t2))+ 2(r(t2), y(t2))
tl

IN1/[u+ N-aB*(Qy+ r)]l 2 dt
tl

(3.36)
+ [2(r,f)-IN-/B*r[] dt

tl

+(Q(t)y(tl), y(t))+2(r(tl), y(tl)).

Proof We take

Q.(" )= A.(’; t2, Q(t)),

y’, a,y, + Bu +f y,( t,) y( t),

r’,+(A,-KQ,)*r,+Q,f =O, r,(t)=r(t2)

and show

d

d--- [(Q"Y"’ Y")+ 2(r,, y,,)] IN1/2[u

-IMY,12-(Nu, u)+

Integrating this from t to t and passing to the limit n , we obtain (3.36).
It we further assume (H4) on ITo, ), then 0//,ad is not empty. To see this, note

that there exists a unique bounded solution to (3.35) given by

(3.37) r(t) U*(s, t)Q(s)f(s) ds,

since L is stable. Now consider the feedback control

(3.38) =-N-B*(Q+r).
Then the closed-loop system is

(3.39) ’= Lfi +f gr, (to) Yo.

Since L is stable, the mild solution

(3.40) .f(t) U(t, to)yo+ U(t, s)[f(s)-K(s)r(s)] ds
o

is bounded on [to, oo). Hence u is admissible.
TEOREM 3.3. Assume (H1)-(H4) on To, oo). Then the optimal control is given

by the feedback law (3.38) and the optimal cost by

(3.41) J(a) lim
1 [2(r,f)-IN-’/2B*NI2] dr.

T 7"
Proof We take any u 0//’a0 and its response y in (3.36). Then, setting t to,

t2 to + T and taking limit supremum as T-, we obtain

1 f tO+T
{]Nl/2[u+ N-B*(Qy+ r)]12+2(r,f)-[N-l/ZB*r[} dt.(3.42) J(t) lrn- .,to

Now the assertion follows easily.
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If we assume (HS), then we recover the periodic result in [16].
COROLLARY 3.4. Assume (H1)-(H4) on To, ).
(i) If (HS) holds on [ To, ) and iff is O-periodic, then Q and r are O-periodic and

1 r t+ [2(r,f)-IN-l/2B*rl2] dt for any to <- To(3.43) Jl(a) ,o
(ii) If all operators in (3.32), (3.33), and f are constant, then Q is the unique

solution of the algebraic Riccati equation (3.28) and

(3.44) J(a) 2(r,f)-[N-’/2B*rl
where r -(L*)-Qf

3.4. The optimal control problem with average cost II. Here we assume (H1) and
(H2). Our system is

(3.45) y’ A( t)y + B( t)u +f( t)

where f Cb(R; Y). We wish to minimize the average cost

(3.46) J(u) lim
1 I [IM(t)yl+(N(t)u, u)] dr,

T- 2T .]_T

over

(3.47)
lu(t)l dt<o

such that there exists a bounded solution to (3.45)

If (H3) holds, then Lemma 3.2 is valid. If, further, (H4) holds, then L is stable and
there exists a unique bounded solution to (3.35). Thus as in Theorem 3.3 we have
Theorem 3.4.

THEOREM 3.4. Assume (HI)-(H4). Then optimal control is given by thefeedback law

(3.48) ft -N-B*(Qfi + r)

where Q is the unique bounded nonnegative stable solution to (3.4) and r is the unique
bounded solution on 1 of the equation

(3.49) r’ + L* r + Qf 0

given by

(3.50) r(t) U*(s, t)Qo(s)f(s) as, a.
The optimal cox ix given by

(3.51) J2(tT)=lim f_T
TTc 2--- [2(r,f)-[N-l/2B*r[2] dt.

The optimal response fi is

(3.52) .9(t) I UL(t,s)[f(s)-K(s)r(s)]ds
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and y is exponentially asymptotically stable (i.e., y( t; to, Yo) Y(t) - 0, as - where
y(t; to, Yo) is the solution of (3.39)).

COROLLARY 3.5. Assume (H1)-(H4).
(i) If (HS) also holds and iff is O-periodic, then Qo and r are O-periodic and

1/o(3.53) J2(ti) =- [2(r,f)-lN-1/2B*rl

(ii) If all operators and f are constant, then Q, r are constant and given as in
Corollary 3.4. Moreover,

(3.54) J2(ti) 2(r,f)-lN-1/2B*rl2=

Finally, we will consider another special case of Theorem 3.4. Let AP(I; Z) be
the Banach space of almost periodic functions in Z [1], [16], [21]. We assume

f AP(I; Y). We assume (H1)-(H5) so that Q is the unique nonnegative 0-periodic
solution of (3.4). Then L is stable and r(t), given by (3.50), is the unique almost
periodic solution of (3.45). Moreover 37, given in (3.52), is also the unique almost
periodic solution of the closed system

(3.55) .9’= L.9 +f-Kr.

Hence the following problem is meaningful [16]. Minimize

(3.56) Jap(U) lim
1 f

r

[IM(t)yl+(N(t)u, u)] dt
T- T

over the set of admissible controls

p= {u AP( U): there exists y Ap(I; Y)
(3.57)

which is a mild solution of (3.45)}.

Now we find the optimal almost periodic control given in [16].
COROLLARY 3.6. Assume (H1)-(H5) and let fAP(fll; Y). Then the optimal

control is given by the feedback law

(3.58) f -S-B*(Qy+ r)

where Q is the nonnegative O-periodic solution to (3.4) and r is the unique almost periodic
solution to

(3.59) r’+ L*r+ Qf=O

given by

(3.60) r(t) U*(s, t)Qo(s)f(s) as.

The optimal cost is given by

(3.61) Jap(ti) lim
1

[2<r,f)--lN-1/2B*rl2] dt
T T

and the optimal response by

(3.62) )7(t)= f" U(t,s)[f(s)-K(s)r(s)] ds.
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Remark 3.2. The conclusion of Corollary 3.6 is still valid even if we replace (H4)
by a weaker condition:

(H4’) There exist numbers el, e2E (0, 1) such that r(Ui(t+0, t))c
{)kEC: I)kl<= 1-gl}U{}kC: Ih.I >= lq-g2}, for all tR1.

Note that the 0-periodic solution Q still exists and UL is well defined. If (H4’) holds,
we set

1
(3.63) rl-(t) =--27ri Jc, R(A, UL(t+O, t)) dA, tI1,

(3.64) I-I+(t) I I-I_(t),

where C1 is the unit circle in the complex plane. Then (3.55) and (3.59) have unique
almost periodic solutions given by

37(t) f Ul(t,s)H_(s)[f(s)-K(s)r(s)]ds

(3.65)

I U(t, s)l-I+(s)[f(s)- K(s)r(s)] as,

r(t) U*(t, s)II*+(s)Qoo(s)f(s) ds

(3.

-I U* t, s)II*_(s)Q(s)f(s) ds.
.1_

This can be proved by using estimates

(3.67) IU.(t, s)II_(s)[<=M_ e-’-<’-s), >= s for some M_>0and to_ >0,

(3.68) IU(t,s)l-l+(s)l<=M+e/’-) t<s for some M+ > 0 and to+ > 0.

For a proof of (3.67) and (3.68) see [23] when A(t) has a special form A(t) A + L(t)
with L(t) dominated by A, and see [29] in the general case.

4. Optimal quadratic control in the stochastic case.
4.1. Quadratic control under complete observation. We can "stochasticize" all

results in 3. Let (f, F, F,,-<t<, P) be a stochastic basis and let (W), i= 1,
2, , No and W be independent Wiener processes in R1 and H (Hilbert), respectively,
with Cov[W(t)]=tW, WE+(H) nuclear. We replace (3.1), (3.2), (3.32), (3.33),
(3.45), and (3.46), respectively, by

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

dy [A(t)y + B( t)u] at + Gi( t)y dWi, y( to) yo,

Jo(u) E []M(t)yl2+(g(t)u, u)] dr,
to

dy [A(t)y + B( t)u +f( t)] dt + (3,( t)y dW, y( to) yo,

1 to+ T
Jl(t/) li E I [IM(t)yl2+(N(t)u, u)] dt,

./tO

dy [A( t)y + B( t)u +f( t)] dt + G,( t)yd+ G( t) dW,

J2(u) lim 1_ E [IM(t)yl+(N(t)u, u)] dt
r- 2T
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where in (4.1), (4.3), and (4.5) Gi(t)ydW means the sum over i= 1 to No. The sets
of admissible controls are given by

ad {U E M2([ to oo) x f’, U)" its response
(4.7)

has the property Ely( t)l 2 -+ 0 as -+ oo},

[u(t)l dt <, Ely (t)l bounded(4.8) d e Moc([to,) xa; U) iO,o

2 lu(t)I 2 dt<,ad U e Moc((-m, m) x U) lim
1

r2T r(4.9)
there exists y(t) with Ely(t)l 2 bounded}

where M2([t, t2]xO; U) is the subspace of L([t, t2]x; U), which consists of
F,-adapted processes and Moc means M2 for any finite intervals. We remark that it
is possible to take an infinite-dimensional in place of () as in [25].

The Riccati equations (3.4) and (3.28) are replaced by

Q’( t) + A*( t)Q( t) + Q( t)A( t) + G,(t)Q(t)G(t)
(4.0)

+ M*(t)M(t)-Q(t)B(t)N-(t)B*(t)Q(t)=O,

(4.11) A’Q+ QA+ GQG+M’M- QBN-B*Q =0.

We keep the hypothesis (H1) as it is and replace (H2), (H3), respectively, by

($2) (H2) together with
(i) G Cs(N; ( Y)), G Cs(N; (H, Y)); and
(ii) sup,=, [IG,(t)[ + IG(t)l] <.

($3) For each toeN and yoe L2(O, o, P), there exist u e M2([to, m) x; U) and

Co such that

E [IM(t)yl=+<g(t)u, u> dt CoElYol
to

where y is the mild solution of (4.1).
To replace (H4) by a new one we need to recall some definitions. Consider the

homogeneous system

(4. 2) ay A(t)y at + ,( t)y d, y(to) Yo.

Since (4.12) is linear, we can easily establish a unique mild solution in
C([to, T]; L:(O; Y)) that is adapted to F,: namely, the solution of

(4.13) y(t)= U(t, to)Yo+ U(t, s)G(s)y(s) d(s).
o

We say that (A; G) is (exponentially) stable if the mild solution of (4.12) satisfies

Ely(t)}2 M1 e-(’-’)ElYol Vyo L(a, F,o, P), to

for some M 1 and m > 0. Let V(t, s): L(, F, P) Le(, F,, P) be the stochastic
fundamental solution [2], [14], [27] so that y(t)= V(t, to)yo. Then (A, G) is stable if
and only if

El V( t, to)yol M, e-(’-’o)ElYol, Yo L=(a, F,o, e).
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We say that (A, B; Gi) is stabilizable if there exists a K 6 Cs(N1; w(y, U)) bounded
such that (A- BK; Gi) is stable. Hypothesis ($3) is fulfilled if (A, B; Gi) is stabilizable.
Let D CL(N1; Le(y)) be bounded. We say that (A, D; G) is detectable if there exists
a KI Cs(N; (Y)) bounded such that (A-KD; G) is stable.

Now we replace (H4) and (H5), respectively, by

($4)

and

(s)

(A, M; G) is detectable,

(H5) and G,(t + 0) Gi(t), G(t + 0) G(t), [.

Now we can stochasticize almost all results in 3 under our new hypotheses, but below
we will give only main results.

THEOgEM 4.1. (i) Assume (H1) and ($2). Then a nonnegative bounded solution to

(4.10) exists if and only if ($3) holds.
(ii) Assume (H1), ($2), and ($4). Then any bounded nonnegative solution of (4.10)

is stable, i.e., (A-BN-B*Q; Gi) is stable. Hence the Riccati equation (4.10) has at
most one bounded nonnegative solution in +( Y).

PgoPosaqON 4.1. (i) Assume (H1), ($2), ($3), and ($5). Then the minimal solution
Q of (4.10) is O-periodic. If further, ($4) holds, then Qo is the unique O-periodic solution
to (4.10).

(ii) Suppose all operators are constant. Then Q is constant and is the minimal
solution of the Riccati equation (4.11). If (A, M; Gi) is detectable [15], then Qo is the
unique solution of (4.11) in +(Y) and (A-BN-BQ; Gi) is stable.

Remark 4.1. Results similar to Propositions 3.1, 3.2, 3.5 and Corollaries 3.1-3.3
are also valid.

Now we need a result similar to Lemmas 3.1 and 3.2.
LEMMA 4.1. Assume (H1), ($2), and ($3). Let Q be the minimal nonnegative

solution of (4.10). Let u M([ tl, t2] 1); U) and let y, r be any mild solutions of (4.5)
and

(4.14) r’+L*r+Qf=O, L*=A-BN-1B*Q,

respectively, on Its, t2]. Then

E [IM(t)yl:+(N(t)u,u)]dt+E(Q(t:)y(t2),y(t:))+2E(r(t2),y(t2))
tl

E Igl/2[u+ N-1B*(Qy+ r)]l 2 dt
t

(4.15)
+ [2(r,f)-IN-/2B*r[2+tr GWG*Qo] dt

tl

+ E(Q( tl)y(tl) y(t)) d- 2E(r(tl), y(t,)).

Proof. We apply It6’s formula to (Q(t)y(t),y(t))+2(r(t),y(t)), where Q,
y, r are approximations to Q, y, r given by (4.10), (4.5), and (4.14). Then we
rearrange terms, take expectations, and finally pass to the limit n- . [3

Now we can solve our three problems immediately.
THEOREM 4.2. Assume (HI), ($2)-($4) and consider the control problems (4.1),

(4.2), (4.7). The optimal control is given by the feedback law

(4.16) -N-1B*Qy
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where Q is the unique bounded nonnegative solution of (4.10) and the optimal cost is

(4.17) Jo(fi) E(Qo(to)yo, Yo).
The optimal closed-loop system is stable.

If ($5) holds, then Q is O-periodic. Ifall operators in (4.1), (4.2) are constant, then
Q is constant.

Proof. We set f= r=0, tl to, t2=o, and G =0 in (4.15).
TrEOREM 4.3. Assume (H1), ($2)-($4) and consider the control problems (4.3),

(4.4), (4.8). The optimal control is given by the feedback law

(4.18) a=-N-B*(Qy+r)
where Qo is the unique bounded nonnegative solution of (4.10) and r is the unique
bounded solution of
(4.19) r’+L*r+Qof=O, L=A-BN-1BQ,
given by

(4.20) r( t) U*(s, t)Q(s)f(s) as, >= to.

The optimal cost is

(4.21) Jl(u) lim
1 [2(r,f)-lN-/B*rl+tr GWG*Q] dt.

T-oc - tIf, further, ($5) holds, andf is O-periodic, then Qo, r are O-periodic and

1 [+ [2{r,f}-IN1/B*rl+tr GWG*Q] dr.(4.22) J, (t) -,o
THEOREM 4.4. Assume (H1), ($2)-($4) and consider the control problem (4.5),

(4.6), (4.9). Then the optimal control is given by

(4.23) a=-N-B*(Qy+r)
where Qo is the unique bounded nonnegative solution of (4.10) on R and r is the unique
bounded solution on 1 of
(4.24) r’ + L* r + Qof O, L A BN-1B*0
given by

(4.25) r() U*(s, t)O(s)f(s) ds, e .
The opimal cost is given by

(4.26) J(7) lira [2(r,f)-IN-1/B*rl+tr aw6*(]
Teo T

and the optimal closed-loop system by

(4.27) d.f [(A- BN-1B*Qoo).f +f BN-1B*r]
I has a unique bounded solution

-f()= I-’ I/(,s)[f(s)-B(s)N-l(s)B*(s)r(s)] ds
d-

(4.28)

d-
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where VQ( t, s) is the stochastic fundamental solution associated with the homogeneous
part of (4.27). ( t) is exponentially asymptotically stable, i.e., any solution y( t) of (4.27)
with y(O) Yo satisfies: y( t) fi( t) O exponentially in mean square as eo.

If further, ($5) holds, andf is O-periodic, then Qo, r are O-periodic and

1;o(4.29) J(tT) =- [2(r,f)-IN-’/Zn*rl2+tr GWG*Qo] dt

and ( t), given by (4.28), is the unique O-periodic solution of (4.27).
Finally, we consider almost periodic controls. We say that a stochastic process

z(t) is (weakly) almost periodic in Z if Ez( t) and cov [z(t)]k, k Z are almost periodic.
We assume that all operators except G are 0-periodic and that G(t)h, h H, f are
almost periodic. We wish to minimize

(4.30) Jap(U) lim 1_ E [IM(t)yl+(g(t)u, u)] dt
T-2T T

subject to (4.5) over

(4.31) 0-//ao { U" adapted to F,, almost periodic such that there exists
a mild solution y of (4.5) almost periodic}.

THEOREM 4.5. Assume (H1), ($2)-($4), and ($5) except G. Assume that G(t)h,
for all h H andfare almost periodic. Consider the control problem (4.5), (4.30), (4.31).
Then the optimal control is given by the feedback law

(4.32) =-N-B*(Qo+r)

where Q is the unique stable O-periodic solution of (4.10) and r is the unique almost
periodic solution of
(4.33) r’+L*r+Qf=O

given by

(4.34) r(t)= U*(s, t)Qoo(s)f(s) ds.

The optimal cost is

(4.35) Jap(ti) lim
1 I r

/2B.rl[2(r,f)-IU- +tr GWG*Q] dt.
T - T

The optimal closed-loop system is given by (4.37) and its unique solution is given by (4.28).

4.2. Quadratic control under partial observation. Consider a special case of (4.3)
and its observation

(4.36) dy [a( t)y + B( t)u +f( t)] dt + G(t) dw, y(to) Yo,

(4.37) dz C( t)y dt + V( t) dr, Z( to) 0

where C(t) Cb(l" L(Y, ’)), V(t) Cb( 1", ’"), nonsingular, v is an m-
dimensional Wiener process, Yo L(12, Fro, P) is Gaussian with mean 370 and covariance
Po, and Yo, w, v are independent. We assume (H1), ($2)-($4) and wish to minimize

1 f tO+T
(4.38) J(u) lrirn- E [[M(t)y[2+(N(t)u, u)] dt
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over all controls u that are adapted to tr{z(s), to<-_s<-_ t}. We will define the set of
admissible controls later. We now recall filtering results of the system:

(4.39) dy A(t)y dt + G(t) dw, y(to) Yo,

(4.40) dz C( t)y dt + v( t) dw, Z( to) O.

The optimal filter 33(t) of y(t) given Zt=o’{z(s), to<-S<-t} is the projection of y(t)
onto L2(f, Z,, P) [20], [26] and is given by the mild solution of

(4.41) dfi A(t) dt+ P(t)C*(t)[ VV*(t)]- dn, (to) o
where r/ is the innovation process given by

(4.42) drl dz C( t). dt

and P(t), the covariance of the error process e =y-3, is the mild solution of

(a) P’(t)-A(t)P(t)-P(t)A*(t)-G(t)WG*(t)

(4.43) + P( t)C*( t)[ w*(t)]- C( t)P( t) o,

(b) P(to)=Po.

Following [3], [6], [9], and [17] we define the set of admissible controls

0pad lg M2oc([ to, ) x f; U)" lim --1 E ]u(t) dt

(4.44) <, u(t) 6 L2(f, H, P; U) fq L2(O, Zt, P’, U)

a.e. and Ely (t)[ is bounded},
where/-/, o’{r/(s), toNS<-_ t}.

Now let u be an admissible control and define 33 by
(4.45) d=[A(t)y+B(t)u+f(t)]dt+P(t)C*(t)[VV*(t)]- d, 9)(O)=97o.

Then it is well known [3], [6], [9], [17] that

to+ r
[IM(t)yl+((t)u, u>] at

(4.46)
E [IM(t)yl2+<N(t)u, u)] dr+ tr M(t)P(t)M*(t) dt

dt dt

where y is the response of (4.36). To make our problem nontrivial we assume:

($6) (a) (A*, C) is stabilizable,
(b) (A*, W/G*) is detectable.

PROPOSITION 4.2. Assume (H1) and ($6). Then there exists a unique bounded
stable solution P to (4.43a). The solution P(t) of (4.43) is bounded on [to, ) for any
Po>-O. If, further, A(t), C(t), and V(t) are O-periodic, then P(t) is O-periodic and
P( + nO) --> P( t) strongly for any >= To as

Proof. The Riccati equation (4.4) is dual to (3.4). Hence the assertions follow
from Propositions 3.2-3.5.
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Remark 4.2. We may replace (S6)(a) by a condition similar to (H3) for the dual
control problem. Note that under ($6), P is bounded and

lim
1 ( +r tr M(t)P(t)M*(t) dt < c.

Now consider an auxiliary problem of minimizing

Jl(U) lim
1 ( t+r

[[M(t)yl:+(N(t)u, u)] dt
Tc" dt

subject to (4.41) over

ad= R" __1 E [u(t)l 2 dt
T T dto

, u adapted to Ht such that E](t)] is bounded).
Assume (H1), (H3), (H4), ($2), and ($6). Then in view of Theorem 4.1 the optimal
control is given by

-N-1B*(Q+ r)

where Q, r are given as in Theorem 3.4 and

J() lira
1 [" to T [2(r,f-IN-1/B*r[ tr PC*[ W*]-CPQ] dt.

T
dto

It is well known that this lies in pad [6], [9]. Then we have Theorem 4.6.
THEOREM 4.6. Assume (H1), (H3), (H4), ($2), and ($6) and consider the control

problem (4.36)-(4.38), (4.44). en the optimal control is given by

N-B*(Q+ r)

where Q is the unique bounded stable solution of (3.4) and r is the unique bounded
solution of (3.49) given by (3.50). e optimal cost is given by

J() lira
1 to T

2(r,f -[N-/B* r[
T

dt

+ tr MPM* tr PC*[ W*]-1CPQ] dt.

I further, f(t), C(t), and V(t) are O-periodic and ($5) holds, then Q, r are O-periodic
and

lfo J()= [2(r,f)-lS-/:B*rl:+tr MPM*+tr PC*[W*]-CPQ] dt

where P is the unique O-periodic solution of (4.43a).
We may also consider two-sided average cost as J2 in 4.1 although the problem

becomes a little artificial. We replace the initial conditions of (4.36), (4.37) by y(- T)
Yo, z(-T)= 0 and minimize

J(u) lim
1 [ T

[M(t)y2+(S(t)u, u)] dt.
r 2T

We allow only for feedback controls on the filtered process of the form

u=-g(t)+h(t)

where K(t)6 Cs(; (Y, U)) is bounded and h Cb(; U).
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THEOREM 4.7. Assume (H1), (H3), (H4), ($2), and ($6). The optimal control is

given by

a=-S-lB*(Q+r)
and

J2(tT) lim
I f [2(r,f)_ls_l/2B.rl+tr MPM*+tr PC*[VV*]-ICPQ] dt

T- T T

where Q, P, and r are unique bounded solutions of (3.4), (4.43a), and (3.49),
respectively. If C, V are O-periodic and ($5) holds, then Q, P, r are O-periodic and

lloJ(a)= [2(r,f)-IS-/B*rl+tr MPM*+tr PC*[*]-CPQ] dr

Remark 4.1. We are not able to prove the existence of almost periodic P if the
coecients of (4.43) are almost periodic.

5. An example. Consider the system:

0_
Ot j=, Ox

aO(t’ x) OY
,=,

b,(t, x) OxiO
+c(t,x)y+f(t,x)+u(t,x), (t, x) xO, ao=a

(5.1)
y(t,x)=O, (t,x)exo,

y(O,x)=yo(x), xeO

where a, b, c, n are real functions from R x to R and fi is a bounded set in R"
with smooth boundary 0.

We assume the following:

(5.2)

(i) ao, b, c, and f are continuous and bounded with their first derivatives
with respect to x [l and R.

(ii) There exists u > 0 such that

aij(t,x)ij>= 2, --(,..., sr,)R", x61", t6.
i,j--I

We set Y LZ() and denote by A(t) the linear operator in Y

+c(t,x)y,
(5.3)

a(t)y
0

ao(t,x)
Oy + b(t,x)

Oy

i,j= 10Xj OXi i=

D(A(t)) H2(a) H(a).
Then hypothesis (H1)(i) is fulfilled (see [36]) and (H1)(ii) is easily checked (see, for
instance, Tanabe [36]). Moreover, the adjoint operator A*(t) is given by

D(A*( t)) H() H()
so that (H1)(ii) holds.

Consider the quadratic control problem. Minimize

(5.4) Jo(u) dt (ly(t,x)12+lu(t,x)[2) dx



380 G. DA PRATO AND A. ICHIKAWA

subject to (5.1) over the set of admissible controls

Ua {u L2(0, oe; Y); the corresponding
(5.)

mild solution to (5.1), y(t) --> 0 as -->

We take U Y Lz(D.), B N m L Then (H2)-(H4) are fulfilled. Thus the Riccati
equation (3.4) has a unique bounded solution and the hypotheses of Theorem 3.2 are
fulfilled. Then there exists an optimal feedback control for the infinite horizon problem
(5.4), (5.5).

Consider now the stochastic system:

dy ( O-- ai( t, x)
Oy

i,= Ox x
+ bi(t, x) Oy+ c(t, x)y + u(t, x) +f(t, x)] dt

OXi /
(5.6)

+ gi(t, x)y dw + g(t, x) dw,
i=1

(t, X) [0, +o0) a,

y(t, x) O, (t, x) 6 [0, +oo) x

y(O,x)=yo(x),

where g, gi are also continuous and bounded with their first derivatives.
Consider the problem. Minimize

(5.7) Jo(u) E dt (ly(t, x)l/lu(t, x)[ 2) dt

over all u UOa defined by (4.7) where y is the solution of (5.6). Now we can apply
Theorem 4.2 and so there exists a feedback for problem (3.9).
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APPROXIMATIONS TO STOCHASTIC PROGRAMS
WITH COMPLETE RECOURSE*

RIHO LEPP

Abstract. A two-stage stochastic convex program with relatively complete recourse in L-space is

replaced by a mathematical programming problem in a finite-dimensional space. Using discrete convergence
of mappings, conditions are presented that guarantee the convergence of the sequence of solutions of
approximate problems to the solution of the initial problem.
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1. Introduction. Let C1 and C2 be nonempty, closed convex sets in R and R v,
respectively, and let (S, E, o-) be a probability space with S c Rk and E the Borel
sigma-field on S. Let fij be a finite convex function on R for j 0, 1,..., 11 and let
f2j(s, ", ") be a finite convex function on Rr R forj 0, 1,.’., 12 and for almost all
sS.

Consider the stochastic programming problem with recourse: minimize the
function

f,o(X)+ f Q(s, x),(ds)
S

over all x R satisfying

(1.2) x C and fj(x) <-_ O, j= 1,..., l,

where the function Q(s,x) is defined as the value of an "inner" (second stage)
subproblem:

(1.3) O(s,x)= inf {f2o(S,x,y)lfzj(S,x,y)<--O, j=l," ",12}.
y C2

Properties of recourse function (x),

(1.4) (x) I Q(s, xltr(ds)
S

(continuity, convexity) are widely known (see, e.g., [10]). In spite of these promising
properties, stochastic programming problems with recourse generally cannot be solved
by known methods of mathematical programming because the numerical evaluation
of 22(x) and its gradient is an extremely complicated problem.

Several authors have examined the effect of perturbations in problem data on the
optimal value and the solution of the problem (1.1)-(1.3) (see [4], [8], [23] and the
cited literature in these references). These results are based, generally speaking, on
properties of the value function Q(s, x) and on the weak convergence of a sequence

* Received by the editors August 31, 1987" accepted for publication (in revised form) March 13, 1989.

? Institute of Cybernetics, Estonian Academy of Sciences, Akadeemia 21, SU-200108 Tallinn, Union
of Soviet Socialist Republics.
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of discrete probability measures {trn} to measure r (see, e.g., [3]). Sequence {tr,} is
determined by partitions {,} of S, 5e, {Sn,""", Sn,}, with properties

(1) J Si,, S;
i=1

(2) S,, S, , j;

(3) , ,+1

(4) max (Si,)O, n.
lin

The paaition {,} is used in order to get lower and upper bounds for the solution of
(1.1)-(1.3). Construction of these bounds rely on the Jensen’s inequality and
Edmundson-Madansky bound, respectively. In such a partition it is necessary to find
the discretization points in the form of conditional mean [4]:

(.5)

Then the problem reads as follows: minimize the function

(.6) f,o(X)+
i=1

over all x R satisfying

(1.7) x C, and fu(x)
where

(1.8) Q(g,x)= inf {fo(gi,x,y)[f(g,x,y)O, j=l,.-.,1}
yC

and Pi (Si ).
Equivalently, if we are able to replace infimum by the minimum for all g, then

instead of (1.6)-(1.8) we get the following extremum problem (see, e.g., [10]) with
activities y R, i= 1,- -, n,: minimize over x and y, 1,. ., n, the function

(.9) fo(X)+
i=1

satisfying conditions

(1.10)

(1.11) yi C2,

X e C1, flj(X) <= O, j 1," ", ll
f2j(Sin, x, yi) <O, j=l,...,12, i=l,...,n.

Roughly speaking, in [4], [9], [23] the approximation scheme is realized via the
approximation of an integral by Lebesgue sums.

The aim of this paper is to investigate the behaviour of the sequence of second
stage solutions {37i,} of the problems (1.8) as n oe. We show that it converges in a
certain (weak* discrete) sense to an essentially bounded function 37(s), 97L
(S, , o-) --a L(o-). This 97(s) is the (second stage) solution of the following "static"
formulation of the stochastic programming problem with recourse [16]: minimize over
(x, y(s)), x R r, y L(tr), the functional

(1.12) flo(X)-t- [ f2o(S, X, y(s))tr(ds)
ds

satisfying conditions

(1.13) x C1, f.i(x)<--O, j-- 1,..., 1,,
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and almost surely (a.s.)

(1.14) y(s)C2, f2(s, x, y(s)) <- O, j=l,.. ",12.

It was shown in [16] that the problems (1.1)-(1.3) and (1.12)-(1.14) are equivalent
in the sense that the vector x R minimizes (1.1)-(1.3) if and only if the pair
(X, y) RrX L(o") minimizes (1.12)-(1.14), and the optimal values of both problems
are equal. Due to this equivalence we can conclude that computational difficulties
which arise in numerical solution of stochastic programs with recourse could be in
general the same as the difficulties which arise in numerical solution of an extremum
problem in a function space with nonlinear operator constraints (constraints (1.14)
are just that type). It was pointed out in 15] that "... the static formulation of stochastic
programming problems with recourse is computationally more tractable than the
dynamic one.., and can be solved in some cases by solving a sequence of finite-
dimensional discretizations."

In numerical solution of stochastic programming problems with recourse it might
be more preferable to use, instead of conditional means in, appropriately chosen
samples of s. In this purpose we define a convergent quadrature process:

(1.15) h(si)mi.- f h(s)cr(ds), n-o, Vh C(S).
i=1 ./S

It was proved in [21] that for the convergence (1.15) it was necessary and sufficient
to have a system of partition {,}, , {AI,’’’, A,,}, from with properties

(1) cr(Ai, > 0;
(2) il ain S;
(3) ain I’-] aj,, , :j;
(4) diam Ain ---> O, n -->

(5) cr(OAi,)=0, i= 1,’’ ", n;
rain(6) max

<=in

(7) s,

where OA denotes the boundary of a set A and diam A =sups,ta IS t]. Our use of the
partition {.ft,} differs from the use of the partition {5e,} above in the analogous sense
as Riemann and Lebesgue integrals differ from each other. Note that the collection
of sets {s,} with properties (1)-(7) generates an algebra Zo=Z ([21]). Denote the
restriction of the measure
is the Lebesgue measure on [0, 1] then the integrability in the sense of restricted
measure Cro means simply Riemann integrability.

Suppose that the quadrature process (1.15) converges. Then instead of problem
(1.6)-(1.8) we can solve the following mathematical programming problem with a
staircase constraint set: minimize over x and y;, i= 1,. ., n, the function

(1.16) flo(x)+ f2o(Si,, x, yi)mi,
i=1

satisfying conditions

(1.17)

and

(1.18) yi

x C,, fl(x) <- O, j 1,’.., 11,

fz(S,, x, Y) <--O, j l, ,12, l, n.
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Define by 17(m,,) the v n-dimensional space with norm Ily.ll maxl<__i_<_n lYinl, where
1" is the Euclidean norm of a v-dimensional vector.

In order to achieve the convergence of {f,} to a .P(s), .9, l(rn,,), y L(o), it
is necessary to introduce a system of connection operators -{,}, n :L(cr)-
l(m,,), n= 1,2,..., between the spaces l(rn,,) and L(cr). For the Le-spaces,
1 =< p _-< oe, it is natural to define this system in a piecewise integral form. For any system
of connection operators {,}, the following condition should be implemented
[20]: for any y

(without (1.19) a discretely converging sequence can have even an infinite number of
limits). For any y L(r) the convergence (1.19) takes place [12] and, consequently,
makes it possible to solve approximately several problems with a nonlinear operator
form L(cr) to L(cr). For example, (1.19) makes it possible to solve approximately
continuous programming problems [5], optimal control problems with nonlinear state
and control constraints [7] and integral equation [1] in L(cr).

In 2 we introduce some notions from the theory of discrete convergence necessary
for this paper. Since we consider the pair (L, L1), only discrete and weak* discrete
convergences will be used.

In 3 we deduce conditions that guarantee the convergence of sequence of
solutions of discretized problems (1.16)-(1.18) to the solution of the initial problem.

2. Discretization of the problem. Let us introduce some notions from the theory
of discrete convergence of mappings (see, e.g., [20], [22]).

Let B and B, n 1, 2,..., be Banach spaces with norms I1" and I1" I]n, respec-
tively, and let a {n) be a system of linear connection operators qn" B - B., n 1,
such that, for every u

DEFINiTiON 2.1. A sequence {un) with u Bn a-converges (or converges dis-
cretely) to u B if Ilu- qnull- 0 as n-. We denote this convergence by u -u
or simply u - u.

DEFINITION 2.2. Connection systems a {q} and a’= {q’} are called equivalent
if for every u B II,,u nu

Let B* and B* be dual spaces to B and B, let (u, y) denote the value of the
linear form y B* at the element u B and (u, y) denote the value of the linear
form Yn B* at the element u Bn. Define also a system of linear connection operators

{ ,}, ," B* - B*, n 1, such that for every y B* we have

(2.1)

Define (analogously to Definition 2.1) -convergence of a sequence {y,}, y, B,*,
to element y B* and denote this convergence by y,y or simply y, - y.

DEFINITION 2.3. A sequence {yn} with y, B,* a-converges weakly* (or converges
weakly* discretely) to y B* if for every discretely converging sequence of elements
un -- u we have

(u,, y,,),, (u, y) as n.

Denote this convergence by y, -- y or simply yn-- y.
Denote by Ix,- x] 0, n c, the convergence in the sense of Euclidean norm.
Define (similarly to the epiconvergence [2],. [4]) the discrete epiconvergence of

functionals.
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Let (f, {f.}) be a collection consisting of a functional f and a sequence of
functionals {f.}. The sequence {f.} is said to -epiconverge (or epiconverge dis-
cretely) to f if for all y we have

(2.2) lim inff.(y.) >-f(y) for all {y.} -converging to y;

there exists {y.} -converging to y such that

(2.3) lim sup f. (y.) <=f(y ).

We also need the weak* -convergence and a mixture of - and weak* -convergences: if we replace -convergence of elements by the weak* -convergence,
the sequence {f.} is said to be -weakly* epiconvergent (or epiconvergent weakly*
discretely) to f. If we have in (2.2) the 2-weak* convergence and in (2.3) the -convergence, we say that {f.} epiconverges -weakly* to f.

Let us be more concrete now about the general notions of discrete convergence
to the spaces L(r) and L(o’).

Let us restrict the probability measure r: let the support S of the measure cr be
bounded and let

(A1) r{slls-t[=const.}=O, VteS.

For example, the restriction (A1) is fulfilled if the probability measure r has a density.
For spaces L(r) and l(m,), define the system of connection operators {,},

$," L() -> l(m,), n 1,. ., in the following way 11]"

(2.4) (.y),. tr(A,.)-’ (. y(s)cr(ds), i= 1,’", n,

for an arbitrary fixed collection of sets {sg.}, s. {A., , A..} from sigma-field Z
with properties (1)-(7) from the Introduction.

Let u e L’(tr) and let {[. I1 denote the norm of an element in L(o-). Define
(analogously to (2.4)) the system of connection operators for spaces L(o") and
l.(rn.) with a fixed collection of sets {Y3.}, . {B., ., B..}, with properties (1)-(7)
(here l.(rn.) is nv-dimensional space with norm

On the set of continuous functions C(S) define (in additon to the system ) the
system of equivalent connection operators ’= {’.}:

(2.4’) (tnZ)i Z(Sin), i= 1,’’’, n, z C(S).

Systems of connection operators and ’ are equivalent according to the Definition
2.2 (see [20, p. 649]). ’ can be extended onto L(o-) with preserving linearity of ’.
and property [Iq’.ul[.,, -* I]ul[ as n - oe for every u e L(tr).

The system of connection operators { n} defined by (2.4) satisfies the condition
(1.19):

The proof of (1.19) for a y L(o-) relies on the following two facts:
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(1) Ilyll - Ilyll, P- (here Ilyll denotes the LP-norm or ye L(o-)),
(2) II,yll, - Ilyll, n, for every fixed p ell, m). The last convergence is

equivalent to the following two conditions which can be easily proved:
(2a) I1 I1. const.,
(2a) IIyll., Ilyll, n, for any y from C(S) which is dense in Le(). The

proof of the convergence (2.5) is quite lengthy and is presented in [12].
Remark 2.1. It is easy to see that for the systems of connection operators

and ={,} with properties (1)-(7) the compatibility condition [19], y,y,
u.u(u.,y.).(u,y) is fulfilled (here yL(), y.l(m.), uLl(),
lln(m.)).

3. Conditions for convergence of discrete approximations. Let us introduce some
notations and assumptions necessary for the discrete approximation of the problem
(1.12)-(1.14) by the sequence of problems (1.16)-(1.18). Denote by G and G, the
(nonempty) sets of admissible solutions of problems (1.12)-(1.14) and (1.16)-(1.18),
respectively, and by G2(s, x) the following set:

G2(s, x)= {ylf.i(s, x, y)N0,j= 1, , 12}.

Suppose that
(A2) the functions fl on R r, j =0, 1,..., ll, are convex and differentiable;
(A3) the functionsf2(s, .,. on R Rv,j =0, 1,. , 12, are convex and differenti-

able, for each (x, y) on R R the functions f2(’, x, y), j 0, 1, , 12, are bounded
and measurable on S. Moreover, to each bounded set B cR R there corresponds
a bounded and Zo-measurable function a:S- R and a constant /3 R such that
[f2o(S, X, y)[ _--< a(S) for all (x, y) B, [f2j(S, X, y)[ _-</3 for all (x, y) B, j 1, , l;

(A4) the functions f..i,(s, .,. ), f’2jy(S, "," on R R, j=0, 1,. .,/2, are con-
tinuous, for each (x, y) on RR the functions f’iy(.,x, y) are bounded and Eo-
measurable on S. Moreover, to each bounded set B c Rr- R there correspond
bounded and Zo-measurable functions y S- R, 6j S R, such that

[f(s, x, Y)I <- y(s) for all (x, y) B,

If.y(S, x, y)[ _-< 6(s) for all (x, y) B.

Remark 3.1. In order to guarantee the convergence of discrete approximations,
more stringent conditions (A3), (A4) compared with [18] are needed. The same is
valid about the paper [6].

(A5) The sets Cl R and C2 = R are bounded closed and convex with int

C2;
(A6) there exists an element (Y, 37(s)) such that for some e >0 the constraints

(1.2) and (almost surely) (1.3) can be satisfied with -e in place of 0 (strict feasibility
[17]);

(A7) the support S of the measure tr is bounded; let

K --{XiX Cl,flj(X)N0,j= 1,’’’,

(A8) For all x e K there is bounded region Dc R with G2(s, x) f"l D for all
s S (relatively complete recourse [17]).

With assumptions (A2), (A3), and (A5), the optimal recourse problem (1.1)-(1.3)
is well defined (see, e.g., [18]).

Since the existence conditions do not depend on the properties of the measure o-

(discrete measures are not excluded) under the conditions above the problems (1.16)-
(1.18) are well defined.
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Define together with the connection system the following system of piecewise
constant restoration operators Yt {,}, Cn "l(m,)- L(tr), of the form

(3.1) (,y,)(s) =y,, as. s

where the sets {Ai,}’= are taken from the system with properties (1)-(7) (see (2.4)).
PROPOSrrON 3.1. Letf,j 1,. ., l, satisfy the condition (A2),fz,j 1,. ", 12,

conditions (A3), (A4), sets C, C2 the condition (A5). If the convergence (1.15) holds,
then the constraint set G contains all weak* discrete limits of sequences {(Xk, Yk)},
Xk Yk G,k where { G,k } are arbitrary subsequences of { G, }.

Proof Let [x,-xl-O and y,-y as nc. Consider first constraints (1.18). Let
fz(Si,,x,,y,)<-O for all j= 1,..., 12 and all i= 1,..., n, n 1, 2,.... Let us explain
the idea of the proof. On the contrary suppose that there exists a set D Z with a

positive measure tr(D) > 0, and an index j {1,. ,/2} such that fz(S, x, y(s)) >- 6 > 0
for all s e D. Then &r(D) <= s XD(S)f2(S, X, y(s))cr(ds) where

1, seD,
’)(D(S)

O, s C: D.

Then the function XD(S)f(S, X, y(s)) is approximated (as an element of L(cr)) by the
function z(s)f2(s, x, yc(S)), where z, y are continuous functions. This enables us to
estimate the difference

(3.2) I(I*,(XD(S)fz(S, X, y(s))),, --(/*,XD(S)),fzj(S,, X,
i=1

If the difference (3.2) is sufficiently small we have the contradiction

0<= 6or(D) <= Xo(s)f2j(s, x, y(s))o’(ds)
S

(3.3) <= (/*.XD(S)).f2j(S., X., y,.)mi. +- &r(D)
i--1

_-<_- 3o-(D) for n sufficiently large.
2

After these introductory remarks let us now prove Proposition 3.1.
Since XD(" )fj( ", X, y(" )) L(o") and (definition of -convergence),

(n(XD(S)f2j(S X, y(s)))inmin -) 1- XD(S)f2j(S, X, y(s))tr(ds), n
i=1 dS

we have for n >-n

(#,(Xp(S)f2(s, X, y(s)))inm,, f XD(S)f2(S, X, y(s))cr(ds) <= 6/8cr(D).
i=1 ./S

For brevity denote fj(x, y)=fj(s, x, y(s)) and (.XD),.f2.(X, (.Y).),.
(.XD(S)),.f(S,X, (.Y)i.). Consider the difference (3.2)"

[I(.(XDf(X, Y))).--(.XD).f2j,,(X, (PY))l]

<-- I(.(Xl)fzi(x, y))),,-(.(zf2.i(x, Yc))).lm.
i=1

+ (.(zf(x, Yc))).-(.X).f2j.(x,
i=1
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for some z, Yc C(S). Take continuous z(s), 0=< z(s) <-_ 1, s S, and yc(s) such that

fs [X(s)- z(s)l’(ds) < 6/(64 sup lf2(s’ x’ y(s))’

and

l’ If(s, x, y(s))-f(s, x, y(s))lo’(ds < /64
S

(for any ,>0 one can choose in Ll(r) such a continuous z(s) that slXo(s)-
z(s)[o-(ds)<o). Note that sup.s If2(s,x,y(s))[ is finite since the function g(s)=
[f(s, x, y(s))l is bounded and Eo-measurable.

Then for n _-> n2

I(,,(xofzj(X, y))),, -(.(zfj(x,
i=1

I(,,(xof2(x, y)- zf2j(x,
i=1

<= Is IXo(s)f(s, x, y(s)) z(s)f2(s, x, y(s))l(ds)

+ (6/32)cr(D) <- (6/16)o’(D).

Consider now the difference"

I(.(zfz(X, y))),,,- (,,xo),,,fz,,(x,
i----1

-< [(.(zf2(x, y))),.,-(.z),.fz.(x, (.,y),,))[m,,
i=1

i=1

+ max If2j.(x,(.Yc).)l I(f.(xo-z))i.lmi.
l<=i<=n i--1

-< (6/16)o-(D)

as n => n3 (due to the boundedness of maxl.<__i__<, ]f2,(x, (,y)n)[ and the inequality

i=l

Taking n4 max {n2, r/3} we obtain for n _-> r/4 that

(, (xof(x, Y))) -(X,)f2(x, (Y))II < (/8)r(D).
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Since $,y-y, n=l,...,y,k--y, Ix,k-x[0, k=l,..., and sequences
{($,Xo)i,fx(si,,x, (,y)i,)}, {(k,Xo)i,f’y(s,,x, ($,y),)} converge (analogously to
the convergence (3.2)) discretely, then for n >_-n5 we have

(nXD)inf2j(Sin X,
i=1

<= . (/,,Xo),,f2(si,,, x,, y,)m,, +(6/4)o’(D)
i=1

_--< (a/4)tr(D)

((x,, y,) is admissible for (1.16)-(1.18)). Then for n _-> no=max {n,//4, ns} we reached
the contradiction" 6o(D) <= 1/2&r(D). So we can conclude that for the limit point (x, y(s))
we have f2;(s,x,y(s))<-O for almost all sS and all j= 1,..., l.

Since (,y,)(s) C2 for almost all s S then due to the closedness of C2, the limit
point y(s) C2 for almost all s S. Conditions (A5) to C and (A2) to f;, j 1,. , l,
guarantee that (x, y(s)) satisfies all constraints (1.17), (1.18).

Remark 3.2. Let C {y] Dy >= d} be a bounded polyhedron with D-a (k x v)-
matrix and d-k-dimensional vector. Then clearly (,y.)(s) C for almost all s S
and all n=l,2,....

Remark 3.3. The No-measurability assumption enables us to replace the functions

f, j =0, 1,..., 12, and its derivatives in approximation process by their values in
discretization points s,. Assuming only E-measurability we must use conditional means
s-, instead of sn (see the Introduction). If the functions f2j, j =0, 1,..., 12, are only
E-measurable then changing their values on a set of measure zero it is possible that
sums in (3.3) are equal to zero for all n 1, 2,. ., but the value of the integral does
not change. For the same reasons the discrete approximation scheme proposed in 14]
may diverge.

Remark 3.4. To make the proof of Proposition 3.1 simpler we could suppose the
weak* continuity off2, j 1,. ., 12, relative to y. Unfortunately, such a superposition
operator is weakly continuous in LP-spaces, 1 <_- p < (weakly* continuous in L), if
and 0nly if it is linear.

Define function Fo and F0,"

Fo=flo(x)+ f f2o(S, x, y(s))o’(ds),
s

Fo, =fo(X)+ f2o(Si., x, yi,)mi,.
i--1

PROPOSaqON 3.2. Let flo satisfy the condition (A2), f2o conditions (A2), (A4). Let
the convergence (1.15) hold. Then the sequence {Fo,} -weakly* epiconverges to Fo.

Proof Let us show that the collection (Fo, {Fo,}) satisfies (2.3). Let Ix,- x]- 0
and y, ___.o y as n-* oo. Then

fo(X,)+ fo(Si,, x,, yi.)mi, -fo(X)- f fo(S, x, y(s))(ds)
i=l

<--flo(x,)-flo(x)+lx -x] If’ox(Si,, x,
i=1

+ max lY, -(Y)inl If’2oy(S,,, x, y,,)lm,, + Ro,(X, y)
liNn i=1
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where

Ro,(x,y)= f2o(Si,, x,, (,y)i,)mi, I f2o(S, x, y(s))o’(ds)
i-----1

y, n- o, by the definition, then

(,f2o(X, y))inmin f fo(S, X, y(s))r(ds)
i=1

Since Ix, xl- 0 and p,y

and

0

i=1

(as in the proof of (3.2) in Proposition 3.1). Consequently, Ro.(X, y)-->O as n -->. Due
to the convergenees Ix.-xl-->O and y.---> y, the collection (Fo, {Fo.}) satisfies (2.3)
as tl ---> oo.

Consider the convergence (2.2). Since a bounded sequence in L(tr) is weakly*
compact, we have to use the -weak* convergence in (2.2). Let Ix.-x]-->O and
(u., y.). -* (u, y) as n -* for every u. _.>2 u, u. l(m.), u Ll(tr). Due to the condition
(A4) fy a foy(" X, y(" )) Ll(o") also f6ny a-’-f.Oy(Sin, X, (,y),,) l,(m,)). Then,
analogously to convergence Ro. (x, y) - O, n - az, we can show that the sequence {f.y}
converges discretely to fy L(o-).

Consider now the difference

flo(x) + [ fo(S, x, y(s))tr(ds)-flo(x,)- fo(Si,, x,, yi,)mi,
i=1

<=fo(x)-fo(X.)+ (ft2ox(Sin, X, (]nY)in),
i=1

+ (foy(S,., x, (],.y),.), (],.y),. -y,.)m,. + Ro.(X, y).
i=1

In the last sum all components tend to zero as n-->az (by the definition .y--->y
and by the assumption y. -- y). Hence, the collection (Fo, {Fo.}) satisfies (2.2) as
Ix,-x[-*0, y, -- y, n- oe. l’]

Let us now formulate and prove the main result of the paper.
Denote by F* the optimal value of the problem (1.12)-(1.14), by (9,, 37) and F*

the solution and optimal value of the problem (1.16)-(1.18), respectively.
THEOREM 3.1. Let the conditions (A1)-(A8) befulfilled. Let the convergence (1.15)

hold. Then

lim F.* F*

and all -weak* limit points (., .9) of the sequence {(,, )7,)} ofsolutions of the problems
(1.16)-(1.18) solve the problem (1.12)-(1.14).

Proof By admissibility of limit point (, 37) and by Proposition 3.2 we have

flo(-) + j f2o(S, :, .9(s))cr(ds)F*

--<_lim._inr {flo(:g.) +
i=1

f:o(Si., 2., fiin)min)
lim inf F.*.

Let us show that the opposite inequality holds.
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Due to the strict feasibility condition (A6) there exists an admissible element
(xa,y(s)), x A+(1-)t)2, y =)t+(1-)t), 0N)t<_-l, such that

(1) ILo(X.)+Ifo(S, x., y.(s)),(ds)-Lo()-Ifo(S, , y(s)),(ds)l < /,
(2) for n -> nl we have (xa, nYx) Gn.
Indeed, consider inequality (1):

flo(xa)+ ; fzo(S, xa, ya(s))o’(ds)-flo()- I fo(S, , ’(s))o’(ds)

<= )t ,f,o()+ f f2o(S, , (s))cr(ds)

--fl0(X)- f f2o(S, 2, fi(s))o(ds)

Take )t so little that

s, xa, Y,x (s))o’(ds) flo(2) I f2o(S, Y, fi(s))o’(ds)

Now )t )t (e) is fixed. In order to guarantee the inclusion (2), (x, ,y) e G, for
all n ->_ nl, hi-sufficiently large, note that the sequence {f2j(s,,, x, (,Y)i,)} -converges
to f2j(s, x, y(s)), j 1,..., 12, i.e.,

(3.4) max
li=n

This convergence is guaranteed by properties of function f2j (continuity in (x, y) and
E0-measurability in (s) and by the definition of -convergence of the sequence {ny}
to y. Consequently,

f2j( Sin, Xh, /nYh )in) -- h (f2j( Sin, , nfi)in)

(,fzj(S, :, fi(s)))i,)+ h (,/2 (s, , (s)))i.

+ (1 A )(f2j(Sin, , (nY)in) ,f2(s, ,
+ (1 A )(,fz.i(s, , Y(s)))i,.

Since (,fzj(S,g, y(s))),<=O, j=l,.. ,12, i= l, n, (g,f(s,, f(s))),<--e <O,
j 1,’’’, 12, i-" 1,"" ", n, and due to -convergences (3.4) for arguments (,)7(s))
and (,)7(s)) we can conclude that there exists a sufficiently large index n such that
(x, ,y) G, for all n >= n

Then from the admissibility of the point (x,/,y) we obtain the inequality

Ao(:.)+ ,=, Ao(Si., X., Pi.)mi. -Ao(.) I f2o(S, ., .9(s))o(ds)
<= {flo(x,) +

i=,

f2o(Si.,xx,

-{flo(Xx)+ff2o(S, xz,yx(s))’(ds)}
+ f,o(X)+ff2o(S,x,y(s))o’(ds)-f,o(Yc)-ff2o(S,,y(s))o’(ds)
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Due to the -convergence (2.3) of the collection (Fo, {Fo,}) and continuity of.rio
the first difference in the last sum does not exceed e/2 as n >_-n2.

Then for n _-> max {nl, n2} we have

f,o(2,,) + f2o(Si,, 2,, fii,)mi, =<flo(2) + f2o(S, 2, fi(s))r(ds)+ e.
i=1 ./

Consequently, lim,_ F,* F*.
The remaining part of the theorem follows from the -weak* convergence of

{(2,k, 37nk)}, k= 1,. ., and the admissibility of its limit point (2, 37(s)).
Example. Let us illustrate the idea of discrete approximation with a simple

example. Consider the Example 2’ (with relatively complete recourse) from [17]: find
x6R and y L[0, 1] such that x->l, y(s)>=O and y(s)-x+s<=O for almost all s
minimizing the expression

Io’2x- y(s) ds.

Here 2=1 )5(s)=l-s, F*-3-
2.

Consider now the discretized problem: Find x R and y, R 1, 1, , n, such
that x -> 1, y, => 0 and y, x + i/ n <- O, 1, , n, minimizing the expression

1
2x-- Yin.

Fl i=

Clearly 2, 1, 37i, 1 i/n, F.* 3/2 + 1/2n. Hence, F,* F*, 2. 2 and 37. - 37
discretely.

4. Concluding remarks. The aim of this paper was to develop an approximation
scheme for stochastic convex programs with relatively complete recourse. The problem
in the space Rr L(o") was replaced by a mathematical programmingproblem in a
finite-dimensional space. This replacement is justified by the notion of discrete conver-
gence of mappings which describes the convergence of elements in different spaces by
a system of connection operators.

Unfortunately, we are not able to solve approximately the general stochastic
convex program with recourse. In general the "singular multipliers" [17] in Kuhn-
Tucker conditions result from the presence of induced constraints and we have to
consider the problem (1.12)-(1.14) in L in pairing with (L)*’ba(S, E, r)--the space
of bounded additive set functions which are absolutely continuous with respect to o-.
Since for an element/x ha(S, , o-) the Radon-Nikodym Theorem is formulated under
extremely strong conditions [13] (without the Radon-Nikodym Theorem we are not
able to discretize the set function tz from ba(S, E, o-)), it is quite difficult to define the
discrete convergence in (L)*.

Acknowledgments. The author expresses his gratitude to the referees for the con-
structive criticism concerning stochastic programming and discrete approximation
problems and to the editor for the encouraging attitude.
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ON A THEOREM OF
ARROW, BARANKIN, AND BLACKWELL*
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Abstract. A well-known theorem of Arrow, Barankin, and Blackwell states that if R" is equipped with
the natural ordering, then for every compact convex subset S of R" the set of properly minimal elements
of S is dense in the set of minimal elements of S.

In this note a result of Jahn is used to show a generalization of the density theorem of Arrow, Barankin,
and Blackwell. It will be shown that this theorem holds in a real normed space that is partially ordered by
a convex cone with a closed bounded base.

Key words, vector optimization, convex cones
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1. Introduction. A well-known theorem of Arrow, Barankin, and Blackwell [1]
states that if R is equipped with the natural ordering, then for every compact convex
subset S of R the set of properly minimal elements of S is dense in the set of minimal
elements of S. It was shown by Bitran and Magnanti in [2, Cot. 3.1] that this result
remains valid if R is partially ordered by an arbitrary closed convex pointed cone.
The Arrow-Barankin-Blackwell Theorem was extended by Borwein [3, Thm. 2] to
real normed spaces partially ordered by a convex cone with weakly compact base. In
[9, Satz 1] Salz proved the result of Arrow-Barankin-Blackwell in real normed spaces
with base norms.

Recently, Jahn [5] has shown that the Arrow-Barankin-Blackwell Theorem
remains true in real normed spaces, partially ordered by a Bishop-Phelps cone. What
the previously mentioned results have in common is that the ordering cones have
closed bounded bases. So we might conjecture that the Arrow-Barankin-Blackwell
Theorem is valid for real normed spaces partially ordered by a convex cone with a
closed bounded base.

In this note we will answer this conjecture in the affirmative (Theorem 4.1, Corollary
4.2). The idea of our proof is to extend the scope of Jahn’s result by means of a
characterization lemma concerning Bishop-Phelps cones.

Another problem that arises in this context is the following question. Jahn has
shown that the Arrow-Barankin-Blackwell result is valid in L and 11 spaces, and
Borwein has proven it in the case of reflexive spaces. What can be stated for a finite
product of some L-spaces and some reflexive spaces? In general this product space
is neither of L1 type nor is it reflexive. We will cover this question in an example of
a cooperative n player game in 5.

The result of Corollary 4.2 has an interesting consequence in vector optimization,
since it shows that a numerical solution of a convex problem can be computed by
solving appropriate scalarized problems.

2. Minimality, proper minimality and Bishop-Phelps cones. Before we present the
precise statements, let us recall some basic notions and definitions. In this section let
E denote a locally convex Hausdorff space partially ordered by a convex cone C. A
subset B of C is called a base of C, if B is convex and if each x C\{0} has a unique

* Received by the editors October 21, 1987; accepted for publication (in revised form) May 2, 1989.

" Technische Hochschule Darmstadt, Fachbereich Mathematik, AG5-Funktionalanalysis, Schlol3garten-
strasse 7, D 6100 Darmstadt, Federal Republic of Germany.
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representation x Ab for some A > 0 and some b B. Let us note that if C is a nontrivial
cone with basis B then we have 0 B. We call C pointed, if C -C {0}. Throughout
this paper let E* denote the topological dual space of E. The dual cone C* of C is
defined as

C* := {1 E*: l(x) >-_ 0 (x C)}.

An important subset of C* is the quasi-interior of C*, which we denote by C*:

c := {1 E*: l(x) > 0 (x C\{0})}.

If C has a closed bounded base then C* has nonempty interior in the strong topology
of E* [7, 3.8.4]. All those interior points are in C. Now let S be a nonempty subset
of E. The convex hull of S will be denoted by conv. (S). We call ff S a minimal
element of S (with respect to C), if

s (z- c) ={z}.
An element S is called a properly minimal element of S (with respect to C) if there
is some C * such that

t()<=t(x) (xS).

It is obvious that the set of properly minimal elements of S is always contained in the
set of minimal elements of S.

Suppose there are two norms p: E --> R+ and q: E - R+. We say that p is equivalent
to q if there are two positive numbers rn and M such that

rap(.)<- q( <= Mp( ).

Thus p is equivalent to q if and only if p and q induce the same topology on E.
Let (E, []. I]) be a real normed space, and let S* denote the unit sphere of the dual

space E*. A subset K of E is called a Bishop-Phelps cone if there is some e S* and
a (0, 1] such that

K {x E: l(x) >= o ]lx]]}.
It is easy to see that K is a pointed closed convex cone. If K is not trivial, then K
possesses the closed bounded base

B:= {x K: l(x) 1}.

But even in R with the Euclidean norm it is not true that every convex cone with a
closed bounded base is a Bishop-Phelps cone. The reason for this phenomenon is that
every base of a Bishop-Phelps cone in this space must be the convex hull of some
ellipse. Thus the natural ordering cone R+ cannot be a Bishop-Phelps cone, since
every base of it must be a triangle. On the other hand, R+ is a Bishop-Phelps cone if
R is equipped with the l-norm. In the next section we will investigate the relation
of Bishop-Phelps cones with respect to different norms.

3. Representation of cones as Bishop-Phelps cones.
DEFINITION 3.1. Let (E, [[. [[) be a normed space. Let C be a subset of E. We say

that C is representable as a Bishop-Phelps cone, if there is some l E* and a norm
p: E - R+, which is equivalent to I1" II, such that

c {x E: p(x) <- l(x)}.
In view of the examples of Bishop-Phelps cones at the end of 2, we now are

able to give a unified characterization of Bishop-Phelps cones generated by different
norms.
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THEOREM 3.2. Let (E, I]" II) be a real normed space. Let C be a nonempty subset of
E with C {0}. Then the following assertions are equivalent:

(1) C is representable as a Bishop-Phelps cone.
(2) C is a convex cone with a closed bounded base.

Let us note here that every convex cone with a closed bounded base is closed and pointed
[7, Prop. 3.8.3].

Proof If C is representable as a Bishop-Phelps cone, then there is some E*
and a norm p:E - R+, which is equivalent to I1" and such that

c {x : p(x) <-/(x)}.

It is easy to see that C is a convex cone. The continuity of and p imply that C is
closed. Let B:= {xe C:/(x)= 1}. Then B is a base (cf. [6, Lemma 3.3]). We have
p(x)-<_ 1 for all x B. Since I1 and p are equivalent norms, the set B is bounded.
This establishes (1) of Theorem 3.2.

Let C be a convex cone with a closed bounded base Bo. Since 0 Bo there is some
continuous linear functional, which strictly separates the convex sets {0} and B0. Thus
we have some E* and some > 0 such that

0<K<--/(b) (bBo).

Let us consider the set B := {x C: l(x) 1}. It is easy to verify that B is a closed base
of C. Since Bo is bounded there is some M > 0 such that [[b[[ =< M for all b Bo. We
will show now that B is also bounded. Let x be an element of B. Then there are p > 0
and b Bo such that x pb. Thus we have

p=p/l=p/l(x)= 1/l(b)<-K

From this relation we derive the inequality

x p b <-_ ,, M,

-1

which shows that B is bounded. Now pick 6>0 such that l(u)<=1/2 for all u Ua:=
{x E" [Ixll <- }. Let

F:= conv. (-BU U U B).
Then F is convex balanced and absorbing. These properties of F imply that the
corresponding Minkowski functional

p(x):=inf{t>O" xtF} (xE)

is a seminorm on E. Furthermore, F is the convex hull of a bounded set. Thus F is
also bounded. Consequently, p is a norm on E. Since F is bounded, there is some
m > 0 with IIx[I <-m for all x F. From the convexity of the sets B, -B, and U, it
follows that each x F has a representation

x hb +/zu + ,(-d)

for some elements b, d B, u U and nonnegative numbers h, /x, p, that satisfy the
condition +/x + v- 1.

Now we will show that p(. and I1" are equivalent. Let x E with Ilxl] =< 3. Then
we have x U F, and this renders p(x)<= 1.

Now let x E with p(x)-<- 1. Then we get x6 F. Let M:= max {m, 3}. Thus we
have Ilxl] M. The two preceding conclusions can be summarized in the following
inequality:

6p(x) <= [Ix]] _-< Mp(x) (x E).

This shows that p(. and [[. are equivalent.
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The proof will be complete if we can show that

(1) C {x E" p(x) <- l(x)).

We will denote the right side of (1) by A. First let us show the inclusion C A. Let
x C. Then there is some A =>0 and some b B such that x Ab. Thus we have
x AB = AF, and this renders p(x) _-< A. Consequently, we get

p(x)=<A. 1 A/(b) =/(Ab) l(x)

and this implies x A. It remains to show the inclusion A C. We need only to prove
that any element x E is contained in C if it satisfies the conditions p(x)= 1 and
l(x)_-> 1. So let x E be an element with these properties. Since p(x)= 1, we have
x ’F for all " > 1. Now let (’,),N be a sequence of real numbers with % > 1 for all
n N and lim,_ -, 1. Since x ’nF for each n N there is some element b, B,
dn B, and un Us and nonnegative numbers An, n, un with An +/n + un 1 such that

(2) x %(Anbn +/,un + un(-dn)).

We have 0 <_- An --< 1, 0-</n -<- 1, 0-<_ u, -<_ 1. Then we can select convergent subsequences
(Anj)jN, (/nj)jr, (unj)j. We denote the limits of these subsequences by ,, /, and
u, respectively. Since l(x)->_ 1 we derive from (2)

(3) 1 < I(X) < 7"nj(lni-1t" lX. Un
If we let j- c in (3), we obtain the following inequality"

(4) 1 _-< A +1/2/ u.

Since AnLj +/,j + U, 1, as j we get

(5) l=A+/+u.

Combining the inequality (4) with (5) leads to the inequality

1/2 +2,=<0.

Since and u are nonnegative, we have /- 0 and u 0. From this it follows that

n. - 0, u, 0, A,- 1. Since Us and B are bounded, we have

So from (2) it follows that

Sinc__e %A,- 1, it follows that b,- x. But b,. is contained in B. Consequently, we have
x B B = C. Thus x C and the desired conclusion has been shown.

Now we will investigate convex cones in Rn. In the sequel let R be equipped
with the Euclidean norm.

LEMMA 3.3. Every pointed closed convex cone in R admits a compact base.
Proof Since R is locally compact, a well-known theorem of Klee [7, Thm. 3.12.8]

renders the assertion.
The next assertion follows directly from Lemma 3.3 and Theorem 3.2.
THEORE 3.4. A convex cone in R is representable as a Bishop-Phelps cone ifand

only if it is closed and pointed.

4. A generalization of the Arrow-Barankin-Blaekwell Theorem. Now we are able
to prove the previously announced results.
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THEOREM 4.1. Let (E, I1" II) be a real normed space, partially ordered by a closed
convex cone C with a closed bounded base. Let S be a nonempty convex subset of E, and
let Y S be a minimal element of S such that the set

:= {x e S" [Ix-2]] 1}

is weakly compact. Then for every e > 0 there is some l C and some x S such that

l(x)=minl(x) and x X e.
xGS

Proof Let ff be some minimal element of S with respect to C and choose e > 0.
Since C is a convex cone with a closed bounded base we can apply Theorem 3.2. Thus
there is some l E* and a norm p:E R+ that is equivalent to ]]. such that

C {x E: p(x) l(x)}.

Since p is equivalent to []. there are numbers m > 0, M > 0 with

So q := (1/m)p is also a norm equivalent to J]. J]. Let

T:={xS: q(x-ff) 1}.

It is easy to check that T is a subset of S. The set T is closed sincefl is equivalent to

]. . Thus T is a closed convex subset of the weakly compact set S, and therefore T
is weakly compact also. Then T is also weakly compact in the space (E, q) since the
weak topologies of (E, q) and (E, ]].) coincide. Another consequence of the
equivalence of . and q is that C remains the same for both spaces (E, I1" II) and
(E, q). Let us define

:= sup l(x)" x e , q(x) 1

Since is continuous in (, q) and C {0} the inequality 1N <m holds. Now we
let := 1 /) e (0, 1 and lo := (/ m) 1. Then lo has norm one in the dual space of (, q)
and we have

c {x e : q(x) /o(x)}.

Thus C is a Bishop-Phelps cone in (E, q). Fuhermore, T is a weakly compact set
in (, q).

We now may apply Jahn’s result [5, Thm. 3.1] to the set S as a subset of the space
(, q): Then for e > 0 there is some x and some l e C * such that

(xeS 

and q(-x)N e. Thus we have

1

This completes the proof.
In the remainder of this section we will present some special cases of Theorem 4.1.
In [3] Borwein has already proved that the set of minimal elements of some weakly

compact convex set is contained in the weak closure of the set of properly minimal
elements, if the ordering is induced by a cone with a compact base. So in a reflexive
space the set of properly minimal elements is dense (with respect to the weak topology)
in the set of minimal elements if the cone has a closed bounded base.
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Jahn has shown in [5, Cor. 3.5] a result of similar type. He first considered a
space ordered by some cone C with a closed bounded base. In this case he has proved
that a minimal element of of some weakly compact set can be approximated (with
respect to the norm topology) by properly minimal elements, if ff is also minimal with
respect to some Bishop-Phelps cone containing C.

We can obtain both results as immediate consequences of the following corollary,
which follows easily from Theorem 4.1.

COROLLARY 4.2. Let (E, [[" [I) be a real normed space, partially ordered by a convex
cone with a closed bounded base, and let S be a weakly compact convex subset of E. Then
the set ofproperly minimal elements of S is dense (with respect to the norm topology) in
the set of minimal elements.

If E Rn, we derive from Theorem 4.1 and Lemma 3.3 the result of Bitran and
Magnanti [2, Cor. 3.1].

COROLLARY 4.3. Let R be partially ordered by a closed convex pointed cone. Let
S be a closed convex subset of Rn. Then the set ofproperly minimal elements orS is dense
in the set of minimal elements of S.

Since every locally convex Hausdorff space of finite dimensions is isomorphic to
R (for a suitable integer n), Corollary 4.3 remains true for such spaces.

5. Example. In this section we will present an application of Corollary 4.2. We
will consider an example from [6, Ex. 4.6].

5.1. Cooperative n player game. Let X, El,’’ ", En be real locally convex Haus-
dortt spaces. Let each space Ei (i= 1,..-, n) be ordered by a closed convex cone C
(i= 1,..., n). Furthermore, let T be a nonempty subset of X. For each player there
is given a mapping Pi" T-. Ei, which he tries to minimize on T.

As all players act exclusively cooperative this game can be viewed as a problem
of vector optimization.

5.2. Problem of vector optimization. Let E := E E2 " En be the usual prod-
uct space ordered by the convex cone C := CI C2’" C,. Let P:T-> E be the
function P(t):=(P(t),. .,Pn(t)) (t T).

In this setting we can reformulate the cooperative n player game: all points of
S:= P(T), which are minimal with respect to C, must be localized. We now are
interested in conditions that assure the Arrow-Barankin-Blackwell Theorem holds in
E, if it holds in each Ei. Corollary 4.2 states that this theorem holds in each E, if Ci
has a closed bounded base.

LEMMA 5.3. If each of the convex cones C1, ", C, has some closed bounded base,
then C := C1 C2 . C, also has a closed bounded base.

Proof Let B1,..., B, be the closed bounded bases of C1," ", Cn, respectively.
Consider the set

B:= U AB x. x A.B..

We easily check that B is a closed bounded base of C.
So if C,. ., C all have closed bounded bases, with the aid of Lemma 5.3 we

can immediately apply Corollary 4.2 to the setting in 5.2.
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THE EXISTENCE OF CATCHING-UP OPTIMAL SOLUTIONS FOR A CLASS
OF INFINITE HORIZON OPTIMAL CONTROL PROBLEMS

WITH TIME DELAY*

DEAN A. CARLSON?

Abstract. The optimal control of a system whose states are governed by a nonlinear autonomous Volterra
integrodifferential equation with unbounded time interval is considered. Specifically, it is assumed that the
delay occurs only in the state variable. The results obtained extend those of Brock and Haurie [Math. Oper.
Res., (1976), pp. 337-346] and Leizarowitz [Math. Oper. Res., 10 (1985), pp. 450-461]. In particular, it is
shown that (under appropriate hypotheses) catching-up optimal solutions asymptotically approach a unique
optimal steady state, and thus enjoy the so-called "turnpike" property found in the economics literature.
By combining this result with an associated optimal control problem, the desired existence result is obtained.
Furthermore, it is remarked that, in addition to extending these earlier works to the time-delay case, the
results presented below utilize convexity, seminormality, and growth hypotheses that in some cases are
weaker than those encountered in the above-mentioned papers.

Key words, catching-up solutions, optimal control, integrodifferential equations

AMS(MOS) subject classifications, primary 49A10; secondary 90A

1. Introduction. The study of optimal control problems defined on infinite intervals
has recently been a rapidly growing area of research. The primary area of application
of these problems, although not the only one, concerns models of economic growth
in which we search for a path of optimal capital accumulation. In these models it is
shown that there exists an optimal asymptotic sustainable consumption in the economy.
For a detailed introduction to optimal control problems of this type the reader is
referred to the monograph of Carlson and Haurie [6].

It has long been recognized that time delays are important in formulating economic
models. Indeed as early as 1935, Kalecki [14] introduced a class of such models
described by differential-difference equations. These models were further investigated
by Leontief 16] and others. More recently, models with infinite delay were formulated
to describe optimal dynamic advertising. In particular, we refer to Hartl [12] for such
a model as well as to the article of Hartl and Sethi [13].

In the present paper, we are concerned with the existence of catching-up optimal
solutions for a class of models in which the states are governed by a nonlinear
autonomous Volterra integrodifferential equation with infinite delay where the delay
occurs only with respect to the state variable. The results we obtain extend the original
results of Brock and Haurie [5], as well as the generalization given in Leizarowitz 15],
for optimal control models whose states are governed by autonomous ordinary differen-
tial equations (see also Carlson and Haurie [6]).

With these remarks, the plan of the work presented below is as follows. In 2,
we introduce the model considered and indicate the basic hypotheses assumed
throughout our work. Section 3 is devoted to summarizing several technical results
concerning linear hereditary operators due to Marcus and Mizel [17] as well as
presenting a general lower closure theorem that will be utilized in our presentation.
The desired existence results are given in 4 and we conclude our discussion in 5
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by presenting several examples, including a version of the classical Ramsey model
with a distributed time delay.

2. The basic model. We consider a system described by a Volterra integrodifferen-
tial equation of the form

(2.1) 2(t)=f(x(t), u(t))+ I g(t-s)h(x(s)) ds a.e.t=>0,
d-

where x’(-00, 00)- E is a bounded continuous function that is locally absolutely
continuous on [0, 00) and statisfies the prescribed initial condition

(2.2) x(s) Xo(S) for all s < 0,

where Xo" (-00, 0] E" is a given bounded continuous function, as well as the state
constraints

(2.3) x(t)X fort(-, 00),

in which X is a closed subset of the n-dimensional Euclidean space E n. The control
function u’[0, 00)- E is assumed to be Lebesgue measurable and satisfies the feed-
back control constraints

(2.4) u(t) U(x(t)) a.e. 0 -< t,

where U" X 2’" is a point to set mapping with closed graph M {(x, u)" x X and
u U(x)}.

As regards the functions f g, and h, we assume that f" M- E" and h" X- E p

are both continuous and that g (gij)np is an n p matrix function defined for t-> 0
with entries satisfying

(i) ]g0(t)l dt < 00,

(2.5) (ii) tlgj( t)l dt < 00,

m=l

where IIg011 is the essential supremum of gi restricted to the interval Ira-l, m],
m 1, 2,.... We remark that the assumption (2.5)(iii) given above implies (2.5)(i),
but we have included both for definiteness.

The performance of the above control system is described for any positive time
T by the integral functional

(2.6) JT-(x, u)= f(x(s), u(s)) as,

where fo. M E is a given lower semicontinuous function.
With this notation, we give the following definition.
DENTON 2.1. A bounded continuous function x" (-00, 00) E" will be called

a trajectory if x is locally absolutely continuous on [0, 0o) and if there exists a Lebesgue
measurable function (referred to as a control) u’[0, 0o) E" such that the pair {x, u}
satisfies (2.1), (2.3), (2.4), and the map tf(x(t), u(t)) is locally Lebesgue integrable
on [0, 00). If in addition, the trajectory x satisfies the prescribed initial condition (2.2),
we will call x an admissible trajectory and u an admissible control.
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For brevity we let A denote the set of all trajectory-control pairs {x, u} and let
Ao c A be the set of all admissible pairs.

Since the system described above is defined for all >= 0, we are primarily concerned
with the performance over the entire interval [0, ). We do not, however, assume
a priori that the performance criterion Jr(x, u) has a finite limit as T-. This
necessitates the need to consider a weaker notion of optimality. For our treatment we
restrict our attention to the following definitions.

DEFINXION 2.2. An admissible pair {x*, u*} Ao is called
(i) Strongly optimal if J(x*, u*)= limT_JT(x*, U*) is finite and if for every

{x, u} Ao we have

(2.7) J(x*, u*) <= lim inf Jr(x, u);

(ii) Catching-up (or overtaking) optimal if for each e > 0 and pair {x, u} Ao,
there exists r z(e, x, u) 0 such that for all T >- - we have

(2.8) J(x*, u*) <= J(x, u) + e.

Remark 2.1. The notion of strong optimality given above is, of course, the
traditional concept of a minimizer. On the other hand, catching-up optimality is a
weaker concept that was introduced by von Weiszicker [20] in 1965. The term overtak-
ing optimality was apparently first used in Brock and Haurie [5]. For a detailed
treatment of this concept of optimality as well as several others we refer the reader
to [6].

As is usual in discussions of existence of optimal solutions for optimal control
problems, it is necessary to place certain convexity and growth hypotheses on the
model. These conditions are needed to ensure that appropriate lower semicontinuity
and compactness properties hold. The assumptions we require are described as follows.

(A1) For each x X, the set (x) given by

(2.9) (x) {(z, z) E ’+’’ z->-f(x, u), z f(x, u), u U(x)}

(2.10)

(A2)

is a nonempty closed, convex set that satisfies the upper semicontinuity
condition property (K) given as

(x)= cl[U{(y)’ly-xl <6}]
6>0

where[. denotes the usual Euclidean norm on E".

We assume that for each e > 0 there exists c > 0 such that for all (x, u) M
we have

(2.11) If(x, u)l + Ih(x)l c + ef(x, u).

Remark 2.2. The conditions placed on the sets (x) described above are standard
and it is well known that for each T> 0 they guarantee, in the ordinary case (i.e.,
h(x)=0), that the functional (x, u)--)Jr(x, u) is lower semicontinuous on Ao with
respect to the weak topology in AC([0, T]; E’), the space of absolutely continuous
functions, placed on the set of admissible trajectories. (That is, the topology of pointwise
convergence of initial conditions and weak Ll-convergence in the derivatives of x.)
The growth condition given in (A2) provides for the equi-absolute integrability of the
derivatives of the admissible trajectories on [0, T] in a minimizing sequence, and
consequently (by the Dunford-Pettis criterion), gives the requisite compactness condi-
tions. We further remark that in the ordinary differential equation case this growth
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condition is weaker than the growth condition used in Leizarowitz [15], but it is
equivalent to the classical growth hypothesis of Nagumo and Tonelli, which is referred
to in Proposition 3.2 of [15]. For a complete discussion of these matters see Cesari
[9, 10.4].

To conclude our description of the model, we introduce the optimal steady-state
problem. As is usual in the treatment of autonomous infinite horizon optimal control
problems, it will be established that the catching-up optimal solution, which we exhibit,
will converge to the optimal steady state. In the economics literature this is commonly
called a turnpike property. Such a property was first introduced by Samuelson [18]
(see also Cass [8]) in the context of optimal economic growth. We now describe this
steady-state problem.

We assume that the optimal steady-state problem (OSSP) described as

(i) minimize fO(x, u)

(A3)

(2.12) (ii)

subject to

0=f(x, u)+ g(s) as h(x),

(iii) xX,

(iv) u U(x)

has a solution (2, tT) E n+", with uniquely determined.

We further assume that there exists/ E such that the lower semicontinuous function
L M - E given by

(2.13) L(x, u)=f(x, u)-f(g, f)+ ,f(x, u)+ g(s) ds h(x)

is nonnegative, where (.,.) denotes the usual inner product in E".
Remark 2.3. The OSSP described above plays an analogous role for the nondelay

infinite horizon optimal control problem described by

minimize f(x( t), u( t)) dt

and

subject to

)(t)=f(x(t), u(t))+ g(s) ds h(x(t)) a.e. t=>0,

x(O) xo(O),

x( t) e X fromte(-,),

u( t) U(x( t)) a.e. [0, ).

In fact, under essentially the same hypotheses as those utilized here, we can establish
the existence of a catching-up optimal solution, say {, a}, for the nondelay case (see,
e.g., Brock and Haurie [5] and Leizarowitz [15]) by appealing to established results.
We refer the reader to these results that are outlined in Carlson and Haurie [6]. In
particular, we remark that in all these results it is established that

lim )(t)-- 2.
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As we will see in 4 this asymptotic convergence property also holds for the delay
case considered here. In this way we see that for large > 0, the optimal trajectories
for both systems are close together.

Concerning the function L we have the following elementary result.
PROPOSITION 2.1. Under the hypotheses placed on X, U, fo, f h, and g, if the sets

O(x), given by (2.9), satisfy the conditions outlined in (A1) we have that the sets

defined for x X by

L(X) {(Z, Z)" Z>- L(x, u), z f(x, u), u U(x)}

enjoy the same properties. Furthermore, iff h, andf satisfy the growth condition (A2),
the same holds for f, h, and L. That is, for each e > 0 there exists e > 0 so that

If(x, u)] + ]h(x)] <- c + eL(x, u)

for all (x, u) M.
Proof The convexity and upper semicontinuity properties of the sets L(X) are

an easy consequence of the fact that for each x e X the affine mapping F,, "(x) L(x)
defined by

Fx(z,z)= z-f(,a)+ p,z+ g(s) ds h(x),z

is one-to-one and onto. We leave the details of this argument to the reader.
To establish the growth condition we let e>0 be given, let K=

max [[Pl, IP I0 g(s) dx[], and observe that for each (x, u)e M we have

f(x, u)= L(x, u)+f(, a)- p,f(x, u)+ g(s) ds h(x)

<--_ L(x, u) +fo(), a) + K[lf(x, u)l + Ih(x)l].
Let r/>0 be chosen so that r/<min [e/(l+eK), l/K] if K 0 and r/= e if K =0.
From (A2) there exists cn > 0 such that (2.11) holds with e r/. This implies that for
all (x, u)e M,

If(x, u)l + lh(x)] <-_ c, + r/[g(x, u) +f(Y, a) + K[lf(x, u)l + lh(x)l]]
or, equivalently,

(1-rlK)[lf(x, u)l+lh(x)l]<-[c, + nf(x, ri)] + rtL(x, u).

From our choice of r/ it follows that (1-K)- < e and that 1-K >0. Therefore,
we obtain

If(x, u)l+[h(x)l<-(1-nK)-’(c,,+nf(g, ))+ n L(x, u)
1-qK

<-(1-nK)-’(,,+nf(x, O))+eL(x, u).

The desired conclusion follows by choosing c > 0 satisfying

c>(1-nK)-’(,+nf(X, )).

3. Linear herclitary operators anti a lower elosur theorem. To establish our results
we will need certain properties of the linear integral operator (3 defined by

(3.1) (Gy)(t)= g(t-s)y(s) ds= g(s)y(t-s) ds, -oo< <co,

in which g is an n x p matrix function satisfying the condition (2.5)(iii). Clearly, the
operator G is not well defined for all choices of functions y. However, operators of
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this type have been thoroughly examined in Marcus and Mizel [17], who chose as a
domain for this operator the space Nl((-o, c); E P) consisting of all locally integrable
functions y Loc((-, ); E P) with the following property"

(3.2) I[[Y[II- sup lY( t)] dt <.
It is easy to see that I[]’111 defines a norm on the space Nl((-c, c); E P). With this
notation we summarize the results from Marcus and Mizel [17] that we require in the
following theorem.

THEOREM 3.1. Let g be an n p matrix function on [0, ) satisfying (2.5)(iii) and
define the operator G on Nl((-, c); E p) by (3.1). The following properties hold.

(A) For every y Nl((-o, ); E p) the integral (Gy)(t), defined by (3.1) for each
(-, ), exists as a Lebesgue integral.
(B) For every y Nl((-, ); E P), thefunction G(y) (-c, e) - E is continuous.

(C) If {Yk}k- = N1((--e, c), E p) is a norm bounded sequence (i. e., there exists
g > 0 so that Illy [ll <- g for all k) such that for some y Sl((-c, ); E P) the sequence
{Yk I.)}k--1 converges strongly in Ll(a, fl) to y for all real numbers a, fl, a < fl; then
the sequence {G(yk)}kl converges uniformly on compact subsets of (-, ) to G(y).

(D) If D NI((-, c): E P) is a norm bounded subset such that D is uniformly
integrable on (-T, T)for every T>0, then the set G(D)= {G(y): y D} is precompact
in C([-T, T]: E"), the space of continuous functions on [-T, T], for all T>0.

Proof The proof of the above results are found in Lemmas 7.5 and 7.10 of [17].
Remark 3.1. In [17] the kernel g is assumed to satisfy stronger hypotheses than

those indicated above (see [17, p. 21]). However, a careful examination of the proofs
for the results given above shows that this additional hypothesis is not required. On
the other hand, this additional hypothesis is needed to prove all the results given in
[17, Lemma 7.5]. We also note that the proof of part (D) above given in [17, Lemma
7.10] is only concerned with D N((-, 0); E P) but a straightforward modification
of their argument gives the result for the case considered here.

In addition to the above theorem, we will need the following lower closure theorem.
For the applications of this result in this paper, the sets Gk below are subsets of the
time axis (-c, ).

THEOREM 3.2. Let G be a tr-finite measure space, G kC=l Gk where Gk Gk+
and meas (Gk)< c, let X E be closed, and let R X- 2 e’+r be a given set-valued
map that is closed and convex valued and, in addition, satisfies the upper semicontinuity
property K) given by (2.10). Furthermore, assume that there exists measurablefunctions
Tlk Gk - E l, hk: Gk - E l, A:G E 1. k Gk- En, G- E n, Xk Gk- E n, and x: G-
E, k 1, 2, satisfying the following conditions:

For each index k, and almost all Gk Xk (t) X and rig (t), k (t)) R Xk (t)).
(ii) xk(t) -- x(t) pointwise, k - weakly in Loc(G; E), and Ak - A weakly in

Lo(G; E l) as k.
(iii) A Ll(G; El), l(t)>--Ak(t) almost everywhere in Gk, and -c<i=

lim inf_ r/g(t) dt +o.
Then there exists r LI (G; E ) such that

x(t)6X and (rl(t),((t))R(x(t)) a.e.tG

and

-< I q(t) dt <- i.
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Remark 3.2. The above result, in a control-theoretic format, is originally due to
Baum [4], in which the upper semicontinuity property (K) is replaced by property
(Q). In terms of orientor fields (i.e., the above format) Baum’s result was given
by Bates [3]. Finally, the assumption property (Q) was replaced by property (K) in
Balder [2].

4. Catching-up optimal solutions. With the notation and hypotheses given above
we now address the problem of the existence of catching-up optimal solutions. We
begin by investigating the asymptotic convergence properties of certain admissible
trajectories to the optimal steady state . Following Leizarowitz [15], we let 0% denote
the set of all trajectories x:E-> E satisfying

(4.1) L(x(t),u(t)):O a.e.t>0

where u’[0, oe)- E" is a measurable control function corresponding to the trajectory
x (see Definition 2.1). We observe that the optimal steady state x(t)= : is a trajectory
such that 0% is nonempty. As regards to o%, we make the following assumption.

(A4) For each e>0 there exists t >0 such that for all t>-t and all x6,

Concerning Assumption (A4) we remark that it corresponds to property (S) in
Leizarowitz [15] and to property (c) of Carlson, Haurie, and Jabrane [7]. As stated,
this assumption is difficult to verify and will not hold in general. In the ordinary
differential equation case (i.e., h(x)-= 0) it has been shoWn in 15] that under suitable
convexity conditions this condition is generic. The infinite-dimensional nature of the
integrodifferential equation model considered here precludes such a possibility in our
situation. Consequently, we content ourselves by presenting explicit conditions that
imply this assumption. To this end we introduce the following alternative assumption.

(A4’) For every e>0 there exists 3=6(e)>0 so that if xX satisfies Ix-21> e,
then L(x, u) >- 3 for all u U(x).

LEMMA 4.1. If (A4’) holds, then (A4) holds.
Proof We assume that (A4’) holds and let x: E E" be a trajectory (see Definition

2.1) so that L(x(t), u(t)) =0 almost everywhere on [0, oo) (i.e., x ). We now show
that x(t)=- Y on [0, oe). Indeed, if there exists ->_-0 for which x(-)# ), the continuity
of x allows us to assert the existence of an eo > 0 and c > 0 so that for all % - + c)
we have Ix(t)-)l> eo. However, by (A4’) there exists 30>0 so that L(x(t), u)> 3o
for all u U(x(t)) and almost all [% -+ c). Clearly, this is a contradiction. Therefore
x(t) ) on [0, oo) and thus, since x was arbitrary, Assumption (A4) holds since
for each e > 0 we can choose t 0.

The assumption (A4’) appears in earlier works concerning infinite horizon optimal
control (see, e.g., Carlson and Haurie [6, Chap. 4] and Brock and Haurie [5]), where
its role is analogous to (A4). In fact, it was not until Leizarowitz [15] that (A4’) was
replaced by (A4).

A weaker condition than (A4’), which is still sufficient for (A4) to hold, is

(A4") The optimal steady state ) is. uniquely determined and if L(x, u)=0, then

It is easy to see that (A4’) implies (A4"). Moreover, it is also easy to see that Lemma
4.1 holds with (A4") replacing (A4’).
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The implications of (A4’) (or (A4")) differ slightly from the ordinary differential
equation case. In particular, (A4’) (or (A4")) implies ff {} in the nondelay case. In
the delay case considered here it is possible (under (A4’) or (A4")) that there exists
x ff that is not identically equal to ff on (-00, 00). This is demonstrated in the following
example. However, we remark that we still essentially have , as the singleton ff {if},
since given x with x(t)# for <0 we must have (under (A4’) or (A4")) that
x(t) on [00, 00).

Example 4.1. We consider the control system

(t)=u(t)+ft 2e-(t-S)x(s)ds a.e. on[0,00),
$_

x(s)=(s) for all s =<0,

x( t) [-1,1] on[0,00),

u(t)[-1,1] a.e. on[0,00).

Here we assume that q:(-00, 0]-[-1, 1] is a fixed given initial function. For the
objective functional we take

ioJr(x, u)= [2x(t)(4x(t)+6x(t)-9)-9u(t)] dt

for T>_-0. The corresponding optimal steady-state problem becomes

minimize {2x(4x +6x -9) -gu: 0 u + 2x, x e [-1, 1], u [-1, 1]}.

It is a straightforward argument to show that (A3) holds with ) 0, 0, and/5 9.
Thus,

L(x, u) 2x(4x2 +6x -9) -9u + 9(2x + u) 2x(4x2 +6x) 4x(2x + 3)

and since (x, u) [- 1, 1 x [- 1, 1 we have

L(x, u) >= 4x,
so that if Ix-ffl Ixl > e we have, upon choosing 6 e2/4,

L(x, u) >- 6.

Consequently, the assumption (A4’) holds. Clearly, x(t)-- 2 0 is in o%. We now show
that 2 (-00, 00) - [.- 1, ], defined by

(1/2)(e’-l) for t<0,
(t)=

0 for t>=0,

is also in o%. Indeed, we observe that by taking :[0, 00)-> [-1, 1] to be

(t) =1/2e -t,

we have for all >= 0 that

f =-1 _, fo (,_.)( eS )(t)+ 2e-(t-)(s) ds
2
e + 2e- -1) ds

_, 1 e-’=-e =0.
2 2

This implies that is indeed a trajectory with L((t), (t))=0 for all >=0 as desired.
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Condition (A4’) is finite-dimensional in nature and as a consequence is easier to
verify than (A4). To present general conditions that, on the model we consider, are
sufficient for (A4’) to hold requires stronger convexity hypotheses. The following
proposition gives conditions that permit us to conclude that (A4’) holds.

PROPOSITION 4.1. Suppose thatM {(x, u): x X, u U(x)} is compact and convex
with nonempty interior, that f: M-> E is strictly convex, lower semicontinuous and
bounded below, and that F M-> E n, defined by

F(x, u)=f(x, u)+ g(s) ds h(x),

is continuous and concave (i.e., each component Fi, F= (F1,’’’, Fn) is a concave

function). Furthermore, suppose the following:
(i) There exists (x, u) M so that Fi (x, u) > 0 for 1, 2,. , n; and
(ii) If (x, u) M is such that Fi (x, u) >-_ 0, 1, 2, , n, then there exists v U(x)

so that F(x, v)= 0 and f(x, v)-<_f(x, u).
Then (A3) and (A4’) hold.
Proof. By the classical Weierstrass Theorem it is clear that the optimization

problem

minimize {fo(x, u): 0 =< F (x, u ), 1 _-< _-< n }
(x,u)M

has a solution (, if). Moreover, since fo is strictly convex, (2, fi) is unique. Condition
(i) is Slater’s constraint qualification for the above convex program. Consequently,
there exists a vector/ (/1,""",/,) e E ",/--> 0, so that

f(x, u) + (fi, F(x, u)) >-_ f(Y, ),

for all (x, u) M. Moreover, from (ii) it follows that F(2, fi)--0 so that we clearly
have that (A3) holds. To check (A4’) we proceed by contradiction. That is, we assume
there exists eo>0 and a sequence of points {(x,, u,)}=l in M so that [x,-[> eo but

0<-_ L(x,,

( (Io-f(x., u.)-f(X, fi) 4- p.f(x.u) 4- g(s) ds h(x)

The compactness of M allows us to choose a subsequence, say still ((x.,
which converges to some point (, ) M. This implies

0 lira inf L(x., u. L(, ) - O,

giving us L(2, )=0. However, the map (x, u)-f(x, u)+(,F(x, u)), (x, u) M, is
strictly convex so that (2, ) is the unique minimizer. Thus we must have (, ) (2, ),
which is clearly a contradiction since ]2-ff[ lim,_ Ix,- 2[ > eo. Thus, (A4’) holds.

Remark 4.1. The above proposition is not new and analogues of this result, for
the ordinary differential equation case, appear in earlier works (see, e.g., Carlson and
Haurie [6, Lemma 4.4]). While this result requires fo to be strictly convex on M we
remark that this is only a sufficient condition for (A4’) and is not necessary. Indeed,
this convexity condition is not satisfied in Example 4.1. To see this consider the points

=1 have(-1, 0) and (-1/2, 0) and observe for h that we

f(h( 1)+(1 h)() 0)135 _>f(-10)+2fl_- ( )3308 -’ :2’

which violates the definition of convexity.
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With this discussion concerning hypothesis (A4) in hand, we continue our presenta-
tion with the following result.

PROPOSITION 4.2. Let X c E be closed, .let U X- 2" be a set-valued map with
closed graph M, let f0: M- E be lower semicontinuous, let f: M E and h X E p

be continuous, and let g be an n p matrixfunction satisfying (2.5). Furthermore, assume
that (A1)-(A4) hold. If {x, u} Ao is such that

(4.2) u(t)) dt <

then lim,_, x (t) g.

Proof We proceed by contradiction and suppose that {x, u} is as above, but
limt_,oo x(t) g. This implies there exists an eo> 0 and times tk, k 1, 2, , increasing
to positive infinity such that Ix(t)-)zl > o for all k. As a consequence of (A4) there
exists to>0 such that for all t>-_to we have ]s(t)-gl<eo/2 for all trajectories s o%.
Define the sequences of functions xk (-oo, eo) --> E and uk (to- tk, oo) --> E by the
formulas

Xk (t) X + tk t0), Uk (t) U + tk t0).

Clearly, we have for all k 1, 2,. , and almost all >- to- tk that

2k(t)=f(xk(t), Uk(t))+ ffo g(t--s)h(Xk(t)) ds,

uk( t) U(xk( t)), Xk(t) X.

We further note that for each k 1, 2,..., xk satisfies the "initial condition"

Xk (S) Xo(S + tk to) for all s <- to- tk.

As we will see, since (to-tk, 00) tends to (-oo, oo) as k- o0, this fact is not required
for our proof. Moreover, since by definition t- x(t) is bounded, the sequence {Xk}k=
is uniformly bounded and satisfies Xk(tO)--X(tk). From the above it is evident that Xk
is a trajectory corresponding to the control function Uk (see Definition 2.1). In addition,
we observe that for any T> 0, and all k sufficiently large

to+ T
L(Xk( t), Uk( t)) lim L(x( t), u( t)) dt O,

k
dt to_ T

and thus by the growth condition (A2) applied to f, h, and L (see Proposition 2.1) we
have that the sequences of functions zk (t) f(xk (t), uk (t) and Yk (t) h (Xk (t) ), k 1,
2,’’’, are equi-absolutely integrable on [-T, T] for all T> 0. Thus, by a standard
diagonalization process there exists locally integrable functions z: (-oe, oe)- E" and
y: (-oe, oe)- E p and subsequences, say still {zk} and {Yk}, that converge weakly to z
and y, respectively, in Loc((-oo, o0), E") and Loc((-oo, oo), E P). In addition, as the
sequence {Xk} is bounded and h :X -* E p is continuous, there exists K > 0 so that for
all (-oo, oo) and all k 1, 2,

ly(t)l--I h(x(t))l K.

Therefore, as a consequence of Theorem 3.1(D), we can further assume (by extracting
another subsequence by diagonalization) that there exists a continuous function
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r- (-o, )- E" such that the sequence {G(yk)}k-_l, defined for k 1, 2,... by

G(yk)( t) I g( s)yk(S) ds, e (-, ),

converges uniformly on compact subsets of (-, o) to r. That is,

(4.3) r(t)= lim G(yk)(t)= lim [ (g(t--s)yk(S))ds.

Combining the above sequences we observe that for all k 1, 2,...

k(t) zg(t) + G(yk)(t) a.e. to-- tk t;

and we conclude that the sequence { k}k= converges weakly in Lo((-, ); E to
the locally integrable function tz(t)+ r(t). Also, since {Xk(tO)}k is bounded, we
can assume our subsequence has been chosen so that limk Xk(tO)= , where X.
Define " (-,)E" by the formula

(t) + [z(s) + r(s)] ds
to

and observe, since for > to-tk

x(=x(o+ (z(sl+6(yl(sll as,
o

that x(t) (t) pointwise in (-m, ). Fuhermore, we observe that as X is closed
we have (t)eX almost everywhere in (-m, m) and that is locally absolutely
continuous. From these facts, and since s g(t-s) is Lebesgue integrable on (-, t)
we have, by the Dominated Convergence Theorem,

limf g(t-s)h(Xk(S)) ds= g(t-s)h((s)) ds.

This implies, for all (-, ), as a consequence of (4.3), that

r(t)=f g(t-s)h((s))ds.

It is now easy to see that for all (-, ),

(t)=+ z(s)+ g(s-r)h((r)) dr ds

(4.4)
=(0)+ z(s)+ .g(s-,)h((,)) d, ds.

We now wish to show that is a trajectory. To this end we appeal to the Lower
Closure Theorem 3.2 using the following notation. For each integer N 1, 2,. ,
we let

(i) 6=IN, N+I), G=[N, N+I), = , 2,...;
(ii) n(t) L(x(t), u(t)), (t) z(t), ,(t) z(t), A(t) 0, A (t) 0, x(t) as

above and x(t) (t).
Observe that we also have

lim ( t) dt lim L(x( t), u( t)) dt
k G k dN

N+l+r-t
lim L(x(s), u(s)) ds=O,
k dN+tk-t
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since L(x, u) is nonnegative and (4.2) holds. Thus, all the hypotheses of Theorem
3.2 are satisfied and we can conclude that there exists an integrable function r/u:[N,
N+ 1) E such that

(t)X

and

and (rls(t),z(t))((t)), a.e.t[N,N+l)

N+I

TIN(t) dt <- O.
N

By standard measurable selection arguments (see Cesari [9, Thm. 11.4i]), there exists
a measurable function us N, N+ 1) E such that for almost all N, N + 1) we
have rlN(t)>=L((t), UN(t)),Z(t)=f((t), uN(t)), and UN(t) e U((t)). The desired
control generating the trajectory :(-c,)E is now obtained by defining. (-oo, oo)- E" by

fi(t)-= uN(t), N _-< < N 4-1,

N +1, +2,.... Clearly, a is measurable and upon substituting into (4.4) we have
for any E 1,

(t)= (0)+ f((s), (s)) ds+ g(s-’)h((’)) dr,

implying that is a trajectory. Moreover, for any integer N, we have

N+I ff
N+I

0 <- L(;(t), a(t)) dt<= rl(t dt=O,
N N

from which it follows that L((t), (t)) =0 for almost all 6 E since L is nonnegative.
Thus we see that . This, however, leads to a contradiction since for all k,

E0
o <= ]Xk (to) X[ <-- [Xk (to) :( to)l + 1;(to) :1 < ]Xk (to) ( to)[ +--2’

giving us the contradiction

0 lim IXk (to) .(to)l > eo
kcx3 -Therefore we must have x(t) as t- c.

Before presenting the desired existence results we require the following technical
lemma.

LEMMA 4.2. Let X c E be closed, let h :X Ep be continuous, and let g be an
n p matrix function satisfying (2.5). Suppose that {xi, ui} Ao for 1, 2 are such that
limr_ xi( T) Y., 1, 2. Then we have

lim g(s) ds [h(x(t))-h(xa(t))] dr=0.
T- r-

Proof. Let e > 0 be given. From the continuity of h and the convergence of xi(T)
to as T ee, there exists " > 0 so that for all T->_ -,

Ih(x,(T))- h(x2( T))[ < e.
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For T> r we write

g(s) ds [h(Xl(t))-h(x2(t))] dt

<-- g(s) ds [h(Xl(t))-h(x2(t))] dt
T--t

+ g(s) ds [h(x())-h(x2())] dt

and estimate I(T) and I(T) separately. As x, i= 1, 2, are admissible trajectories,
they are bounded. Thus, as h is continuous, there exists H > 0 so that for all [0, ),
h(Xl()) h(x( )) H. This gives us

n g(s)] ds dt= H [g(s) ds dt
T--I T--

n lg(s)l ds dt- [g(s)[ ds dt

which tends to zero as T since

lim lg(x)l ds dt ]g(s) ds dt tlg(t)l dt .
T

For I2(T) we observe that

T--t T--t

e Ig(s)l ds dt,

and since e > 0 was arbitrary, it follows that for T suciently large we have that I2(T)
is as small as desired. Combining these two results, we obtain

lim g(s) ds [h(x(t))-h(x(t))] dr=0.

We now present the following set of sucient conditions for catching-up
optimality.

THEOREM 4.1. Assume that X c is closed, U" X 2e is a set-valued mapping
with closed graph M, fo. M is lower semicontinuous, f" M and h" X p are
continuous, and g is an n x p matrix function satisfying (2.5). In addition, assume chat
(A1)-(A4) hold. If {x*, u*} e Ao is such that

(4.5) (i)

and

(4.6) (ii)

L(x*(t), u*(t))

L(x*( t), u*(t)) dt <- lim L(x( t), u( t)) dt,
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for all {x, u} Ao, where the limit on the right is either finite or positive infinity, then the
pair {x*, u*} is catching-up optimal.

Proof Let {x*, u*} Ao be as above and let {x, u} Ao be arbitrary. Then for any
T> 0, we have

J(x, u)-J(x*, u*)= l(x( t), u()) de- /(x*(), u*()) d

+ p, f(x*(t), u t))+ g(s) ds h(x*(t)) dt

-(.,, # [f(x(t), u(t))+(; g(s) ds)h(x(t))] dt)
(x(l, u(- (x*(, u*(

(io [+ p, f(x*(), u*())+ g(s) ds h(x*())

+ p, g(s) ds [h(x*())-h(x())] d

Also, for T> 0 and {x, u} Ao, we observe that

g(s) ds h(x(t)) dr= g(s-) ds h(x(t)) dt

g(- s)h(x(s)) s

so that

J(x, u- J(x*, u*= [(x(, u(- (x*(, u*(]

+ , (2*(t) 2(t)) dt

+ p, g(s) ds [h(x*(t))-h(x(t))] dt
T--t

[L(x(t), u(t))-L(x*(t), u*(t))] dt+(fi, x*(T)-x(T))

+ p, g(s) ds [h(x*(t))-h(x(t))] dt
T--t

We now suppose,

(4.7) L(x( t), u( t)) dt <

In this case, as a consequence of Proposition 4.2, limr_o x(T)= and we obtain

lim [Jr(x, u) Jr(x*, u*)] L(x(t), u(t)) dt L(x*(t), u*(t)) dt >- 0,
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where we have used the fact that x*(T)--> g as T--> and applied Lemma 4.1. Thus,
it is clear that for any e > 0 we can find T T(e, x, u) => 0 so that for all T => T

J(x*, u*) < J(x, u) + .
In the case where the improper integral (4.7) is not finite, the boundedness of both x
and x* imply there exist constants M and K such that for all T> 0,

and

I(P, x*(T) x(T))l < MlPl

(/, fo (fr+_ g(s)ds)[h(x*(t))-h(x(t))] dtI
<-- Ilg Ig(s)l ds de

<--IPIK [g(s)[ ds dt

-1/511 lg(t)l

Thus,

lim inf [JT(X, U) JT(X* U*)]
r-oo

>=lim inf [L(x(t), u(t))-L(x*(t), u*(t))] dt-lplM-lplK t[g(t)] dt
T-->

Therefore in each case we arrive at the desired result, and so {x*, u*} is catching-up
optimal.

We are now ready to give the main result of this paper. As a result of the previous
theorem, it is clear that a catching up optimal solution exists if we can establish the
existence of a strongly optimal solution of the associated problem consisting of
minimizing

(4.8) I(x, u)= L(x(t), u(t)) at

over all {x, u} Ao. With this brief remark we give the following result.
THZORZM 4.2. Let X c E be closed, let U X--> 2" have a closed graph M, let

fo X --> E be lower semicontinuous, let f: M -> E and h X --> Ev be continuous, and let
g be an n p matrix valuedfunction satisfying (2.5). Furthermore, suppose that (A1)-(A4)
hold and that there exists an admissible pair {, } Ao such that (4.8) is finite. Under
these conditions, the optimal control problem described by (2.1)-(2.4) and (2.6) has a
catching-up optimal solution.

Proof. By hypothesis, we have

0<= inf I(x,u)<=I(,)<.
{x,u}A



INFINITE HORIZON CONTROL WITH TIME DELAY 417

Thus there exists a minimizing sequence {Xk, b/k}7= for the associated optimal control
problem. As a consequence of Proposition 2.1, f, h, and L satisfy the growth condition
(A2) with

L(x( t), ug( t)) dt <- L(;( t), ( t)) dt < o

for all T>0. Therefore, by a standard diagonalization process, there exists a
subsequence, say still {Xk, Uk}, and locally integrable functions z:[0, o) E" and
y:[0, )- E such that f(xk(t), Uk( t)) z( t) and h(Xk(t))-y(t) weakly in
Loc([0, c); E") and Loc((0, ); EP), respectively. This implies that for .each >-0 we
have

;o’x(t) Xo(0) + f(x(s), u(s)) as + g(s- )h(xo()) cl dt

+ g(s-r)h(x(r)) drdt

Io--Xo(0)+ f(x(s), u(s)) ds+ g(s-)h(xo(r)) clr as

+ g(s-r) ds h(xk(r)) dr,

which clearly converges pointwise to x*: [0, oe) E given by

x*(t)=Xo(0)+ z(s) as+ g(s-)(Xo()) a

+ g(s ) ds y() d

(4.9) ;o )=Xo(0)+ z(s) as+ g(s-)(Xo()) a as

+ g(s r)y() dr ds.
0

Moreover, this pointwise convergence gives us

lim h(Xk( t)) h(x*( t)),
k

so that we have y(t)= h(x*(t)) almost everywhere E 1. We now apply the Lower
Closure Theorem 3.1 using the following notation:

(i) (3 [0, ), Gk [0, k],
(ii) T/k (t) t(Xk(t), Uk(t)), k(t) "=f(xk(t), bik(t)), Xk(t) as above and Ak(t) O,

almost everywhere Gk, k 1, 2,...,
(iii) A (t) O, (t) z(t), and x(t) x*(t) almost everywhere >- O.
(iv) R(x)=QL(X).

It is easy to establish that the hypotheses of Theorem 3.1 are indeed met so that we
conclude that there exists 7: [0, o)- E 1, which is integrable and satisfies

(q(t),(t))L(X(t)) and x*(t)X a.e. t=>0

and

0 <- r/(t) dt-<lim inf L(Xk(t), Uk(t)) dt<=
k

inf I(x, u).
{x,u}Ao
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By appealing to standard measurable selection arguments (see, e.g., Cesari [9;
Thm. 11.4i]) there exists a measurable function u*’[0, c) E such that 7(t)_->
L(x*(t), u*(t)), z(t) =f(x*(t), u*(t)), and u*(t) U(x*(t)) a.e. 0_-< t. Substituting this
information into (4.8), we obtain

x*(t)= Xo(0)+ f(x*(s), u*(s)) as+ g(s--)h(xo(-)) d- as

+ g(s--)h(x*(-)) d- ds,

which clearly shows the pair {x*, u*} is an admissible pair (here we have extended x*
to (-, 0] by defining x*(s)= Xo(S)). In addition, we further observe that

io io0 L(x*(t), u*(t)) dtN (t) dtN inf I(x, u),

which shows that {x*, u*} minimizes I(x, u) over Ao. The desired conclusion now
follows by a direct application of Theorem 4.1.

The above existence result generalizes the works of Brock and Haurie [5] and
Leizarowitz 15] in two directions. The first of these is the obvious extension to models
exhibiting time delay in the state variable. As regards this extension, we also note that
our formulation also implies results for a class of problems with finite lag where for
some fixed r > 0 we assume g(s) 0. In such a situation, the hypothesis (2.5) concerning
the kernel g are valid if g is essentially bounded on [0, r]. The other direction in which
we have generalized these earlier results is that we have weakened both the convexity
and growth hypotheses. Indeed, in [5] and [15], it is required that the set

a {(x, z, z" x x, zef(x, u), z =f(x, u), u g(xl}

is closed and convex. This condition is stronger than the convexity and upper semicon-
tinuity conditions we require of the sets (x). On the other hand, to ensure that
assumption (A4’), and hence (A4) hold, we must, in general, assume these stronger
convexity hypotheses. However, they need not always be assumed, as is seen in Example
4.1. As regards the growth condition in 15] we have already observed that our growth
condition is weaker (see Remark 2.2).

The most dicult hypotheses to be satisfied in the above work concern our
condition (A4) and the existence of an admissible pair {, a} for which I(, ) is finite.
For conditions that ensure (A4) holds we refer the reader to Proposition 4.1. For the
existence of {, } we note that in the case of finite delay, this condition can be realized
by controlling from the initial function Xo(S), -rNsN0, to the terminal function ,

r N s N 0 in finite time. Since the terminal function is a constant function, this problem
can be addressed by utilizing known null controllability results for problems with time
delay (see, e.g., [1], [10], [11], [19]). For the case of infinite delay such an approach
is not applicable and the realization of this hypothesis requires further investigation.

5. Examples.
Example 5.1. In this example we return once more to Example 4.1. As we have

already seen, this examples satisfies both assumptions (A3) and (A4). Also as (x, u)
[-1, 1] x [-1, 1], a compact set, it is easy to see that the growth condition (A2) is also
satisfied. Furthermore, the linearity of f(x, u)=2x(4x2+6x-9)-9u and f(x, u)=
u + 2x with respect to u easily ensures that the convexity and seminormality hypotheses
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of (A1) are also met. Consequently, to apply Theorem 4.2 it is sufficient to ensure that
there exists an admissible pair {, } for which

0_-< L()(t), a(t)) dr= (4x(t)2(2x(t) +3)) dr.

In this simple example we note that by choosing the control (t)--0, we have that
(t) q(O) e-’ is an admissible trajectory for every continuous function q: (-c, 0]-
[-1, 1]. Clearly, this admissible pair satisfies the desired controllability property. Thus
there exists a catching-up optimal solution for this problem.

Example 5.2. The Ramsey model with delay. In this example we present a gen-
eralization of the classical Ramsey model of economic growth. Since we deal with
minimization problems we use a slightly nonstandard formulation.

For this model we let x x(t), -< <, denote the stock of capital at time
and u u(t), 0=< t, the consumption. We denote the production function by h h(x)
and the utility by _fo= _fO(u). As is standard practice, we assume that h(0)=0 and
that h is a smooth increasing strictly concave function satisfying

lim h’(x) ; lim h’(x) O,
0

and furthermore, that fo is smooth, decreasing, strictly convex with

lim f’(u)=- and limf’(u) =0.
u->O

To introduce the delay we let g:[0,) [0, 1] satisfy the hypotheses outlined in (2.5)
and assume

(5.1) g(s) ds 1.

This function is introduced to reflect the reduction in production of a plant or factory
due to aging equipment. Thus the term g(t- s)h(x(s)) represents the rate of production
at time generated by a stock of capital x(s), s time units ago. With this notation we
let A > 0 be given and consider the optimal control problem

(5.2) minimize fo u (t) dt

subject to

(t)=f g(t-s)h(x(s))ds-Ax(t)-u(t),

(5.4) x(s)=xo(s), s<_O,

(5.5) 0--< x(t) =< 9,
(5.6) O<- u(t)<=h(x(t)).
The upper bound > 0 given in (5.4) is a standard hypothesis in the nondelay case
with chosen to be the unique positive solution to

h(x)=ax.
We remark that in the nondelay case any admissible stock x(t)>: is necessarily
decreasing. Thus it is reasonable to ask that x(t)<=, whenever Xo(S) [0, ]; s=<0.

As a result of the boundedness of the admissible states it is an easy matter to see
that the growth condition (A2) is satisfied. Moreover, the convexity conditions placed
on fo and the linearity of f(x, u)=-Ax-u ensure that the sets (x) are convex and
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closed. Furthermore, as fo is continuous, these sets also enjoy property (K) so that
(A1) is satisfied.

For the optimal steady state we recall that in the nondelay case (see, e.g., Samuelson
[18] or Cass [8]) there exists a unique pair (g, i) such that for all (x, u), x->0, u>-0
we have

(5.7) L(x, u)=f(u)-f(O)+f’(O)[h(x)-Ax- u]0.
The pair (g, ti) is uniquely determined by the system of equations

h’(2) A and

Moreover, the strict concavity of h and the convexity of fo imply that for every e > 0
there exists a 6 > 0 so that if Ix g] > e, then

(5.8) L(x, u) > 6 for all u [0, h(x)].
As (5.1) holds, it is now easy to see that (A3) is satisfied with L given by (5.7). Finally,
(5.8) is simply the verification of (A4’). Thus all the hypotheses, except for the existence
of {;, } admissible so that I(9, r)< ee, needed in the previous sections are met and
so the existence of a catching-up optimal solution is assured whenever {;, } exists.
As remarked earlier, in the nondelay case, or in the finite-delay case, this hypothesis
can be met through the application of known controllability results (in particular, see
Angell [1; Thm. 5.2]).

Example 5.3. Optimal exploitation of a renewable resource. We conclude our
examples with an economic growth model that incorporates a renewable resource into
the classical Ramsey model. As in the previous example we let x x(t), , denote
the stock of capital at time and u(t), t>=O, denote consumer consumption. The
production of capital stock depends on a renewable resource (e.g., a forest) and we
let y(t), , denote the amount of the resource available at time t. This resource is
harvested at a rate v(t), _-> 0. With these variables we introduce the following control
system:

(5.9) 2(t) =f(x(t), v(t)) hx(t) u(t),

(5.10) .9(t) -v(t) + f g(t- s)h(x(s), y(s)) ds a.e. 0,

y(s) \yo(s)

O_<=x(t)<-
(5.12)

O<_y(s)<_fi
for all _< 0,

O<- u(t) <-f(x(t), v(t))
(5.13)

O<_v(t)<=h(x(t),y(t))
a.e. 0--< t.

Here we are letting f: [0, ) [0, o0) E denote the production function for the capital
stock x be a smooth concave function that satisfies

lim -J(x, v)=
x-,O OX

for each v >= 0,

lim -J(x, v) 0 for each v ->_ 0,
x-,o OX

-(x,v)>O and -(x,v)>O
Ox Ov

for all (x, v),

f(O, v) 0 for each v => O.
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The function h: [0, o)x[0, o)E denotes the rate of growth of resource y and we
assume that h is concave and satisfies

Oh
h(x, 0) 0 for all x _-> 0, -u-(x, y) -> 0 for all (x, y),

OX

and

for each x e [0, oo) there exists yx > 0 so that on (0, Yx), h(x, y) > O,
h(x, Yx) 0 and on (y,, oe), h(x, y) < O.

The function g: [0, oe) [0, 1] satisfies the hypotheses outlined in (2.5) and in addition
satisfies

o
g(s) ds 1.

This function is introduced to reflect the fact that the rate of growth of the resource
is age-dependent. Finally, the constant A > 0 denotes the rate of depreciation of capital,
with Xo and Yo given initial functions. We observe that the producer influences the rate
of growth of the resource through the level of capital stock as well as through the
harvest rate v.

As in the previous example, our objective is to maximize the accumulated utility
described by a utility function. _fo= _fo(u where f:[0, o)- satisfies the same
hypotheses as in Example 5.1. Therefore we consider the optimal control problem

Io(5.14) minimize f(u(t)) dt

over all pairs of functions {(x, y), (u, v)} satisfying (5.9)-(5.13).
The associated optimal steady-state problem becomes

minimize fO(u)

over all (x, y, u, v) M satisfying

0 =f(x, v)- hx- u,

where

O=h(x,y)-v,

M= {(x, y, u, v)" O<-x<-_x", 0_-< y-< 33, 0_-< u<=f(x, v), O_-< v<-h(x, y)}.

It is easy to see that, under the hypotheses placed on the model, the conditions of
Proposition 4.1 are satisfied. Indeed we easily see that M is compact convex and
int M , that Fl(X, y, u, v) f(x, v) Ax- u and Fz(x, y, u, v) h(x, y) v are con-
cave, there exists (x, y, u, v) so that Fi(x, y, u, v) > 0, 1, 2, and that fo(. is strictly
convex. To establish the remaining hypothesis we observe that if (x, y, u, v) M is
such that Fi(x, y, u, v)>-0 for i= 1, 2 we may take (, 3) to be given by

= h(x, y) and

and observe that 3 >- v so that f(x, )>=f(x, v), which implies

u <--f(x, v) Ax <--f(x, ) Ax <--f(x, ).

Clearly, this implies that (x, y, a, 3) M and that fo(a)<__fO(u as observed. Therefore
the only remaining hypothesis in Theorem 4.2 concerns the existence of an admissible
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pair {(, 33), (, )} for which the improper integral I[(, 33, t, 3)] given by (4.7) is finite.
Here, as remarked previously, in the case of finite delay, this hypothesis may be met
through the application of known controllability results.

Acknowledgment. The author thanks an anonymous referee for several suggestions
and comments that enhanced the presentation of the above results.
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STABILIZATION OF BEAMS BY POINTWISE FEEDBACK CONTROL*

F. CONRADt

Abstract. A flexible structure consisting of serially connected Euler-Bernoulli beams with co-located
sensors and actuators is considered. Controls are point forces and point bending moments applied at the
nodes. It is known that uniform exponential stability can be achieved with linear velocity feedback. A
sensitivity analysis of the system’s spectrum with respect to feedback coefficients is set up. It is also proved
that in a particular case exponential decay rate can be obtained from the spectrum of the system.

Key words, serially connected beams, point control, exponential stabilization

AMS(MOS) subject classifications. 93D15, 73K12, 35P10

1. Introduction. We study the transverse deflection of a system of N serially
connected Euler-Bernoulli beams as shown in Fig. 1, where each beam has mass
density mi and flexural rigidity EJi.

The left end x 0 is clamped. At the right end and at interior nodes, point control
forces Uoi and point control bending moments Uli are applied. We assume that at
each node, the controls are linear combinations of the transverse and angular velocities;
thus sensors and actuators are co-located.

This system has been studied extensively by Chen et al. (see, for instance, [2]
where major results can be found). For convenience, we summarize the material of
[2], which is useful to us.

Let y(x, t) denote the transverse deflection of the structure at time t. In the sequel,
we set p(x, t)=Oy/Ot(x, t) and y’(x, t)=Oy/Ox(x, t).

For the open-loop system we get the following equations:

mif+ ’: <x <xi, i-- 1 N,iiY O, xi_

y(O,t)=y’(O,t)=O,

y(xY, t)=y(x-[, t),

y’(xY, t)=y’(x-, t),

Ei]iY’"(xT, t)- Ei+lli+ y’"(x7 t)= Uoi
-EiIiy"(x- t) + Ei+ ]i+lY"(X- t) Ulii, ",

Euluy’"(L, t)= Uou,
-EuIIy"(L, t)= U1No

For the closed-loop system, we add the feedback law

Uli (t) kt(xi, t)
i= 1, N

where Ki is a 2 2 real matrix.
This system can be written in an abstract form [2]. Let H L2(0, L), let V=

{ v H2(0, L) v(0) v’(0) 0} be the energy space, and let A ( V, V’) be defined by

(Av, w) , EiI I)"(X)W"(X) dx Vv V, w V.
i=1
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beam

xo=O xI xi- 1 xi XN=L

FG.

The observation operator C e (V, E2N) is defined by

Cv--(V(Xl) vt(Xl), v(xi) vt(xi), V(XN) Vt(XN) ).

The control operator is the transpose C*e w(R2N, V’) of the observation operator.
Let K be the 2N x2N block-diagonal matrix with entries Ki, i= 1, N, and M

denote the isomorphism f--> Mf on L2(0, L) where M(x) is the function M(x)=
N

Ei=l mil(x,_,,xi)(x)
In this framework, the equations for the closed-loop system are

(1.3) Mfi+Ay+C*KCy=O in V’; ye V.

THEOREM 1.1 [2]. Assume K is coercive. Given (yo, Yl) VH, (1.3) admits a

unique solution y (0, T; V); )> c(0, T; H); C.9 e L2(0, T; [2N); Mfi L2(0, T; V’).
In fact (1.3) defines a co semigroup of contractions on V0)H that will be denoted

by SK.
The generator of SK is

M(K) _M_IA _M_C,KC

Remark. For a sharp existence result for the open-loop system, we refer the reader
to [9].

The main result in [2] concerns stabilization. The elastic energy of the system is
defined as

N

E (t) E mif;2(x, t) + EiI,y"2(x, t)] dx.
i: xi_

THEOREM 1.2 [2]. Assume the following.
(i) mi <- m+ and E.Ii >- Ei+I+, 1, N- 1.
(ii) K=(, ) with ai >-0, i= l, N-1.

0(iii) Either Kv o tN) with aN > O, N - O, or

K o
"YN fin

aN > O, [3N > O, "YN e .
Then uniform exponential stability holds" there exists />0 such that E(t)<-_
const, e-’tE (0), for all (Yo, Yl) V@H or else

(1.4) IIs, (t)ll v, <-- const, e-’.
Remark 1. Assumptions (ii) and (iii) do not imply that K is coercive. However,

the conclusions of Theorem 1.1 are valid provided the estimate on C)) is replaced by
3)(x, L:(0, T) whenever a > 0, i= 1,. , N, and fi’(xN, e La(0, T) whenever
/N >0.

Remark 2. Exponential decay for an Euler-Bernoulli beam with rate control on
the bending moment only has been obtained in [3] by means of a frequency domain
technique. The energy multiplier method used to prove Theorem 1.2 does not seem to
work in that case.
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The optimal rate of decay /x in (1.4) is of course the spectral radius to of the
semigroup S: to =lim -1 log IIStc(t)llv, as t- oo.

It was conjectured in [2] that the rate of decay of the energy is given by p(K)=
sup {Re Up/p N}, where the up are the eigenvalues of the generator /(K). This cannot
result from standard theorems, since, due to the existence of a vertical asymptote for
the up in the complex plane (see [3]-[5] and [10]), S is neither differentiable nor
compact. We prove the conjecture in a particular case: for a single homogeneous beam
with rate control on the shear only, p(K)=sup{Re lp/pG}, at least for small K
(Corollary 4.5 below).

Assuming the conjecture holds, the spectrum of the system for a single
homogeneous beam has been computed in [2] with respect to feedback Coefficients,
leading to interesting conclusions. In this paper, we obtain analytical results concerning
the dependence of the spectrum with respect to K, for a general system ofconnected beams
(Theorem 2.2 below). Applied to a single beam, the results reinforce the conclusions
obtained in [2].

Our results are obtained by the following perturbation technique. We consider
(K) as a perturbation of (0) (the free vibrating system) and then get expansions
of the eigenvalues and eigenvectors. Therefore, due to the technique, the results,
although very precise, are only valid for small K.

The summary of the paper is as follows. In 2, we set up a sensitivity analysis to
get estimates for the eigenvalues of (K), for N connected beams. In 3, we apply
the result to a single beam. In 4, also for a single beam, we improve the estimates
on the spectrum, get estimates for the eigenvectors, and then prove the conjecture
mentioned previously.

2. Sensitivity analysis of the spectrum of the system. We recall the generator of
the semigroup SK (t):

( o , )(K) _M_IA _M_IC.KC

Let W be the subspace of functions of V that are piecewise H4 on each interval
(xi_l, xi). Then the domain ofthe unbounded operator (K) on VH is dom (K)
{(u,v)lu W, v V; Bu=KCv} where

u’"(x?Bu {. EiIibl’"(x)- Ei+lEi+l -EiIibl (x)

+ Ei+l//+lU tXi ),’’’, ErINU’"(L),--ENINU"(L)}.

The spectrum of (K) is purely point spectrum, by classical regularity results
(see also [10]).

Obviously, , C is an eigenvalue, () dom (K) is an eigenvector of (K) if
and only if

(2.1) 0 ’&,

(2.2) Ack + 122Mqb + vC*KCqb O

Therefore, we only must solve (2.2). This will be achieved by means of the Implicit
Function Theorem in an adequate framework, to get the eigenelement as functions of
K, near K 0. We now develop the methodology.

2.1. Free vibrations of the structure. In case K 0, (2.2) reduces to

(2.3) Ab + u2M& 0, & W, B& 0,
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or in strong form, with W:

EiIi"" + v mick O, Xi_ X Xi,

(2.4)

E l,h’" Ii+ $’"(x-) O,iai’e" (XT)- Ei+l
-Eilip"(xT) + Ei+,Ii+,p"(x-) 0,

ENIN"’(L) =0,

--ENINCh"( L) =0.

i=l,N,

i=I,N-1,

i=I,N-1,

2.2. Forced vibrations of the structure. In case K # 0, we consider solutions (v, 4))
of (2.2) near Up, Cp), for any fixed p. Since (2.2) is not well-posed for the eigenfunctions,
we must normalize 4). Define

W { Cp}+/- in W, for the H-scalar product, and set v up +/,/ C, Cp + w,
w e ///"

Injecting these expansions into (2.2), we get

2Mw + (2 vp/x +/x2)M(p + W)-t-(vp -Jr- tx)C*KC(p + w) =0Aw + Vp

or in strong form

J W .Aft Vpm W + 2 Vp t.i, + ]cl, m ff/)p + w) 0,

tx, )- 12,+Ii+1 w’"(x-)
-Eiliw"(xT) + Ei+lli+ W"(X)

Xi_ < X < Xi, 1, N,

G"+w)(2.5)
-(Vp+)Ki

cfl+w’
(xi)=0’ i=I,N-1,

-ENINW"(L) -(vv +)KN p+ w’
(L)=0,

that is, ff(, w, K) =0 where ff:C xxu HxC2 is the leh-hand side of (2.5).
Obviously, (0, 0, 0) 0 and ff is regular. We want to apply the Implicit Function

Theorem to (2.5). Let fi, 6 C x . Then
2

iliW + vpmi + 2vpmip, Xi- < X < X, 1, N,

,,w (xT) ,+,,+ ’"(x;), i= 1, N- ,
-,,w (x;) + ,+(2.6) (0, 0, 0) " L+"(xT) i= 1 N- 1

I’"(L),

-I"(L).

LEMMA 2.1. O%w(0, 0, 0) :C x 7#- H x C2N is an isomorphism.
Proof It is enough to establish that for all fe H, and (ai, fli)eC2, i= 1, N, the

following system

(2.7) o%,w(O, O, 0)1 O admits a unique solution/2, v that

/3i depends continuously on the data f,

As an unbounded operator on H, A is self-adjoint and A-1 is compact. Let 2O)p)pN
be the eigenvalues of A(top > 0) and Cp the associated eigenfunctions. We assume that
the eigenvalues of A are geometrically simple. Then (2.3) has a sequence of solutions
Vp, Cp) with Vp +/- iWp.
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Consider (2.7), with (2.6) in mind. Let g W be the unique solution of

gm’=O, Xi_ <x <xi, i= 1, N,

Eil,g’"(xT, )- E,+lli+lg’"(x-) ct,, i= 1, N- 1,

(2.8) -EiIig"(x,) + Ei+lIi+lg"(x-)= fli, i= 1, N- 1,

ENINg’"(L) aN,

--ENINg"(L)=N.

g is the minimizer of the strain energy plus the potential energy of the forces ai and
moments

1
Eili v"(x)- dx + aiv(xi) + fliv’(xi)

2i=1

g is piecewise cubic and depends continuously on the data ci and
We set g + 3.
Then 3 satisfies

2ElliS""+ Vpmi(g -t- ) + 2lpmitd/)p f, xi_ < x < xi, 1, N,

""’ Ii+ ’"(x-) O, 1 N- 1Eiliv (x7,)- Ei+l

-eiIiv (x-) + ei+,(2.9) "" Ii+ "(x-) O, 1 N- 1

ENIN’"(L) =0,

-EI"(L) =0;

equivalently,
2M f upMg 2UplMCp(2.9) A3 + Up

where A is an unbounded self-adjoint operator on H, with A-1 compact. By the
Fredholm alternative, (2.9) admits a solution if and only if the right-hand side of (2.9)
is orthogonal to Cp; this gives a unique/2

2 Mg,(f-,p
(2.10) /x 2up(Md,bp, Cp)

which is continuous with respect to fe H, g e H.
2Denote by ff the pseudoinverse of A+ upM; is continuous from {p}+/- onto

o////.. Then the general solution of (2.9) is given by
2v -h + ACp where h =f- upMg- 2UplMdpp A C.

Since =3+g, we have (-h+A&p+g, be)=O, which gives a unique =
-(g, &p)/(bp, Cp), hence globally, a unique that depends continuously on the
data.

THEOREM 2.2. For anyfixedp N, (2.2) has,for Ksmall enough, solutions oftheform
U+/-p(K) +itOp + Ip(K) + IKle+/-p(K),

&+/-p(K) Chp +

with

tip(K) __1 KCdpp, CCp p K e IC
2 (Mckp, Ckp)
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linear continuous in K and e+/-p(K) C, 7+p(K) regularfunctions definedfor K small
enough.

Proof The existence of the functions follows from the Implicit Function Theorem
applied to near (+iWp, Chp) and valid by Lemma 2.1. We note that /2 +/-p(K),
p(K) are solutions of

((2.11) (0, 0, 0) -(0, 0, 0)K bv(x,)) i= 1, N,
K, (x,)/’

which is just a special form of (2.7) with f= 0. Hence

(Mg, bp)
(2.12) =- .)

By (2.11) and (2.12), changing p into -p gives the opposite sign for g, hence
the same ft.

On the other hand, since k h + Ap + g with h -Mg-2UpfiMbp, the signs
of g, h and A =-(g, p)/(bp, bp) change and so k changes sign.

So the only thing not yet established is the expression of p(K) given by the
theorem.

We start from (2.12) (Mg, p)=(g, Mbp)=-(1/)(g, Abp) by (2.3)=
-(1/u)(Ag, p). We note that (2.8) can be written as Ag + C*()=0, thus

Mg, p C* p Cp
Pp i Pp i 2N

with

t 6(x,))’
thus (Mg, qbp)--(1/1,,p)(KCdpp, Ctp) and the result follows from (2.12). l-]

Remark. The method also works for a beam with variable mass density and flexural
rigidity, clamped at the left end and controlled at the right end. The result is exactly
the same.

3. Application to a single beam. We consider a single beam with length L, constant
mass density m, and flexural rigidity EI"

m+ Ely"" =0, 0<x < L,

(3.1)
y(O,t)=y’(O,t)=O,

(Y’"(L,t))=K(.f(L,t)T)EI
-y"(L, t) \p’(L,

It is known [13] that for the uncontrolled system, Vp +kOp with

2 where the ap, p 1 2,... are the positive solutions of(3.2) o)p x/E1/ mL4 a p

(3.3) 1 + cos a ch a O.

Moreover,

(3.4) av (p -1/2)zr + 6v where Il--< 2c e--(-*/, Cv <2 for p> 1 [1].
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The L2(0, L) normalized eigenfunctions are

1
(3.5) 4p(X) =[ch z-cos z-y(a)(sh z-sin z)]

where a=ap, z=ax/L and y(ce) (ch a+cos a)/(sh a+sin
From (3.3) we easily get

2(-1) p+

and also

4,(L) L-- tg

With the form of matrix K considered in [2] K (kv ), the first-order approxi-
mations of the eigenvalues of the generator of (3.1) given by Theorem 2.2 are

+ 2 tg2 +...cep
m -- ap

Now, if we use (3.4) noting that 6p is very small as soon as p => 2, we have the
sharp approximation

up(K) +i 1/_ 2 [__ k ]+ ce +’’"cep
m

which gives the first-order evolution of the spectrum with respect to K, as shown in
Fig. 2.

This is completely consistent with the conclusion obtained in [2] and [10] from
a numerical experiment, at least for the first eigenvalues.

Remark. Higher-order expansions are available using a system of formal calculus
such as REDUCE to solve the characteristic equation for the feedback system.

k k k

,V

,V_

\
\

\

/

/

v-3

v

,v

V_

V_

Case K Case K
k

FIG. 2. Sensitivity of the spectrum with respect to feedback coefficients.



430 F. CONRAD

4. Obtaining an optimal rate of decay. The expansion of the eigenvalue up(K)
with respect to K given in Theorem 2.2 is valid for any fixed p Z. In general, the
higher-order term in the expansion is not controlled uniformly in p. Consider, for
instance, the case of the single beam of 3, with the matrix

K= ko
T kl

It has been proved that the eigenvalues of large modulus of that system admit a

vertical asymptote [3]-[5], [10]. Thus an expansion of the form (3.6), ,p(K)=
+i(EI/mL4)l/2-2-2/m[ko/L+kla2p/L3]+lKlep(K with ep(K)O as KO uni-
formly in p, cannot hold if kl # 0.

However, following an idea used in 12], we will get the uniformity, and in fact,
very sharp estimates of the higher-order terms, in the particular case of a single beam
with control on the shear only (kl y 0). Thus we consider in this section the system

m+ EIy"" O, 0<x<L,

(4.1)
y(O,t)=y’(O,t)=O,

EIy’"(L, t)= koY(L, t),

-EIy"(L, t) O.

We normalize L and set a4= EI/mL4, k= koL3/EI; then (4.1) rewrites as

fi + a4y,,tv: O, 0 < x < 1,

(4.2)
y(0, t)= y’(0, t)= 0,

y’"(1, t) k(1, t),

y"(1, t) 0.

We will even suppose a 1 with a new time scale (keeping the same notation for the
new k).

The notation is the same as in 2 and 3" H=L2(0,1), V=
{vH2(O, 1)lv(O)=v’(O)=O}, (Au, v)=oU"(x)v"(x)dx, A(V,V’), and, as an
unbounded operator on H, domA= W={wH4(O, 1)fq VIw"(1)=w’"(1)=O}; here
K:(ok o).

Although not necessary, it is more convenient to work on H H instead of V H.
Since the form (Au, v) is V-elliptic, A admits a square root [8], which is a self-adjoint
positive unbounded operator A/2 with domain V.

We set z A/2y, z2=3 and (1.3), and hence (4.2) rewrites as

(4.3) z 0 A/ ’ s(K)
Z2 -A1/ -C*KC/ z z

now with a generator M(K) (same notation as before, but not same operator) on H) H.
For the moment we follow the methodology of 2. Let , C be an eigenvalue of

M(K), () dom M(K) be an eigenvector of M(K), i.e.,

(4.4) a/20 ,ch,

(4.5) -A/2d- C*KCO ’0, or else

(4.6) AO+ ,C*KCO+ t,20 0.
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So we must solve (4.6), the same equation as in 2, and then (a/2 ++) is an
eigenvector of M(K).

4.1. Uncontrolled system (K =0).

(4.7) A0 + v2q, 0.

According to 3, we get the sequence of eigenvalues (Vp)pg. with v+/-p + iSp,
p > 0 where the ap are solutions of (3.3) and the sequence of eigenvectors 0+/-p(x)=
&p(x), p > 0 given by (3.5).

Thus vp, p77" is the set of eigenvalues of M(0) and, by (4.4)
p 77* (e +1 whether p> 0 or p <0) are normalized associated eigenvectors.
Moreover, the SOp constitute a complete orthonormal basis of H@H (in the sequel, all
the spaces are implicitly complexified).

4.2. Feedback system (K #0). Now p is fixed, say >0 for convenience in the
subsequent computations.

By the results of 2, we immediately have the following lemma.
LEMMA 4.1. For any fixed p, and k small enough, (4.6) admits solutions of theform

(4.8) vp(k) Vp-2k+kep(k), p77*

(4.9) Op(k) Op + kzp + krlp(k), p 7*

where limk-O ep k 0 in C, Zp 71#, and limk_,O r/p(k)= 0 in 7t#.
is the orthogonal of Op in Wfor the H-scalar product.

We recall that 0p--bp as defined in 3.
LEMMA 4.2. Zp 7g" is given by

(4.10) Zp(X)= Vpq,p(1) Y q(1)-
2

q#p 12q-

where the series converges uniformly in x. Moreover, Ilzpllco.<-_ Mllog Pl/IPl.
Proof. According to 2, kzp is the unique solution of (2.11) that we rewrite here

as (/2 =-2k)
2

Zp-"’ "4- VpZp 4 Vpl]lp 0, Zp /’,

(4.11) z’(1)= VpOp(1),

z;(1) :0.

Proceeding as in the proof of Lemma 2.1, we get

where g is the solution of

(g,G)

g(0) g’(0) 0,

g’"(1) vpq,p(1),

g"(1) =0;

therefore g(x)= Vp6p(1)[x3/6-x2/2].
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defined from {qp}" onto W, thus for all h e H,- is the pseudoinverse of A + Vp
h_L G"

so that

(h, Oq)
-h Y -7 --q=l lYp lYq

Zp E (g, Oq)q
qp q’p Pp Pq
q>O q>O

v(g, Co) (g, 6")
=--f 2 2 Oq=fP Pp Pq P Pp Pq

q>0 q>0

g’"(1)q(1)
2 q

after integration by parts, thus zo= UpOp(1)qp q(1)/(u-@)Oq with convergence
in the sense of L2(0, 1) and (4.10) is established. Since the q are bounded in L-norm
uniformly in p (Lemma 1, Appendix) the convergence is also uniform. From the

2 2boundedness of the q and the estimates on the series 1/(Uq- Uq) (Lemma 2, Appendix)
the estimate on IIz ll o follows.

Now we want to get sharp estimates on the higher-order terms in (4.8) and (4.9).
So we inject the expressions of up(k) and Op(k) into (4.6), replacing ep(k) and p(k)
by e and for simplicity; after the simplifications due to the first-order approximations,
we get

2 2A+ Up+(4k+ke +2Upe-4ke)(p+kzp+k)
(4.12)

-4upk(zp + )+(e -2)C*KC(Op + kzp + k)+ upC*KC(zp + ) =0

or, in strong form:

""+u =4upk(zp + V)-(4k + ke+ 2Upe-4ke)(Op + kzp + k),

(4.13) ’"(1) (e 2)k(0p(1) + kzp(1)+ k(1)) + upk(zp(1)+ (1)),

n"(1) =0.

We denote the right-hand side of (4.13) by (f a, 0) and apply the same technique
as in Lemma 2.1 of 2.

Let + g where g absorbs the nonzero boundary condition

g(x)
OZ
x3 ---. X2"

6 2

Then (4.13) rewrites as

2 2+Vp =f- Vpg,

(4.14) ’"(1) =0,

"(1) =0,

and (4.14) has a solution if and only if (f 2
-Upg, 49)= 0, that is,

(4.15) Vp(g, top) ( @p) -4k + ke 2 + 2Vpe -4ke.
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We have already proved in the course of Lemma 4.2 that

1 g,,, 1
(g, qp) --5 (1)Op(1) 5

/p /p

so that (4.15) is equivalent to

(4.16)
-4k + ke2 + 2 Vpe -4ke

qp(1)[(e 2)k(bp(1) + kzp(1)+ kr/(1)) + upk(zp(1)/ r/(1))],

(4.17)
k

[4e +4- e2+ qp(1)(e 2)(qp(1) + kzp(1)+ krt(1))]+-[Zp(1)+ (1)].

Once (4.17) is satisfied, the unique solution of (4.13) is given by (see again the
proof of Lemma 4.2)

7 g-(g, bp)@p + (f Vpg) E (g, d/q)qq + ,
q>O q>O
q#P q#P

(f 2
Vpg, qq)
2 2

b’p-- lq

tpq +
lp l,’ q

qp

(4.18)

n=kE 2 2
q>O /]q- /p
qP

(e-2)(p(1)+kzp(1)+krl(1))+ Up(Zp(1) + r/(1))

+k Z 4Vp-(4k+ke2+2Vpe-4ke)2
2 (Zp+rl,$q)d/q.

q>O /]p-
qP

Finally, (e, r/) satisfies (4.13) if and only if

(4.19) e kG(k, e, n),

(4.20)

where kFp and kGp are the right-hand sides of (4.17) and (4.18), respectively.
THEOREM 4.3. The functions ep and ’lp ofLemma 4.1 can be defined on an interval

(- a, ce) in k independently ofp; moreover
Ilogpl

(4.21) [e(k)l-Ipl O(k),

Ilogp] 2

(4.22) IIn(k)llo- O(k)

where O(k) is uniform in p.
Proof We consider (4.19), (4.20) as a fixed-point formulation with parameters k

and p

(4.23) (e, r/)= Tp(k, e,

Let B= (k, e, rl" Ikl -< 1, le[ -< 1, [Inll o-< 1}clxC x C ([0, 1]).
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From the expressions of Fp and Gp, Lemma 4.2, and Lemmas 1-3 of the Appendix,
we have (M denotes generic constants) on B:

(4.24)

(4.25)

M Ilogpl
IFp(k, e, )l <-_-7S + M + Mllllc

M
Ilog PI,+ MII I1o,

G(k, , )11 M ,llglp] 3p[-t- M IlOglPlPl2 + M il|gOpl
<- M

Ilog pl 2 Ilog pl
plZ

+M
pl ]]rtllc,

(4.26)

(4.27)

0e
(k, e,

(k, e, r/) =< M
IP[

M Ilogp[

From (4.26) and (4.27) it follows that, for ]k <_- c small enough, T is a contraction,
uniformly in p (and k, for [kl small).

By classical fixed point theory, we get the functions e and r/defined on an interval
(-a, a), uniformly in p.

From (4.25), we get II,(k)llo_-< Mk(llog pl/Ipl) and, by bootstrap, we get (4.22).
Finally, (4.21) follows from (4.24) and (4.22).
Remark. For a general feedback matrix with kl 0, we must add terms involving

q(1), which is O(p). Roughly speaking, we lose at least a factor 1/p in the series so
that estimates (4.21) and (4.22) for ep and rip cannot be better than log [Pl using our
technique. This is consistent with the remark concerning uniformity with respect to p
at the beginning of this section.

THEOREM 4.4. For k small enough, sd(K) admits a sequence of eigenvectors that
constitute a Riesz basis in H@ H.

Proof. We consider the eigenvalues ,p(k) and eigenvectors Op(k) given by Letnma
4.1 and Theorem 4.3.

According to (4.4), (4.6), (Al/%(k) is an eigenvector of sg(K) We normalize it,p(k)qp(k)
by considering

1 ( A1/21]lp-.I-kA1/2(Zp.-l-p))G(k) v" Wp (,p-2k+kep)(p+k(zp+rlp))

k( A’/2(zp-k- rlp)
G+4i,o (..-)G + (. +k.)(z. +,.)

k

all the constants being independent of p.
Similarly, we get, for the partial derivatives with respect to e and



STABILIZATION OF BEAMS 435

By Lemma 4.2, Ilzpllco<- M(llog Pl/IPl) and by (4.10), A1/2Zp
VpOp(1) Eqp,q>o (Oq(1)/(vq Vp))toqOq(x), thus by Lemma 3 of the Appendix,

[Ia’/2zllo M]pl I,log el_ Mop IIg p
Ipl Ipl

Similarly, using (4.18) and expanding A/, we obtain the same estimates on

I111o and IIa/=lo up to k, which is bounded.
Finally, we obtain that

op hp NMk
HH Op cx P

so that

p7/*

2

<_Mk<l

for k small enough.
According to a theorem of Paley and Wiener [11, p. 206] the p(k) are a Riesz

basis of HH.
Remark 1. This result also proves that by our perturbation method, we have

obtained all the eigenvalues of M(K).
Remark 2. Alternatively, we have proved that the eigenvectors

(Op(k)x/ tOp ,pd/p(k)]
form a Riesz basis in VO)H.

COROLLARY 4.5. For k small enough, the spectral radius of the semigroup SK (t) is

given by

tO(k) sup {Re ,p(k)} -2k + O(k).
p7/*

Proof The first equality is a direct consequence of Theorem 4.4 (or Remark 2),
the second follows from the uniformity of the estimates of tp. ]

Remark. A general study of the asymptotic distribution of the eigenfrequencies,
either for a single beam with active control at one end, or for two- or N-coupled
beams with various dissipative joint conditions, has been carried out in [3]-[5]. Those
results and the sensitivity analysis given here in 2 are mutually complementary. Our
results are essentially valid even at low frequencies.

Moreover, the asymptotic gaps for the eigenvalues given in [4] or [5] are one of
the general assumptions that make the method of 4 work, together with boundedness
properties of the eigenfunctions.

Thus it seems possible to extend the results of 4 to systems of coupled beams,
provided suitable information on the eigenfunctions is available.

Appendix. Here we prove the technical estimates that are used in the proofs of
Lemma 4.2, and Theorems 4.3 and 4.4.

The notation is that of 3 and 4. All the constants m, EI, L are equal to 1,
without loss of generality; M denotes constants.

LEMMA 1. II  ll o-<M; where ap>O is a solution of (3.3).
Proof We recall that qp(X) ch cex-cos cex- T(ce)[sh ax-sin

-sin
Y(a)

(-1)P+cos a’ ce =tp.
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By [1] a=(p-1/2)r+2Cp(-1) p-1 e-(P-1/2)rr=+e and Cp<2 when p> 1. Thus
for large p

2
E

sina=(-1)P-’+r/, [r/l_-<-,

Icos 1 +sc with 1l<2e<4Cpe-.
Therefore Cp (x) ch ax (1 + sc) sh ax

-cos ax + (1 + :) sin ax=:>ldpp(x) <- -sc--+ 1 + e + M <- M.

For the estimate of the derivative

sh ax + sin ax 3’(a)[ch ax cos ax]

sh ax (1 + :) ch ax + sin ax + (1 sc) cos ax.

Then, proceeding as before, we get I(x)/a -<_ M. [-1

Remark. According to the expressions of Cp(1) and (1) given in 3, the estimates
of Lemma 1 are optimal.

LEMMA 2.

1
<

]logpl
 ol4-41
qSp

Proof.

1 1

qSp qp

1 1
4 4 4 4

Op Op_ Op+ Op

Op-I dx-- 4__X4
"t-

2
4 4

p+l Op

7q-’" 2__X2tp a
"- 2 2

p+l
X Op

<-7+ log-/ log
ap XA , X a %+,

<
M M Ogp -[" Olp Olp Ol Olp -- Olp+ Ilogp____[I

--p3+71og (ap_cep_5(ap.f.ai(Crp+lT;i <=M [p[3

Remark. Using also the comparison of series and integrals, a similar reverse
inequality can be established. Therefore, the estimate is optimal.

LEMMA 3.

I’[ < M
Ilog p______

2

qSp
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Prooy.

qp qp

4 4 -- 4 4 4
2
4 +

2
4 4

tp p--I Op+ Op P p+l

< - aal tp+ O/p p

M
p 2av

M
m+M
P

log
op + x

Op + x

Olp x

Ilog p___l

the estimate being also optimal.

Acknowledgments. The author wishes to thank the referees who suggested improve-
ments of the paper.
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BILINEAR TRANSFORMATION OF INFINITE-DIMENSIONAL
STATE-SPACE SYSTEMS AND BALANCED REALIZATIONS

OF NONRATIONAL TRANSFER FUNCTIONS*

RAIMUND OBER? AND STEPHEN MONTGOMERY-SMITHS

Abstract. The bilinear transform maps the open right half plane to the open unit disk and is therefore
a suitable tool for carrying over results for continuous-time systems to discrete-time systems and vice versa.
Corresponding state-space formulae are widely used and well understood for the case of finite-dimensional
systems. In this paper infinite-dimensional generalizations of these formulae are studied for a general class
of infinite-dimensional state-space systems. In particular, it is shown that reachability and observability are
carried over and that the reachability and observability gramians are preserved under this transformation.
Young showed that a wide class of nonrational discrete-time transfer functions admit a balanced state-space
representation. It is shown that this result carries over to the continuous-time situation via the bilinear
transformation.

Key words, bilinear transformation, infinite-dimensional state-space systems, balanced realizations

AMS(MOS) subject classifications. 93C20, 93B 15, 93B20, 93B28

1. Introduction. Balanced realizations for finite-dimensional systems have received
a great deal of attention. They were introduced as a means of performing model
reduction in an easy fashion [10] and have subsequently been used in H control
theory, for example, to evaluate the Hankel norm of a linear system [5], [3]. Recently,
they have been used to study parametrization problems of the set of stable linear
systems 11 ], 13 ].

The elegant results obtained for finite-dimensional balanced systems brought about
some interest in the problem of the extension of the notion of a balanced realization
to infinite-dimensional systems. Curtain and Glover [2], as well as Glover, Curtain,
and Partington [6] derived continuous-time, balanced realizations for a class of systems
with nuclear Hankel operator. Young [20] developed a very general realization theory
for infinite-dimensional discrete-time systems.

The motivation for this paper was to show that a large class of systems that
includes most H transfer functions have balanced realizations. Transfer functions in
H are of particular interest since they are precisely the transfer functions of linear
systems with L2 bounded input-output operators. In particular, it is shown here that
important systems such as a pure time delay, delayed systems with transfer functions
of the form G(s)e-s, G(s) nonstrictly proper rational, but also certain transfer
functions with singularities on the imaginary axis such as G(s)= log (1 + 1/s) admit
balanced or, more precisely, parbalanced realizations. These are examples of systems
whose corresponding Hankel operator is not nuclear and hence they are not in the
class of systems considered by Glover, Curtain, and Partington. The work by Glover,
Curtain, and Partington [6] and Ober [12] has shown that balanced realizations can
be successfully employed to perform model reduction for certain special classes of
infinite-dimensional continuous-time systems. It is hoped that the realization theory
for balanced systems developed here is not only of theoretical interest but is also a

* Received by the editors May 31, 1988; accepted for publication (in revised form) May 26, 1989.
? Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom.
$ Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge,

CB2 1SB, United Kingdom. Present address, Department of Mathematics, University of Missouri at
Columbia, Columbia, Missouri 65211.
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step toward the development of model reduction tools for the important class of H
transfer functions.

The realization problem for infinite-dimensional continuous-time systems has been
studied by several authors. Shift realizations of infinite-dimensional continuous-time
systems have been investigated, for example, by Fuhrmann [4] and Salamon [16].
Other approaches have been taken by Yamamoto 19] and Hegner 12]. The important
role the Hankel operator plays in realization theory is well understood (see, e.g.,
Fuhrmann [4]). From this point of view it is interesting to note that such a connection
is also very apparent in the realization of infinite-dimensional systems in terms of
balanced realizations. For example, the realizability conditions on a transfer function
are in terms of boundedness conditions and compactness conditions on the Hankel
operator corresponding to the transfer function. But these can be expressed in terms
of analytical properties of the transfer functions.

System theoretic developments often go in parallel for continuous-time and dis-
crete-time systems. In finite-dimensional system theory it is common practice to derive
results for one class of systems and then map these over to the other by using a bilinear
transformation or the corresponding state space formulae. With this method it is often
possible to avoid the repetition of lengthy derivations if results have already been
obtained for one class of systems and similar results are needed for the other. The
approach taken to the realization problem considered here is based on the same
principal. The work by Young [20] contains very general realization results for discrete-
time systems in terms of balanced realizations. We will carry these over to the con-
tinuous-time case using infinite-dimensional generalizations of the finite-dimensional
methods. A major part of this paper is devoted to establishing infinite-dimensional
generalizations of these techniques. It is shown that such generalizations are indeed
possible and are especially suited to the study of observability and reachability proper-
ties, which are of central importance in linear systems theory. In particular, it is shown
that these techniques carry over the observability and reachability operators in such
a way that the observability (reachability) operator of a continuous-time system and
the observability (reachability) operator of its corresponding discrete-time system are
unitarily equivalent. It is hoped that such methods will become as useful in an
infinite-dimensional setting as they have proved to be for finite-dimensional systems.

In essence, we will prove infinite-dimensional analogues of the following
finite-dimensional results. If C P"m is the set of minimal asymptotically stable
continuous-time systems (Ac, Bc, C, Dc) nn X’xpn X pxm and DP"m is the
set of minimal asymptotically stable discrete-time systems (Aa, Ba, Ca, Dd)
nn X nxm X pxn X .pm, then the map T," Dp’" - C P’" defined by

T,((Aa, Ba, Ca, Da))

((I + Aa)-l(Aa I), /(I + Aa)-lBa, / Ca(I + Aa)-, Da Ca(I + Aa)-Ba)

is a bijection with inverse T-I’CP,’"D given by

T’((A, B, C, Dc))

=((I-A)-(I+A),,/(I-A)-B,,,/ C(I-Ac)-’, D+C(I-A)-’Bc).

If (A, Bc, Co, Dc) := T ((Ad, Bd, Cd, Dd )), then (Ad, Bd, Cd, Dd is a realization of the
transfer function Ga, i.e., Ga(z) Ca(zI Aa)-IBa + Da, if and only if (Ac, Be,
is a realization of the transfer function Gc(s):=Ga((l+s)/(1-s)), i.e., G(s)=
C(sI-Ac)-B+D.



440 R. OBER AND S. MONTGOMERY-SMITH

To deal with infinite-dimensional continuous-time systems in their full generality,
it is however necessary, in contrast to discrete-time systems, to deal with unbounded
input and output operators. This produces serious technical problems, and a careful
setup is necessary for the definition of an infinite-dimensional continuous-time system
and of the generalization of the transformation Tn.

Our approach to the definition of an infinite-dimensional system is based on the
notion of a compatible system, as introduced by Helton [9]. There are, however, several
differences in technical details that seem necessary to prove our result. Hedberg [8]
used a form of state-space formulae to relate discrete-time shift realizations to con-
tinuous-time shift realizations. His method was later reported in the book by Fuhrmann
[4]. To derive our results we had to adopt a generalization of the transformation Tn
that differs from Hedberg’s generalization in several respects.

In 2 we define the objects of interest to our study, that is, infinite-dimensional
discrete- and continuous-time systems. To do this it is necessary to introduce the notion
of a rigged Hilbert space, as well as prove several properties of generators of semigroups
that are important in our context.

We will need several results from the functional calculus for unbounded functions
by Sz.-Nagy and Foias [17]. Section 3 contains a brief introduction to this functional
calculus and proves propositions that we will need in later sections. The section can
be skipped by readers who are not interested in detailed proofs of the main theorems
of the paper.

Section 4 contains our first important results. Here we establish the transformation
T relating infinite-dimensional discrete-time systems to continuous-time systems and
show that it is a bijection.

State-space systems related by a unitary state-space transformation are studied in
5. It is established that two discrete-time systems are unitarily equivalent if and only

if their corresponding continuous-time systems are unitarily equivalent.
Before 7, we need to generalize the notion of the dual of a system to infinite-

dimensional systems. This is done in 6.
Section 7 contains one of the main results of this paper. It is shown that the

observability operator of a discrete-time system is unitarily equivalent to the observa-
bility operator of its corresponding continuous-time system.

Having established all the necessary tools for our treatment of infinite-dimensional
state-space systems, we bring them together in 8 where we prove a general realization
result for infinite-dimensional continuous-time transfer functions in terms of balanced
systems.

Great emphasis has been placed on a presentation that is as self-contained as
possible. It is hoped that this paper might serve some readers as an introduction to
infinite-dimensional continuous-time state-space systems.

All Hilbert spaces are assumed to be separable and defined over the complex
field. The scalar product (.,.) is linear in the first component. The norm of a Hilbert
space X is denoted by II" [Ix, or simply by I1" II. The sum of two subsets N and M of
a Hilbert space X is defined by M + N {x + y lx M, y N}. We denote by (A, D(A))
the operator A with domain of definition D(A). The adjoint of the operator (A, D(A))
is denoted by (A*, D(A*)). The space of bounded operators from the Hilbert space
X to the Hilbert space Y is denoted by (X, Y), whereas Y{’(X, Y) is the set of
compact operators from X to Y. The symbol O-p(A) indicates the point spectrum of
the operator A. The abbreviation RHP stands for the open right half plane. The
boundary of the open unit disc D is denoted by 0D. The real part of a complex number
z is denoted by Re (z).
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2. Admissible discrete-time and continuous-time systems. In this section we will
define the classes of discrete- and continuous-time systems that we will investigate in
later parts of the paper. Whereas we can immediately state what we mean by an
admissible discrete-time system, we will have to review the notion of a rigged Hilbert-
space before we can give the corresponding definition of an admissible continuous-time
system.

An admissible discrete-time system is defined as follows.
DEFINITION 2.1. The quadruple of operators (Aa, Ba, Ca, Da) is called an admiss-

ible discrete-time system, with state space X, output space Y and input space U, where
X, U, Y are separable Hilbert spaces, if

(i) Aa (X) is a contraction such that -1 o-p(Aa),
(ii) Ba ( U, X),
(iii) Ca (X, Y),
(iv) Da ( U, Y),
(v) Aa, Ba, Ca are such that lima_l,a>l Ca(AI+Aa)-IBa exists in the norm

topology.
We write D:"v for the set of admissible discrete-time systems with input space

U, output space Y and state space X.
Remark 2.2. The technical condition (v), which is generally not very restrictive,

is not necessary to define infinite-dimensional discrete-time systems. It is, however,
important to study the connection between continuous-time and discrete-time systems.

We briefly introduce a number of definitions and results on strongly continuous
semigroups of contractions. An excellent reference is Pazy [14].

DEFINITION 2.3. Let X be a Hilbert space. A one-parameter family (T(t)),o of
contractions in (X) is a strongly continuous semigroup of contractions if

(i) T(0)= I,
(ii) T(t + s) T(t) T(s) for every t, s _-> 0,
(iii) lim,_.o T(t)x x for all x X.

The linear operator (A, D(A)) given by

T(t)x-x
x D(A) D(A) Ix X lim T(t)X-XexistsAx= lim for

t-o ( t-o

is called the generator of the semigroup (T(t))t__>o.
It can be shown that the generator (A, D(A)) uniquely determines the correspond-

ing semigroup (T(t)),>_o. Therefore we write T(t)=: eta, t>:O. We note that the
generator (A, D(A)) is a closed linear operator whose domain D(A) is dense in X. A
further important property is that it is dissipative, i.e.,

Re (Ax, x) <-_ O for all x D(A).

Moreover, D(A) is a Hilbert space with inner product induced by the graph norm

Ilxll :-IIxll / Ilaxll, x D(A).

Sin Ilxll_-> I[xllx for x D(A), we can embed X in D(A) (’), the set of antilinear
continuous functionals on (D(A), II" II), by

E :X --> D(A) (’), x->(y-(x, y)).

Note that D(A) (’) is a Hilbert space with norm [[f[[’ := supllxllA If(x)[. Since (.,.) is
linear in the first component, the embedding E is linear. By the above, we have the
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rigged structure

D(A)XD(A)(’)

It is well known that if (A, D(A)) is the generator of a strongly continuous semigroup
of contractions (eta),>__O on a Hilbert space, then the adjoint (A*, D(A*)) of (A, D(A))
is the generator of the adjoint semigroup (eta)t*>0 Hence, we have similarly that

D(A*)X_D(A*) (’).

If M is an operator on X such that D(A*) X is invariant under M*, then M
can be extended to an operator//on D(A*)’ by

1I" D(A*)(’) o D(A*) (’), f(. )-f(M*(. )).

Usually we will not distinguish between M and M and we will write M for M.
Also, if we have a map M’Z D(A*) ’), Z a Hilbert space, such that M(Z)_

X(’) D(A*)(’), we can consider M" Z- X using the Riesz Representation Theorem.
We are now in a position to define admissible continuous-time systems.
DEFINITION 2.4. A quadruple of operators (Ac, Be, C, D) is called an admissible

continuous-time system with state space X, input space U, and output space Y, where
X, U, Y are separable Hilbert spaces, if

(i) (A, D(Ac)) is the generator of a strongly continuous semigroup of contrac-
tions on X.

(ii) Bc’U (D(A*) ’), I1" I1’) is a bounded linear operator.
(iii) C’D(Cc) Y is linear with D(Cc)=D(A.)+(I-A)-’BcU and

II" IIA,.) ’’> Y is bounded.
(iv) C(I-A)-B ( U, Y).
(v) A, Be, C are such that lim,n,,_oo C(sI-A)-B =0 in the norm topology.
(vi) D(U, Y).

We write Cx’" for the set of admissible continuous-time systems with input space U,
output space Y, and state space X.

Before we continue to prove two lemmas that show admissible continuous-time
systems are well defined, let us remark that the state space X of a system in CxU’ v has
the rigged structure D(A)

_
X D(A* ’).

Remark 2.5. In Helton [9] and Fuhrmann [4] a similar definition was given for
continuous-time state-space systems. There are, however, several differences between
so-called compatible systems and admissible systems as defined here. Our definition
of a rigged Hilbert space is slightly different from that used in Helton and Fuhrmann,
where X is embedded in the dual spaces D(A)’ and D(A*)’, rather than in the spaces
of antilinear functionals D(A)’ and D(A*)’ as adopted here. The reason for using our
definition is that this naturally leads to a definition of the input operator B as a linear,
rather than an antilinear operator. Most important, however, for the discussion later,
is the imposition of (v) in our definition.

To show that the above definition is well defined, we must show that
C(sl-A)-IB is well defined for all s E and that (1-Ac)-IBcU

_
X. This follows

from the following two lemmas, which also contain technical results that are useful
in later sections.

LEMMA 2.6. Let (A, D(A)) be the generator of a strongly continuous semigroup
of contractions (e’a")t>_O on the separable Hilbert space X. Then for s RHP,

(i) (sI-ac)-lx_ D(A) and the map (sI-A)-l"(x, [[.I[x)o(D(A), 1[" IIA,,)
is bounded.

(ii) The map (sI- A)-’(D(A), I1" - (D(A), I1" [[A,,) is bounaea.
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(iii) (sI-Ac)-ID(A*c)(’)X and the map (sI-Ac)-I"(D(A*)(’,[I.[I’)-
(x, I1" x) is ounaea.

(iv) etacD(Ac) D(Ac) for all [0, o[.
Proof (i) For a proof that (sI-Ac)-IX D(Ac), s RHP, see Pazy [14, p. 8].

To show that (sI-A)-I"(X, II’IIx)-(D(A), I]" liar)is bounded, sRHP, let xX
and consider

[l(si_A)-lxl[A-- [l(sI-A) xll + IlA(sI-A)-xll2x
II(SI Ac)-lll2llX[12x -I-Ils(sI J)-’x -(sI J)(sI

<--II(sI-A)-*ll=llxll /(Isl II(sI-A)-lll Ilxllx / Ilxllx)=

(ll(sI- Ac)-lll

which proves the result.
(ii) This follows from (i) since IIllx <--IlXlla,., for x D(A).
(iii) This follows by duality from (i).
(iv) See Pazy [14, p. 5].
By (iii) ofthe previous lemma and the definition ofB we have that (I A)-Bc

_
X

and so D(C,.) is well defined. The following lemma shows that C(sI-A)-IB is well
defined and in ( U, Y), for all s RHP.

LEMMA 2.7. Let A D(A)--> X be the generator ofa strongly continuous semigroup

of contractions. Let Bc" U (D(A* ’, II’) be bounded and let C" D(C) Y be such
that CclD(Ac)’(D(Ac), I]’]la,.)- Y is bounded, where D(C)=D(A)+(I-A)-IBcU.
Then

(i) (sI-A)-IBU D(C) for all s RHP.
(ii) IfCc(I-A)-IB(U, Y), then Cc(sI-A)-IB(U, Y) forallsRHP.
Proof Let s e RHP; then by the resolvent identity we have

(sI Ac)-1 (I A)-1 + (1 s)(I Ac)-l(sI Ac)-1.

Since (sI-A*)-ID(A*)_ D(A*) we can apply B and obtain

sI A)-1B (I A)-B + (1 s)( I Ac)-l( sI A)-1 Be.
Since Bc’U--> (D(A*) ’), I]" II) is bounded, it follows by Lemma 2.6(i), (iii) that

(I-a)-l(st-a)-lB U-->(D(A),

is continuous. This implies in particular (i), since

sI Ac)-IBU I A)-BU+ (1- s)( I A)-I(sI A)-’BU
_
D(C).

Since CclDA,." (D(A), I1" liar) --> Y is bounded and hence

C(I-Ac)-’(sI-A)-IB ( U, Y),

we have that

C(sI-Ac)-IBc=Cc(I-A)-IBc+(1-s)C(I-A)-I(sI-A)-’Bc(U, Y). lq

Remark 2.8. It is useful to note that using the identification of X<’) and X
via the Riesz Representation Theorem we have that for u6 U the functional
(sI-A)-B(u)’D(A*)C is given by

x-->(sI- A)-’B(u)[x] B(u)[(gI- A* )-’x] ((sI- A)-Bu, x).
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3. The functional calculus by Sz.-Nagy-Foias. In this section we will review some
results on the functional calculus by Sz.-Nagy-Foias and prove two technical results
that are fundamental to the main results of this paper. This section is, however, only
necessary for an understanding of the proofs of some of the theorems presented in
later sections. Those theorems themselves are largely formulated without reference to
the functional calculus discussed here.

Since we do not assume that the reader is fully familiar with the functional calculus
as developed in Sz.-Nagy and Foias [17] we give a brief summary of those results
necessary for our applications.

We first consider a standard result of functional calculus. Let be the set of
functions given by

a(z) CkZk such that ., [Ck[ < .
k=0 k =0

Then , is an algebra with the involution a->a* given by a*(z):-a(). Note that a
function in is analytic on D and continuous on D.

For a contraction T on a Hilbert space X, we define a(T)= k=O ckTk" The sum
converges in the operator norm and hence the operator a(T) is well defined. The
following theorem states the fundamental result concerning the functional calculus for
functions in 1.

THEOREM 3.1. For a contraction T on a Hilbert space X, the map

4- (X), a(z)-- a( r)

is an algebra homomorphism. In particular, a( T)b( T) b( T)a( T), for a, b 4.
The functions that are important in our context are:
(a) 6"z-(z-1)/(z+l),
(b) p, z et((z-l)/(z+l)) > O,
(c) /.t z-> 1/(1 + z),
(d) 6," z ---> 1/(1 + z) e t((z-1)/(z+l)), =>0.

None of these functions are in and hence we must consider extensions of the
functional calculus of Theorem 3.1. Note, however, that the functions z->dp(rz),
z->q,(rz), z->lz(rz), and z->6,(rz), 0<r<l are in 4.

Next we exploit the observation that for each function u H the function
z---> u(rz), 0 < r < 1, is in 4 and discuss functions for which the limit limr_.l_0 u(rT)
is well defined in the following sense.

DEFINITION 3.2. Let T be a contraction on X. H is the set of those functions
u H such that

u(T) := lim u(rT)
1--0

exists in the strong operator topology.
Before we can describe a subset of H, we must consider contractions in some

detail. A subspace Y of a Hilbert space X is called reducing for T (X) if T maps
Y onto itself. A contraction T in w(X) is called completely nonunitary if there is no
nonzero reducing subspace Y of X such that TIy is unitary. To every contraction T
on the space X there corresponds a decomposition X XIX2 into an orthogonal
sum of two subspaces X1 and X2 reducing T such that T := Ylx is unitary and T2 :-- Tix
is completely nonunitary. The canonical decomposition of T is denoted by T T T2.
Recall that each unitary operator U has a spectral decomposition U o2r e" dE, for
some spectral family {E,}o__<,_<_= and spectral measure Et on the unit circle.
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THEOREM 3.3. H contains the functions u H for which the set

Cu {z cOD[ u(z) has no nontangential limit at z}

has measure zero with respect to the spectral measure Ev, corresponding to the unitary
part T of T.

Remark 3.4. Now we consider the functions ,, >_- 0, as defined in (b). We clearly
have that , H and C, {-1}. For a contraction T such that -1 is not an eigenvalue
of T, -1 is also not an eigenvalue of the unitary part T of T and hence Ev,({-1})= 0,
which shows that pt H, -> 0.

We will not explore the properties ofH in general, but consider the special case
of the functions ,, => 0. These are of importance in connection with semigroup theory.
Before we can state the next theorem establishing this role, we need to introduce some
additional notation. Let Ac be the generator of a strongly continuous semigroup of
contractions (e ta’) t_>-_0; then

Ad =(I+Ac)(I-A)-
is called the cogenerator ofthe semigroup (e tA

t__>o that can be shown to be a contraction
such that -1 is not an eigenvalue of Ad. The generator Ac can be expressed by Ad as

Ac=(I+Ad)-’(Ad-I).

The following theorem states that if given a contraction T such that -1 is not
an eigenvalue of T, then (p,( T)) ,>__o is a semigroup of contractions with generator
(I + T)-l(T- I) and cogenerator T.

THEOREM 3.5. Let T be a contraction on X. In order that there exists a strongly
continuous semigroup ofcontractions (T(t)) ,>-_o whose cogenerator equals T, it is necessary
and sufficient that -1 is not an eigenvalue of T. If this is the case, then (T(t))t>=o is
determined by

T( t) pt( T), >-_ O

with generator A (I + T)- T I).
Proof. The proof follows from Sz.-Nagy and Foias [17, p. 142], replacing T

by -T.
We will now consider unbounded functions in order to deal with &,/z, and ,. If

T (X) is a contraction such that -1 rp(T), then it is easily checked that
and ,, t_-> 0 are in the set of functions Nv defined as follows.

DEFiNiTiON 3.6. For a contraction T in (X), denote byK the class of functions
v H for which v(T)- exists and has dense domain. Let Nv be the class of functions
w that admit a representation

U
w=- uH vK

For w 6 Nv, we define w(T) v(T)-lu(T).
The following proposition states that for a certain subset of Nv we, in fact, have

the commutativity property w(T) v(T)-lu(T) u( T)v(T) -1.
PROPOSiTiON 3.7. Let u, v be continuous on D, analytic on D and have no common

zeros in D. If v K v for a contraction T, then

v( T)-’ u(T) u( T)v( T) -1.
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Remark 3.8. Let T be a contraction T such that -1 Crp(T); then, applying the
previous proposition to b, we obtain (I- T)(I + T)-l= (I + T)-l(I T).

The following theorem provides us with techniques to deal with functions in Nr.
THEOREM 3.9. (i) Let T be a contraction in (X) and let w Nr be analytic on

D. Iffor x X we have that

sup w(rT)xll <,
0<r<l

it follows that x D(w( T)) and

w(rT)x w( T)x

weakly as r- 1-0.
(ii) Suppose the functions u, v are continuous on D, analytic on D, and have no

common zeros in D. We assume that v has no zeros in D and that it does not vanish on
OD except at points ofmeasure zero with respect to the spectral measure Er of the unitary
part T1 ofT. Moreover, we assume that there exists a constant Msuch that [v(h )/v(rh )1 =<
Mfor h D, 0 < r < 1. Then w u/v belongs to the class Nr and is analytic in D.

The condition

sup w(rT)xll < 0o
0<r<l

characterizes the vectors in D(w( T)).
For each x D(w( T) ),

w(rT)x - w( T)x

strongly as r 1-0.
Having reviewed the functional calculus by Sz.-Nagy-Foias, we are now in a

position to prove two results that will be a key to results in later sections. Whereas
the first proposition deals with the function /z, the second proposition establishes
properties of the function

PROPOSITION 3.10. Let T be a contraction on X such that -1 is not an eigenvalue
of T. Then

lim (hi + T)-lx (I + T)-lx,

for x D((I + T)-I).
Moreover, x D((I + T)-1) if and only if SUpo<r<I [1(I -k- rr)-lxl[
Proof. Let u 1 and v l+z, so v only vanishes at z=-l. Since -1 is not an

eigenvalue of T we have that Er,({- 1}) O. Using w := u/v and r := 1/h, the result
now follows from Theorem 3.9(ii).

PROPOSITION 3.11. Let T be a contraction on X such that -1 is not an eigenvalue
of T. If x D((I + T)-I), then for all >= O,

(1) supo<r, II(I + rT)-’ et(rT+t)-’(rT-I)x[[ <--SUpo<r<l II(I + rT)-lxll < oo,
(2) (I + rT)- et(rr+t)-’(rr-)x (I + T)- e’(r+*)-’T-)x weakly as r 1-0.

Proof Write for 6,(z)= 1/(l+z)e’z-l)/z+))=lz(z)qt(z), with /z(z)= 1/(z+ 1)
and q,(z) et(z-l)/z+)), > 0. Then we have that 6, NT, > 0, since /z

-1 K and
since o, H, t->_ 0, by Remark 3.4.

As qt(rz), lz(rz)6 g, for0< r< 1, ->0, we have that q,(rT)tx(rT) tz(rT)qt(rT).
Also note that q,(rT) is a contraction by Theorem 3.5. Hence we obtain for t_>-0 and
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x D(lx(T)) D((I + T)-1) that

sup II,(rT)xl]--sup II(rT)p,(rT)xll-sup IIo,(rT)(rT)xll
0<r<l 0<r<l 0<r<l

sup Ilq,(rT)ll Illx(rT)xll <= sup II(I + rT)-lxll
0<r<:l 0<r<l

where the last inequality follows from Proposition 3.10. The chain of inequalities
shows (1).

Thus we have by Theorem 3.9(i) that D((I+ T)-I) D(6,(T)) and that for
x D((I + T)-1) we have,

(.pt(rT)x--> t( T)x

weakly as r-* 1-0, which proves (2).

4. A transformation between discrete- and continuous-time systems. We will now
introduce a transformation T relating systems in Dx

U’v to systems in CxU’ " and vice
versa. This transformation, which is inspired by a bilinear transformation mapping the
unit disk to the right-half plane, is often used for finite-dimensional systems to carry
over results from discrete-time systems to continuous-time systems (see, e.g., Glover
[5], Ober 11 ]. Hedberg [8] and Fuhrmann [4] used this approach to prove the existence
of state-space realizations for continuous-time systems with transfer function in a
certain class of H functions. The same idea is used here, the specific definitions are,
however, somewhat different to avoid certain technical problems.

We first consider the map T" Dx’ Y
-’ C

u, Y
X

THEOREM 4.1. Let (Ad, Bd, Cd, Dd)D’Y; then T((Ad, Bd, Cd, Dd)) :=
A, B, C, D C:" Y, where

(i) Ac := (I + Ad)-l(Ad I) (Ad I)(I + Ad) -1, D(A):= D((I + Ad)-l), and
A generates a strongly continuous semigroup ofcontractions on X given by qgt(Ad ), > 0,
with qt(z) ez-l)/+l).

(ii) B:=x/(I+Ad)-lBd U D(A*)’,
u-->x/(I + Ad)-’Bd(U)[" := x/(Bd(U), (I + A*d)-’(" ))x.

(iii) Cc’D(Cc)- Y, xlim x/ Cd(AI+Ad)-lx,
A-->I

where D(Cc)= D(A)+(I-A)-IBU. On D(Ac) we have,

CID(A.)= x/ Cd(I + Ad) -1.

(iv) D := Dd --lim,_,l,,>l Cd(AI + Ad)-IBd.
Moreover, let the admissible discrete-time system (Ad, Bd, Cd, Dd be a realization of the
transfer function

G(Z) .c\f)-
i.e., Gd(Z)= Cd(ZI--Ad)-lBd + Ddfor z C\).

Then, (A, Bc, C, D)= T((Ad, Bd, Cd, Dd)) is an admissible continuous-time
realization of the transfer function

.p-(u, .
Proof. We must check that conditions (i)-(vi) of Definition 2.4 are satisfied.
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(i) This follows from Theorem 3.5. The fact that Ae---(Aa-I)(I+Aa)-l=
(I + Aa)-l(Aa I) was shown in Remark 3.8.

(ii) Let u U, x D(A*). Then, since 1/2(I- Ae) (I + Aa)-1,

In(u)Ex]l [x/(Ba (u), (I + A*d)-l[X])x[
1

<=x/-

This implies that Be(u) D(A*)’ and that Be" U--> D(A*)’ is continuous.
(iii) We first note that, by Proposition 3.10, Cc is defined on D(Ac)=

D((I + Aa)-l), and that CelDac "f C(I + Aa) -1.
To show that CclDAc) is continuous with respect I1 ]lac, we see that for x D(A),

we have

1
C xll IIC,(I-Ac)xll 

C, + IIAcx
It remains to show that lima_.l,>l Ca(AI+Aa)-lx exists for x(I-A)-IBU. First
note that (I-Ae)-lB=(1/x/)Ba, for if xD(A*), u U, then

(I-Ac)-lBe(u)[x]= Bc(u)[(I-A*)-lx]
x/ (Bd(U), (I + A’)-l(I-A* )-lx)

1
--x/ (Bd(U), x)

where we have used the identity (I-A*)-I=1/2(I+A*a). Now we see that

lim x/ Ca (AI + Ad )-1 (i A)-IBu lim Ca (II + Ad )-1 Bdu
A--I AI
h>l h>l

exists by the admissibility of (Ad, Bd, Cd, Dd).
(iv) We must show that Ce(I-Ae)-lBe 5E(U, Y). But by the proof of (iii), we

know that (I Ae)- Be (1 //)Bd, and hence that

1
Cc(I- Ae)-lBc =-- CeBd lim,--,1 Cd(AI + Ad)-IBd ( U’ Y)

A>I

by the admissibility of (Ad, Bd, Cd, Da).
(v) This will be shown after the remaining parts of the theorem have been proved.
(vi) The boundedness of Dc follows since Dd (U, Y) and lim_l.>l Cd(AI +

Ad)-l Bd ( U, Y).
We will now prove the statements on the transformation of transfer functions. We

have for s RHP that (1 + s)/(1 s) C\D and hence,

+ s c.
k /

I- A. + D.G(s) Ga
1- s

(1 S)Cd((I-- Ad)+ S(I + Ad))-lBd + Dd

(1 S)Cd(I + ad)-l(sI--(ad I)(I + ad)-l)-lBd + Dd.
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The last identity is well defined, since

(sI-(Aa I)(I + A)-’)-’BaU (sI A)-’BU D(A) D((I +

Hence, Gc(s) (1- s)(1/x/)Cc(sI- Ac)-lBd nt- Dd.

Now if we extend the range of (sI-Ac)-lBd to D(Ac*) (’), then we can show that
(sI-Ac)-IBd =v/(1-s)(sI-Ac)--Bc-1/(1-S)Bd. For if x D(A*c), then we have,
using the resolvent identity, that

((sI-Ac)-lBd(U),X)x

=(Bd(U), (I-A*)(I-A*)-’(I-A*)-’X)x

Bd(U),(I-A*)(i g)[(gI-A*)-l-(l-A*)-l)]x x

1
((Bd(U), (I- A* )(gI- A* )-’X)x -(Be(u), x)x)

1
[(sI- Ac)-’Bc(u)](x)---- s

(Bd(U), X)x.

But we know that BeU D(Cc) and (sI-Ac)-lBcU
_
D(Cc) for s RHP. Hence

1
Go(s) (1 -s) Cc(sI-Ac)-lBd + Dd

1
Cc(sI-Ac)-lBc--- CcBd + Dd

Cc(sI-Ac)-lBc-lim Cd(AI+Ad)-IBd -b" Dd

=Cc(sI-Ac)-IBc+Dc,
and so (Ac, Be, Co, Dc) is a state-space realization of Go(s).

To finish the proof, it remains to show (v) of Definition 2.4. By the admissibility
of (Ae, Be, Ca, De) we obtain

lim Cc(sI-Ac)-lBc lim Gc(s)-Dc
s[ sen

lim Cd
1 +. I Ad Bd A- Dd Dc

-lim Ce(AI + Ae)-Be + De Dc
A>I

=0,

which completes the proof.
Before we consider the map T-1" Cx’Y- Dx’Y we need the following lemma,

which gives a version of the resolvent identity for not necessarily bounded resolvents.
LEMMA 4.2. Let Ad "X X be a contraction such that -1 : crp (Ad). Then for z C,

such that Izl> 1 and for xED((I+A*d)-i), we have

(+ 1)(I+A)-I(I-A*d)-lx=(I+A’)-lx+(I-A*d)-lx.
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Proof We first must show that if x
D((I + A*d)-). We know by Theorem 4.1 that Ac (I + Ad)-I(Ad I) is the generator
of a strongly continuous semigroup of contractions, such that D(A*) D((I + A)-).

Since Izl> 1, we have that s =(z- 1)/(z + 1) RHP. Hence (gI-A*)- is bounded.
But

(gI- A*)- (+ 1)((I-A*)-(I+A*))-’=(+ 1)(I-A*)-(I-A*)-.
Thus (gI-a)-l(I-a)=(+ 1)(I-A)-’ and hence, since (gI-A)-Ix D(A)
by Lemma 2.6, we have that

(+1)(I A$)-’D(A) (I a)-(t A)D(A)* *

(I A)-’X D(A) D((I + A)-’),

which shows the claim.
To prove the statement of the lemma, let y := (I A)-x D((I + A)-). Then,

(+ 1)y (I-A)y+(I + A)y.

Since y D((I + A)-), we can apply (I + A)-1 from the left to obtain

(+ 1)(l+A)-y=(t+A)-(l-A])y+ y,

and hence (+ 1)(I+a)-l(I-a)-x=(I+a)-x+(I-a)-lx.
THeOReM 4.3. Let (A, B, C, D)C’V; then T-((A, B, C, D)):=

A, B, Cn, D) D"Y, where
(i) A:=(I+A)(I-A)-, and for x D(A) we have that Aax

(I-a)-(I+a)x.
(ii) Ba :=(I-A)-B.
(iii) Ca := C(I- a)-1.
(iv) Da := C(I-A)-aB+ D.

Moreover, let the admissible continuous-time system (A, B, C, D) be a realization of
the transfer function

G(s)" RHP( U, Y),

i.e., G(s)=C(sI-A)-B+Dor s RHP.
en, (Ad, Bd, Cd, Dd)= T-I((Ac, B, C, D)) is an admissible discrete-time

realization of the transfer function

.cX(,.a.(z := ac +

Proo We must show that (Ae, Be, Ca, De) satisfies conditions (i)-(v) of Definition
2.1.

(i) Let x e X and define y (I-A)-x D(A); then

[[Ax[[ II(I + A)y <y, y)+ <Acy, Acy)+ 2 Re (Ay, y)

((I A)y, (I A)y)+ 4 Re (Ay, y)= Ilxll 2 + 4 Re (Ay, y)

since Re (Ay, y) 0 as A is dissipative, being the generator of a strongly continuous
semigroup of contractions. This shows that Ad is a contraction.
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It is easily verified that (I+Ac)(I-Ac)-lx=(I-Ac)-l(I+Ac)x, xD(Ac), as
claimed in the theorem and that -1 o’p(Ad).

(ii) This follows in a straightforward way from Lemma 2.6.
(iii) Since

and

Cc]D(Ac (D(Ac), If" IIAc) "- Y

(I-A)-"(X, I1" IIx) (D(A), [l" [[Ac)
are continuous, we have that

Cd =’,/ C(I-Ac)-l"(X, II, [Ix)- Y
is continuous.

(iv) Since by assumption C(I-A)-IBc(U, Y) and DSg(U, Y), we have
that D ( U, Y).

(v) Before we prove (v) we first show the last statement of the theorem.
Let zC, such that ]z]> 1; then s=(z-1)/(z+ 1) RHP. By definition

1
I A Bc + D.G.(z)= Cc +

Consider ((z-1)/(z+ l)I-A)-B. Let ue U, xe D(A); then

z- 1
I-A B(u)[x]= Bc(u) I-A

z+l +1

(z + 1)n(u)[(e(t-a)-(I + a))-x]

=(z+ 1)B(u)[(I-a)-(I-a)-’x].
But using the fact that (I-A)= 2(1+ A)- we obtain,

n(u)[x]=((-a)-n(u), (I-a)x)

(n(u), (I a)-’x).
Hence

( )_1z- 1
I-Ac B(u)[x]

z+l

=(z+ 1)B(u)[(I-A*a)-l(I-a*)-lx]
J(z + 1)( (u), (r + a*)-(el A*)-’(I a*)-lx)

v(Bd(U), (I-a*d)-(t-a* )-lx)

+’,/(Bd(U), (I + a*a)-(I-a* )-lx)

1v(Bd(U), (I-a*a)-(I-a*)-x)+-(Bd(U), x)

where the second but last equation uses Lemma 4.2, noting that (1-A*)-x D(A*)
D((I + A’a)-’). Thus

(z-l )-1 vzlI-Ac B(u)=x/(I-Ac)-’(zI-Ad)-lBd(u)+-- Bd(u)X.
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Note that by Lemma 2.6 (I-Ac)-X
_
D(Ac)_ D(Cc) and hence

x/-(I-Ac)-l(zI-Aa)-lBaU D(Cc).

Since BaU c:_ D(C,,) we can apply C, and we obtain

C,. I-A
z+l

1
B+ Dc=x/ Cc(I-Ac)-’(zI-Aa)-’Ba +- CcBa + Dc

Ca(zI-Aa)-’Ba + Cc(I-A)-’Bc + Dc

Cd (zI Ad )- Bd -b Dd

/-- 1\
lim Cd(AIq-Ad)-IBd =--lim Gd(l)+ Dd---- lim Gc{-|-b Dd
A->I /z<--I
A>I p.->-- /z->--

=C(I-A)-IB,

which implies the result.
Combining the previous two theorems, we can show the following corollary, whose

proof is straightforward.
COROLLARY 4.4. The map T"D"v--> CUx"Y is a bijection with inverse T-" C"Y-->

Remark 4.5. The following identities that have been used in the above proofs are
worthwhile noting for later use:

1/2(I-A)=(I+Ad)- and (I-Ac)-l=1/2(I+Ad).

5. Unitary state-space transformations. In this section we will discuss briefly the
effect of a unitary transformation V’X1 --> X2 of the state space on state-space systems.
This discussion will be important in 8 where we will show that a (par-) balanced
realization is unique up to a unitary state-space transformation. The first two proposi-
tions show that such an operation is well defined and does not change the transfer
function. The last result shows that unitarily equivalent systems are carried over by
the map T" O Ux r ---> Cc v and its inverse.

We first consider unitary state-space transformations for admissible discrete-time
systems.

u,YPROPOSiTiON 5.1. Let (Ad, Bd, Ca, Dd) Dx, IfX2 is another Hilbert space and
V" X--> X2 is a unitary operator, then

(1) VAdV*, VBa, CdV*, Dd D’v.
(2) If (Aa, Ba, Ca, Da) is a state space realization of the transfer function

Ga(s)" C\D-> L( U, Y),

then the (VAaV*, VBa, CdV*, Da) is a state-space realization of the same transfer
function.

Proof. The proof is straightforward.
The following proposition, whose proof is straightforward, gives the analogous

result for continuous-time systems.

that

Thus (Aa, Ba, Ca, Da) is a realization of Ga(z).
We are now in a position to prove (v) of Definition 2.1, i.e., that lim>l,_, Ca(hi +

Aa)-Ba exists in the norm topology. By the admissibility of (Ac, B, C, D), we have
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U, YPROPOSITION 5.2. Let ((At, D(Ac)), B, C, D,.) Cx, If 22 is another Hilbert
space and V" X- X2 is a unitary operator, then

(1) ((VAV*, VD(A)), VBc, (CV*, VD(C)),D) Cx’Y, where

VB)" U -> ((VD(A*)) ’), I1" II’)
is given by

VBc)(u)[x] := B,(u)[ V’x]

u U, x VD(A*).
(2) If (A, B, C, Dc) is a state-space realization of the transfer function

G(s)" RHP- L( U, Y),

then (VAV*, VB, CV*, D) realizes the same transfer function.
The following definition introduces the standard notation of unitary equivalence

of state-space systems. Note that by the previous two propositions, unitarily equivalent
systems have the same transfer function.

U,YDEFINITION 5.3. Two systems (Jc, B, C, m) Cx, i= 1,2, are called uni-
tarily equivalent, if there exists a unitary operator V" Xl-X such that

(A, B, C, m) (VA’ V*, VB, clc V*,
An equivalent definition applies to admissible discrete-time systems.

We will now show that the transformation T" DxU’ Y CxU’
Y and its inverse preserve

the unitary equivalence of systems.
U, YPROPOSITION 5.4. Let (A, Bd, Cd, Dd) Dx, i= 1, 2. Let (Ai, Bi, ci, D’c)

T((A, B, Ca, Dd)), i= 1, 2, be the associated continuous-time systems.
Then, (Al, BI, C, D1) and (A, B, C, D) are unitarily equivalent if and only

if (Aid, Bd, Cd, Dd) and (A2d, B2d, C2d, D2d) are unitarily equivalent.
Proof. Assume (A, B, C, D) and (A, B, C, D) are unitarily equivalent,

i.e., there exists a unitary operator V’XIX: such that (Ad,Bd, Ced,Dd)--
VAld V*, VBd C d V*, Dd ).

Since A VAd V* we have

A (I + Ad)-’(Ad I) (I + VAld V*)-I( VAd V*- I)= VAI V*
with D(A)= VD(Ac).

Let u U, x: D((A)*); then

BZ(u)[x2] x/(BZd(U), (I + (A,])*)-’x2) x/(Bla(u), (I + (A)*)-’

B’(u)[ V’x:] VB’c](U)[X2]
and hence B2 VB.

C2 C V* since for x e D(C2), we have

Cx lim x/ Cd(AI + Ad)-x lim x/ Cd(AI + aa)- V*x C V*x.
A->I A->I
A:>I

The fact that DI D follows, since two unitarily equivalent systems have the same
transfer function and thus

The converse follows similarly.
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6. Dual systems. If (A, B, C, D) is a finite-dimensional linear system, then
(A, C, B T, Dr) is called the dual system of (A, B, C, D). It is well known that
properties of a system are closely related to those of its dual systems. To examine the
reachability operator of an infinite-dimensional system via the observability operator
of its dual system, we will now define what we mean by the dual system of an admissible
system.

We first consider discrete-time systems.
DEFINITION 6.1. Let (Aa, Bd, Cd, Dd)EDUx"Y’, then the dual system

(/d, d, d, /d) of (Ad, Bd, Cd, Dd) is given by

:= A X- X, := C*" Y- X,

d := B*a X- U, ba := D*a Y- U.

The following lemma shows that the dual system of an admissible system is
admissible and shows how the transfer function of a system is related to the transfer
function of its dual system.

LEMMA 6.2. The dual system d, d, d, ])d ofan admissible discrete-time system
(Ad, Bd, Cd, Dd) in Dx Y is an admissible system in Dc"t.

If the discrete-time transfer function G(s)’C\D-(U, Y) has an admissible
realization Ad, Bd, Cd, Dd), then the dual system (,d, d, d, d) is a realization

of the transferfunction G(s)" C\D-( Y, U), s- G(s) := (G(g))*, i.e.,for all s C\D,

(s) (())* (-)-’ +

Proof. We must check (i)-(v) in Definition 2.1. To show (i) note that since
[[Ad*[[ [lAd I[, we have that Ad* is a contraction. Thus we only have to show that
-1 Crp(A*d). Assume there exists x X such that Ad* x---x; then

0 <- [IAx + xll= IIAaxll + 2 Re (x, Ad* x)+ Ilxl] 2

Ilaaxl[- 211xtl + ItxII =- Ilaaxi[- [txl[ 2-<_ O.

Thus IIAx/xll-O and hence Ax=-x, which is a contraction to -1 O-p(Aa).
The remaining parts of the lemma are straightforward to check.
Next, we are going to define the dual system of an admissible continuous-time

system.
DEFINITION6.3. Let(Ac, Be, Cc, Dc) Cx’Y. Then the dual system

of (Ae, Be, Cc, De) is given by
(,e, D(/)) (A*, D(Ac* ), the adjoint operator of (Ae, D(A );
e Y- D(Ac)’, Yc(Y)[ := (Y, Ce(’)};
c" D(e) U, D(e) D(,Zi)+(I-,e)-l.eY, where oXo is defined by

(U(gcXo) Bc(u)[xo], for Xo D(A*c ), u U,
and by

(cXoU)=(yo, C(I-Ac)-IBeu), for Xo=(I-,ZL)-fleyo,YoE Y, u U;

::=D*" Y U.
The following lemma is the continuous-time equivalent of Lemma 6.2.
LEMMA 6.4. The dual system (,e, e, e, e) of an admissible continuous-time

system A, Bc, Ce, Dc is admissible.

If the continuous-time transfer function G(s)’RHP (U, Y) has an admissible
realization Ae, B,., Cc, D), then the dual system (,c, :e, ;e, le) is a realization of the
transfer function (s) := (G(g))*, i.e., for all s RHP,

(s) (G(g))* c(SI .e)-’e + ;c.
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Proof We must show (i)-(vi) of Definition 2.4. Of these, (i)-(iv) and (vi) are
straightforward.

Before we show (v) of Definition 2.4 we show the last statement of the lemma.
Let u U, y Y, and consider for G(s)=Ce(sI-Ae)-Bc+Dc,

(y, G(s)u)=(y, (Ce(sI-A)-IB+D)u).
Using the resolvent identity we have that

(y, G(s)u)

=(y, C(I-A)-Bu)+(y, Ocu)+(1-g)(y, C(I-A)-(sI-Ac)-B,.u)
((I-)-/y, u)+()cy, u)+(1-g)(y, C(I-A)-(sI-A)-Bu).

Note that for x X we have

(y, C(I-Ac)-x) (y)[(I-A)-ax]=((I-A*)-ay,x).
Using this identity, we now obtain that

(y, C(I-Ae)-(sI-A)-Bcu)=((I-A*c )-y, (sI-A)-Bcu)
=((sI-A)-Bu, (I-A*c)-cy)
B(u)[(gI-A*)-(I-A*)-acy]

=(u, (gI-A*)-(I-A*)-:y)
((gI-- fi)-l(I-.)-y, u).

Summarizing and again applying the resolvent identity, we have

(y, G(s)u)

((I-)-/y, u)+(y, u)+(1-g)((gI-)-l(I-c)-ly, u)

--((c(gI--.c)-ljc + )y, u)

=((G(s))*y,u).

Hence (G(g))*=(?e(sI-fte)-+l for all sRHP. Now (v) of Definition 2.4
follows, since

limsa c(SI-- fi’c)-lc= limsa (Cc(sI-A)-’B)*=(limsa Cc(sI-A)-lBc) *=0"
We will now show that the notion of duality of two systems is carried over between

discrete- and continuous-time systems by the transformation T.
PrOPOSITION 6.5. Let (Aa, Ba, Ca, Da) Dx’Y and define (A, B,., C, De):=

T((Aa, Ba, Ca, Da)). Let (Aa, Ba, Ca, Da) Dx" be another discrete-time system and
let (a, B, C c,, D.) := T((aa Ba Ca Da)) be its corresponding admissible continuous-
time system. Then,

(aa, Ba, Ca, Da) is the duat system of (Aa, Ba, Ca, Da)

if and only if
(A, B, C DI) is the clual system of (A, B, Cc D)

Proof. Assume (A,B, C,D) is the dual system of (Aa, Ba, C,,Da). Let
(,.,/, ,/) be the dual system of (A, B, C, Dc). Then A, a Aa* implies that

A. + A)-(A ((A + A)-’)* A* .
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For a justification of the operations with the adjoints, see Weidmann [18, p. 74]. The
identity B B’d Ca* implies for y Y, x D(Ac), that

Bac(y)[x] ,4(Bdy, (I + (Ad)*)--x)
,,/(y, Ca(I + aa)-ax)
(y, Cx)

(y){x]
and hence Ba =/.

To show that C1= (, we must consider two cases
(i) For x D(Aa) we have Clx= x, since for u U,

(u, C’x)= ,,/(u, Cd(I + Ald)-’X)= ,/(BdU, (I + A*d)-’X)

(u)[x] (u, Cx).

(ii) Note that for yo Y, xo:=(I Aac)-BYo (I-,)-ayo, sinceforxD(a),
we have

(I-a)-’B(yo)[X]

1 1
((I- AI,)-IBc(yo), x)=- (Bayo, x) =(yo, CdX)

=(Yo, C(I-Ac)-’x)= (yo)[(I-Ac)-lx]
=(I-)-’(yo)[X].

Then for u U,

(C,Xo, u)= lim (Cd(AI + Ad)-IBdYo, U)= lim (Yo, Cd(AI + Ad)-IBdU)
A->I A
A>I

=(Yo, Cc(I-Ac)--’Bu):(dcx,, u)

(Cxo, u)

where the last equality follows since xa := (I-c)-l/cyo Xo and hence Cac (.
Since D =/a =/a*, we have that

Da,.= D-lim C(AI + A)-aBa D*a -lim B*a(AI + A*a)-IC] D*c .
A->I A-->I
h>l

Hence we have that (Aa., Bac, CI, Da) is the dual system of (A, B, C, D).
To show the converse, assume that (AI, B, Ca, Dac) is the dual system of

(A, B, C, De) and let (A,/a, a,/a) be the dual system of (’Aa, Ba, Ca, Da).
Then

A, ( + A(t A- ( +A*( Ac*- A*
where we apply Theorem 4.19 of Weidmann [18] to justify the manipulations with the
adjoints.

The fact that B =/a follows from the following identities, where y Y, x D(A),

(Blay, x)= x/((I- A)-a B,,y, x)= B,(y)[(I-(Aa)*)-lx]
=x/ (y)[(I-ac)-x]=(y, C(I-a)-ax)=(y, CdX)

=(y, x).
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To show that C (a Ba*, let u U, x D(Af),

(u, Cx)=,,/(u, C(I-A)-x)=.,/(u, (I-a*)-x)
Bc(u)[(I-A*)-’x]= ,/((I-Ac)-’Bu, x)=(Bau, x)

=(u, Cx).

Since also

D C(I A)-B+D Cc(I A)-B + D)* D
we have the result.

7. Observability and teachability operators. We are now in a position to discuss
some of the central objects of this paper. We define the observability operator for
admissible systems. The reachability operator of a system is introduced as the dual of
the observability operator of its dual systems.

Having defined observability and controllability gramians of admissible systems,
we show one of the main theorems of this paper. It states that the observability operator
of a discrete-time system is related by a unitary transformation to the observability
operator of its corresponding continuous-time system. This result is the main tool
in proving that the transformation T maps discrete-time balanced realizations to
continuous-time balanced realizations.

We first define the observability and reachability operators for discrete-time
systems.

DEFINITION 7.1. Let (Ad, Bd, Ca, Da)D’v’, then the operator

d D(d l
x(CdAx),o

is called the observability operator of the system (Ad, Bd, Ca, Dd), where

D(d {x X I(CdAx),o l}.

If is bounded and ker (d)= {0}, then the system (Ad, Bd, Cd, Dd) is called
observable.

Let (d, d, a, d) be the dual system of (Aa, Bd, Ca, Dd). If the observability
operator d of (Ad, Bd, Cd, Dd) is bounded (and hence D(d)= X), then the adjoint
of d is called the reachability operator d of (Ad, Bd, Cd, Dd), i.e.,

If exists and range (a) is dense in X, the system (Aa, Ba, Ca, Da) is called
reachable.

The analogous definitions for continuous-time systems are now given.
Dzywoy 7.2. Let (A, B, C, D)C’v, then the operator

" D() L([0, [)
XC etAx

is called the observability operator of the system (A, B, Cc, D), where

D(c) {X X[ Cc etax exists for almost all [0, [, C e’ax L([O, [)}.
We say that (A, B, Cc, Dc) has a bounded observability operator if D(A) D(c)
and extends to a bounded operator on X. This extension will also be denoted by c.
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If (Ac, Be, Co, De) has bounded observability operator c such that ker (c) {0},
then the system (Ac, Bc, Co, De) is called observable.

Let (/c,/c, c,/c) be the dual system of (Ac, Be, Co, D). If the observability
operator c of (/c,/, c,/) is a bounded operator on X, the adjoint of is called
the reachability operator c of (Ac, Be, Co, De), i.e.,

:= *.
If c exists and range (c) is dense in X, the system (A, Be, Co, De) is called

reachable.
The notion of reachability and observability gramians as defined below is central

in the discussion of balanced realizations in the next section.
DEFINITION 7.3. Let (Aa, Ba, Ca, Da) Dx’v with bounded reachability operator

a and bounded observability operator 6a. Then

:=a*.x - x, := *.x-xare called the reachability and the observability gramian, respectively, of the system
(Aa, Ba, Ca, Da). The reachability gramian 7,//’c and the observability gramian c of a
continuous-time system with bounded reachability operator and observability
operator c are similarly defined to be

:=* x- x, c := * c. X-, X.

Before stating the main theorems of this section we present a collection of
standard results on Laguerre functions and straightforward modifications thereof. For
a reference, see, e.g., Abramowitz and Stegun 1].

PROPOSITION 7.4. There exists a complete set of orthogonal real-valued functions
(Ln(t))n>=o L2([0, c[) such that

(i) 1/(l+z) et((z-1)/(z+l))=n__oLn(t)zn for Izl<l.
(ii) o L,(t)Lm(t) dt=1/26,mfor all n, m.
(iii) IL,(t)l- 1 [0, [, for n >= O.
(iv) L,(t) 6 L’([O, [) for n >= O.
(v) If Y is a separable Hilbert space, then the operator

W" l--> L2([O, c[),

is unitary, with adjoint

W*" L2v([O, oo[) 12v,

(x.).>_o Y I.(t)x.
n=O

f(t)-x/ f(t)L,(t) dt

Now we will state and prove the main theorems of this section. They show that
the observability operators of discrete-time systems are related to the observability
operators of their corresponding continuous-time systems by a unitary transformation
of the input spaces and vice versa. We first consider the case where a discrete-time
system is given. Here the connection of its observability operator to the observability
operator of its corresponding continuous-time system is investigated.

THEOREM 7.5. Let (Ad, Bcl, Ca, Da)GD"v and let (Ac, Bc, Cc, De):
T((Ad, Bd, Cd, Od)) be the corresponding admissible continuous-time system. Then,

(i) For x6 D((I+Ad)-l)f’lD(d), we have x D(c) and

6cx WdX
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where Uc is the observability operator of (Ac, Be, C, D), and W is the unitary operator
defined in Proposition 7.4.

(ii) If Ud X l is bounded, then c extends to a bounded operator given by

Wd.

Proof (i) Let xD((I+Ad)-I)f-ID(d)=D(A)fqD(Ud). Write

F. [0, o[- Y,

F- [0, o[- ,
G" [0, co[ Y,

t-> F( t) E L,( t)CaAa X,
n=0

t-- Fr(t) E Ln(t)r’CdA x,
n=0

t-G(t)= CcetA.x,
with 0<r<l. The function G(t), t[0, eel, is well-defined since e’AcxeD(A) for
x D(A) and hence e’A"x D(C).

First note that F(t) is well defined and in L2v([0, oe]), because (CdA x)n>=oe
and because (x/ L,(t))n__>o forms an orthonormal basis in L2([0,

Now we are going to show that

x/ Fr(t) - G(t) pointwise weakly as r- 1-0.

Using the notation and results of 3 we have that Y,--o L,(t)r"A 6,(rAd), 0< r< 1,
since 6,(rz)e sO. Hence,

F(t)= Y L.(t)r"CdAax=Ca _, L.(t)r"A
=0 =0

Cat3,(rAa) Ca(I + rAa)-’
Weak convergence now follows from Proposition 3.11.

But Fr(t) F(t) in L([0, oe[) as r- 1-0, since

(r"CaAx),>=o(CaAx),>_o in l as r- 1-0.

We can now show that these two convergence results imply that for all y Y

(y, G(t))y <y, F(t)).

almost everywhere for all [0, [. For otherwise, there is an e > 0 and a measurable
set A___ [0, c[ with Lebesgue measure A(A)= e such that

(y, G(t))y-(y, x/ F(t))y > e

for A. Now, clearly there is an ro such that for r >_-ro

a{t A" (y, x/ Fr(t))-(y, x/ F(t)) > e/2}< e/2,

and by Egoroff’s Theorem, there is an r such that for r_-> r
Z{t A" (y, x/ Fr( t))-(y, G(t)) > e/2}< e/2.

These three statements together form a contradiction.
Now, since Y is separable we have that

Cc etA"x x/ L,( t)CdAnd X
n=O

almost everywhere for [0, oo[. Thus (?(x) Wd(X) for x D(Ac).



460 R. OBER AND S. MONTGOMERY-SMITH

(ii) Since (Ya is bounded, W is unitary, and D(Ao) is dense in X, Go extends to
a bounded operator on X.

The corollary to this theorem shows the equivalent result for reachability operators.
COROLLARY 7.6. Let (Aa, Ba, Ca, Da)D"Y and let (Ao, Bo, Co, Do):

T((Aa, Ba, Ca, Da)) be the corresponding admissible continuous-time system.
Then, if the teachability operator Ga of (Aa, Ba, Ca, Da) exists as a bounded

operator, the reaehability operator Go of (Ao, Bo, Co, Do) exists as a bounded operator
and is given by

Go GaW*.
Proof Let (a,/a, Oa,/a) be the dual system of (Aa, Ba, Ca, Da). By definition

Ga =a*, where a is the o.bserv.abilit.y op.erator of (a,/a, (a,/a). Now consider
T((a, j, Oa, /a))=:(Ao, Ba, Co, Do). By Proposition 6.5 we know that
(Ao, Bo, Cc, Do) is the dual system of (Ao, Bo, Co, Do). But the reachability operator
G. of (Ac, Bo, Co, Do) is given by Go *, where o is the observability operator of
(fio,/., .,/c). By the previous theorem c Wa and hence Gc-- a* W*=
GaW*.

We now show that if a continuous-time system has a bounded observability
operator ,. then the observability operator of its corresponding discrete time system
is given by a unitary transformation of .

THEOREM 7.7. Let (Ao, Bo, Co, Do)Cx’ and let (Aa, Ba, Ca, Da)
T-I((Ao, B, Co, Do)) be the corresponding admissible discrete time system. Then,

(i) For x D(Ac) f] D(o), we have x D(a) and

,x= W*x
where a is the observability operator of (Aa, Ba, Ca, Da) and W* is the unitary operator
defined in Proposition 7.4.

(ii) If o is bounded, then a extends to a bounded operator on X given by

a W*c.
Proof (i) Let xD(Ac)fqD(c); then we know that G( t) := C e’a,x exists for

all [0, o], since eA"x D(Ao)
_
D(Co), [0, o[. By assumption G(t) L([0, oe[).

Corollary 4.4 implies that

G(t) x/ Ca(I+Aa)-’

For 0< r < 1, let G,(t) x/ Ca(I + rAa)- et(l+raa)-(raa-I)x. Since Ca is bounded, we
have by Proposition 3.11 that for all [0, c[,

lim Gr(t) G(t) weakly.
1--0

Since Cd is bounded and 6t(rz) sd, where 6, is as defined in 3, we have that

Gr(t)=x/ Cd(I+ raa)-’ et(I+rAa)-’(rAa-l)x

Ca,(rAa)x

4 Ca L(t)rA3 x
=0

=x/ Z L,(t)r"CdA]x L([O,]).
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We will now show that there exists M > 0 such that

IIGr(t)ll<-M<oe for all0<r<l, t[0,

Let [0, ce[; then

sup IlOr(t)ll-sup Ca(I+rAa)
O<r<l O<r<l

N [[GII sup II(I+rAd) -1 et(l+rAd)-’(rAa-t)x[[
0<r<l

NM<

where the second to last line follows from Proposition 3.11 noting that D(A,)=
D((I+ad)-l).

Thus for y e Y, we have that

[(Gr(t),y)L.(t)lM[ly[[lL.(t)l [0, [.

Since L(t) L([O, [), we can therefore apply the Dominated Convergence Theorem:

lim <Gr(t), y) L,(t) dt= <G(t), y) L,(t) dt.
rl--O

But

Thus

(G(t), y>x/ L,(t) at= lim (Gr(t), y>/ L,(t) at
1-0

CdA x, y).

Since G(t) L([O, co[), we have an expansion

G(t) E G, L,(t),
n=O

Gn Y.

Thus (Gn, y)= (CdA x, y) for all y Y and hence Gn CdA x for n >= 0. This implies
that

ec(X) Cc e’a’x=x/ E L,(t)CaAx=
n=0

and hence a(x) W*(c(x).
(ii) This is a straightforward consequence of (i).
In the following corollary the corresponding result is established for the reach-

ability operators.
COROLLARY 7.8. Let (Ac, Bc, C., Dc) Cx’" and let (Aa, Ba, Ca, Dd) :=

T-((Ac, Bc, C, Dc)) be the corresponding admissible discrete-time system. Then, if the
reachability operator . of (A, B., C., Dc) exists as bounded operator, the teachability
operator d of (Ad, Bd, Ca, Dd) exists as a bounded operator and is given by

Yd tW.
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Proof. Let (.c,/e, (e,/c) be the dual system of (Ae, Be, Ce, De). By definition,
e (*, where c is the observability operator of (/e,/e, (e,/e). Now consider (d,
d, d, d)= T-l((c, c, , c)). By Proposition 6.5 we know that (d, d, d, d)
is the dual system of (Ad, Bd, Cd, Dd). But the reachability operator d of
(Ad, Bd, Ca, Dd) is given by d =, where d is the observability operator of
(d,d, d,d). By the previous theorem d W*. Hence d==W
W.

The following corollary to the previous two theorems shows that the propeies
of observability and reachability as well as the observability and reachability gramians
are preserved by the transformation Z
Coo 7.9. Let (Aa, Ba, Ca, Da)D"v and (A, B, C, D)C"v such

that

(Ae, Be, Ce, D)= T((Aa, Ba, Cd, Da)).

Then,

(1) (Ae, B, Ce, De) is observable (reachable) if and only if (Ad, Bd, Cd, Dd is
observable (reachable).

(2) If the reachability gramians liVe, t/Vd (observability gramians , Ald) of
Ad, Bd, Cd, Dd) and Ae, B, Ce, De) are defined, then

=r ( t).

8. Balanced realizations. We will now apply the results on infinite-dimensional
state-space systems of the previous sections to tackle the problem that motivated this
paper, namely, that of the existence of balanced realizations for continuous-time
systems. Our results will allow us to deal with a wider range of transfer functions than
previous results; for example, we can handle any transfer function that is bounded in
the RHP, and with a limit at infinity along the real axis. This allows us to consider
nonstrictly proper delay systems with transfer functions such as G(s) e-s, where G(s)
is a matrix-valued stable rational transfer function. Previous results were unable to
deal with, for example, the pure delay system e-sT because the limits limw_.+ e-iwt

and limw__ e-iw’ do not exist and, therefore, the corresponding Hankel operator is
not compact. Another example of a function we will be able to deal with is G(s)=
log (1 + l/s). This function is unusual in that it has a singularity at 0.

The approach taken is to carry over the discrete-time results by Young using the
transformation T" Dx’ Y-’)CXU’Y. Thus we will first review Young’s results before we
turn to proving the continuous-time analogue of his discrete-time realization theorem.

The following definition recalls the notion of a balanced system as defined by
Moore [10] and the notion of a parbalanced system as introduced by Young [20].

DEFINITION 8.1. Let (Ad, Bd, Ca, Da)c D"v ((Ae, Be, C, De) Cx’Y) be such
that the observability gramian ffd (c) and teachability gramian 7’d (7c) exist.
Then the system is

(i) Parbalanced, if J/d /’d(
(ii) Balanced, if it is parbalanced and moreover the gramians are diagonal.
Before we state any results, we introduce some notation. Let H’D- (U, Y) be

analytic. We say that H P+L(D, ( U, Y)) if there exists an analytic function
F"D( U, Y) such that H + is essentially bounded, where (z) F(z-l). Further-
more, if F can be chosen so that H + F C(D, Y{’( U, Y)), where C(D, Y{’( U, Y)) is
the set of norm continuous functions on 0D with values in the set of compact operators
from U to Y, then H is said to be in P+C(D, Y{( U, Y)).
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Similarly, if H" RHP-( U, Y) is analytic, we say that H P+L(RHP, ( U, Y))
(P+C(RHP, Y(( U, Y))) if there is an analytic function F" RHP-* &( U, Y)(Y(( U, Y))
such that H + F is essentially bounded (extends to a norm continuous function on the
imaginary axis such that limwR.w_ (H + )(iw) limwn,w_ (H + .)(-iw)), where
F(s)=F(-s).

Remark 8.2. If H 6 P+L(D, (U, Y)), then the Hankel operator with symbol H
is bounded by an operator-valued version of Nehari’s Theorem, whereas by Hartmann’s
Theorem it is compact if H P+C(D, (U, Y)). Note that if U and Y are finite-
dimensional, H P+L(D, ( U, Y)) (P+L(RHP, ( U, Y))) if and only if H is in
BMOA(OD) (BMOA(i)) and He P+C(D, Y(U, Y)) (P+C(RHP, Y(U, Y)))if and
only if H is in VMOA(OD) (VMOA(i)) (for references, see [15]).

The following theorem by Young [20], gives criteria for a (par-) balanced realiz-
ation to exist of a discrete-time transfer function.

THEOREM 8.3. Let Gd(Z)’C\D( U, Y) beanalyticwith Ga() Da ( U, Y),
and write

g(z):=- G -D zD.
z

(i) If g P+L(D, ( U, Y)), then there exists a separable Hilbert space X and a
discrete-time state-space realization (Ad, Bd, Ca, Dd) of Gd (z) with state space X, such
that

Ad (X) is a contraction,

B ( U, X), C (X, Y),

and (Ad, Bd, Cd, Dd is reachable and observable with bounded teachability and observa-
bility operators, such that (Aa, Bd, Cd, Dd) is parbalanced, i.e., ,/ld f’d. The gramians
3lid, W’d satisfy the Lyapunov equations

Adl/l/’dA*d ld =-BBd, A*d J/[dAd eld =-CaGe.
If (Ad, Ba, Cd, Dd is another parbalanced realization of Gd (z) with state space X, then
(Ad, Bd, Cd, Dd) and Ad, Bd, Cd, Dd) are unitarily equivalent.

(ii) If, moreover, g P+ C(D, Y{’( U, Y)), there is a basis in X with respect to which
Ad Bd Ca, Dd is balanced.

To show that for a transfer function Ga such that limx<_,x_,_ Gd(A)e(U, Y),
the realization given in the previous theorem is, in fact, admissible, we need to show
that -1 is not an eigenvalue of Ad.

LEMMA 8.4. Let (Ad, Bd, Ca, Dd) be a parbalanced realization of a discrete-time

transfer function as given in Theorem 8.3; then 1 : trp (Ad).
Proof. Let a be the observability gramian of (Aa, Ba, C, Da); then

AdAd d --C*d Cal.

Assume -1 e trp(Ad) with eigenvector x 0, then

(X, A/dAdX) (X, d[/clX) --(X, C*d Cdx)
and hence

(AdX, dAdX>--(X, J//dX)= 0 =--IICdXl[ 2,

which implies that CdX 0. Hence for all n >- O, dX (CdA"d X),>=o (-- 1)"CdX O,
which is a contradiction to the observability of (Ad, Bd, Ca, Dd). []
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We can now apply our results on the transformation T to obtain realization results
for continuous-time transfer functions.

THEOREM 8.5. Let Gc "RHP-( U, Y) be a continuous-time transferfunction that
is analytic and such that lim..s_o Gc(s) ( U, Y) exists.

(i) If G P+L(RHP, (U, Y)), then there exists a separable Hilbert space X
and a parbalanced admissible continuous-time state-space realization (A, Be, Ce, De) of
Gc with state space X. This system is reachable, observable, and has bounded reachability
and observability operators.

If (At., B., C., D is anotherparbalanced realization ofG s then Ae, Bc, Ce, Dc
and A, Be, Cc, De) are unitarily equivalent.

(ii) If moreover, Gc P+C(RHP, Y{( U, Y)), then there is a basis in X with respect
to which (At., Bc, C, D is balanced.

Proof Let Ga "C\D- (U, Y) be the associated discrete-time transfer function
Ga(z) G.((z- 1)/(z + 1)), and write

g(z)=l(Ga() G(1)) zD
Z

Then it is easy to see that Ge P+L(RHP, (U, Y))(P+C(RHP, Y{(U, Y))) if and
only if g P+L(D, ( U, Y))(P+C(D, 77{( U, Y))).

Hence Ga(z) has a parbalanced realization (Aa, Ba, Ca, Da) that is admissible
since Aa is a contraction, such that -1 o’p(Aa) by Lemma 8.4 and since

lim Ca(AI+Aa)-Ba lim Ga(A)+Da=-lim G(s)+Da(U, Y)
A<I A<--I s
A-I h->--I

exists. Then (Ae, Bc, C., De) := T((Aa, Bd, Ca, Dd )) C x’ v is a state-space realization
of Gc (Theorem 4.1) that is observable and reachable, such that 7g’c
(Corollary 7.9).

The statement on the uniqueness of the realization follows from Proposition
5.4.

The following corollary discusses special cases of transfer functions and gives
simple criteria for the existence of a parbalanced or balanced realization of a
continuous-time transfer function.

COROLLARY 8.6. Let G(s) RHP-( U, Y) be a continuous-time transferfunction,
such that lim s_,,._, Gc (s) L( U, Y) exists and G(s) is analytic in RHP.

(i) If Ge(s) is bounded in the RHP, i.e., supRHP IIGe(s)ll < co, then G(s) has a
parbalanced realization.

(ii) If, in particular, Gc(s): RHP-’{( U, Y), such that Ge is bounded in the RHP
and G.(s) is norm continuous on the imaginary axis including at the points +oo and -oo,
i.e., w-G(iw), weN, is norm continuous and limw__ G(iw)=limw_.+o G(iw), then
Gc( s) has a balanced realization.

As examples to the previous realization results we can consider delay systems. It
follows immediately from the previous corollary that the transfer function e-st of a
pure delay with time constant T> 0, has a parbalanced realization. Note that the limits
limw_.+o e-iwr and limw__oo e-wr do not exist. If G(s) is a matrix-valued strictly proper
stable rational transfer function, then the transfer function G(s)e-r of the delayed
system has a balanced realization.

Another example of a function that has a parbalanced continuous-time state-space
realization is the function Ge(s)=log (1+ 1/s), which is well known to be in
BMOA(iN). We note that Gc has a singularity at 0.
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UNIFORM STABILIZATION OF THE WAVE EQUATION BY
NONLINEAR BOUNDARY FEEDBACK*

ENRIKE ZUAZUA?

Abstract. The question ofuniformly stabilizing the solution ofthe wave equation y"- Ay 0 in fl (0, )
(II is a bounded domain of R’) by means of a nonlinear feedback law of the following form is studied:
Oy/Ov=-k(x)g(y’) on FoX (0, c), y=O on F (0, ), (Fo, F1) being a suitable partition of the boundary
of l’l and g a continuous nondecreasing function such that g(0) 0. We choose k(x) L(Fo), k(x) >= 0 such
that k(x) vanishes linearly at the interface points XoC’l. Then, if g(s) behaves like s P-ls as Isl-0
with p > and linearly as Isl-> , it is proved that the energy of every solution decays like -a/(p-) as .
In the case where p the exponential decay rate is proved.

Key words, wave equation, boundary damping, nonlinear feedback law, uniform stabilization, decay
rate estimate

AMS(MOS) subject classifications. 35B40, 93D15

1. Introduction. Let fl be a bounded, open, connected set in Rn(n _-> 1) having a
boundary F 01-1 of class C2. Given a point x Rn, let be m(x) x x and consider
the following partition of the boundary"

(1.1) F(x) {x e r" m(x) .(x) > 0},

(1.2) r,(x) {x e r" m(x) ,(x) _-< O} r/r(x)

where u(x) is the unit normal vector to F at x F pointing toward the exterior of O
and" denotes the scalar product in Rn. We will denote by O/Ou the normal derivative
in the direction u and by ’= O’/Ot the time-derivative.

Let us assume that int F,(x) and consider the following wave equation"

(1.3) y"-Ay=O in O x (0,

(1.4) Oy_ .{m(x). u(x)}g(y’) on F(x) x (0,

(1.5)

(1.6)

where

y=O

y(O) yO V,

on r.(x) x (0, ),

y’(O)= y’ e L2(l’)

(1.7) V= {b G HI(-) b =0 on F,(x)}
and g C(R) is a nondecreasing function such that g(O)=O and g(s)s>O for all
sR-{0}.

We define the energy of a solution y=y(x, t) of (1.3)-(1.6) as follows"

(1.8) E(t)= 3 {IVy(x, t) +[y’(x, t)[ dx Vt 0.

* Received by the editors August 3, 1988; accepted for publication (in revised form) March 24, 1989.
Part of this work was done when the author was visiting the Department of Mathematics, Georgetown
University, Washington, DC. This work was partially supported by grant G. V. 127.310-1/87 of the "Eusko
Jaurlaritza" (Basque Government).

" Departamento de Matemiticas, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao, Spain.
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Let us calculate formally (all this will be justified below) the derivative of the
energy. By using Green’s formula we easily obtain

(1.9) E’(t)
dE(t)

{m(x) ,(x)Ig(y’(x, t))y’(x, t)
(x)

where dF is the surface measure associated to the boundary F. Taking into account
the fact that g(s)s>-O, for all sR we deduce from (1.9) that the energy E(t) is
nonincreasing.

Applying La Salle’s invariance principle it is easy to see that the energy goes to
zero as goes to infinity. Indeed, in addition to (1.9) we have

I {[V(y- y)(x, t)l+l(y- y)(x, t)[} dx
dt

(1.10) =-2 f {re(x) t,(x)}(g(y(x, t))-g(y.(x, t)))(y-y)(x, t) dF
(x)

=<0

for any two finite energy solutions yl, Y2 of (1.3)-(1.6).
It is enough to establish the decay for a dense subset of initial data, for instance,

W {(yO, yl) V x V" Ay L(fl), Oy
-(m. ,)g(yl) on r(x)}.

Let us define the higher-order energy

(1.11) F(t) = (lAy(x, t)12+lVy’(x, t)l 2) dx.

We have

(1.12)

and thus

dF(t)
{m. u}g’(y’)ly"l2 dF <- 0

(x)

(1.13) F(t)<=F(O)<o Vt>-_O.

Therefore the trajectory {y(t), y’(t)} corresponding to the initial data in W is relatively
compact in V x H. Applying La Salle’s invariance principle we introduce the to-limit
set to{yO, y} with respect to the strong topology of V H, and the problem reduces
to prove that

(1.14) to{y, yl} {0, 0}.

From (1.9) we easily deduce that to{yO, yl} is contained in the set of initial data
leading to solutions with constant energy, i.e., such that

y"-Ay =0 in fl (0, oo),

Oy
(1.15)

0u
y 0 on F(x) x (0, oo),

y 0 on F,(x) x (0, oo).

But Holmgren’s Uniqueness Theorem assures that the only function satisfying (1.15)
is the trivial one y=0, and thus (1.14) holds.
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To obtain the compactness of trajectories we have used in (1.12) the fact that g
is locally Lipschitz with g’>= 0 almost everywhere. However, the compactness can be
achieved for all nondecreasing continuous function g such that g(s)s>O, for all
s R-{0} by obtaining uniform energy estimates for the family of functions

Zh(X, t)=y(x, t+ h)-y(x, t)
h

as h0.
We note that more general stability results have been recently proven by Chen

and Wang in [6] and Lasiecka in [17], [18] in the case where g is a multivalued
maximal monotone function.

The aim of this paper is to estimate the rate of decay of the energy and, more
precisely, to establish some relations between the rate of the decay and the behavior
of the nonlinearity g.

The linear case g(s) as, with a R, is well known by now. The first stabilization
result is due to Chen [3] (see also [4], [5]). He proved the exponential decay of the
energy in this linear case with boundary conditions

(1.16) Oy_ k(x)y’ on F(x) x (0, oo)
0u

with k L(F(x)), k _-> ko> 0 instead of (1.4) but only under the geometrical restriction

(1.17) (x- x) u(x) -> 3’ > 0 on F(x).
Chen’s result was later generalized by Lagnese in [13] by considering a more

general class of multipliers (other than the radial one x-x) but always under a
geometrical restriction of type (1.17).

An important observation is that condition (1.17) forces

(1.18) F(x) f’l F.(x) .
Thus if F(x) , the above results cannot apply to regions 12 having a smooth
connected boundary. However, in a recent paper by Komornik and Zuazua 11], 12]
the geometrical restriction (1.17) has been avoided and the exponential decay has been
proved for dimensions n_-<3 (for some technical reasons that we will discuss in 2)
by taking in (1.16) the weight

(1.19) k(x) (x x) v(x).

Subsequently, Lagnese in [15] generalized this result to a larger class of multipliers
but always considered weights of type (1.19) in the boundary condition (1.16).

As mentioned above, the first contribution in [11] and [12] was that, for the first
time, the geometrical restriction (1.17) was avoided and the second was the method
by itself. Indeed, in all preceding works the exponential decay of the energy was
obtained from estimates on o E(t)dt by employing a result of Datko [7]. However,
in [11] and [12] a different point of view was taken and the exponential decay was
obtained by constructing perturbed energy functionals for which differential inequalities
leading to the exponential decay were obtained. The advantage of this approach is
that it can be easily extended to treat some semilinear problems as in [12]. We note
also that Lagnese proved in a recent work [16], inspired by these kinds of methods,
stabilization results for von Karman’s plate models.

The aim of the present paper is to show how this method can be adapted to obtain
decay estimates for wave equations with nonlinear dissipative boundary conditions.
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We will consider here functions g satisfying the following conditions:

(1.20) Ig(s)l<=C, Isl VsR,

(1.21) Ig(s)l>-_ C2 inf {Isl, lslp} Vs R

for some C1, C2 > 0, and p _-> 1.
Under these assumptions, we will prove the following:
(a) When p the energy of every solution decays exponentially;
(b) When p > 1 the energy decays as does -2/(p-1).
It is important to note that the exponential decay rate of the energy may not be

expected under the coercivity assumption (1.21) unless p 1. The same phenomena
appear in the nonlinear dissipative ordinary differential equation

u"/ u-t-Iu’IP-’u’=O.
However, we are not now able to prove that the decay on (b) is optimal.

As mentioned above, the growth assumption (1.20) (which implies that the non-
linearity g is globally majorized by a linear function) is not necessary if we look for
stability results asserting that every solution tends to the equilibrium state {0, 0} in the
energy space as -* c (see also [6] and 17]). However, this assumption will be needed
to establish the a priori estimates leading to the decay rates. On the other hand, we
note that the coerciveness assumption (1.21) concerns mainly the behavior of g at the
origin and that the decay rate (of order -2/p-) is governed by this behavior. This
is a natural result since we already know that {y(t), y’(t)}- 0, but it must be carefully
proved since the decay holds only on the topology of V L2(-).

It is easy to check that the hypotheses (1.20)-(1.21) are satisfied when g is, for
instance, as follows:

lsl -’s whenlsl -<1,
g(s)

s when Isl--> 1.

To handle the case where p > 1 in (1.21) we are forced to modify the perturbed
energy functional introduced in [11] and [12]. This will be done by following the
earlier works of Haraux and Zuazua [10] and Zuazua [23].

We note that in the situation considered above (where int F,(x) ), the quantity
(E(t)) /2 is a norm in VL2() equivalent to the one induced by HI()L2().
Therefore, it is equivalent to study the rate of decay of the energy or the rate of
convergence of the solution to the equilibrium state {0, 0} in the space V x L2(). The
situation is different when int F.(x) =. In this case the quantity (E(t)) 1/2 does not
define a norm in V x L2(-) H(-) L2(-) and every constant function is a stationary
solution of (1.3)-(1.6). In this case to recover the stability properties and the estimates
on the rate of decay mentioned above we modify the feedback law and consider,
instead of (1.4), (1.5), the following boundary condition:

(1.22) Oy+ a{m(x) u(x)}y -{m(x) v(x)}g(y’) on F(x) (0, m)
Ou

where c > 0.
The rest of the paper is divided in two parts. In 2 we give and prove our main

result concerning the system (1.3)-(1.6) in the case where int F,(x) . In 3 we
give some remarks and discuss some possible extensions of this result and, in particular,
the case where int F,(x) .
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2. The main result. The main result of this paper is as follows.
THEOREM 2.1. Let be a bounded domain of R", n <-_3, with smooth boundary

F 01. Assume that x R is such that int F,(x) # . Let g be a continuous nondecreas-
ing function such that g(O) 0 and that (1.20)-(1.21) are satisfied for some positive
constants C1, C2 > 0 and some p >- 1. Then we have:

(a) Ifp 1, there exist some constants M > 1, 6 > 0 such that

(2.1) E(t)<-ME(O)exp{-6t} /t>--_O

for any solution of (1.3)-(1.6).
(b) If p> 1, there exist some constants M> 1 and/>0 (with I depending on

E (0)) such that

(2.2) E(t)<- ME(O)(I +It) -2/(p-1) Vt>-O

for any solution of (1.3)-(1.6).
Proof The proof will be carried out in several steps.
Step 1. The well-posedness of the problem is standard. The methods of Brezis

[2], Haraux [9], and Lions and Magenes [19] may be applied (see also [17] for the
study of this problem) to obtain the following lemma.

LEMMA 2.2. Let us assume that the hypotheses of Theorem 2.1 are satisfied. Then,
for any initial data {yO, y} V x L2(f) there exists a uniquely weak solution y y(x, t)
of (1.3)-(1.6) such that

(2.3) yC(R+, V)fqC’(R+;L2()), E(t)<-E(O) /t>-O.

In addition, the following properties are verified:
(i) Stability. If {yO,y} are replaced by {33, }, then the corresponding solution fi

is such that

{IVy(x, t)-V)(x, t)lZ+[y’(x, t)-’(x, t)[ 2} dx
(2.4) -- {IVy(x) V(x)l/ ly(x) fi’(x)l} dx

(ii) Regularity. If in addition we assume {yO, y} W where

(2.5) W={{y,y’} Vx V’AyL2(f)’OY-=-{m. u}g(y’) on r(x)}’OP

then we have

(2.6) y W’(R+; V); Ay L(R+; L2(2)),

(2.7) dE(t)dt E’(t) -I) {m(x) u(x)}g(y’(x, t))y’(x, t) dF It >-0.

From the stability property (2.4) and the fact that the set W is dense in V x L2(f)
it is enough to prove the estimates (2.1), (2.2) for initial data {yO, yl} W, provided
the constant /z depends continuously on E(0). Therefore, in what follows we will
consider the initial data in in W.

Step 2. We denote by (.,.) (respectively, [. l) the scalar product (respectively,
the norm) in L(f). We introduce the functional

(2.8) p( t) 2(y’(t), m Vy( t)) + n 1)(y’(t), y( t)).
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We note that

(2.9) ]p( t)] <- CaE( t)

with Ca 2R + (n 1)a, a > 0 being the best constant such that

and R IIm(x)ll),
To simplify the notation we will omit the variable x of the functions under the

integral sign.
Let us now calculate the derivative of the functional p(t). We have (see 11], 12]

for the details):

p’(t) 2(y(t), m. Vy(t))-(n- 1)lVy(t)l=-Iy’(t)l

+ (n-l)
Oy(t)

y(t)+{m, vIy’(t)l dr.. o) 0

To estimate the first term of the right-hand side of (2.10) we need the following
lemma, which is a slight generalization of an inequality due to Grisvard [8].

LEMMA 2.3. Under the hypotheses of eorem 2.1 the following inequality holds:

(2.11) 2(Ay, m. Vy)(n-Z)lVyl+RZf {m. u}lvl dF
(x)

for every function y V such that Ay L2() and Oy/Ou {m. v} v with v L(F(x)).
Proof of Lemma 2.3. In [8] inequality (2.11) has been proved in the case where

v0. Subsequently, in [11] and [12] the following inequality has been proved for
v H/(F(x)):

(2.12) 2(Ay, m Vy)=(n 2)IVyI2+2IrOY< --m. Vydr- {m.}lVyldr.

From (2.12) inequality (2.11) may be easily deduced [11], [12]. Let us recall the
proof for the sake of completeness. We have

m, vyd- {m, }lVYl2 2 m, Vy- {m, }lVYl2 dr
O v -(x) O v (xo)

+ (m. }lvl dF
31",(x)

m. Vy dF {m. v}lVyl dF<2
(x)0 (x)

R2 f 1 Oy 2

dF
.o) {m v} ov

since y 0, m. v 0 on F,(x).
Therefore we have proved (2.11) for v6 H1/2(F(x)). This inequality may now be

extended for all v L2(F(x)) by a standard density argument.
Combining (2.10) and Lemma 2.3, we deduce

_f, {m. v}[g2[g(y’(t))[Z-(n 1)g(y’(t))y(t)p’(t)=-2E(t)+<
.,x)

(2.13) +ly’(t)[2] dF Vt0
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and taking into account that

(n 1) fI’(x) {m. v}g(y’(t))y(t) dF <-_ E(t)+

where/3 > 0 is the best constant such that

dF
"(x)

and by applying (1.10), we deduce that

(2.14) p’(t)<--E(t)+C4 f {m. v}]y’(t)[ 2 dF
Jr(x)

for C4=(g2+(fl(n-1)2)/2)C21+ 1.
Therefore from (2.3), (2.9), and (2.14) we deduce that

d[(E(t))(P-1)/2p(t)] p-1
dt 2

fl(n 1)2 f {m. u}lg(y’(t))[ 2 dr
2 Jr

vq,v

Vt>_O

E t) )(P-3)/2E’( t)p( t) + E t) )(P-’)/2p’( t)

(2.15) <-- -CsE’( t) -(E( t)) (p+’)/2

f {m. u}ly’(t)[2+ C4(E(t)) (p-l) dF
Jr(x)

with C5 ((p- 1)/2)C3(E(0)) p-1/2.
For e > 0 we introduce the functional

(2.16) E,(t)=(l+eCs)E(t)+e[E(t)](P-1)/2p(t).

The energy E(t) being nonincreasing, we deduce that

(2.17) 1/2[E(t)](P+)/2[E(t)](P+)/2<-2[E(t)] (p+l)/2 Vt->0

Vt>=O

provided we choose e > 0 such that

(2.18) e[E(O)]p-’)/2<min (22/(p+1)-1),’
1

C3 + 1 Ip-3[ 1-22/(p+1
From (2.7), (2.15) we deduce that

(2.19)

f
E’(t)_-< -/ {m. v}g(y’(t))y’(t) dF

(x)

-e(E(t))(P+I)/2JreC4(E(t))(P-1)/2f {m. v}ly’(t)l dF
Jr(x)

By applying (1.21), we get

(2.20)

6C4(E (t)) (p-’)/2 fF(xO)tq[ly,(t)l>_l {m. u}ly’(t)l 2 dr

{m. v}g(y’(t))y’(t) dr Vt_->O

for e > 0 such that

(2.21) F_,(E(O))(P-1)/2C4 C2

Vt_>O.
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Combining (2.19) and (2.20), we obtain

(2.22)

E’(t) -<_ Ir(xO)ctly,(,)t_<l {m. v}g(y’(t))y’(t) dF-e(E(t))p+/2

+ eC4(E(t)) (p-’)/2 {m. v}ly’(t)[2 dr

Step 3. We now distinguish the cases p 1 and p > 1.

(a) Case p= 1. In this case (1.21), (2.17), (2.21), and (2.22) imply

Vt >_--0.

(2.23)
8

E(t)<--eE(t)<= -- E(t) lt>-O.

Solving inequality (2.23), we obtain

I }E,(t)-<- E(O) exp -- Vt->0,

which combined with (2.17) yields

E (t) _-< 4E (0) exp - V -> 0.

Taking into account that in this case the restrictions (2.18), (2.21) do not depend
on E(0), we obtain (2.1) with M =4 and 8 e/2. In fact, (2.1) may be proved for any
M > 1 by taking 8 > 0 smaller.

(b) Case p > 1. We apply Young’s inequality

[E(t)] (p-1)/2 f {m. v}ly’(t)l 2 dr
di(x)0 [ly’( t)]

<Z A(p+l)/(p-1)[E(t)](p+l)/2+ {m. vIly’(t)[ 2 dF
/ (p+l)/2

(xO)fq[ly,(t)l<_l

valid for all )t > 0 with a (1/2C4) (p-1)/(p+I), obtaining

E’(t) <- {m v}g(y’())y’(t) dF-- (E(t))
(2.24)

(IF ) (p+l)/2

q-8(2C4) (p-’)12 {m. }ly’(t)l dF t-->0.
(x)Ul[[y’( )[

By applying Hlder’s inequality, we deduce

{m. }ly’()l ar
(x) f3 [ly’( t)l-

<- {m. v} dF {m. v}ly’(t)lp+ dF
"(x) C/[ly’(t)l

<-- {m. v} dF {m. v}ly’(t)l p+’dF Vt>-O,
) x)tq[[y’( )[<=

which combined with (1.21), (2.24) for e > 0 small enough verifying

(2.25) e(2C4) (p-)/2 {m. v} dF <-_ C2
"(x)
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yields

(2.26) E’(t)<=--(E(t))(p+I)/<---(E(t))(p+)/
4

Vt>0"=

Finally, solving inequality (2.26), we get

} -2/(p-l)e(p-1) 1/E(t)<=E(O) I+[E(0)](p- Vt=>0
8

and then, from (2.17),

{ }--2/(p--I)e(p- 1) [E(O)](p_,)/2(2.27) E(t)<-4E(O) l+2(4P+)/p+ Vt>--_O.

The restrictions we have made on the choice of e are (2.18), (2.21), (2.25), which
show that, in (2.27), the quantity e[E(O)] p-1)/- may be chosen so that

e[E(O)]P-)/2=min (C6, CT[E(O)] p-)/2}
for some positiv.e constants C6, C7 that do not depend on E(0). We see in particular,
that the constant/x of (2.2) depends continuously on E(0). The proof of Theorem 2.1
is now completed.

Remark 2.4. The hypothesis n <= 3 has been implicitly used in the proof of Lemma
2.3 since we have applied Grisvard’s inequality that has been proved only when n =< 3.
We note that restriction n =< 3 is not needed when F(x) f-)F.(x) -. Indeed, in this
case Lemma 2.3 may be easily proved for every n by applying Green’s formula (see,
for instance, [3], [13]).

Note also that the method proof of Theorem 2.1 is general and would apply to
dimensions n >= 4 provided the natural generalization of Grisvard’s inequality is proved.
But it seems this has not been done.

Remark 2.5. The calculations leading to the estimates (2.1), (2.2) do not utilize
the assumption that g is nondecreasing. Thus, these estimates also hold for every
sufficiently smooth (to carry on the calculations above) solution of (1.3)-(1.6) even
if g is not monotone. However, the stability property (2.4) is not satisfied unless
g is nondecreasing and then estimates (2.1), (2.2) cannot be extended to weak
solutions.

3. Further remarks.
3.1. The ease where int F.(x) . As has been pointed out in the Introduction,

when int F.(x) (i.e., 12 is star-shaped with respect to x), the system (1.3)-(1.6)
reduces to (1.3), (1.4), (1.6) and there exist nontrivial stationary solutions of it (every
constant function is a solution). To obtain rates of decay on the H(f) x L(f)-norm
of solutions, we replace the boundary conditions (1.4), (1.5) by (1.22) with a > 0. The
energy associated to the system is then

(3 1) E(t)= {IVy(x, t)12+ly’(x, t)l2} dx+
z

2 -{m(x). ,(x)}ly(x, t)l dF.

We note that since c> 0, (E(t))/ defines a norm in Vx L(I)) H(I)) x
equivalent to the usual one. Then it is equivalent to obtain estimates for the rate of
decay of E(t) or of the HI(f)x L(f)-norm.

We have the following result.
TnEOREM 3.1. Let Ft be a bounded domain of R" with smooth boundary F

and star-shaped with respect to x6 R. Let g be a nondecreasing continuous function
such that g(O)=0 and that (1.20)-(1.21) are satisfied for some positive constants C,
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C2 > 0 and some p >-- 1. Then, if

(3.2) a 6 (0, 2--) with R ,,X--X,.L(a)

the conclusions (2.1), (2.2) of Theorem 2.1 holdfor the energy E (t) defined in (3.1) for
every solution of the system (1.3), (1.6), (1.22).

Sketch ofproof First we note that the proof of Theorem 2.1 may also be done by
choosing the following functional instead of p(t):

(3.3) po(t)=2(y’(t),m. Vy(t))+O(y’(t),y(t))
with 0 (n 2, n).

Now let us fix 0 e (n 2, n) such that

0
(3.4) a<

2R

(which is possible since (3.2) is satisfied) and calculate the derivative of the correspond-
ing functional po(t). By applying Lemma 2.3 we easily get

P’(t)<= -(O-n+2)]Vy(t)]2-(n-O)]y’(t)12+ v {m. ,}

[2R2]g(y’(t))12-Og(y’(t))y(t)+ly’(t)]2] dr-a(O-2R2a) I,{m" ’}ly(t)l 2 dF

_-<-27E(t)+ f {m. ,}[2R2lg(y’(t))12-Og(y’(t))y(t)+ly’(t)] 2] dF Vt>=O
dr

with

y=min{0-n+2, n-O, O-2R2a}.
On the other hand, the energy E (t) is such that the identity (1.9) holds and the

rest of the proof is analogous to that of Theorem 2.1. [3

Remark 3.2. In the case where the function g is linear we know that the restriction
(3.2) on a is unnecessary (see [21]). It would be interesting to study whether or not
this hypothesis is necessary in the nonlinear framework.

Remark 3.3. The feedback law (1.22) with a > 0 is more robust than (1.4) with
respect to the perturbations of the support F(x) of the boundary damping since the
energy (3.1) is always coercive in the space V x L2() (see [22] for the study of these
questions).

Remark 3.4. In the case where int F.(x) # and the boundary condition (1.22)
is considered instead of (1.4) on F(x), the conclusions of Theorem 2.1 remain valid
provided ]a] is sufficiently small. We note that, in this case, the restriction a > 0 is not
necessary but it is essential that (E(t)) 1/2 remains coercive in Vx L2(").

3.2. Nonhomogenous wave equation. Assume that int F.(x) and let us consider
the system

y"- Ay h(x) in (0, c),
Oy

{m(x). u(x)}g(y’) onF(x)(0,c),
Ov

(3.5)
y=0

y(0) yO V,
on F,(x) (0, oo),

y’(O) yl t2(-)
with h(x) L2().
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(3.6)

There exists a unique stationary solution y* V given by

-Ay* h(x) inl),

Oy*
0 on r(x),

y*=O on F,(x).
We observe that when y y(x, t) solves (3.5), then

z(x,t)=y(x,t)-y*(x)

solves (1.3)-(1.5). Thus, Theorem 2.1 provides estimates on the rate of convergence
in the space V L2(fl) of every solution of (3.5) to the unique rest point y*. This
remark remains valid in the situations considered in 3.1 above.

It would be interesting to consider problems of type (3.5) with h h(x, t) periodic
or almost-periodic functions (with respect to t) and to study, following [9], [10], and
[23], the existence of periodic or almost-periodic solutions and to obtain estimates for
the rate of decay of the energy of the difference of two solutions of the problem.

leo3.3. Semilinear wave equation. Let f Wu;c (R) be a locally Lipschitz continuous
function and let us consider the semilinear wave equation

(3.7) y"- Ay+f(y) 0 in

that we complete with the boundary and initial conditions (1.4)-(1.6) ((1.6), (1.22)
when int F.(x) ).

Let us assume that the nonlinear function f satisfies the following sign and growth
assumptions:
(3.8) f(s)s >= 0 Vs R,

EIC>O, p>l, (n-2)p<=n lf(s)-f(z)[
(3.9)

<=C(l/lslp-l/izlP-1)ls-zl Vs, zR,

(3.10) ::16 > 0" f(s)s >= (2+ 6)F(s) Vs e R where F(z) f(s) ds.

The energy associated to the system is then (if a 0)

(3.11) E(t)= (IVy(x, t)12/l (x, t)l dx+ F(y(x, t)) dx.

All the results of the preceding sections may be generalized (with minor modifications
in the proofs) to obtain decay rates of type (2.1), (2.2) for the energy given by (3.11)
(see [12] for a detailed proof in the case where g is linear).

3.4. More general partitions of the boundary. Let us return to system (1.3)-(1.6).
In the case where g is linear it is well known that other partitions of the boundary
(not necessarily of type (F(x), F.(x))) give the exponential decay rate of the energy
(see [1], [20] where very general results are proved by microlocal analysis techniques
and [15] for a class of multipliers slightly larger than the radial one considered in this
paper). It would be interesting to study whether, under those partitions, nonlinear
feedback laws may be handled and decay rates of type (2.1), (2.2) obtained.
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A NEW PROOF OF THE LYAPUNOV CONVEXITY THEOREM*

FABIO TARDELLAt

Abstract. A new proof of the Lyapunov Theorem is given, based on the Shapley-Folkman Theorem,
that does not require any tools of functional analysis.

Key words, vector-valued measures, Lyapunov Convexity Theorem, convex analysis, integrals of multi-
functions
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1. Introduction. The Lyapunov Theorem appeared for the first time in [14]. It
states that a nonatomic measure that takes values in R has closed and convex range.
Most of its applications are to be found in the theory of optimal control and calculus
of variations (see, e.g., [2], [8], [9], [18]). However it has also been fruitfully used in
other fields, such as economics [16] and differential equations [19].

Because of its importance, many proofs of the Lyapunov Theorem have been
given (see [3]-[5], [10]-[13], [20]). Nevertheless, the proofs appearing in the literature
are rather involved or employ sophisticated theorems from functional analysis, such
as the Krein-Milman Theorem, or compactness theorems in infinite-dimensional
spaces.

Our purpose is to give a short proof of the Lyapunov Theorem that does not
digress from measure theory and convex analysis. In fact the burden of the proof is
carried by the Shapley-Folkman Theorem, a result of convex analysis (discovered by
two economists) whose applications have unfortunately been largely restricted to
mathematical economics [1], [17]. See, however, Appendix 1 of [7] for an interesting
application to duality in mathematical programming.

SHAPLE-FOLKMAN THEOREM. Consider a finite family [Ci]i of subsets of
R". If

XECO E
il

then there exists a subset J of I, of cardinality at most n, such that

X C -- co E Ci.
i=J iJ

Here co S denotes the convex hull of a set S c Rn.
As Blackwell has noted [3], the convexity of the range of a nonatomic vector

measure is only a special case of a more general fact, namely, the convexity of the
integral of a vector-valued multifunction. Since no extra work is required, we prove
the latter statement in Theorem 1. The remaining part of the Lyapunov Theorem,
namely, closedness, is established in Theorem 2.

We finally remark that the nonatomicity assumption is not only sufficient but, in
a sense, also necessary for a vector measure to have a convex range.

2. The Lyapunov Theorem. Let T, E,/x) be a positive measure space. The measure
/x is said to be nonatomic if for every A E with/x (A) > 0, there is B E, B c A, such

* Received by the editors September 1, 1988" accepted for publication April 25, 1989.

" Istituto di Elaborazione dell’Informazione, C.N.R., Via Santa Maria 46, 56100 Pisa, Italy. This paper
was written while the author was on leave at the C.R.M., University of Montreal, Canada.
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that 0< IX(B)< IX(A). Since E is a or-algebra, the nonatomicity of IX is easily shown
to be equivalent to the following "Darboux property" [6, p. 25]:

Va[O, 1],VAE, ZlBE,B A, suchthatix(B)=aix(A).

A function that associates with every in T a subset F(t) of R is called a
multifunction from T to Rn. An integrable function from T to R" such that, for almost
every t, f(t) F(t) is called an integrable selection of F. The integral of F over T,
denoted 7- F, is defined as the set of all points in R" of the form 7-f(t) d/x, where f
is an integrable selection of F.

THEOREM 1. If IX is finite and nonatomic, we have

F=co I F.
T T

Proof We will show that if xl and X2 belong to r F, then the whole segment
joining xl and x2 is contained in r F. Let Xl=rf(t) dix and Xz=rf2(t) dix, where
f and f2 are integrable selections of F. We consider the multifunction G(t)=
{f(t),f(t)}c F(t). Because of the nonatomicity of Ix, we can find a family
of elements of E such that AiOA= for #j, U i=l.2. A= T, and
for 1 _-< _-< 2n. Given a point

T i=1

the Shapley-Folkman Theorem allows us to find a set I of n indices between 1 and
2n, such that

The above relation is equivalent to

xfs G+co I G
T\S

where we have set S1 U iii A. We can therefore assert the existence of two points
xl JSl G and zl co r\s G such that

x xl + z and IX(S,) IX(T\S1) 2-’IX(T).
The same argument can be iteratively repeated replacing T by T\S1, so that, by
induction, at the mth step we obtain m measurable sets {S}=i,. and rn+ 1 points
{x}l., and z.,, with x s, G and Zm CO r\U;"_-,S, G such that

X-- Xi-lI-Zrn and IX(Si)=2-iix(T),
i=1

l<_i<=m.

Observe now that z,, 0, since IX T\U = Si) 2-mix (T) - 0. Therefore we have

x=E x G= G,
i=1 IDISi T

with the equality between the integrals holding because IX(U il Si)--IX(T). We have
thus shown that r G is convex. To complete the proof it is now sufficient to note that
xl, XzIr Gc r F.
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Let m (/z l,/z2," ",/xn), where the/xi are finite signed measures on the measur-
able space (T, E). We say that m is nonatomic if the total variation ]/zil of every/x is
nonatomic.

Remark 1. An equivalent way of defining the nonatomicity of a measure is that
of requiring that for every A E there is a B c A, B E, such that /z(B) 0 and
/x(B) /x(A). This definition can also be applied to the more general case of a measure
taking its values in a topological vector space.

We will denote by

R(E)={m(A):AE}

the range of the vector measure m, with respect to E, and by

EA {A (] B: BeE}

the trace of the or-algebra E on a set A E.
The dimension of a subset C of Rn, denoted dim C, is defined as the dimension

of the smallest affine suspace of R containing C.
THEORZM 2 (Lyapunov Theorem). If m is nonatomic, R(,) is closed and convex.

Proof The measures/zl,/x2," ,/zn are all absolutely continuous with respect to
the nonatomic measure /z I/z] + 1 21 /" / I .l. Then, by the Radon-Nikodym
Theorem, there is an integrable function f from T to R such that m(A)=Iaf(t)
for every A . Let us consider the multifunction F(t) {0, f(t)}. It is easy to see that
the integrable selections of F are of the form f. XA, where XA is the characteristic
function of A E. We then have

R(E)=

and hence R(E) is convex by Theorem 1.
Observe now that R() is trivially closed when dim R(;)-0. We assume that it

is closed when dim R(E)-< n-1 and we will prove that the same thing is true when
dim R(E) n. Assume there is a point y cl R(E)\R(,). Then by a standard separation
argument, we can find p R such that

p" y sup {p" x: x R(E)}.

Let us consider the sets

Rk={ter: p. f(t)<-l/k}, Sk={tr: p. f(t)>--1/k}, k=l,2,....

Obviously,

Rk fl Sk and Rk U Sk T, k l, 2,

Let {An} be a sequence of sets in E such that m(An) converges to y. We then have

lim tz (A t-1 Rk) O, k 1, 2, .
Hence, for every k, we have

y=limm(A.)=lim(f
A

f(t) dt+f., f(t) dt)=limm(AnCISk).
(-’1S Rk

We can then find an increasing function tr" N- N such that, setting Bn
we have

lim m(B.) y.
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Observe now that the sets B, can be partitioned as follows:

B, B+ U B LJ B-
where B+, c P={t T: p. f(t)>O}, Bc Z={t T: p. f(t)=O} and BcN=
{t T: p. f(t) <0}. Since B-{t T:-1/n<=p f(t)<O},wehavelim_,m(B-)=O.
Furthermore, lim,_ m(B+,)= m(P). Hence

y= m(P)+ lim m(B.)

so that y m(P) + cl R(Zz). The proof is easily completed observing that dim R(Zz)<
dim R(E), and thus R(Y-.z) is closed by the induction hypothesis. [3

Remark 2. It has been shown by Halmos [12] that R(E) is actually closed even
without the assumption of nonatomicity of m.

It can be easily observed that the nonatomicity assumption on m implies not only
the convexity of R(Z) but also the convexity of R(ZA) for every A. Conversely,
taking into account Remark 1, it is clear that if R(,A) is convex for every A E, the
measure m is nonatomic. These remarks are summarized in the following proposition.

PROPOSITION 3. The measure m is nonatomic if and only if R(,A) is convex for
every A E.
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NECESSARY AND SUFFICIENT CONDITIONS
FOR LOCAL OPTIMALITY OF A PERIODIC PROCESS*

QINGHONG WANG? AND JASON L. SPEYER?

Abstract. The accessory minimization problem constructed from the second variation about a periodic
extremal path with free period is investigated. Both necessary and sufficient conditions for a periodic path
to be a weak local minimum are compactly established through a matrix inequality and the existence of a

solution to the Riccati differential equation over the period. Extensions to the optimality conditions for the
infinitely-repeated periodic processes are included. The existence of a real symmetric periodic solution to
the Riccati differential equation is shown to be necessary for optimality, and this condition, plus some

requirements on the eigenvalues of the monodromy matrix, imply sufficiency for optimality.

Key words, optimal control, periodic process, necessary and sufficient condition

AMS(MOS) subject classification. 49B 10

1. Introduction. An autonomous optimal periodic control problem consists of
minimizing an average cost subject to time-invariant dynamic equations and periodic
boundary conditions 13]. In many interesting engineering systems, the solution to this
problem is not a steady-state path, but rather a periodic path which gives best
performance [9], 11 ]. In this paper, both necessary and sufficient conditions for weak,
local optimality of a periodic path are developed, whereas only sufficiency was obtained
in [3], [6], 13]. After formulating the problem in 2, some second variation properties
of the periodic control process are discussed. First, the accessory minimum problem
is described in 3. Then, a necessary condition is derived through the conjugate point
condition related to a periodic process. It is shown in 4 that this necessary condition
is equivalent to the existence of a solution to the Riccati differential equation over a
period. In 5, by solving the accessory minimum problem, a necessary condition
concerning the optimality, with respect to the period and the initial state, is established
where a certain matrix is required to be positive semi-definite. In 6, the results of
previous sections are combined into a set of necessary and sufficient conditions. For
sufficiency, the necessity of the nonnegativity of the matrix condition is strengthened
to have certain positive definiteness properties. In this sense the difference between
the necessary and sufficient conditions is minimal. However, the optimality of a
single-period path does not imply that the repeated periodic path, which is obtained
by repeating the orbit an arbitrary number of times, is also a minimum. If weak
variations around these repeated orbits are considered, the necessary and sufficient
conditions need to be strengthened. It is shown in 7 that, as the number of repeated
orbits becomes infinite, the existence of a periodic solution to the Riccati differential
equation is necessary for optimality. Furthermore, sufficiency can be proved by requir-
ing that the monodromy matrix has no eigenvalues on the unit circle except for a pair
of unit eigenvalues coupled in the same Jordan box. A set of necessary and sufficient
conditions for local optimality of an infinitely-repeated periodic process is summarized
in 8. These conditions somewhat weaken the sufficient conditions given in [13] and
establish a close relationship between necessary and sufficient conditions. Conclusions
are given in 9.

* Received by the editors October 17, 1988; accepted for publication (in revised form) January 6, 1989.
f Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin,

Austin, Texas 78712. This work was sponsored by National Science Foundation grant ECS-8413475.
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2. Formulation of the optimal periodic control problem. In this section, the problem
of periodic control is formulated and the first-order necessary conditions for optimality
are stated.

The optimal periodic control problem consists of minimizing the performance
criterion

;o(1) J(u(. ), x(O), r)=
1

L(x(t) u(t)) dt
7"

with respect to the period re T= (0, c), the p-vector control function u(.) U
{u(.)" T- R P, piecewise continuous}, and the initial condition of the state variable
x(0) R n, subject to the time-invariant dynamic constraint

(2) )(t) =f(x(t), u(t))

and the periodic boundary condition

(3) x() x(0).

It is assumed that " is the time when the periodic boundary condition is first met. The
equilibrium solution, for which the second variational theory of [1], [2] applies, is
excluded, and the problem where the periodic boundary conditions are met repeatedly
is analyzed in 7.

The following assumption is made on the problem described in (1) to (3).
Assumption 1. f(.,. and L(.,. and their derivatives through second order are

continuous with respect to both arguments.
Let Ao R and A(. )" T R" be the Lagrange multipliers corresponding to the

cost criterion (1) and the dynamics (2), and let H* be the variational Hamiltonian
defined as

(4) H*(x(t), u(t), A(t), o)= AoL(x(t), u(t))+ r(t)f(x(t), u(t)).

The minimum principle for an optimal periodic control process is given by the following
first-order necessary condition [8].

PROPOSITION 1. A necessary condition for (a(.), )(0), r) Uin X R x T being
optimalfor the problem described in (1)-(3) is that there exist Lagrange multipliers o >-_ 0
and A, not vanishing simultaneously, such that

(5) :=f(), t), }t=-H*r(), a, A, Zo), 0= H*(), fi, A, Ao)

and

(6) )(r) 9(0), A (r) A (0), H*((r), t(r), A (r), Ao) AoJ(fi(" ), 9(0), r)

where Uin denotes the interior of the set U.
Note that subscripts with respect to x and u denote partial differentiations. The

explicit arguments of the functions will be dropped when the presentation appears
clear. The existence of (if(.), Y(0), ’) Uin X R T satisfying (5) and (6) is assumed,
and the pair (Y(t), (t)) is called an extremal of the problem.

Assumption 2. (Y(t), (t)) is normal 15], and Ao is normalized to unity, i.e., Ao 1.
The variational Hamiltonian associated with Ao 1 is defined as

(7) H(x(t), u(t), A(t)) a- n*(x(t), u(t), A(t), l)

and the augmented performance criterion J is

(8) .(u(" ), x(0), ’) =1 [H(x, u, A )- A r] dt.
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The following assumptions on the extremal solutions obtained from (5) and (6) are
required for our consideration of the weak second variation.

Assumption 3. The strong form of the Legendre-Clebsch condition, H,u > 0, is
satisfied along the extremal path.

Assumption 4. (fx,f,) is completely controllable along the extremal path.
Remark. Assumption 4 implies Assumption 2 and strong normality as defined in

[15].
The following definitions are given in order to simplify the notation:

(9) f(t)f((t), a(t))

(o) IZI(t) = H((t), a(t), A(t)).

Similarly, x(t),/-),(t), fx(t),/-)xx (t), ,u(t), x,(t), and/-)ux (t) are par.tial derivatives
off(x, u) and H(x, u, A) evaluated on the nominal path. For example H(t) is defined
as

(11) tx(t) H((t), a(t), A(t)).

3. Seeonl variation anl the accessory minimum problem. The second variational
cost associated with perturbations away from an extremal path is derived in [13] as

(12)
I [0a Y= 1, a,]

+ [Sx r 8u r] Hxx
ILx

-H,f.] ,=o d’r

where 8x( t) x( t) ( t), 8u( t) u( t) ( t). The norms of 8x and 8u are defined as

llxll =max,ro,r (i--, (Sxi(t))2) /2 and IIull =max,O,T (Y--1 (Su(t))2)/ Assume
that  xll,  uil, and Idol are sumciently small so that the dynamics of the system can
be approximated by the linearized differential equation

(13)

and the linearized periodic boundary condition

(14) 8x(r) 8x(O)-](,)
In the accessory minimum problem, the quadratic cost (12) is minimized subject

to the variational constraints (13) and (14). Let 8A be the Lagrange multiplier associated
with the dynamic equation (13), then H is the variational Hamiltonian associated with
the accessory minimum problem defined as

(15)

The first-order necessary conditions, or Euler-Lagrange equations, are

(16) 0=

(17)

Since Hu. > 0 by Assumption 3, u can be solved from (16) in terms of x and 8A as
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By substituting 6u of (18) into (13) and (17), the Hamiltonian system of differential
equations is obtained as

(19) [;]=[ A(t) -B(t) l
where

(20)

(21)

(22)

The state transition matrix associated with (19) is

b(t, 0)__a [ bll(t, 0) 12(t’ 0)]q2,(t, O) b22(t, O)

where qbij(t, 0), i, j--1, 2, are n n matrices which are partitioned blocks of th(t, 0).
b(t, 0) is propagated by

(23) t(t, 0)=
(t) -At(t) qb(t, 0), (0, O)= I.

In the next two sections, the positivity of the second variation with respect to 6u,
6x(O), and dr is discussed. The optimality of u for the accessory minimum problem
obtained from (18) is discussed through a conjugate point condition, and then the
accessory minimum problem with respect to 6x(O) and dr is considered. Note that the
starting point onthe path for a periodic process is irrelevant. If the starting point is
indexed by to, then to 0 in the above formulation can be replaced by any to [0, r),
and the time interval [0, r] can be replaced by [to, to+ r].

4. Conjugate point condition of a periodic path. The conjugate point of an extremal
path is related to the existence of a nonzero solution to (19) with the zero variations
in the initial state and final constraint [4], [10], [15]. If this occurs, a conjugate path
can be found which has the same cost as the extremal path. Since the starting point
on a periodic path is not unique, the initial and final state variations can be simply
written as 6X(to)= 0 and 6X(to + r)= 0. The conjugate point of a periodic path can be
characterized by the property described below.

DEFINITION. t’ and t" are mutually conjugate if there exists a nontrivial solution
to (19) on t’, t"] such that 6x(t’) 6x(t") 0, and x(t) 0 on (t’, t"), where
t’<t"<-t’+r [10].

By using the state transition matrix defined in (23), ax(t’) and ax(t") are related
by

(24) 6x( t") dp,,( t", t’)ax( t’) + 4),2(t", t’)6A (t’).

A nontrivial solution exists for 6x(t’)= 6x(t")=0 if and only if 42(t", t’) is not
invertible. Therefore, if b2(t", t’) is not invertible, t’ and t" are mutually conjugate.
For convenience, let t’= to be named as the starting time and t"= t be named as the
conjugate time. It will be shown that if there exists a conjugate time t e (to, to+ r],
the extremal periodic path is not a minimum. The method to be used is to compare
the second variational cost of the conjugate path and that of some nonextremal path.
In order to do that, some assumptions are made.

Assumption 5. Af[th2(tc, to)]["l/’[B/2(tc)qb22(tc, to)] {0}, where f[. represents
the null-space of the matrix.
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Assumption 6. g/’[ th,2( to + 7-, to)] f) aV[B’/2( to)(I 22(to + ’, to))] {0}.
Assumption 5 implies that the velocity of the extremal path and the velocity of

the conjugate path are different at the conjugate time to. Assumption 6 implies that if
the conjugate time is at the end ofthe period, i.e., tc to + ’, the velocity ofthe conjugate
path at the initial time to is different from the velocity of the conjugate path at the
conjugate time to+ r. In the following discussion, the initial state variation 3X(to) is
assumed to be zero, and the variation of the period dr is assumed to be zero as well.
The optimality with respect to the variation in the initial state and the period will be
discussed in the next section.

PROPOSITION 2. If 4(tc, to) is not invertible for some t (to, to+ r], then the
extremal periodic path is not a minimum.

Proof The nonoptimality of the second variation due to a conjugate time tc < to +
has been proved elsewhere [4], [15, Thm. 3.1]. Although the case t to+ r is usually
excluded, for the periodic control problem, to and t can correspond to the same point
on the periodic path. By taking advantage of the closure of the path, some 8u can be
found to make the second variation negative. Let 6X(to)= 0 and h (to)= fl, where
is a nonzero vector in the null-space of (to+ , to). Define Path 1 and Path 2 in
Fig. 1 to be the paths generated by 6u(t) 6u(t) and 6u(t) 6u2(t), respectively, where

(25) ul(t) "--1=-H(xX+fA) toNt<to+r
--1 T-H(Hx+f A) t N N t2

(26) 8u(t) Jextremal from

[ g(t2) x(t2) to g(t, + r) X(tl) t2 < < tl +

where t to+e, t= to+Z-e2, and e and e are small positive numbers. Path 1
corresponds to the variation of the conjugate path, and Path 2 corresponds to the
variation of the nonextremal path.

x

to t0+x
Path 1" Conjugate Path

to t tz to+X

Path 2: Nonextremal Path
FIG. 1. Conjugate path and nonextremal path for t + ’.
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If x(t) and h(t) is a continuous solution of (19) on the interval (ti, tj), then by
adding the zero term

0=- 8A T[82-A(t)t3x+B(t)t3A] dt
t

(27) =A r(t)x(t)-A r(t)x(tj)

+ Sx+ 8h rA(t)x 8h B(t)Sh at

to the integral term

and by substituting u of (18) into the formulation, the following is obtained:

(28) It xr ur] [ H,x][ x]u xT(ti)A(ti)--xT(tj)A(tJ)"

Let jk(ti tj) be the second variational cost of the kth path on the interval (t, t). The
cost of Path 1 is then

(29) jl(to, to+): {xr(to)A(to)-xr(to+)A(to+)}:O.

Our objective is to show that J2(tl, tl + ) < J(to, to + r). However, only J2(t2, t + r) <
J(to, t)+J(t2, to+r) needs to be shown. x(ti) and A(ti), i: 1,2, can be written as

(30) x(t): 6(t, to) -n(to) + o()
(31) A(tl): 22(tl, t0) :[I--E1AT(to)]+O(81)
(32) x(t) 6(t, to) (to)6( to + , to)# + o(e)
(33) (t) 6(t, to) t +A(to)]6(to+ , to) + o().
By using (28) along with (30) to (33),

J(to, t)+J(t2, to+r)=[-xr(t)A(t)+ xr(t2)SA(t2)]

(34)
_1197.[elB(to)+e2dpe(tont_.r, to)B(to)dpe2(to+’r,

7"

q- O(el -t- e2).
By using a)(t2)= ax(t2) and a)(tl + r)= ax(tl), the following can be obtained:

(35) t97(t2) tx(t2) eB( to) q2( to + % to)fl + o( e2)

(36) 89(tl + ’) 8x(t) -elB(to)l + o(el)

tX( t + ’) q51( at- 7", t2)t:f(t2) + b22( t, + ’, t2)tX(t2)
(37)

-(e, + e2) C (to)$(t2) + [I (gl + g2)Ar (to)]SX(t2) + 0(1 + 2).
J2(t2, t + r) then can be written as

J2(t2, tl +)=[82r(t)8(te)-g2r(tl +r)8(tl
(38) - flr[e2(to+ % to)B(to)8(t2)+ elB(to)(t)]+ O(el + e2).
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Since

(39)
&(tl -F 7.) b,(t + 7., t):(te) + b(t + 7., t)(t_)

[I +(el + e2)A( to)] 692( t2)- (el + e2)B(to) 6(t2) + o(el + e2),

by combining (35), (36), and (39),

(40) (E + s2)B( to)8( t2) s2B( to)dp22( to+7., to) + slB( to) + o(sl + s2).

Equation (38) becomes

(41)

2

J2(t2, tl+7.) -1 e2 flrdp(to+7., to)B(to)2(to+7., to)fl
7" el+e2

1 1+- flT[2ele2B(to)dp22(to+7", to)+ e21B(to)]fl
7" e+e2

+o(e+e).

From Assumption 5, the first-order terms in (34) and (41) are nonzero. When e and
e2 are small enough, the higher-order terms are ignored.

Define

(42) : ,/(to), n ,’/(to)=(to+, to).

Equations (34) and (41) can be written as

(4) J(to, t)+J(t, to+ )=(n% +e)

(44) J(t2, t1 + 7")
1 1

From Assumption 6, " r/. Therefore,

(45)

and

J’(to, tl)+J’(t2, to+ 7.)-
1 1

1 1

(46) r el q- 82

1 1

7" el -t- e2

e,r/T/) _+_ 281827 T..+_ e2T,]

j2(t2 tl + r).

This implies that the cost of the nonextremal path is less than the cost of the conjugate
path. Therefore, the extremal periodic path is not a minimum, g]

The existence of a conjugate point is closely related to the existence of a solution
to the Riccati differential equation

(47) P(t)= -P(t)A(t)-Ar(t)P(t)+ P(t)B(t)P(t)-C(t).

The following proposition establishes the relationship between these two.
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PROPOSITION 3. Given Assumptions 1-4, the necessary and sufficient condition for
the absence of a point tc (to, to + ’] conjugate to to is that there exists a continuous real
symmetric solution to the Riccati differential equation (47) on to, to+ ’].

Proof For the proof, see the proof of Theorem 7.1 of [10].
COROLLARY 1. A necessary condition for a periodic path to be a minimum is that

there exists a continuous real symmetric solution P( t) to the Riccati differential equation
(47) on to, to + r].

COROLLARY 2. Iffor every to [0, r) there exists a continuous real symmetric solution
P(t) to the Riccati differential equation (47) on the interval to, to+ r], then there are
no mutual conjugate points along the extremal single-period path.

Corollary 1 and Corollary 2 are immediate results of Propositions 2 and 3.

5. A local optimality condition for the initial state and period. If there is no
conjugate point along the extremal path (see 4), the solution to the accessory minimum
problem can be determined for a given x(0) and dr [5]. Define the quadratic cost
d2*(x(O),d7") to be minu.)d2. Then, d2]*(x(O),d’r) is the solution to the
accessory minimum problem calculated by finding a control u(. satisfying (13) and
(14) which minimizes the second variational costd d2]*(x(0), dr) 0 is a necessary
condition for optimality. Otherwise there exists a periodic path with period r + dr and
initial state (0)+ x(0) which gives less cost.

By defining the matrix M as

[ Hx+(22 I)f](48) M(O, )=
(I-6")+’(I-) "

where , i,j 1, 2, are paitioned blocks of (r, 0), and and are evaluated at
r, a necessary condition for the optimality of a periodic process is stated below.
PROPOSITION 4. Given that 2(, O) is invertible, a necessary condition for the

periodic path to be a weak local minimum is M(O, ) being positive semi-definite.
Proo By using (28) in (12), d2*(Sx(O), dr) can be written as

B -HxfJ ,=o dr
(49)

+ a (0)x(0) ax ()ax()}.
To relate 6A (0) and 6A (r) to the given perturbations 6x(O) and dr, (19) is solved by
using the state transition matrix"

(5O) 6x(t) bl,(t O)x(O) + bl2(t, O)6A (0),

(51) 6A (t) b2,( t, O) 6x(O) + b22(t, O)tSA (0).

By substituting the boundary condition (14) into (50), where (50) is evaluated at -,
the following can be obtained"

(52) 6x(O)-f(’) d’r= dp,(’r, 0)x(0) + b,2(’, 0)6A (0).

Since t12(’7" 0) is invertible, 6A (0) can be determined as

(53) 8A (0) b- (’, 0)[I- b,,(r, 0)]Sx(0) b,(’, 0ff(r) dr.

Furthermore, by using (51) and (53), 6A(’) is obtained in terms of 8x(0) and dr,

(54)
+ {t)21(T 0)-[- 22(T, 0) 6]-21(T, 0)[I-- 611(T 0)]}X(0).
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If (14), (53), and (54) are used in (49), the second variational cost d2*(6x(O), dr)
reduces to

(55) d2y*(6x(0) dr)= 1_.[ tX T (0)dr]/Q (0, r)Il|6x(0)|
7" L jd’r

From (55), it follows that a necessary condition for the periodic path to be a minimum
is M(0, z)>-0.

Remark. The necessary condition in Proposition 4 applies for all to. By replacing
to=0 by any toe[0, z), M(to, to+Z) can be defined the same as (48) except that thig
corresponds to 4’ig(to+ z, to), and Hx and f are evaluated at to.

Perturbations along the periodic path do not change the orbit, only the part of
perturbations perpendicular to the path contributes to a new path. By defining the
projection operator V(t) as

(56)

the definition of strong positivity given in [13] is that there exist a positive number k
and a positive definite matrix M such that

(57) d]-k txT(t)vT(t)MV(t)t3x(t) dt.

This means that the change in cost from path Y(t) to Y(t)+ 6x(t) is dominated by the
second variational cost for sufficiently small 116x[[ [7].

PROPOSrrION 5. If T1Ql(t, t+z)>=O, for every n+ 1-vector , and the equality is

true only if r= [efT(t) 0], where e is an arbitrary real number, then the second
variation is strongly positive.

Proof Define 6y(t) to be the component of ,x(t) in the space orthogonal to the
velocity direction of the nominal periodic path,

(58) 6y(t) V(t)tx(t).

Let 0-(t), i=l,2,...,n+l be eigenvalues of M(t,t+z) such that 0-(t)=0 and
0-(t)>0, i=2,..., n+l. Denote g=mini>,o=t=0-i(t). Let L be an (n+l)(n+l)
orthonormal matrix consisting of the eigenvectors of M(t, + z) such that

(59) L’/rL diag [0, 0"2,"’, 0",+].

Then, L can be written in a partitioned form as

where V and W are n x n matrix and 1 x n matrix, respectively, and e is a real number
which normalizes the velocity vector jT(t).

dY*(x(t), d)
1 x (t)
7"

dr]M( t, + z)
dr

(61) =l[6xr dz] diag[0"2,’", 0"n+1][9T rT]
dTT

O" T 2
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Since L is orthonormal, the column vectors of L are orthogonal. By examining (60),
the orthogonality implies that f is orthogonal to the column vectors of 17 and ff/,r is
orthogonal to the column vectors of I?. Therefore,

(62) (zrV (z[ I -f(f T)--I] 9T
and

(63) fZT6x + IT dr[[ - ’2x = + /dll -> 2x =.
By using (61), (62), and (63), d2*(6x(t), dr) is related to 8y as follows"

(64)
o- o" Td2y.C6xCt), dr)> Qrv6xll2= 3y r6y.

From the orthogonality, f is an eigenvector of fq?r corresponding to a zero eigenvalue.
Furthermore, rank fq7"= n- 1. Otherwise, L defined in (60) is not invertible. Let
/xl(t), ,/x, (t) be eigenvalues of fT such that /xl 0 and /xi > 0, 2, , n.

Denote/x mini>l,tro,l/xi(t). Since 6y is orthogonal to f, then

(65) g #yTfTy>= ay 2.

Let M I, k (_o-/x)/z2, then bythe mean value theorem, there exists 0 (0, r) such that

(66)
_cr Io 2 _o-

k axT(t) vT(t)MV(t)Sx(t) at =--- Ilay(t)ll dt =r [laY()ll"

Let 6x(0) be the state variation of the perturbed path at t= 0. Then d2*(ax(O), dr)
is the accessory minimum corresponding to to 0 with initial perturbation 6x(O) and
dr. Since the neighboring optimal control is used for constructing a closed orbit starting
at 6x(O), dZ]*(ax(O), dr) is less than or equal to the cost of an arbitrary perturbed
path passing that point. Therefore, by combining (64) with (66),

(67)
_o_g, ii y(0)ll= dr)<__ d2

Remark. The restrictions in [13] that the eigenvalues of the monodromy matrix
be distinct except for two unit eigenvalues and the existence ofperiodic Riccati solution,
which are required for the proof of the strongly positive condition, are no longer
needed here for a single-period process.

PROPOSITION 6. Ifthe conditions ofProposition 5 hold, then the two unit eigenvalues
of the monodromy matrix are coupled in the same Jordan box.

Proof. Suppose that [] is a primary eigenvector of the monodromy matrix corre-
sponding to the unit eigenvalue. By using the symplectic property of b(t, 0), the
following can be obtained"

(68) ar[cb;2’(I-611)+ &Tzr(I- 42)]a =0.

Furthermore, if [] is an eigenvector which is independent of the one along the velocity
direction, i.e.,

where e is any real number, then two possible cases may occur:
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(i) a ef. In this case, the strongly positiveness does not hold;
(ii) a ej

7 for some e, but 3’ -e,’. In this case, a contradiction to the invertibil-
ity of 412(’, 0) is produced. Since

(69) [11 12][21 eJ T , eJ -eH 21 JL+eH y+eHx

this indicates that 2(y+ eH )= 0. The result contradicts the inveibility assumption
O 2"

Therefore, the unit eigenvalues of the monodromy matrix must be coupled in the
same Jordan box.

The impoance of this section has been to establish a second-order necessary
condition for the weak local optimality of a periodic process. The condition is derived
in a simple algebraic form. From this algebraic condition some properties of the
periodic process are determined under weaker assumptions than used in [13].

6. Summary of necessa and sucient conitions. Based on the discussions in 4
and 5, a set of second variational necessary and sufficient conditions for local optimality
of a single-period process are stated.

Sufficient Condition. A second-order sufficient condition for a periodic path to be
a weak local minimum given Assumptions 1-6 is that"

(i) For all to [0, ), there exists a continuous real symmetric solution to the
Riccati differential equation (47) on to, to+ ];

(ii) For all to [0, ) and n+ 1-vectors , r(to, to+ )0, and the equality is
true only if = [el(to)0] where e is a real number.

Necessary Condition. A second-order necessary condition for a periodic path to
be a weak local minimum given Assumptions 1-6 is the same as the sufficient condition,
except that condition (ii) is weakened as" For all to [0, ), M(to, to + ) 0.

The necessary and sufficient conditions given above apply for weak local optimality
of a -period process called a single periodic process. Condition (i) is a conjugate
point condition associated with optimality of the control u(. ). Condition (ii) ensures
the nonnegativity of the second variation when the period and the initial state are
peurbed. The inveibility of 12 is insured by condition (i). Note that there is no
requirement that the solution of the Riccati equation be periodic as there is in [3], [6],
13 ]. For the sufficient conditions, the requirement on the eigenvalues ofthe monodromy
matrix is that there are no uncoupled unit eigenvalues, therefore the conditions in 13]
are weakened.

7. Secon variation analysis for an infinitely-repeated periodic process. In 3-6,
the second variation conditions for local optimality of a single periodic process are
considered. If a periodic path is an extremal for the optimal periodic control problem
with period , then for any positive integer k, the k-periodic path, which is obtained
by repeating the orbit k times, is also an extremal for the same problem, since the
necessary conditions of Proposition 1 are satisfied. The optimal control problem for
a k-repeated periodic process is defined to minimize the performance criterion

(70

with respect to u(. ), x(O), and , subject to the dynamic equation (2), and the periodic
boundary conditions

(71) x(ir)=x(0), i=l,2,...,k.
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In the first-order variation analysis, there is no basic difference between the problem
described above and the problem stated in (1) to (3). But when small variations around
these repeated periodic paths are considered, some interesting phenomena can be
revealed. For example, now a comparison path may be closed for the first time at

kr instead of closed around r. In this section, small variations with respect to
the k-repeated periodic path are considered. If these repeated periodic processes are
included, the second variation conditions summarized in 6 must be strengthened. In
particular, the existence of a periodic solution to the Riccati differential equation is
required if k becomes infinite.

If the time interval (to, to+r] is replaced by the time interval (to, to+ kr], the
conjugate point conditions proved in 4 apply without modification to each k-repeated
r-periodic process. That is, if b12(tc, to) is not invertible for tc (to, to+ kr] for some
k > 1, a kr-periodic path conjugate to the k-repeated r-periodic extremal path can be
found having the same cost as the periodic extremal path. Then, a nonextremal path
with period kr can be found as shown in 4, and the cost of this nonextremal path
is less than that of the conjugate path. Therefore, the k-repeated r-periodic path is
not a minimum.

The absence of a point t (to, to+ kr] conjugate to to for each to is a necessary
condition for the optimality of a k-repeated periodic process. By letting k go to infinity,
Proposition 3 and Corollary 1 are modified for the infinitely-repeated periodic process
to the following necessary condition.

PROPOSITION 7. Given Assumptions 1-4, a necessary condition for optimality ofan
infinitely-repeated periodic process is that there exists a continuous real symmetric solution
to the Riccati differential equation (47) for all t.

Next, the necessity of existence of a periodic Riccati solution for optimality is
shown.

PROPOSITION 8. Given that fb12(t, to) is invertible for > to, a necessary condition

for optimality of an infinitely-repeated periodic process is that the matrix

-bi-21(t, to)qb( t, to) is bounded from below for t> to.
Proof. Let the initial state perturbation at to be 8X(to) 8Xo and solve the following

accessory minimum problem: Minimize the performance criterion

(72) J2(to, t.c)= [6x 6ur] ,, /,, 6u

subject to

(73) 62 fx6x +fu6u
and

(74) 6X( to) 6Xo, 6x( t.c O.

According to (28), the cost for this accessory minimum problem is

(75) J2(to, t..) ixr(to)6h(to).
Since

(76) 6x(tf) =0= dpa(t.t. to)6Xo+ dp2(tf, to)6h(to),

6h (to) can be written as

(77) 81 (to) -dp( t.c, to)C( t.c, to)Xo.
By substituting (77) into (75),

(78) J2(to, tf) -xlb 1--21 tf, t0)l(tf, /o)Xo.
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Since the system is controllable, given tl < to, a finite control can be found to take the
variation from 6X(tl)=0 to 6X(to)= 6Xo, and the corresponding second variational
cost is bounded,

(79) J(tl, to) 6xD6xo
where D is a bounded matrix. If-ch-((b, to)Chll(t, to) is not bounded from below,
there exist some 6Xo and ty in the interval tl < t < tl + Kr for some K, such that

(80) J2(tl, tf) J2(tl, to) + J2(to, tf) < O,

i.e., there exists a K--periodic path whose cost is less than that of the K-repeated
--periodic extremal path. Therefore, the K-repeated r-periodic path is not a minimum.
Clearly this holds for all k > K, in particular, as k goes to infinity. [3

Note that to represents a particular point on the path which is held fixed. As t
increases, the cost (78) is shown in the next proposition to monotonically decrease
since the terminal state variations are constrained to zero as given in (74).

PROPOSITION 9. A necessary condition for an infinitely-repeated periodic path to be
a minimum is that there exists a continuous real symmetric periodic solution to the Riccati

differential equation (47).
Proof By differentiating -thl-21(0, t)thll(0, t) with respect to 0 and manipulating

terms using the symplectic property of transition matrix [12], the following matrix
differential equation can be obtained:

d
(81) d--[-ch-(O, t)tll(0 /)]----tl-21(0, t)B(O)ch-f(o, t).

Since B(O)>=O, (81) shows that for every t, -41-1(0, t)ch11(O, t) is a nonincreasing
matrix with respect to 0. According to Proposition 8, -41-21(0, t)bll(0, t) is bounded
from below. Therefore,-4)1-21(0, t)thll(0, t) approaches a limit as 0 approaches positive
infinity. Denote this limit by _P(t), then

(82) _P(t)- lim -4)-2(0, t)thll(0, t).
0eo

Since 4 is the transition matrix of a periodic Hamiltonian system of differential
equations, then

(83) 4,(0, t+ ’) b(0- -, t)

and

(84) _P(t+ ’) lim -bl(0- ", t)chl(O-’, t)= _P(t).
0-->

Therefore _P(t) is periodic.
Finally, _P(t) satisfying (47) needs to be shown. By differentiating

-chl-2(0, t)ch(O, t) with respect to t, it is shown that for every 0, -b1-1(0, t)chl(O, t)
satisfies (47) [12], where < 0 is assumed. By letting 0 go to infinity, it is concluded
that _P(t) is a periodic solution to (47).

PROPOSITION 10. The controllability assumption and the existence of a continuous
real symmetric periodic solution to the Riecati differential equation imply the nonnegative-
ness of the second variation, or equivalently, imply M(to, to+ k’)>= 0 for k 1, 2,....

Proof Only the case to 0 is proved, since the procedure is the same for other
to. By adding the zero term

1 fo"(85) 0--’ 6xrg(x6X +L6U 62) dt
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tO (12) with - and dr replaced by k- and d(k’r), and following the mathematical
manipulation, the second variational cost can be written as

[SxT(0)" d(kr)] +fre (+fre)fj,=o d(kr)
(86)

Io /
Consider the following similarity transformation

(87)
-_P(O) _P(O) o ,=,,.

where Z=A-B_P, 4’ij, i,j= 1,2, are partitioned blocks of b(k% 0), and bz is the
transition matrix associated with Z. Then,

implies

(89)

As shown in 14], the controllability assumption and the existence of a real symmetric
periodic solution to the Riccati differential equation imply that the monodromy matrix
has no uncoupled unit eigenvalues. The eigenvector structure of _P must include all
the primary eigenvectors of the unit eigenvalues. Therefore, f is an eigenvector of unit
eigenvalue of the closed-loop matrix bz, i.e.,

(90) 4z(kr, 0)f(0)=f(0).
Since t)12 is invertible, from (89) and (90), the following is obtained"

(91) _Pf+ 0.

By using (91) in (86), the first term in the right-hand side of (86) then vanishes,
therefore, d2>- 0. [-]

PROPOSITION 11. If there exists a continuous real symmetric periodic solution to the
Riccati differential equation, and the eigenvalues of the monodromy matrix are off the
unit circle except for one pair of unit eigenvalues, then the second variation is strongly
positive.

Proof From (86), the second variation is zero if and only if

(92) 6u IY-I f + IY-I,,, ax.
Then

(93)

and

(94) 6x( t) qbz( t, O)6x(O).

By using the periodic boundary condition

(95) 6x(k’) 6x(O) f(O)d
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equation (94) evaluated at t--kT- can be written as

(96) 6x(O)-f(O)d(kz) cz(kz, 0)6x(0),
or

(97) [Chz(kr, 0)-If(0)]
d(kz)

=0.

It can be shown that [6xT(0)d(kz)]T=[efr(O)O] satisfies (97), and it will be
shown that it is the only solution. Since 4)z(kz, 0) b (z, 0) has only one unit eigenvalue,
therefore

(98) rank [4)z(kz, O)- I] n 1.

Also, jT(0) belongs to the null-space of (4,z(kr, 0)-I). Therefore

(99) rank [4)(k’r, 0)- If(0)] n.

This implies that (0, kz) has strongly positive property, i.e., scrhr =0 only if sc

[el r 0]7-. Therefore, the second variation is strongly positive.

8. New necessary and sufficient conditions. The results of 7 are summarized into
a new set of necessary and sufficient conditions for local weak optimality of an
infinitely-repeated periodic process.

PROPOSITION 12. The necessary condition for local weak optimality of an infinitely-
repeated periodic process given Assumptions 1-6 is that there exists a continuous real
symmetric periodic solution to the Riccati differential equation (47); the sufficient condition
to the same problem is that in addition, the monodromy matrix has no eigenvalues on the
unit circle except for the pair of unit eigenvalues.

The conditions given in Proposition 12 generalize and extend the previous results.

9. Conclusions. Second variational necessary and sufficient conditions for weak
local optimality of a periodic process are discussed. The conditions are derived from
two aspects" conjugate point condition and nonnegative condition. The conjugate point
condition is related to the existence of a real symmetric solution to the Riccati
differential equation over the period, and the nonnegative condition is given in the
form of a matrix condition obtained from solving the accessory minimum problem.
The weak form of the conditions imply necessity, and the strong form of the conditions
imply sufficiency. Some other properties related to a periodic process are also derived
under weaker assumptions, such as the strongly positive property (Proposition 5) and
the coupling of the two unit eigenvalues of the monodromy matrix (Proposition 6). If
the variations around an infinitely-repeated periodic path are considered, the existence
of a real symmetric periodic solution to the Riccati differential equation is necessary
for optimality and implies nonnegativity of the second variational cost (Propositions
7 to 10). The existence of a periodic solution to the Riccati differential equation and
the requirement that no other eigenvalues of the monodromy matrix are on the unit
circle except for a pair of unit eigenvalues are shown to be sufficient for optimality
(Proposition 11). A new set of necessary and sufficient conditions is given (Proposition
12) which is compact and convenient [o use.
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EXACT CONTROLLABILITY: COEFFICIENT DEPENDING ON THE TIME*

JAIME E. MUIIOZ RIVERA

Abstract. The following is considered: The wave equation y"-a(t)Ay =0, with initial data given by
(Yo, Y) in L2(fl) x H-l(fl), and the nonhomogeneous condition y v on the boundary of Q II x ]0, T[.
Exact controllability means that there exist a time T’>0, and a control v such that y(T’, v)= y’(T’, v)=0.
The main result of this paper is to prove that the above system is exactly controllable when a(.) is a

monotonic function in some interval of width greater than RVW-/ao, where [a [-sup a(t)[; t },
ao<=a(t) for all tee and R=sup{l[X-Xoll; xgl} for some fixed Xo in

Key words, exact controllability, control of distributed systems, wave equation, linear equation

1. Introduction. Let fl be an open bounded set of " with boundary F of class
C2. Let Q be a cylinder defined by Q l-I ]0, T[ and 5; be the lateral boundary of
Q given by E F x ]0, T[. We denote by (.,.) and ]]. [la the inner product and the
norm of L2(f), respectively. In [2], the author has considered the exact controllability
problem for the system

y"- a(t)Ay 0 in Q,

(1.1) y(x, t) v on

y(O) Yo, y’(O)= y in

where a is a function satisfying

(1.2) a, a’ 6 L(+), a(t)>ao>O.

We want to find a control v of class L(E), driving the system to rest; that is, we want
to find an element v in L2(Z) satisfying

(1.3) y(v;T)=y’(v,T)=O for T>0.

When this is the case, we say that the system is exactly controllable. In [2] it is shown
that (1.3) is valid when a’(t)>=O for all t>-0. The main result of this paper is to prove
that the system (1.1) is exactly controllable when a is a monotonic function in some
interval To, T] such that

(1.4) T, To> --.

2. The main result. Let us define b as the solution of the following system:

b"- a(t)Ab 0 in Q,

(2.1) 6(x, t) 0 on X,

b(0) bo, b’(0)= b in ft.

First, we will prove that there exists a positive constant C satisfying the following
inequality"

(2.2) CE(O)<--_-RllalI dX.

* Received by the editors December 19, 1988’ accepted for publication May 26, 1989.
? National Laboratory of Scientific Computation, Rua Lauro Muller 455, Botafogo 22290, Rio de

Janeiro, Brasil.
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Here R sup {llX-Xol[; x 12}, where Xo is a fixed point of a", and Eo FoX ]0, T[
where Fo {x 6 F: (x- Xo) v(x) >- 0}. The following remarks are in order.

Remark 2.1. Put E(t)=1/2{[[4’(t)[l+a(t)[[Vda(t)[[}. From (2.1) it follows that

=’

From this inequality and by (1.2), we obtain

]a’(t)[
(2.3) E’(t)-E(t).

2ao

Remark 2.2. For all [0, To] we have that

In fact, if we multiply (2.3) by O()=exp{1/2aoIoa’(s)lds}, then we have
d/d {N(t)0(t)}N0. Integrating from zero to t, we obtain the result.

Remark 2.3. If a is a monotonic function on To, T], then we have

(2.4) a/laE(To)E(t)E(To) Vte[To, T1], when a’(t)O,

(2.5) E(To)E(t)(lall/aoE(To) Vt[To, T], when a’(t)O.

In fact, let us suppose that a is a nondecreasing function; then we have

1
,(

1 a’(t)

From Gronwall’s inequality we obtain

To) N E t) N a( T)/a( To)

from which (2.5) follows. Using the same reasoning, we can prove that relation (2.4)
is also valid.

Now we are able to prove the following lemma.
LNMA 2.1. Let a be a monotonic function on To, T] satisfying (1.2). en there

exists a constant C saisfying condition (2.2).
Proo Set Q’= x ] To, r[, ’ F x To, r[ and put re(x) x xo. Multiplying

system (2.1) by m(O/Ox), we have

1 0a(t) md

’(t),m(t) - {1 a( t)lV [2} dx dt

+ f a(t)lVchl 2 dx dt
Q,

where m(x)= (m,(x), mk(X), m,(x)).
But

([d’(t)lZ-a(t)lVcfl(t)]2} dxdt=[(dp’(t), t(t))a] r

Q’
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from which we obtain that

(2.6) - a( t) rnkVk d, qb’( t) mk t) +
OXk 2

Defining Z= (’(t), mk(OCb/OXk)(t)((n- 1)/2)&(t))n, we have

0 n-1
(2.7) Izlll’()ll mk(t)+ (t)

OXk 2

On the other hand

m(+ (

(t) +
f To To

E(t) dt.

mk(t) +(n--l) (t),mk(t)

(n-l)2

4

But

o ) n
6(t) m(t) =- II,/,(t)ll

2
6(t) <= RIIV4,(t)il,a.

R
sup E(t).(2.9) [IZI] <= Vo ,{[’o,T]

Set E;= Fo x ]To, T[, and suppose that a’(t)<-_0 on [To, T1]. Now from (2.6), (2.7),
(2.9), and Remark 2.3 we have

2 =- ,mkVk 7 dE

E(To)+ E(t) dt

T

-R +( r- ro) ao
_

(To) for T T.

Finally the result follows from Remark 2.2. With the same reasoning we can argue the
case for a’(t)>-O, and the proof is thus complete. B

THEOREM 2.1. Let a(. as in Lemma 2.1. Then for all {Yo, Yl} in L2() x H-I(),
there exist v in L2() such that y, the solution of system (1.1), satisfies (1.3) for T> T1.

Proof Let us define q, as the solution of

q/’- a(t)A0 0 in Q,

(2.10) O(x, t)= w(x, t) on Z,
0(T) 0’(T) 0 in n,

where w a4/a on Zo, and w 0 on Z\Zo. It is well known that a/a L(Z) when
{o, 1} H(I) L2() and system (2.10) has only one solution, q C([0, T]; L2(I)).

from which we conclude

(2.8) mk(t)+
OXk

By (2.7) and (2.8) we have
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Multiplying system (2.1) by q, and applying Green’s formulas, we have

(2.11) a(t) -v dY_.=(q/(0), bo)-(q(0), bl).

If we define the operator A as

(2.12) A{ 4o, b,} { q/(0), q,(0)}

for {bo, 41} in C()x C(1), from Lemma 2.1 we conclude that the functional

(2.13) {bo, 4,}- (A{4,o,

defines a norm in C;(O) C(O). Let us denote by F the completion space of
C(ft) C;(O) with the norm in (2.13). It is clear that F is a Hilbert space. Let us
multiply the system (2.1) by qk(Od/OXk), where q (q,..., qk,’’’, q,,) is a C field
of vectors satisfying q v in F and v is the exterior normal of f. Then we have the
following identity:

lI 0b2a(t)qkVk dE
2 Ov

+ Io a( t)

from which we have

Oxk OXk OX;

(2.14)

dx dt

2

d <-_ c(o)

where C is a generic constant. From this later inequality we can conclude that the
norm of F is equivalent to the norm of the space H(fl) x L2(I), and since C(fl) is
dense in both H() and L2(f), we obtain that F= H(f) L2(I). Since A is a
self-adjoint operator from F to F’, from Lemma 2.1 and the relations (2.11) and (2.12),
we conclude that A is an isomorphism. Finally, if we take {Yl,-Yo} in F’, there exists
{4o, 41} in F such that

A{(o, (91}-’ {Yl, Yo}.

From (2.12) we have that the function defined by system (2.10) satisfies p(0)= yo,
q,’(0) yl, taking v w in system (1.1). By uniqueness of solutions for linear hyperbolic
systems, we conclude that y 0, and from (2.10) the result follows.
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A GENERALIZATION OF THE PROXIMAL POINT ALGORITHM*

CU D. HA

Abstract. The problem considered in this paper is to find a solution to the generalized equation
O T(x, y), where T is a maximal monotone operator on the product H H2 of two Hilbert spaces H and
H2. We give a generalization of the proximal map and the proximal point algorithm in which the proposed
iterative procedure is based on just one variable. Applying to convex programming problems, instead of
adding a quadratic term for all variables as in the proximal point algorithm, a quadratic term for a subset
of variables is added. This paper proves that under a mild assumption our algorithm has the same convergence
properties as the regular proximal point algorithm.

Key words, monotone operator, convex programming, proximal point algorithm, generalized equation
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1. Introduction. Let H be a real Hilbert space with the inner product (.,.) and
the induced normed [. I. Let T" H - H be a set-valued map. We define its domain, image,
and graph, as follows.

Dom T) := {z HI T(z) 6},

Im(r):= U r(z),
zH

and

Graph (T) := {(z, w) 6 H x HI w T(z)}.

The inverse T-1 ofT is the set-valued map defined by

zT-(w) if and only ifwT(z).

The set-valued map T is said to be a monotone operator if

(z-z’, w-w’)>-0 for all (z, w) and (z’, w’) in Graph (T).

T is said to be a maximal monotone operator if it is monotone and its graph is not
properly contained in the graph of any other monotone operator. The theory and
applications of monotone operators have been studied extensively; see, for example,
Brezis [3], Dolezal [5], and Aubin and Ekeland [1].

The problem that we are interested in is to find a vector z in H such that

(1.1) O6 T(z).

Many problems from mathematical programming, complementarity, mathematical
economics and other fields can be formulated as generalized equations (1.1) (Robinson
[10]). One specific type of such problems that motivates this paper is the convex
programming problem

(1.2) minimize f(z),

where f is a closed proper convex function.
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Let of be the subgradient of f. It is well known that iff is a closed proper convex
function, then Of is a maximal monotone operator. Furthermore, solves the minimiz-
ation problem (1.2) if and only if solves the generalized equation (1.1), where T Of

The proximal point algorithm solves (1.1) when T is maximal monotone. Starting
at any point z the algorithm generates a sequence {zk} according to the rule

(1.3) zk+’=Pk(zk),

where Pk (Z) := (I + CkT) - (z) and { ck } is a sequence of positive numbers.
The algorithm is based on the fact that the proximal map Pk is single-valued and

nonexpansive (Minty [9]). Rockafellar [13] shows that under certain conditions the
sequence {zk} converges to a solution to (1.1). The proximal point algorithm has
been investigated further by Luque [8] and Spingarn 14], 15]. It also has been applied
to decomposition by Spingarn [16], Ha [6], and Kaneko and Ha [7].

Applying to the convex programming problem (1.2), zk+l satisfies the rule (1.3)
if and only if it is the unique optimizer of the problem

(1.4) minimize f(z) + (1/ 2ek)lz zkl 2.

The proximal point algorithm solves (1.2) by iteratively solving (1.4). The advantage
of (1.4) over (1.2) is that the function f(. )+(1/2ok)l"-zk[: is strongly convex; con-
sequently, (1.4) has a unique optimal solution. Strong convexity of the objective
function is a very important feature if we use methods for solving (1.4) that are based
on duality. It is especially significant in the decomposition of large scale problems
(see Spingarn [16] and Ha [6]).

Suppose now that z consists of two components z (x, y), then (xk+l, yk+) is the
optimal solution to the problem

(1.5) minimize f(x, y)+(1/2Ck)](X, y)--(Xk, yk)]2.
(x,y)

However, in some applications we would like to add a quadratic term of just one
variable, say y. That means (xk+, yk+) would be an optimal solution to the problem

(1.6) minimize f(x, y)+(1/2Ck)[y--yk]2.
(x,y)

The problem (1.6), in general, does not have as attractive features as (1.5); in particular,
the objective function in (1.6) is not as strongly convex in (x, y) as that in (1.5). But
in the case that either f is already strongly convex in x for all y or f is separable, i.e.,
f(x, y)=fl(x)+fz(y), f(x) is linear and the feasible region is bounded, then (1.6) is
easier to solve than (1.5). Moreover, in decomposition methods based on duality, for
some problems, (1.6) produces simpler subproblems than (1.5). We illustrate these
points by an example.

Example. We consider the following quadratic programming problem:

minimize (al, x)+(1/2)(x, Cx)+(a2, y)

subject to A1 x <_- bl

A2y <- b2

Bx + B2y <= b3,
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where a and b are vectors; A, B, and C are matrices having appropriate dimensions.
C is assumed to be positive definite.

Let f(x,y)=(al,x)+(1/2)(x, Cx)+(a2, y). Using the regular proximal point
algorithm given by (1.5), the problem to be solved is

minimize f(x, y)+(1/2Ck)l(X, y)--(Xk, yk)12

subject to A1 x bl
A:zy<= b2

Blx + B:y <--_ b3.
To decompose the problem we put the coupling constraint into the objective function.
The dual problem is

maximize g(u).
The dual function g(u) is the optimal objective value of the problem

minimize f(x, y) + 1/2Ck)I(X, y) (X k, yk)[2 + (U, b3 BI x B2y)

subject to A x =< b
A.y <= b:.

The above problem consists oftwo independent subproblems, one in terms of x variable
and one in y variable. We are interested in the subproblem in x variable"

minimize (a, x)+(1/2)(x, Cx)+(1/2c,)ix- x’l-(u,.B x)
(.7)

subject to A x <= b.
If we use the generalized proximal point algorithm given by (1.6), then the subproblem
in x variable is reduced to

minimize (a, x)+ (1/2)(x, Cx)-(u, B x)
(.8)

subject to A x =< bl.
For the problem (1.7) we have to update the matrix of the objective function in each
iteration of the proximal point algorithm; meanwhile, the matrix of (1.8) remains
constant. That advantage of (1.8) is particularly useful if we use a conjugate direction
approach for solving the subproblems. Because the matrix of (1.8) is unchanged, the
conjugate directions need not be recomputed for any iteration of the generalized
proximal point algorithm.

In this paper we propose an algorithm to solve the generalized equation in two

variables

O6 r(x, y).

The algorithm is a generalization of the proximal point algorithm. Its iterations are
based on just one variable---not both as in the proximal point algorithm. Applying to

the convex programming problem (1.2) our generalized proximal point algorithm solves
iteratively (1.6) instead of (1.5). In 2 we define the generalized proximal map as

p (rI + cT)-rl

where H is the projection on the second space. We show that under a mild condition,
namely, 0 int Im (T), the generalized proximal map P has desirable properties. In

3 and 4 we prove the convergence and the rate of convergence of the generalized
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proximal point algorithm. Applications to convex programming problems will be
reported in a subsequent paper.

2. Properties of the generalized proximal map. Let H H1 x H2, where H and
HE are two real Hilbert spaces. For convenience we denote the inner products and the
norms in H and H2 by the same notations (.,.) and [. [, respectively.

The inner product on H is induced from those on H1 and H2, i.e.,

((x, y), (u, v)) (x, u)+(y, v)
for (x, y)e H x H2 and (u, v)e H x H2.

Let H be the orthogonal projection of H onto {0} H2, i.e., H(x, y)= (0, y) for
(x, y)e H H2. Let T: H- H be a maximal monotone operator. We consider the
problem of finding (x, y) e H H2 satisfying the generalizedequation

(2.1) OT(x,y).

The generalized proximal point algorithm generates from any point yO HE a sequence
{(x k, yk)} by the rule

(2.2) (xk+, yk+l) G (l-I + CkT)-(O, yk),
where {Ok} is a sequence of positive numbers.

We denote

(2.3) P := (I-[ + cT)-IYI
for some positive number c and

Pk := (H + CkT)-H.
Then (2.2) is

(xk+l, yk+l)e Pk(Xk, yk).
Note that if H is substituted by the identity I then P is the regular proximal map P
of T. That is (I + cT) -. The proximal map/ has several familiar properties:

(i) Dom P H.
(ii) P is single-valued.
(iii) P is nonexpansive, i.e.,

[P(z)-P(z’)<=[z-z"l forz, z’H.
(iv) P(z)= z if and only if 0 T(z).

It is easy to see that P defined by (2.3) does not have any property above. However,
we will show that under a simple condition P has property (i) and properties similar
to (ii)- (iv).

DEFINITION (Aubin and Ekeland 1, p. 392]). Let A be a monotone operator from
X to X, a Hilbert space. It satisfies the L property if for all w Im (A) and y Dom (A)
there is a number c such that

inf (u w, x- y)_-> c.
(x, u)Graph (A)

The following theorem is proved by Brezis and Haraux [4] but .its present form
is from Aubin and Ekeland [1, p. 393].

THEOREM. Let A and B be two monotone operators satisfying

(i) Dom (A) Dom (B),
(ii) A + B is maximal monotone, and
(iii) B satisfies the L property.

Then
(i) int Im (A+B) =int (Im (A)+Im (B)) and
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(ii) cl Im (A + B) cl (Im (A) + Im (B)), where int and cl denote the topological
interior and closure, respectively.

PROPOSITION 1. Suppose 0 int Im T). Then

(2.4) {0} x H_ c int Im (II + cT)

and Dom (P)= H.
Proof To use the theorem of Brezis and Haraux with A cT and B H we need

to verify its three conditions.
Since Dom (H)= H the first condition is trivial. We also have

Dom (cT) CI int (Dom II) Dom (cT) ok.

Therefore, cT+ II is maximal monotone (Rockafellar [12]).
We now show that II satisfies the L property. Let x (x, x), y= (Yl, Y) and

z (z, z) be three vectors in H x H.
Let

and

We have

u ri(x,, x) (O, x),

v n(y,, y2) (0, y2),

w rI(z, z) (o, z_).

(u, x- y)+(v, y-z)+{w, z-x)

(x2, x2 Y2) + (Y2, Y2 z2) + (z2, z2 x2)

1
([X2 y212 + [y2- z2[ 2 - Iz2- x2[ 2) 0.

Define c := (w v, y z). Then (u w, x y) >_- c for all (x, u) graph (H). By the
theorem of Brezis and Haraux

int (Im (cr+ II)) int (!m (cT)+ Im (H))

int (Im (cT) + {0} x H2).

Some 0 int Im (T)= int Im (cT) we have

{0} x H cint (Im (cT+ H)).

Let (x, y) H, then by (2.4) there is (u, v) H such that

H(x, y) (0, y) (II + cT)(u, v).

That implies

Therefore

(u, v) (rI + cT)-lII(x, y) P(x, y).

DomP= H.

PROPOSITION 2.
(i) If (U,, Vi) P(x, y) for 1, 2 then v v2.
(ii) If (ui, vi) P(xi, Yi) for i= 1,2 then Iv-vl<-_ly-yl.
(iii) 0 T(x, y) if and only if (x, y) P(x, y).
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_proof.
(i) (u,, v,) P(x, y)

=#(0, y) (II + cT)(u,,
=#(0, y vi) cT(ui, vi) for 1, 2.

By monotonicity of cT we have

((0, y v,) (0, y v2), (u,, v,) (u2, v2)) >= 0
=(,v v v v) >= O.

Therefore v v2.
(ii) (ui, vi) P(xi, Yi)

=(0, y vi) cT(u, v) for 1, 2
=#((y, v,) (Y2 v2), v, v2) >-- 0.

We have

Hence

(2.5)

and

[Y, Y212 lY, Y2 v, + v2 + v, v2[
lY, Y2- v, + v212 + Iv,- v2l + 2(y,- y=- v, + v2, v,-

[Yl Y212 -> lYl Y2- v, + v212 +l v, v212

(iii) (x, y) P(x, y)
: (0, y) (II + cT)(x, y)
z>(O, y)-(O, y)e cT(x, y)
e;,O T(x, y).

Although P does not have as good properties as the regular proximal map, from
Proposition 2 we observe that P is well behaved enough for our purpose. While P is
neither single-valued nor nonexpansive, the second component is uniquely determined
and nonexpansive. Moreover, the generalized equation (2.1) can be converted to a
fixed point problem.

3. Convergence of the generalized proximal point algorithm. For practical purposes
(xk+,, yk+,) should be obtained according to some approximation criteria rather than
exactly as in (2.2). Following Rockafellar [13] we consider two approximation criteria

(A) [(xk+’, yk+l)--(uk+l, Vk-t-l)l < Ek, Ek < CX
k=0

and

(B)

and

[(xk+l, yk+l), (uk+l, vk+l)l 3k[(xk+,, yk+l) (xk y")l

I(y+’- vk-4-1)i 6ly+’ --Ykl, E 6k < o0,
k=0

where

(3.1) (lgk+l, vk+,)e p(xk, yk).
Other approximation criteria, as in Auslender [2], will be discussed in a subsequent
paper that applies the generalized proximal point algorithm to convex programming
problems.
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THEOREM 1. Let {Ck} be a sequence ofpositive numbers bounded away from zero.
Suppose O int Im T). Let {(x k, yk)} be a sequence generated under criterion (A). Then
{(x k, yk)} is bounded and any of its weak cluster point is a solution to (2.1). Moreover,
{yk} converges weakly to , a second component of a solution to (2.1).

Proof Let (, 37) be a solution to (2.1), then

(, .) P(., ).
Similarly to (2.5) the relation above and the definition (3.1) of (u k/l, v k/l) yield

(3.2)
Hence

From

it implies that

ly+’ -)51 ly+ v+’l + v"+’- Yl

]y k/1 Yl k -- ly 371
Because k=o ek < oo the sequence {yk} is bounded and limk_ ly-yl exists and is
finite.

We now show that ly-v+]0 as k. By (3.2) we have

[yk Dk+l[2- [yk ill2 + [yk+ ill2 ly k+ ill2_ vk+

(yk+ vk+, (yk+ fi) + vk+ fi))

e(lyk+l--fil+yk--fil)

where s is a positive number such that

lyk]s for allk.

Consequently

ly v+[2 [yk _.91z_ lY k+’ -.9[2 + 2ek(S + 1.91).
Hence

Since {Ck} is bounded away from zero, we also have

(3.3) (1/Ck)(yk--vk/)-->O as

The assumption 0 int Im (T) implies that there exist positive numbers a and e such
that

Izl--> lwl >= whenever w T(z)

(Rockafellar [13]) or equivalently for any w B(O, e), T-(w) c B(O, a), where B(0, e)
and B(0, a) denote the ball of center 0 and radius e and a, respectively. In other
words T- is locally bounded at 0. By (3.3) there is an integer K such that

(0, (1/Ck)(yk--vk+l))G B(O, e) for k>-K.

That implies

(u k+l, vk+I) T-(0, (1/Ck)(yk--vk+l))c B(O, a) for k>-K.

Therefore {(u k, vk)} is bounded and so is {(x k, yk)}.
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Let {(xk, y)} be a subsequence that converges weakly to (x*, y*). We observe
that {(u, v)} also converges weakly to (x*, y*) and

(ub, vb)e T-’(O, (1/%_,)(y,-’- v,)).

We know that the graph of a maximal monotone operator is weakly-strongly closed
(Aubin and Ekeland [1, p. 379]). Therefore at the limit

(x*, y*) r-’(0, 0)

or (x*, y*) is a solution to (2.1).
Let (Y, 37) be another weak cluster point of {(x k, yk)}; we will show that 37 y*.

This proof is similar to the one given by Rockafellar [13, p. 885]. Using the same
argument as above, (Y, 97) is a solution to (2.1). Likewise

/xl lim ]yk ,

and

/x2 lim [yk
koo

exist and are finite. From

lyk )712 ]yk y,]2 + lY* -)7] 2 + 2(Y k Y*, Y*
we see that the limit of (yk-y,, y,_)7) as k- must exist. That limit has to be zero
because y* is a weak cluster point of {yk}. Hence, at the limit

/x2 =/x, + [y* jTI 2.

Reversing the role of )7 and y* we also have

m+ [y*

That implies )7 y*.

4. Rate of convergence. This section follows closely 3 in Rockafellar [13]. In
other words we obtain the same linear rate and if ck the rate is superlinear. Also
under certain conditions we have finite convergence.

DEFINITION (Rockafellar [13]). A set-valued map A is said to be Lipschitz
continuous at Wo with modulus a >=0 if A(wo) is single-valued, i.e., A(wo)= {Zo} and
for some r > 0 we have

z- Zo[ <-- a] w Wo] whenever z A(w) and ]w- Wo] < ’.

THEOREM 2. Suppose T-1 is Lipschitz continuous at 0 with modulus a. Let {(x
be any sequence generated under Criterion (B) with {ok} nondecreasing (ck’[ c<-oe).
Assume that {(x k, yk)} is bounded.

Let

/Xk := a/(a2+ c2) /2.

Then {(x k, yk)} converges strongly to (, ), the unique solution to (2.1). Moreover, there
is an integer K such that

lYk+-1 <- Ok[Yk- 1 for all k >-_ K

where Ok := (/Xk + 6k)/(1 6k) for all k >- K.



THE PROXIMAL POINT ALGORITHM 511

Proof By the definition of Lipschitz continuity, T-1 is locally bounded at 0, so
0intlm(T) (Rockafellar [11]). The boundedness of {(xk, yk)} allows us to use
Theorem 1 with

ek 6kl(Xk+l, yk+)--(xk, yk)l.

By the definition of (u k/l, vk/)

(u k+, vk+) T-I(O, (1/Ck)(yk--vk+l)).

By the proof of Theorem 1

(1/Ck)(yk
Vk+’) - 0 as k m.

Consequently, there is an integer K such that

for all k >= K.
That implies

(4.1) [(u k+, v/)-(Z, y)l--< al(0, (1/Ck)(yk--vk+l))[.

We have

i(xk+, yk+l)- (:,)7)1 i(xk+l, yk+,) (uk+l vk+l)l.+, i(Uk+l Vk+)- (3,)7)1

<=2,,s+ a](O, (1/c,)(y’-v’+))[,
where s is a number such that

Hence {(x k, yk)} converges strongly to (, 37).
We have from (4.1)

and from (3.2)

These imply

or

On the other hand,

and

for all k.

Ivk+1-371 = (a/c)ly v"+’l

Iv+- Yl + ly v+l <-lYk _)712.

(1 +(a/c))lv+- yl<=(a/c,)ly-l

-.91 <= a/ a2 + c) /2)ly -371 zly -371.

[yk+l )7[---< [yk+, vk+l[ "-I-IV k+l-

vk+l --Yk+ll--< 6klYk+ --Y"I = ’%IY"+ --371 +

[y k+l ill <= tklY k+l --ill + aklY k --ill + zly -Yl

Hence

or

(1- ,%)ly+ yl <--_ (,% +
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That gives

[yk+l_)71 Oklyk_9[ where

Theorem 2 shows that the rate of convergence is linear and if Ck "-)(20 as k- c
then /-k ’’) 0 and Ok 0, SO the rate is superlinear. In the next theorem we show that
for a special case the convergence is finite.

THEOREM 3. Let {(x k, yk)} be any sequence generated by the generalized proximal
point algorithm under criterion (A) or (B) with { Ck} bounded awayfrom zero. We assume
that {(x k, yk)} is bounded if criterion (B) is used. Suppose that there is (, ) such that
0 int T(ff, 37). Then

(:,)7) u k+ 1, V k+ 1) for k sufficiently large.

In particular, the generalized proximal point algorithm in its exact form ((Xk+l, yk+l)G
p(xk, yk)) gives convergence to (, fi) in a finite number of iterations from any starting
point.

Proof Rockafellar [13] shows that if0 int T(:,/9), then T-1 is single-valued and
constant on a neighborhood of 0, i.e., there exists e > 0 such that if w[ < e then
T--(w)=(,)7). By Theorem 1, (1/Ck)(yk--vk+l)O as k and (uk+,vk+l)
T-I(O, (1/Ck)(yk--vk+)). Therefore for k sufficiently large

(0, (1/Ck)(yk--vk+l))6 B(O, e).

Consequently (u k+l, vk+) (,)7) for k sufficiently large.
Applications of the generalized proximal point algorithm to convex programming

problems will be discussed in a subsequent paper.
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CONTINUOUS-TIME STOCHASTIC ADAPTIVE TRACKING--
ROBUSTNESS AND ASYMPTOTIC PROPERTIES*

HAN-FU CHEN" AND LEI GUO?

Abstract. Adaptive estimation and control problems are considered for continuous-time stochastic
systems containing both modeled and unmodeled dynamics. The least squares method is used to estimate
unknown parameters included in the modeled part, which are used to update an adaptive control law. It is
shown that both the estimation error and the tracking error are bounded, and that the bounds are proportional
to constants dominating the unmodeled dynamics. Moreover, convergence rates of the tracking errrors are
established in the case where no unmodeled dynamics exist.

Key words, continuous-time stochastic system, adaptive tracking, least squares, robustness, unmodeled
dynamics

AMS(MOS) subject classifications. 93C40, 93E12

1. Introduction. In recent years, much attention has been devoted to the analysis
of adaptive algorithms when unmodeled dynamics are contained in the system. It is
known that (see, e.g., [1]-[3]) unmodeled dynamics or even small disturbances may
cause instability in many adaptive algorithms when precautions are not taken. This
inspired the study of robust adaptive control where the primary purpose is to maintain
stability of the closed-loop system under violations of ideal assumptions. There is
already a vast literature on this topic, especially in the deterministic framework (e.g.,
[4]-[6]).

In the stochastic case, robustness results are much more difficult to obtain. This
results from the following "stochastic features": (i) a priori upper bounds for the noise
sequence are usually not available, (ii) optimal or at least close to optimal rejection
of the noise effects is required, and (iii) traditionally used supermartingale methods
fail due to unmodeled dynamics. An initial attempt toward robustness analysis for
discrete-time stochastic adaptive systems was made in [7], where an a priori assumption
on the input-output data was required. This assumption was later removed in [8] for
a large class of stochastic systems represented by a full ARMAX model plus unmodeled
dynamics.

While discrete-time adaptive theory is well developed, the corresponding con-
tinuous-time analogue becomes a natural concern. There is no doubt that results of
this kind are interesting and important in many situations. Unfortunately, it seems that
they have received less attention in the literature, and that only some initial works in
the adaptive estimation aspect are available (see, e.g., [9]-[ 12]).

In this paper, we consider both estimation and control problems for stochastic
systems described by stochastic differential/integral equations. The adaptive control
law is defined based on a continuous-time analogue of the least-squares estimation
algorithm. We show the following:

(i) That the least squares method has some degree of robustness when unmodeled
dynamics are contained in the model, provided that the system is "persistently excited."

(ii) That the closed-loop adaptive system is stable, with a tracking error upper
bound. This bound implies that the tracking error will decrease when upper bounds
on the unmodeled dynamics decrease.
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(iii) That if there are no unmodeled dynamics, then the least squares estimation
results parallel those obtained in the discrete-time case (see, e.g., [13], [14]); further-
more, in the present paper we provide a precise convergence rate for the tracking error,
which in the discrete-time case still remains a standing issue.

We state here that the above-mentioned results are established under the assump-
tion that the strong solution of the stochastic differential equations describing the
closed-loop system exists. And for the time being, we know of no way to verify or
sidestep this assumption. However, we believe that many of the ideas, techniques, and
results presented in this paper are necessary preliminaries for future study.

2. The system description. Let { F,} be a family of nondecreasing tr-algebras defined
on a probability space (f, F, P), and let the system to be considered be described by
the following stochastic differential/integral equation:

[I + txlSH(S)]A(S)y, [I + i.2H2(S)]SB(S)ut +[I + t.t,3SH3(S)]C(S)vt
(1)

q-ld,4St(y,u), tO, yo=0, Uo=0, o=0

where s denotes the integral operator (e.g., Sy, oYz dz), and y, and u, adapted to
{F,} are m-dimensional output and /-dimensional input, respectively. The quantities
/x, i= 1,. ., 4, are small constants, H(S), i= 1, 2, 3, are unmodeled matrix transfer
functions, and :,(y, u), dependent on the previous observation {y, u2, 0=< s _-< t}, is an
unknown nonanticipative measurable process characterizing the unmodeled dynamics.
Finally, v, is the system noise that is generated via a known filter D-(S) from a
standard Wiener process (w,, Ft):

(2) D(S)v,=w,, t>=O.

Assume that A(S), B(S), and C(S) are matrix polynomials in S, with unknown
coefficients but known upper bounds for the true orders:

(3)

(4)

(6)

(7)

(8)

A(S) I + AIS +" + ApS p, p >- O,

B(S) B1 + B2S +" + BqSq-l, q >-- 1,

C(S) I+ CS+. .+ Crsr, r >- 1,

D(S) I +DS +. + DrSr.

Note that (1) may be rewritten in the form

A(S)yt SB(S)ut + C(S)v + rl,,

rh Ix4S,(y, u)- IxSHI(S)A(S)y, + tx2SH2(S)B(S)u,

+ tz3SH3(S)C(S)vt.

We remark that, if the unmodeled dynamics are removed, i.e., , O, for all _-> O,

(9) 0"= [-A,. .-Ap Bl Bq Cl. Cr].

then the model (7) is reduced to the one considered in [9]-[12]. Clearly, in this case
model (7) may be rewritten in the standard linear state space form, and the output
process {y,} can be uniquelydetermined by the process {u,, w,}. In the general case,
it is natural to assume that {y,} can also be determined by {u,, w,} via (7)-(8).

We denote the collection of unknown matrix coefficients of A(S), B(S), and C(S)
by 0:
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In the sequel, 0 is estimated by the continuous-time extended least square algorithm
[10]-[12]"

(10) dO,= PctD(S)(dy-chO, dt), 0o=0,

(11) dPt Ptch,ch P, dt, Po aI (a dim of tht),

(12)

(13) , y, SO4,.

(14)

Obviously, if r 0, then (10) and (11) can be expressed as

O, P, chs dy + P,(Po)-’ Oo,

(15) Pt ,hsc ds + a-
and the right-hand side of (14) is completely determined by the observations {U, y,,
s<-_t}.

In the general r> 0 case, however, the regressor b, depends on {0., s-<_ t}. Then
(10) and (11) constitute a system of nonlinear stochastic differential equations for Or.
The existence of the solution is far from obvious since the typical Lipschitz condition,
which plays a vital role in the standard theory of stochastic differential equations (see,
[15, Chap. 4], for example), is hard to verify in the present case. For that study, the
introduction of new techniques seems to be necessary, although our differential
equations are well motivated.

Henceforth, we assume that the stochastic differential/integral equation (10)-(11)
has a unique strong solution {0,, t_-> 0} in the sense of [15, pp. 127].

Set

(16)

(17)

(18)

(19)

Yt [YT S p-ly r,]-,’,
T, sr-Iv, =Iv, v,]

Sq-IUt =[ut ut]

sr--1 /v,=[v,., v,], V,- V,.

Then it follows that

(20) 4, YT, UT, #T], 4,= YT, UT, VT], b, [0, 0,

Furthermore, we set

-D Dr -C1 Cr
0 0 0

I I 0

By use of these kinds of matrices it is easy to represent an input-output equation
in state space form. For example, from (2) and (19) we may write V as

(22) dVt FdV dt +[I, O O]" dwt.
In the sequel, similar representations will be used without additional explanation.
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On the unmodeled dynamics rt,, we make an assumption similar to that used for
discrete-time systems in [8].

Assumption 1. There is a real number e >= 0 such that

(23) ds<= er,, >-0

where

(24)

and

t-- 4SCt(Y, U)- Ix,H,(S)A(S)y, + tz2H2(S)B(S)u, + tx3H3(S)C(S)v,

(25) r, e+ limbs ds.

We also need the following condition on the noise model, which in the discrete-time
case is a standard assumption.

Assumption 2. D(S) is stable and the transfer matrix D(S)C-(S)- I/2 is strictly
positive real.

At first sight, Assumption 1 is somewhat hard to understand and rather restrictive.
However, the following examples show that there is at least one substantial and
important class of dynamical systems that does satisfy this condition.

Example 1. Let the single-input and single-output system be described by the
following system with additive noise:

(26) y, Go(S)[I + txG,(S)]Sut + v,,

where Go(S) B(S)/A(S) represents the nominal transfer function, whereas G(S) is
the unmodeled transfer function and is assumed to be stable and proper.

When the additive noise v, is identically equal to zero, then the system is reduced
to the deterministic one, and it coincides with the model considered (e.g., [6]) in the
robustness analysis for deterministic systems.

Putting the expression for Go(S) into (26) leads to

A(S)y, B(S)u, + la.SG(S)B(S)ut q- A(S)vt.

Comparing this to (7) shows that in the present case

(27) , tzG,(S)B(S)u,.

We now prove that Assumption 1 is satisfied for the system (26). For this the
following auxiliary result is needed. We formulate it as a lemma, as it will also be
used in the proof of the main results to follow.

LEMMA 1. Let E(S) and F(S) be matrix polynomials in the integral operator S,
such that the transfer matrix F(S)E-(s) is stable and proper. Then

[IF(S)E-’(S)xII 2 dz<= c Ilxzll = dz

for any square integrable function {x,}, where c is a constant depending on E(s) and
F(S) only.

Proof Let us write

E (S) I + ES +. + EdSd, F(S) I + F,S +. + FdSa
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and set

7.. sd-Iz, E -’(S)x,, Z, [z, z, ].

Similar to (22) we have

Z, FeSZt q-[x’, 0’’’ 0]7"(28)

with

-E Ed
I 0 0

0 I 0

The above linear differential equation has the solution

Z,=Fe exp{Fe(t-s)}[x2,O" .O]7"ds+[x,O. .0]7".

Since Fe is stable, there are constants c 1 and p > 0 such that

Ilexp (Ft}ll c, e-or tt 0

where here and hereafter ci, 1, 2,. ., denote constants.
It then follows that

IlZll dz<=2llFll exp [F(z-s)][x, 0... 0]7" ds

(29)

and

(30)

exp [-p(z s)] ds exp [-p(z s)]llx,ll ds / [Ix=ll dz

Furthermore, by (28) it follows that

SZ,=(Fe)-’

by (29).
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Finally, the lemma follows from (29) and (30):

IIF(S)E-’(S)xI[ ds IIz, + F, Sz, +... + F,Sez.[[ ds

[[[I, 0... 0]z, + IF,... Fd ]SZ ds

We now turn back to show that , given by (27) satisfies Assumption 1.
Set

We then have

x,

IIx,ll 2 ds<=l 2 IIB, u+"’ "+BqSq-’u[I ds<=l2car,,

where r, is defined by (25) and ca. is a constant.
Finally, applying Lemma 1 to (27), we find that

IIj[] ds<= iiG,(S)x[[ dsc [[x.,]] ds,2ccr,,

which verifies (23) with e 2cc3.
Example 2. Consider the following system:

A(S)y, SB(S)u, + C(S)v, + S,(y, u).

When the last term is identically zero, this model becomes the continuous-time analogue
of an ARMAX model (see, e.g., [9]-[12]).

It is clear that Assumption 1 is verified if the nonlinear part ,(y, u) is one of the
following forms:, (y, u) e,y, sin (t) + e u, cos (t),

,(y, u) e sin (y,)+ ez sin (u,), ee[0, e], i=1,2,

and so on.

3. Robustness of parameter estimation. We now show that the estimation error is
proportional to the constant e defined in (23) if the input-output data is persistently
exciting.

THEOREM 1. If Assumptions 1 and 2 are satisfied, then

lim sup Ot- 0 ake, a.s.

where a (0, c) is a constant, e is defined in (23), and

k lim sup rt//-min(t) < c

where Amin(t denotes the minimum eigenvalue of
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For the proof of this theorem we need the following lemmas.
LEMMA 2. Under the conditions of Theorem 1, there is a constant ko> 0 such that

tr/p-I/, 0(1)+ 0 IIg,, = ds + O(log r)

I(  tlo 1+2 ko- IIg,]l = as+-c IIO(S)C- S).ll as

where O, 0 0,, gt O, qbt.
Proof. By (7) and (16) it is easy to see that

and hence

(31)

or

(32)

dy, 049 dt + dv, + il, dt

0 49, dt + 0dp, dt + dv, + , dt

(33)

Od?, dt dy, 0 6t dt + O,- 0)6, dt- dvt fl, dt

dt- 0, dt dr,- fl, dt

-d, O;4, dt- , dt

C(S) \--] -g, fl,

Let us now set

Vr/> 0, c>0,

it then follows that

(34)

or ’d--] C-’(S)(g’ + ’0’)"

f, {[.C(S)- D(S)]} , + g_!.
S 2’

f [ D(S)C-l(S) -] gt + {[D(S)C-(S) I]}S

(35)

(36)

From this and Assumption 2 there are constants ko> 0, k > 0 such that

o’
g.{f.,. +[i- D(S)C-l(s)]s kog] as + k > O.

From (10), (32), and (33) it follows that

d, -P,O,O(S)[dy;- oh;O, at]

-P,6,D(S)[dv,-d,]"

-Ptdp,[ dw,- d,- D1 , dt DrSr-1 , dt]

[ C(S)-D(S) ]"-P,49, g, dt + , dt +
S

, dt + dw,

-P,d, f dt +- g, dt + l, dt + dw,
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Applying Ito’s formula, we obtain

d[tr ff;P? ff,] -2g;[f, dt + , dt + dw,]+ 4,P,4, dt

-2g’{f +[I- D(S)C-’(S)]fl,- kog,} dt

+ 2g[1- O(S)C-a(S)]ft, dt-2koilg, dt

-2g "q, dt-2g dw, + qb,Pc, dt;

then by (35)

(37)

0 <_- tr P-’,

--_tr ;Pgo+ d2Psd,ds+2kl

Io ;o }/2 -ko IIgll2as- gO(S)f-*(S),ds- gdw

Noting the following elementary facts"

2 a:b, ds c [la,[] 2 ds + c-’ Ilbll 2 ds Vc > o,

6P ds tr P ds tr P ae

[" d(det P;)_ O(log
o det PT

and applying the following estimate for the Ito integral (see, e.g., [16, Lemma 4]):

(3a) x: d.=O()+o IIxll ds a.s. > 0,.

for any predictable process (x,, F,), we can easily conclude the lemma from (37).
LMa 3. If Fe defined by (21) is stable, then

(39) -1 o VV2dsR a.s. ast

where V is defined in (19) and

R g exp {Fel }
0

exp {F51 } dl.

Proo Since Fe is stable, there exists a positive-definite matrix P > 0 such that

PFe + F}P -I.

By this and the Ito formula we see from (22) that

I I

d[V;PV,]= V(PF,+FSP)V, dt+tr [I, 0...0]Pd+2VP dw,

I

-I g, de + tr
0

P dt + 2 VP dw,.
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So it follows by applying (38) that

(40) VTPV,+ IIv,ll ds=tr

Consequently, we conclude that

(41) ff V, as o(t),

Again, by the Ito formula we get

and hence

Pt+o w, 2 as
0

a,So

V,V, V.Vs ds Fd +Fa V,Vds +
0

I

+ dw.V+ Vs dw[I, 0.. 0]

(42)

f VV ds

I

exp[Fa(t-z)] dw,V2+ V, dw2[I,O... 0] ’exp[Fa(t-z)]dz

+ exp [Fa(t- z)] z exp [FS(t- z) dz.

We now consider the first term on the right-hand side (42). By (38), (41), and the
stability of Fd, it is easy to see that there is a constant p > 0 such that

I

exp [Fa.( t- z)] dw.V+ V. dw[I, 0... 0] exp [Fa( t- z)] dz

=0 exp[-2p(t-z)] IIvll = ds dz +O(1)

=0 exp[-2p(t-z)]z/2+n dz =O(t/+) V>0.

Hence the lemma follows immediately from this and (42).
Proof of eorem 1. Since D(S)C-(S) is strictly positive real, C(S) is stable.

Then by Lemma 1 and Assumption 1, it follows that

fo [[D(S)C-(S)h[I 2 ds ecor, for some Co> 0.

Taking c < 2ko in Lemma 2, we see that

(  )Io(43) 0NtrPlN O(1) ko-
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Then for sufficiently large

~ tr (P-t)
tr O,tN

Amin(t)

(44) < 1____{ ( )Io" }"--Amin(/) O(1)- ko- IIg[[ z as+ O(er,)+ O(log

( ) (  )Iolog r, k
ko- IIgll 2 as+ O(ek)Ok r, -r

Since c < 2ko, the desired result will follow if we can show that r,
We prove this as follows.

From (32) it follows that

V=- exp{F(t-s)}[g+,] ds.

Then by (43) and Assumption 1, we have for some O > 0 and c > 0

II1Qz[ dz exp {F(z s)}[g + .] ds dz

(c,) exp[-p(z-s)][llg, ll+lO.l] ds dz

2(c,)2 exp[-p(z-s)]ds exp[-p(z-s)][llg, llZ+ll,llZ]dsdz

(45) 2o-(c) exp[-o(z-s)] dz [lg+.] ds

2P-(c’) f [[g’l]+ IIsll =] ds

2p-(Cl){O(log r,)+ O(er,)+ er,}

O(log r,)+ O(er,).

Assume the converse were true, i.e., r was bounded in t; then from (45) it would
follow that o zll = d woud be bounded. But by (20) and (25) it is clear that

, zll=,dz v112 dz + [I 2 dz- 2 v: dz.

From this and the boundedness of r, and $’o z = dz, it follows that

o11Wz
11= dz is bounded,

This contradicts Lemma 3. Hence r, , a.s., and Theorem 1 holds.
Remark 1. If in (7) the unmodeled dynamics {,} are identically zero, then we

may take e as zero in Assumption 1. In this case, it follows from (44) that

This result is the continuous-time version of that obtained in the discrete-time case
(see, e.g., [13]-[14]). See also [12] for related results.
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4. Robustness of adaptive tracking. Let {u,*} be a bounded deterministic and
differentiable reference signal with Uo* 0. Our objective here is to design the adaptive
control u,, so .that the output {y,} tracks the output of the following reference model:

E(S)y* :u*,

where E(S) I + E1S +" + EpS p is a stable matrix polynomial.
Similar to (18), we set

Y*t [Y* St’-’Y*, .
By a representation similar to (22), it is easy to see that { Y,*} is a bounded sequence.

From now on, we assume that the upper bound for the order of the polynomial
A(S) is equal to that of C(S), i.e., p r.

Similar to the discrete-time case, we need the following standard minimum phase
condition.

Assumption 3. B(S) is stable.
Let us define the adaptive control ut via the following equation:

(46) 04, dy_.*,
dr"

This together with (1), (10), and (11) form a system of nonlinear stochastic differential
equations, for which the existence and uniqueness of the strong solution is assumed.

THEOREM 2. Consider the system (1)-(6) with p- r, and the estimation algorithm
(10)-(11). If Assumptions 1-3 hold, and the control law is defined from (46), then there
exists el > 0 such that whenever e in (23) lies in the interval [0, e), thefollowingproperties
hold:

(47) limsup (llY, IIZ+llu, a.s.
Tx

and

1;?(48) lim sup - Y, Y*,II dt tr R + 6
T->

where 161 O(e/2), and R is defined in Lemma 3.
Proof. From (13) and (46) it is easy to see that

(49) y,-y,* 3,, Y,*- Yt Q,- Vt.
Note that

(50) rv= ([I g, llZ/ IIg,[l=/ f’,ll =) dt+e.

We have by (39), (45), and (49) that

(51) g, dt= O(T)+ec3rv+O(log rT),

From this, (7) and the stability of B(S), we have

(52) U,[I dt: O(T)+ 6C4rT d- O(log rr)

do So
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Note also that by (45) and Lemma 3, we have

g, ll dt <-_ O( T) + 2 g, ll2 dt <-<_ O( T) / ec, rT / O(log r.).

Hence, combining (50)-(52), we have

r, <-<_ O( t) + ec6rt / O(1og r,),

lim sup
r,

which yields

with e 1/Y6" Thus (47) is true.

for any e [0, e)

We now proceed to prove (48). From (45) we have for any e [0, e),

(53) - f’,ll dt O l0 r
+ O();

then by (49)

l for-’f Y, r*, )( Y, Y*, ) dt

(54

T v,v; dt + , dt V, + ,V;) dr,

e +e
].

Hence (48) is also true.
Remark 2. if the initial value of the reference signal is not zero, i.e., u 0, then

we may replace (46) by

dz0,
dt

where z E-(S){u-exp (-t2)u}. In this case, Theorem 2 is true for {z}, which
approximates {y} exponentially.

5. Asymptotic behavior of adaptive tracking. In this section we assume , 0 in
(7). For this ideal case we give the convergence rate for the adaptive tracking errors.
it is worth noting that the corresponding discrete-time results have not yet been
established (see, e.g., [17], for related discussions).

LEMMA 4. Let {x,} be any measurable process adapted to {F,}, satisfying

l forlim sup [Ix, [[ dt k < a.s.
T

for some constant kl. en

(55) limrsup’(rg"l lo’g") ii x, dw < a.s.
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Proof. Without loss of generality, we assume that x, and w, are scalars. Taking a
constant k2 so large that

(k2) k2 + 2(1 k2) k, > 0, k > 1,

we have

(k2+x,)2 dt>= (x,) dt+(k2):T-2k Ix,] dt

>-_ (x,) dt+(k)-r-k2 T+ (x,) dt

--> k2( k2 1) T+ 2(1 k2) kl T.

Consequently,

o
(k + xt) dt

Now, define the following stopping time:

It is known that

a.s.

r(t)=inf s" (k2+xz)2 dz=

f kz + x. dw.,

is a Brownian motion (see, e.g., [18, Thm. 4.5]). Then by the law of the iterated
logarithm for Wiener processes, we have

(56) (tloglogt)l/ (k2+x.)dws =O(1) a.s.

Denoting

(57) a(t)= (k+xz) dz,

it is evident that a(r(t))= t. Then (56) and (57) imply

Io[a(T) logloga(T)]l/ (k+xs) dw =0(1) a.s.

as T ee. From this and the fact that a(T)/T 0(1), it follows that

1 fo
r

[TloglogT]/
(k+x.)dw =O(1) a.s.

and hence

T log log T] 1/2 xs dw.

1 { kl wl +T log log T]/

0(1) a.s. as T-->,
completing the proof.
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We are now in a position to prove the following main result of this section.
THEOREM 3. Consider the system described by (7) with 7, =0 and p=r, and

estimation algorithm (10)-(11). IfAssumptions 2 and 3 are satisfied, and if the adaptive
control is defined from (46), then

(58) a.s. as T
\1/

where R is given in Lemma 3 and

l forR= Y,- Y*, )( Y,- r*, ) dt.

Proof. We first consider the convergence rate of 1/T V,V dt.
From (40) it is clear that

Then Lemma 4 implies

lim sup - V 2 ds <= 2 tr
T--

which verifies (58). Hence the proof is complete.

T- (TloglogT) 1/2
o

V, dw < a.s.,

and hence

I

exp [Fa(t- z)] dw, V2+Vsdw2[I,O...O] ’exp[FS(t-z)]dz

O({tloglog t}/) a.s.

Consequently, it follows from (42) that

VV ds- exp {FdS}
0

exp {Fs} ds

(59)

Setting e =0 in (53) and (54), and using (59), we see that

Io [: 0]Rr exp {Fes} exp {FSs} ds

O ({log 1;g T}l/2) 0 (,or) 0 ({1,0r} 1/2)
Io [:0]exp {Fes}

0
exp {F}s} ds + 0

T
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GLOBAL OPTIMIZATION OVER UNBOUNDED DOMAINS*
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Abstract. Almost all methods for solving the global optimization problem need the assumption that a
parallelepiped containing the solution points is known. The boundedness is necessary both for the numerical
computation as well as for guaranteeing the convergence properties. In this paper a technique is described
that drops this restriction so that the unconstrained problem, in the literal sense of the terms can be solved.
The technique is based on the branch-and-bound method and on infinite-interval arithmetic, it is simple to
apply, and very robust as examples show.

Key words, global optimization, unconstrained optimization, nonlinear optimization, optimization over
unbounded domains
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1. Introduction. Almost all of the well-known methods for solving the global
unconstrained optimization problem involve a parallelepiped as bounded subdomain
X

___
R" for the function to which the method is applied. Therefore, X must be known

a priori or must be determined by means of an analysis of the problem. (A notable
exception is [12].)

The technique we provide is destined to solve the global minimization problem
for a continuous function f" R --> R. The search for the global minimizers is accom-
plished in the whole domain R". Bounds of the global minimum f* are generated,
and one or several boxes of prescribed size that include all global minimizers are
produced. It can be detected whenf has no global minimum at all, and further, whether
or notf is bounded from below. If the technique is applied on a computer, the sharpness
ofthese detections is limited by the finite number representation of computers. Although
weakened, the detections remain logically valid in this case such that the user can trust
them.

The method that we provide to cover the whole space R" when looking for global
minimizers is best demonstrated by applying it to Hansen’s Algorithm [3]. Similar
algorithms, such as those of Skelboe [17], Moore [10], Asaithambi, Shen, and Moore
[1], and Ichida-Fujii [4] may also be used.

Hansen’s Algorithm is very sophisticated, hence we discuss a simplified prototype
version in 2. In 3 and 4, the optimization problem and the prototype algorithm
are extended and admitted to functions that are defined on R". For this reason, a
compactification of the space R is introduced, R := (R) where R := R kJ {c, -c}.
The advantages of this compactification are threefold" (i) The investigation of the
convergence properties can make use of compactness principles. (ii) The interpretation
in R of the results obtained in R is straightforward and there is no need to distinguish
between the bounded___and the unbounded case. (iii) The step from the exact execution
of the algorithm in R" to its numerical execution on a computer is small because the
latter operates in [-L, L]" where L denotes the largest representable number of the
machine under consideration. R and [-L, L]" are topologically very similar.

In 5, the monotonicity test [3], [10] is discussed. This is an extremely effective
means for detecting global monotonicity of f in a box such that this box can be

* Received by the editors November 2, 1987; accepted for publication (in revised form) May 17, 1989.

? Mathematisches Institut der Universitfit Diisseldorf, Universititsstrasse 1, D-4000 Diisseldorf 1,
Federal Republic of Germany.
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discarded from the search for minimizers. This test is carried over to the unbounded
case and the usual assumption forf to be differentiable is weakened. In 6 an arithmetic
for unbounded noncompact intervals is introduced to obtain the inclusion functions
required for the extended algorithm. As a consequence, Moore’s principle of natural
interval extension [9] can be recursively defined for programmable functions over
unbounded domains. In 7, the relationships between the numerical and the exact
realization of the extended algorithm are discussed. In 8, numerical examples show
that the practical computation involves no difficulties at all.

Comparing 3, 6, and 7, we are faced with three kinds of infinite intervals:
(i) Compactified unbounded intervals such as [a, c]

_
R (cf. 3). They are needed

both for the execution of the algorithm and for the discussion of its convergence
properties. Since only topological arguments and no arithmetic are used for this
discussion, no arithmetic need be defined for compactified unbounded intervals.

(ii) Unbounded noncompactified intervals, such as [a, )_ R (cf. 6). They occur
when the bounds off over unbounded subdomains are determined. Thus, an arithmetic
for such intervals is defined.

(iii) Both kinds of intervals mentioned in (i) and (ii) must be simulated by machine
intervals when computing on a machine (cf. 7).

2. The algorithm over bounded domains. We start the discussion with a prototype
version of Hansen’s Algorithm [3] that is intended to solve optimization problems
over parallelepipeds. Hansen’s Algorithm differs from the prototype in that it contains
many excellent further techniques that speed up the calculation, but do not change
the convergence order and the solution set. To have a straightforward discussion we
drop these techniques.

Let R be the set of reals, and I be the set of real compact intervals. Right
parallelepipeds such as Y Y1 ’’" Ym E I" are called boxes. If D

_
R then I(D)

denotes the set of all boxes Y
_
D. The width of an interval is denoted by w([a, b])=

b- a. The width of a box Y is defined by w(Y) max i=t....,,, w(Y). Let f: D R. The
range of f over Y_ D is denoted by U]f(Y)= {f(y): y E Y}. An interval function
F: I(D) I is called an inclusion function for f if U3f(Y)

_
F(Y) for any Y I(D).

If A a, b] is an interval, the lower and upper boundaries of A are denoted by lb A a
and ub A b, respectively. The midpoint is denoted by mid A =(a + b)/2, and the
midpoint of a box Y I by mid Y= (mid y/)im=.

The following prototype version of Hansen’s Algorithm aims to determine the
global minimum and the global minimizers of a function f: X- R over a bounded
box X I" when an inclusion function F for f is given.

Algorithm 1.
(1) Set Y:=X.
(2) Calculate F(Y), f(c) where c mid Y.
(3) Set y := lb F(Y).
(4) Initialize list L:= {(Y, y)}. Set f:=f(c).
(5) Choose a coordinate direction k parallel to which Y has an edge of maximum

length, that is, k {i: w(Y) w( Y)}.
(6) Bisect Y in direction k getting boxes V, V2 such that Y V U V2.
(7) Calculate F(V1), F(V2).
(8) Set v := rain F(V/) for 1, 2.
(9) Enter the pairs (VI, v), (V2, v2) at the end of the list.

(10) (Optional) If f has a generalized gradient in each point of Vf3 R" then
apply the monotonicity test to V for i= 1, 2.
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(11)

(12)
(13)
(14)

(15)
(16)

Choose a pair I7, 37) of the list that satisfies 37 <-- z for all pairs (Z, z) of the
list.
Discard all pairs (Z, z) from the list that satisfy < z (midpoint test).
If termination criteria hold go to (16).
Denote the first pair of the list by (Y,y). Set c:=mid(Y) and f:=
min (f, f(c)).
Go to (5).
End

The monotonicity test (cf. step (10)) is a means to detect strict monotonicity off
in a box that can then be deleted. The test is a device for accelerating the computation
rather than a substantial part of the algorithm since its solution set is independent of
the use of the test. The situation, however, changes when unbounded domains are
admitted such that the test is highly recommended. The detailed discussion is referred
to in 5 and 7.

The midpoint test (cf. step (12)) may operate any c Y instead of mid Y. Also
ub F(Y) can be used instead of f(c).

A thorough investigation of termination criteria can be found in [3] and [11].
Algorithm produces an infinite sequence of lists (Ln) if termination by step (13)

is dropped. Furthermore, we .get sequences (37,) and (fn) according to steps (11) and
(14). (We write f, instead of fn.) Let Un be the union of all boxes occurring in L. It
is obvious that (U) is a nested sequence. The convergence properties of Algorithm 1
are discussed in [11] and [16]. Hints for the construction of inclusion functions and
the related order are given in [15].

3. The algorithm over unbounded domains. Algorithm 1 shows very pleasant conver-
gence properties [11], [16]. They depend on the compactness of X. Hence, we will
first provide a compactification of R’, say R". Then both, Algorithm 1 as well as the
convergence properties are extended to the compactified unbounded case. For this
reason, the objective function f and its inclusion function F must be extended to R".
The results gained in R are then converted into the originally wanted results in
The compactification could be avoided but simplifies matters considerably.

To apply Algorithm 1 to R", the midpoint and the width of boxes in R must
be defined, and further, the given function f and its inclusion function F must be
extended. This requires some notation.

Let R := R U {-, c} [-c, c] be the two-point compactification of R, and let
R" := R" be the m-fold topological product of R. If A___ R", we denote the compact
hull of A with respect to this compactification by A.

Let Iv be the set of all closed (but not necessarily bounded) intervals of R. Thus,
the intervals [a, b], [a, o), (-, hi, and (-c, c)= R belong to Iv where a, b R. Let
I be the set of all compact intervals of R. Thus, [a, hi, [a, c], [-, hi, [-c, c] R,
o [, ], or - [-c, -] belong to I where a, b R.

Let A
_
R"; then Ion(A) := { Y I: Y A} and I(A) := { Y I"" Y_ A}. We note

that Im= I(Rm) I(R’) and I"= I(R’). Furthermore, I(A) := {Y I"" Y A}.
A width for unbounded boxes may be defined in a variety of ways resulting in

formulas of greater or lesser complexity. We do not expect our formula to be either
elegant or of theoretical interest (as the chordal-distance on the Riemann sphere),
however, it must be appropriate for our purposes, which are the following: (i) If a
nested box sequence (Y), Y I" tends to a point of R", the widths of the boxes
must tend to zero. (ii) The width must control the bisection process (cf. steps (4) and
(5) of Algorithm 1) to generate box sequences contracting to one point; (iii) These
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properties of the width should be maintained at the numerical implementation, i.e.,
the width of the largest machine-infinite interval should be more or less comparable
with the width of the smallest machine-finite interval (cf. 7).

Our width concept depends on a global parameter A that the user or programmer
may choose, such that the global minimizers are suspected to lie in the box I-A, A ]".

If the choice of the user is wrong, the program is still correct but slower. The
choice of A influences the bisection process, and areas outside of this box are treated
as nearly infinite areas. For this reason, the width of intervals lying outside of I-A, A
is adapted: If -oz < a <_- b <, then

w([a,b]):=A(b-a)/(ab) ifa>_-)t or b_<--A.

The width of a box Y Y1 "" x Y,, I is then defined as follows. Let 0 < A <
and a R. Then

A:Z/a if a_->10-l

w([a, ]):= 101 max (1, Z2) otherwise,

w([-, a]):= w([-a, ]),

w([-o, ]):= 1011 max (1, A2), w(+[, c])=0,

w(Y):= max w(Y).
i= l,...,m

In order not to dissect [-A, )t ]m too early, the midpoint of unbounded boxes will also
be made dependent on A. Let a R and Y I’. Then we set

if a<1,
mid a, ee] :=

2a if A_-<a,

mid [-ee, a] := -mid [-a,

mid Y:= (mid Y)=I.

If, for example, I 10, then the interval [20, oe] (of width 5) is bisected into
[20, 40] and [40, co] (both of width -).

Let A I2 and f" A- R be given. We want to extend f to a function fo" A R.
Let x A\A, then we set

(1) fo(x) := min {irn inff(xn)" xnA, x-x}
where the convergence of the sequences (x) to x is subject to the topology of R ’.
Note that fo need not be continuous, even when f is. For example, if f(x) ex, x R,
then fo(-Oe) 0 and fo(oe) oe. If f(x) sin x, x R, then fo(-oe) =fo(Oe) -1.

Analogously, if F" I(A)- I is an inclusion function for f, we want to extend F
to an inclusion function Fo" I(A) I for fo, that is,

(2) []fo(Y) -- Fo(Y) for any Y I(A).

We do not need inclusions off over boxes Z Z1 x.. x Z, where any component
Z,. is just oe or -oe. Such cases are neither considered in (2) nor in the following
definition (3), which simplifies matters. Thus we define Fo by

(3) Fo(Y) := F(Y) for Y Ion(A).
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We call F and also Fo nonwasteful if, given any Y Lo(A), a partition of A into
bounded boxes exists, A LJ i Bi, with Bg I(A) and some index set J, such that

(4) F( Y) t.J F(Bi).
iJ

Condition (4) is necessary for getting reasonable convergence properties. It is a very
natural condition, since each programmer would automatically construct nonwasteful

2inclusions. For example, let f(x) Xl+ x2, x R2; then F(Y) Y+ Y2, Y I, is
nonwasteful. If f(x) sin x, xR, F( Y) [-1,1], if YI, and F( Y) [-2, 2] if
Y I\I then F is wasteful.

Since there is no danger of misunderstanding we also write f and F instead of fo
and Fo in the sequel.

The global unconstrained optimization problem over unbounded domains can now
be written concisely as follows. Let X I and f:X- R be continuous. The problem
to be solved is

(5) minf(x).
xX

Problem (5) is reduced to the compactified problem, which is

(6) mi_n f(x).
xX

This minimum always exists if the extension of f on X is defined via (1). The
following algorithm aims to determine the global minimum f+ and X+, the set of
global minimizers of problem (6).

Algorithm 2 will be syntactically equal to Algorithm 1, but now, unbounded
compactified boxes X ofX I, functionsf" X R and inclusion functions F" I(X)-
I are admitted as input data. We use the formulas for width and midpoint as they
have just been introduced.

As Algorithm 1 does, Algorithm 2 produces, at the nth iteration, a list L, consisting
of pairs (Z,i, z,i), i= 1,..., 1,, where 1, is the list length and z,=lb F(Z,). The
leading pair of L, is denoted by (Y,, y,), and (’,, 37,) denotes a pair of Ln satisfying
37, <_- z, for 1, , l,. The function value f, R is the lowest value of f produced
up to the nth iteration. As before, U, LJiZ,i, and (U,) is a nested sequence.

4. Convergence properties of Algorithm 2. In this section, assumptions are looked
for under which Algorithm 2 converges to the solution set of the compactified problem
(6). First of all,

(7) w(Y,)-O as noo.

The proof is similar to the proof of the bounded case in 14] and is suppressed. Also,
from the execution of Algorithm 2, we have

(8) 37, -<_f+ <_-f, for all n.

Let a (a,. ., a,,) R", and A, B be compact subsets of R". We define

) 1/2

do(a, B):= min w([min (a,, b), max (a, hi)]
b B i=’1

do(A, B):= max do(a, B),
aA

d(A, B):-- max {do(A, B), do(B, A)}.
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d is some kind of distance and is a means for describing convergence of sequences
such as (Un) to X/ with respect to the natural topology of R". Within I-A, A]", d
coincides with the usual Hausdorff-metric for compact sets. We write An- B instead
of d(An, B)O in the sequel. The notation An B is consistent with the convergence
of point sequences, if An, B R".

Again let X I, let f" X R satisfy (1), and let F" I(X) I be a nonwasteful
inclusion function for f satisfying (3). We consider the assumption

(9) w(F(Y))O as w(Y)-O for Y6I(X),

whichimplies continuity of f over X such that (6) has a solution, i.e., X+ and
f+ exists. Assumption (9) forced Algorithm 1 to converge if X was bounded [11]. We
will see that (9) is also an appropriate convergence condition in the unbounded case.
If Algorithm 2 (with or without monotonicity test) is applied to F, f, and X, then the
following theorem holds for the output data.

THEOREM 1. If (9) holds, then as n- o,
(i) f+ fin - 0 as well as f+ Yn O,
(ii) f f+ - 0 where fin <-f+

(iii) Un - X+ where X+
_

Proof (i) We show that f+-fin - 0. The second assertion, f+-Yn -* 0 will follow
from (ii), since fin --< yn -<fn holds.

Iff+= -c then 37n =f+ because of (8). Let f+ R. We focus on the nth iteration
for one moment. Since F is nonwasteful, we have

F(/n)-- I,.J F(Bni

for some partition I7 f’) R" IO iJ,, Bni. Since fin lb F(IT"n) and since f+ F(B.i) or
f+ <lb F(Bni) for any iJn, the following choice is possible.

If fin =- we choose Bn,,, in Jn, such that

(10) lb F(Bni,,) <f+-2n.
If fin R we choose Bn, in Jn, such that either fin F(B,,i,,) or both, lb F(Bni,,)-

fin < 2 as well as lb F(Bn)-f+ <2 holds.
Now, (7) implies w(Bni,,)-*O such that w(F(Bni,,))O follows. By (10),)ThoR

holds for sufficiently large n, which means that 37n-f+.
(ii) We must show that fn " f+. Let us, however, assume that fn " a for some

a >f+. Since f+ =f(x+) for some x+ X+ and since f satisfies (1), there exists a
sequence (SCk), ,kX_R’, such that k-X+ and f(k)--f(x+) as k-c. Let k be
fixed such that f(xg) < a. There exists a sequence (Z’) with SCk Z’ and Z’ belonging
to Ln, for any n. The existence of (Z’.) is guaranteed since SCk is never excluded by the
midpoint test. Condition (7) implies w(Z’) O, and further Z’ - SCk. Thus, Z’ I(X),
for sufficiently large n. We apply (9) and get w(F(Z’))-O and F(Z’)f(k). For
some large n we thus have ub F(Z’.) < a. Since fn <= ub F(Z’), we have a contradiction.

(iii) Since X+
_

Un is obvious, we show that x Un, for all n, implies x X+. We
assume that f(x)>f+ in order to get a contradiction. Since x occurs in every list, a
sequence (Z’) exists where x Z’ and Z’ belongs to L. Since F is nonwasteful, a
partition ofZ’ f3 R exists, Z’. fq R" U iJ,, Bn. IfZ’ I(X), set Bni,, := Z’. Otherwise
choose in Jn such that lb F(Bni,,) _-<lb F(Z’) or that lb F(Bn) is asymptotically close
to lb F(Z’). Since w(Z’)-.O, it follows that Bn,,- x. Let sen Bn,,; then f(sc.)- a for
some a >=f(x) due to (1). Now, w(B.)- 0 implies w(F(Bi,,))-O and lb F(B.,,)-
and further, lb F(Z’)-. a. By (ii), we have fn <f(x)_-< a for large n such that Z’ and
thus x is discarded by the midpoint test. This gives the contradiction.
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Condition (9) is-too restrictive for functions that have unbounded ranges. Let, for
example, f(x)= x2 and F(Y) Vqf(Y) be the inclusion function. Although the asser-
tions (i)-(iii) of Theorem 1 are satisfied, condition (9) does not hold. In such cases
the condition w(F( Y))- w([-qf( Y))-O as w( Y)-0, for Y I(X) could be appropri-
ate. In practice, however, this condition is too difficult to verify. Therefore we establish
a condition with which we have obtained the best practical results. It combines
theoretical as well as practical requirements where the computer may verify the latter
for us.

Let X I, f" X- R, and an inclusion function F" I(X) I of f be given. We
assume that for any given Z I(X)

(11) w(F(Y))-O as w(Y)-0 for YI(Z).

Condition (11) is not at all restrictive. If, for instance, f is continuous and pro-
grammable and if F is constructed via natural interval extensions (cf. 6) then (11)
is already satisfied. Then X/ and f/ exists. If Algorithm 2 is applied to F, f, and
X, the following theorem holds for the output data.

THEOREM 2. If (11) holds and if there exists a number n such that the list L, contains
only bounded boxes, propositions (i)-(iii) of Theorem 1 are valid.

Proof Let Z be the smallest box of I that contains the boxes of L,, that is,
X/ U, g Z. We can now think of L, as a list created by applying Algorithm 1 to f,
F, and Z, such that the assertion ofthe theorem follows from the properties ofAlgorithm
1, cf. [11].

Example. Let us consider the well-known six-hump-camel-back function, f(x)=
4x- 2.1x4 + x/3 + x x-4x+4x, x X g. We compare two inclusion functions,
F and F off over X:

F(Y):=4Y+ r4(r/3-2.1)+ Y Y+4Y(Y-I)
F(Y) := 4Y 2.1 y4 + y6/3 + Y Y2 4Y+ 4Y for Y I(X).

F(Y) := F(Y), F,(Y) := F(Y)

Neither F nor F satisfy (9). Both F as well as F satisfy (11). If Algorithm 2 is applied
to f (using (1)), X and F then, after a few iterations, the lists L, do not contain any
unbounded boxes. The assumptions ofTheorem 2 are therefore computationally verified
for F (cf. Example of 8 for computational results). This is not the case if F1 is
chosen, since each list will contain unbounded boxes (as long as the monotonicity test
is not used). Let, for instance, Y [a, ] [b, ] for a, b R; then FI(Y) R (cf.

6). Hence Y is never discarded by the midpoint test. Nevertheless, the sequence (U,)
will converge to a superset of X/ that contains the points (+, +), and we have
y’ =- for any n.

Remarks. (1) It .is difficult to present precise conditions for F to satisfy the
bounded box assumption of Theorem 2. In practice, this assumption was satisfied if
F was constructed so that -c F(Y) for all boxes Y= YI x... Y,, I(X) where
Y (-, -a] or Y [a, ), for some arbitrarily large real a > 0.

(2) The termination criteria known for Algorithm 1 [3], [11] are also appropriate
for Algorithm 2 by extending the criteria to infinite boxes and numbers.

Let us return to problem (5) originally posed. Let X* be the set of global minimizers
of problem (5) and f* the global minimum. Algorithm 2 is appropriate to solve (5)
via (6) using the following theorem whose proof is obvious.

THEOREM 3. (i) Iff/=-oe, then (5) has no solution, and f is unbounded from
below in X.
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(ii) Iff+ R and ifX* := X+ fq R is nonempty, then X* andf* =f+ is the solution

of (5). IfX*= J then (5) has no solution but f is bounded from below.

5. The monotonicity test. The well-known monotonicity test (3), (10) is extended
to the unbounded case. This is even more important in the unbounded case, as functions
are frequently strictly monotone for large values of the variables, such as polynomials.
Such areas contain no minimizers and can be discarded from the lists.

Let X I, f’X- R, and let Of(x) be the ith component of the generalized
gradient of f at x that is defined as

(12) Of(x) conv I lim f’(xn): Xn X, Xn X, xn : S l)

if at least one limit exists. Here, conv denotes the convex hull, f’(x,) the gradient of

f at xn, f the set of points in some neighbourhood of x at which f is not difterentiable,
and S any set of Lebesgue measure 0 (cf. Clarke [2]).

Let Y I(X), and let Of(x) exist for every x Y fq R and Gi(Y) I an inclusion
of Of in Y in the sense that Of(x) Gi(Y) for any x Y fq R’. (In this connection, X
cannot be replaced by Y in (12).) We set Y [ai, b] I and X [ci, d] /. Further-
more, let Y(i/s) for s Y denote that box that arises from Y by replacing Y with s.
Then the monotonieity test (destined to handle the boxes Y= V, V2 of step (10) of
Algorithm 2) consists of the following two parts"

(I) Test for strictly monotone increasing. For some i, , m, if 0 < lb G(Y)
then

(i) If ei < ai then discard (Y, y) from the list.
(ii) If e ai R then replace (Y, y) with the pair (Y’, y’) where Y’= Y(i/a)

and y’= lb F(Y’).
(iii) If a -c then terminate Algorithm 2 (since f+= -c such that problem (5)

has no solution).
(II) Test for strictly monotone decreasing. Analogous to (I).
Remarks. (1) It is a consequence of a termination by (iii) that only one global

minimizer of X+ is found. But, this is sufficient to guarantee the unsolvability of (5)
(cf. Theorem 3).

(2) It is favourable to admit + as values of the limits in the definition of the
generalized gradient (12). This is shown in the following example where even the
bounded case is improved.

Example. Let the semicircle f(x)= (1-x2) 1/2 be defined on X [-1, 1]. Then,
X* {-1, 1} and f* =0. Note that f’(x)- q: as x +/-1. We applied Algorithm 2 with
monotonicity test to this problem, considering Remark (2). We took F(Y) (1 y2)1/2
and G(Y) Y(1- y2)1/2 as inclusion functions for f and of, respectively, and got
the exact result after three iterations. See the next section for the computation of G(Y).

6. How to get inclusion functions. The simplest way to get the inclusion functions
that are necessary for Algorithm 2 to run is, first, to develop a calculus in I and to
construct inclusion functions with respect to I via Moore’s principle of natural interval
extensions [9], and second, to extend these inclusion functions to I" by means of (3)
and (4). We do not use an arithmetic in I (cf. [5]), to get the inclusions required since
the resulting intervals would be too large in this case.

Let A, B I. We expect the arithmetic in I to satisfy

(13) A* B={a * b" aA, b6B}
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if * stands for +, -, and (product), and A/B is the smallest interval of I or is the
union of the two smallest intervals of Io such that

(14) A/B_{a/b" aA,bB,bO}.

The case A/O is excluded.
For example, 1/[1, o) [0, 1], or 1/[-1, 1] (-,-1] [1, ). Hence, I is not

closed with respect to division. We do not worry about that, and we split up the union
that occurs into two intervals of I and process the two intervals separately as long
as necessary. For example,

1/[-1, 1] + [0, 2]/[1, 2] ((-,-1) +[0, 2])U ([1, c) + [0, 2])

(-, 1]+[1, ) R I.
It is not difficult to establish explicit formulas for the arithmetic defined by (13)

and (14) such that we abstain from giving further details. The best way to derive these
formulas is to apply limit operations to Moore’s formulas for the bounded arithmetic
[9], [10]. For instance,

[0, 1](-o, 0] lim [0, 1][a, 0] (-, 0].

If f" D--> R, D
_
R k is a function predeclared in the programming language used

(such as sin, cos, etc.) and if Y 1, then the natural interval extension of f to Y
denoted by f(Y) is defined as the smallest interval of I such that

(15) f(Y)
_

Ulf( Y f’l D).

Practically, this definition causes no trouble since the ranges of the functions usually
predeclared are well known. For example, if Y--[-1, ), then sin Y [-1, ], In Y
R, and exp (- Y)= [0, el.

It is necessary to admit boxes Y in (15) that are not necessarily contained in the
domain off since at each step of a recursive evaluation of a natural interval extension,
an overestimation of the range is likely. Hence the domain of the function of the next
recursive step can be exceeded. Such a superfluous overestimate is prevented by the
intersection YVI D.

Finally, a natural interval extension of any programmable function f over Y
I(X), X 1 can be defined recursively via (13)-(15), in the same way a function
value f(x) is defined recursively via the basic functions (arithmetic operations, prede-
clared functions), for example, by means of a computer code. The recursive representa-
tion of programmable functions is treated in detail in [8], [13], and elsewhere.

Example. Iff(x)=exp (1/([sin xl+lcos x[)) and if Y= R, then the natural interval
extension off to R is f(R)=exp (1/([sin Rl+[cos R[))= [v/-, c).

The result gained in this example depends on the representation for f(x) chosen
(cf. also the example after Theorem 2). Thus we can see that it is important to choose
appropriate function representations. A procedure to construct them and further details
can be found in [14].

7. The realization on the computer. There exist several programming languages
and software packages that are able to realize Moore’s interval arithmetic on a computer.
They also control the rounding errors such that logical flaws cannot occur [3], [6],
[9]. Up to now there has not been a general widespread programming language in
which an infinite interval arithmetic is incorporated. This is, however, no real problem
for a programmer. In our case, we must be aware that both kinds of infinite intervals
that we deal with must be simulated by intervals on the computer.
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A simple procedure we used is the following. Let RM be the set of machine
representable real numbers. We assume that +L is the largest (smallest) number of
RM. Let IM {[ a, b]" a, b RM, a =< b} be the set of machine intervals. We call a, b IM
machine-finite if lal, ]hi < L, otherwise machine-infinite. Now, the intervals that occur
at the execution of Algorithm 2 on a machine must simulate the intervals that occur
at the exact (nonmachine) execution. Hence, a machine-finite interval [a, b] simulates
and means [a, b] itself. A machine-infinite interval such as [A, L] means either [a, )
if inclusion functions are constructed or [a, c] if the execution of Algorithm 2 is
addressed. The situation seems involved but is not. It even has the great practical
advantage that, when transmitting the inclusion F(Y) to F(Y), the simulating machine
intervals need not be changed.

Width and midpoint of machine intervals are defined as width and midpoint of
the corresponding simulated intervals. For instance, w([ 1, L])= A 2.

An arithmetic in IM where stands for +, -,., and / is defined as follows. Let
A, B IM; then A B is the smallest interval of IM or the union of the smallest two
intervals of IM such that A B

_
A * B (more precisely, such that A B is the smallest

interval of IM that simulates an inclusion of A B, etc.). In case of division, B 0 is
excluded. For instance,

[2, L] - [-L, L] [-L, L] or [2, L] "[-L, -2] [-L, -4].
Such arithmetics can be fulfilled easily (cf. [6]).

The approximation of the interval values for the functions predeclared by intervals
of IM is done straight, for instance, In [-1, L] [-L, L].

If now Algorithm 2 runs on a machine, then after the computation is terminated
either the information f+=- (due to the monotonicity test) will be delivered or a
machine interval A_ [7,,f,] and machine boxes W

_
Z,i, i= 1,..., l,, will be the

output data. Here n is the final iteration index and I, is the length of the list L,. In
general, we get inclusion A and W/instead of [)7,, f,] and Z,i because of the common
outward rounding when a machine interval arithmetic is used. Due to Theorem 3, the
output data of the machine-computation with Algorithm 2 must be interpreted as
follows to obtain the required solution of problem (5)"

(1) Iff+=- then f is unbounded from below and (5) has no solution.
(2) If A and W/, 1, , l,, are machine-finite, then problem (5) has a solution,

f* and X*, and f* A, X* = W := !i’ W/.
(3) If A or if Wi for at least one {1, , l} is machine-infinite, then a decision

has not been possible whether or not a solution of (5) does exist. However,
if a solution exists, f* and X*, then f* A R and X*

___
W fq R.

8. Numerical results. The following examples were executed in PASCAL-SC.
4Example 1. Six-hump-camel-back function, f(x)=4x-2.1x+x/3+xx

4x+4x for x R. We used the inclusion function F as described in the example
after Theorem 2 for larger boxes Y and the mean-value form (cf. [15]) for F if the
boxes Y were machine-finite with w(Y) =< 1. Starting box was/, respectively, [-L, L]e.
We needed 211 iterations of Algorithm 2 with monotonicity test (which is about 422
interval function evaluations of F(Y)) to obtain the intended absolute accuracy of
10-6 for the solution, f* -1.03162 84535 8+[0, 5]10-, X*_ W W, where

W [-8.98426 8, -8.98414 8110-2 x [7.12655 78, 7.12656 98110-1,
W W.

By contrast, when we applied Algorithm 1 (also with monotonicity test) with
starting box [-2.5, 2.5] we needed 163 iterations (about 326 evaluations of F(Y)).
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Example 2. Wolfe’s [18] function modified by Zowe [19] is defined as follows"

5(9Xl2 + 16x)1/2

f(x)=9xl+161x21
[.9X d- 16[x2[- Xl

9

if xl >= [x2[,
if 0 < Xl <
if xl-<_0,

where x R2. The only global minimizer of f with respect to R2 is x*= (-1, 0) and
f* -8. The function is convex, and f fails to be differentiable only on the ray xl <--0,
x2 0. As inclusion functions we used natural interval extensions and their unions (if
Y was assigned to more than one function branch) for larger and unbounded boxes,
otherwise we used the mean value form of f on Y (cf. [14]) where inclusions of the
generalized gradient, instead of inclusion of the derivative, were taken if no derivative
was available.

When we applied Algorithm 2 (with monotonicity test) to f, F, and =/2, 106
iterations (about 212 evaluations of F(Y)) were needed to determine the solutions x*
and f* within an absolute accuracy of 2. 10-6.

Example 3. Let X=[-1, 1]x[-1, 1][0,)__ R andf’X->R be defined by

f(x) (1--X12) 1/2
COS Xa+(1--X)l/2/(1 + X32) + 2X3 e -x,.

There exist four global minimizers of f in X having the coordinates Xl + 1, X2 "+" 1,
X3 0. The objective function f is differentiable in the interior of X, continuous--but
not Lipschitz--on X. However, f is generalized differentiable (when infinite values are
admitted) on the edge of X that contains the four minimizers. As inclusion functions
we used the plain natural interval extension as well as the mean-value form. Algorithm
2 (with monotonicity test) needed 31 iterations (which makes about 62 evaluations of
F(Y)) to achieve the intended absolute accuracy of about 10-6 for X* and of 10-l

for f*.
Example 4. One of the unknown referees suggested considering the function

f(x) (xl-x2)2. The set of global minimizers X* consists of the whole line xl x2.
When we applied Algorithm 2 (with monotonicity test) to f, F(Y) Y1 Y2)2, =/2,
and h 10, we needed 733 iterations to obtain an intended maximum box width of
one (which was chosen to avoid a too long computer run). The final list contained
313 bounded and five unbounded boxes that were covering the line xl x2. The final
inclusion for the minimum value f* =f+ was [0, 0].

Acknowledgments. The authors are greatly indebted to Tom Heilandt and R.
Ernemann for programming and computing the examples in 8.
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GLOBAL CONTROLLABILITY OF LOCALLY LINEARIZABLE SYSTEMS*

R. M. HIRSCHORN’

Abstract. A nonlinear control system that is locally feedback linearizable usually will not have the
global controllability properties of a linear system. The purpose of this paper is to study the reachable set
for such systems and to generate controls to accomplish desired state transfers.

Key words, controllability, affine systems
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1. Introduction. There has been considerable interest in classifying those nonlinear
systems that are locally feedback linearizable (cf. Brockett 1 ], Jakubczyk and Respon-
dek [2], and [3]-[6]). These ideas have recently been employed to control the motion
of robot manipulators (c’. [7]-[9]). The purpose of this paper is to study the global
controllability of such systems.

A nonlinear control system is locally feedback linearizable if, replacing u by
(fl(x)u + k(x)) and changing coordinates in some open neighbourhood of the initial
state, we can obtain a controllable time-invariant linear system. For the nonlinear
system . =f(x)+ ug(x); x(O)= Xo with f(xo)=0, necessary and sufficient conditions
for feedback linearization have been derived based on the way f and g generate a Lie
algebra of vector fields (cf. [1]-[3]). It is natural to suppose that systems which satisfy
these Lie algebraic criteria exhibit some of the standard controllability properties
associated with linear control systems, for example, the reachable set of states includes
an open neighbourhood of the initial state. The following example shows that this is
not always the case if f(xo) O.

Example 1.1. Consider the system model

(1.1) ,(t) u(t), 2(t) e

with _x(0)= _Xo (0, 0) and _x M R2. This system is affine with f(x, x2)=(0, e’,),
and g(x, x2)= (1, 0) and {f, g} satisfy the Lie algebraic criteria for local feedback
linearization, although f(xo) (0, 0). Note that rescaling u by eX, u followed by the
change in coordinates z--e’, z2 x2 we obtain the controllable linear system

+ a, _z(0) =_Zo (1, 0).
72 Z

Unfortunately the original system (1.1) is not even locally controllable about _Xo since
at any time > 0 the reachable set of states is

t(_Xo)-- R x (0, o)

and thus _Xo is on the boundary of the reachable set.
This example illustrates that, for systems with the Lie algebraic properties for

feedback linearization operating from a point where f(xo) O, controllability depends
on more than the structure of the Lie algebra of vector fields generated by f and g.
The geometry of the state manifold and the integral curves off and g also play a role.

* Received by the editors November 4, 1987" accepted for publication (in revised form) May 30, 1989.
? Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario K7L 3N6, Canada.
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In 2 a globally defined output map h is associated with systems that satisfy the
Lie algebraic criteria for local feedback linearization. A set h(Xo) of admissible C
output functions is described. This set includes all outputs that result from C inputs.
In 3 the set of reachable states is deduced from h(Xo), and output tracking is used
to explicitly define a control u to transfer the state of the system from X(to)- Xo to
x(t) x. A class of systems that are globally controllable is identified.

2. State transfers using output tracking. For linear control systems the variation
of constants formula can be utilized to explicitly find a control function u that will
transfer the state from X(to)=Xo to x(t)=x (tl> to) (cf. Brockett [10]). Another
approach to generating u is to use output tracking. For example, consider the linear
system

(2.1)

Let ce rank [b, Ab, , A"-lb] and choose c to be any I x n matrix over R with

cb cAb cA 2b 0

and cA"-b O.
If y(t)= cx(t) is considered to be an output for (2.1), then

y’)( t) y( t) c( t) cAx( t),

y2)(t)=cA2x(t),

(2.2)

Let

y<"-’)(t)=cA"-’x(t),

y{)( t) cAx( t) + cA-lbu( t).

c-(x)
’()

and y-(t)

x [y(-’)(t).]
so that when x(t) is a trajectory for (2.1) then y-(t) c-(x(t)). It is easy to check that
c- is a 1-1 map of Range [b, Ab,..., A"-b] onto R ". Thus, to transfer the state of
(2.1) from X(to)= 0 to x(t)= x Range [b, Ab,... ,A"-b] is equivalent to transfer-
ring the output y(. from y-(to)= c-(Xo)= c-(0)=0_ to y-(tl)= c-(x(t))= c-(xl).

Now choose any function ya(t) with y(to)=0 and y(tl)= c-(x). From (2.2)

and thus using the control

ya)( t) cA"x( t) + cA-’ bu( t),

ua(x, t) =ya")(t)-cA"xcA-b

the output y(t) has y- (to) O, y- (t) c- (x). In particular, using Ud it follows that
X(to) 0 and x(tl)= x. This method of achieving state transfers will be generalized
to nonlinear systems that, in essence, are locally feedback linearizable.
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Consider the single-input nonlinear system model

(2.3) (t)=f(x(t))+u(t)g(x(t)); X(to)=xo6M

where M is a C (smooth) n-dimensional manifold, f, g are C vector fields on M
and u :[ to, co) R is continuous.

Suppose f(xo)= 0. Then the system (2.3) will be called locally state linearizable on
an open neighbourhood ago of Xo if the system can be transformed into a linear
controllable system via a change of coordinates in //o (of. [6]). Suppose that (2.3) is
modified on Uo by replacing u(t) by (/3(x(t))u(t) + k(x(t))) where k(x) is a smooth
feedback law defined on a//o with k(xo) 0 and/3(x) is a smooth change of coordinates
in the input space with/3(x) 0 for all x ago. If the resulting system is locally state
linearizable on ago we say that (2.3) is feedback linearizable on ?1o.

If f(xo)=0 then a necessary and sufficient condition for the system (2.3) to be
feedback linearizable on an open neighborhood ago of Xo in M is that the set of vectors

(2.4) {g(x), adzg(x), ad. g(x),..., ad7- g(x)}

are linearly independent at each x in ago and the distribution

@(x) span {g(x),..., ad7 -2 g(x)}

is involutive (cf. [1]-[3]). To study the structure of the reachable set for systems that
satisfy (2.4) some global condition must be added. Note that when f(xo) 0 the system
is not locally feedback linearizable. In this paper the existence of an output map
y= h(x) with relative order ah n (cf. [11]-[13]) will be assumed.

If h C(M) is an output map y h(x) for (2.3), then the relative order Ch is the
least nonnegative integer k such that gfk-lh 0 on M, and ah oe if gfkh =--0 for
all k_>-0 (if X is a vector field and h is a function, then Xh dhX). Thus for the
linear system (2.1) with the output y=h(x)=cx the relative order ah=a
rank [b, Ab,..., An-l b]. If this system is controllable then Ch n. That is, for a
controllable time-invariant linear system there are linear outputs with relative order
ah n. The following lemma shows that for nonlinear systems that satisfy condition
(2.4) there are locally defined outputs with ah n.

LEMMA 2.1. Suppose that the nonlinear system (2.3) satisfies the Lie algebraic criteria

(2.4). Then there exists an open neighborhood ago of Xo in M and a C output y h (x)
defined on o with ah n(=dim M).

Proof From (2.4) the distribution @(x)= span {g(x),..., ad-2 g(x)} is involu-
tive on some open neighborhood ago of Xo in M, and ad7 -1 g(x) ! @(x) for all x xo.
The Frobenius Theorem (cf. [14]) asserts that there exist an open set o such that
Xoe oC ,o and a coordinate system (o, x,..., x,) such that the slices x, c, c

constant, are the integral manifolds of @ around Xo. Define h C(ago) to the function
h(x) xn. Thus for all vector fields X @, Xh =- O. In particular, gh O,

adfgh (fg- gf)h f(gh)- gfh -gfh 0,..., ad7 -z gh

=(__l)n-3gfn-2hO

and since ad7 -1 g @, ad7 -1 gh (-1)"-2gf"-h O. This means that the relative order
of h is ah n, as required.

There can be obstructions to obtaining a global version of Lemma 2.1. The
following (somewhat pathological) example illustrates this point.
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Example 2.2. Consider the system (2.3) where M= T2, the two-torus, and
f(xl, x2) (1 + 2 cos 27rxl, 0), .g(xl, x2) (1, x/),. Xo (0.5, 0.5), T2 is modeled as the
square [0, 1][0, 1] with the usual identifications. Since adIg(xl,x2)=
(47r sin 27rxl, 0), it follows that (2.4) is satisfied and Lemma 2.1 applies. Thus locally
there exist outputs h with ah 2mfor example, ORo (0, 1) (0, 1) and h(x, x2)
x/x x2 will suffice--but there is no h C( T2) with ah 2! Suppose such an h exists.
Then gh 0 implies that h is constant on the integral curves of g. Since each g-integral
curve is a dense submanifold of T2 (a skew line), h must be constant on T2 by the
continuity of h. In that case gfih 0 for all so that ah c, a contradiction.

In practice it is not unreasonable to expect the existence of a globally defined
output function y h(x) with ah n when (2.4) holds.

As in the linear case the existence of outputs y h(x) with ah n gives a useful
type of observability.

DEFINITION. Let y h(x) be a C output map for the system (2.3) with relative
order ah. Then define

Since y(t)= h(x(t)),

and

y-(t)

y(t)
y()(t)

y" (t)

h-(x)

h(x) ]
|

f "-h(x)]

y()(t)=dhx(,2(t)

dhx(,)(f(x(t)) + u(t)g(x(t)))

fh(x( t)) + u( t)gh(x( t))

=fh(x(t))

y("-)(t) f"-h(x(t))

y("")( t) f""(x( t)) + u( t)gfh-h(x( t))

we see that y-(t)= h-(x(t)). Thus if we observe y-(t) we know h-(x(fi)) which, in
turn, implies some knowledge of the state x(

LEMMA 2.2. Suppose the system (2.3) satisfies the linearization condition (2.4). Then
there exists an open neighborhood R of Xo and a C output y h (x) defined on OR with

ah n, and the map x-- h (x) is a diffeomorphism of OR into R.
Proof (compare with [2], [3]). Lemma 2.1 implies the existence of an output h

with ah n on OR. To complete the proof we need only show that dh is a linear
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isomorphism--the Inverse Function Theorem then applies. Suppose dhoV=O_ for
v To(M). From (2.4), v=aog(Xo)+al adyg(xo)+’’’+an_l ad-1 g(xo), and thus
dh;,oV _0 means that dhxov O, d (fh)oV 0,. , d (f h)oV 0. Using
the first of these equalities, we have that dhv=aogh(xo)+al adygh(xo)+" "+
a,_lad;- gh(xo)=O as ah=n, gh=-adygh=...=ad-2gh=O. From the proof of
Lemma 2.1 we have ad- gh(xo)SO, so that dh;ov=O implies a,-l=0. Similarly,
d(fh)oV =0 implies a_2 =0, and continuing we can conclude that v =0. Thus dh;,o
is a linear isomorphism and the proof is complete.

Remark. The output y-- h(x) describedin Lemma 2.2 results in a realization that
is locally observable. That is, if x(t)6 and we observe y-(tl)( h-(x(tl))), then we
can recover the state x(q) via x(t)=(h-]ou)-(y-(tl)). Knowing y and its derivatives
at a fixed time enables us to deduce the state when x e o-//.

To study the structure of the reachable set for the system (2.3) a global version
of Lemma 2.2 will be required.

DEFNI’rON. The system (2.3) can be globally observed using the output y h(x)
if there exists a C output h(x) defined on M with ah n, and the map x-> h - (x) is
a ditteomorphism of M into R.

Suppose the system (2.3) can be globally observed using the output y h(x). To
transfer the state from X(to) Xo to x(t) xl (t > to) we can employ output tracking.
If x(t) is a trajectory for (2.3) then y-(t)= h-(x(t)). Thus to achieve the desired state
transfer the output function y(t) must satisfy

(2.5) y- (to) h - (x(to)) h - (Xo), y- (t,) h - (x(t)) h - (x).
From equation (2.4)

(2.6) y)( t) fh(x( t)) + u( t)gf-l h(x( t)),

where a ah. Thus, if Yd is any C function that satisfies (2.5) and

(2.7) u(x, t) =ya’)( t) fh(x)

then

y")(t):f"h(x(t))+u(x(t), t)gf’-h(x(t))

yd)(t).

Since y- (to) y(to) it follows that y Yd. In particular, y- (t) y(tl) h - (x) so
that x(t)= x, as required.

This is a generalization of the technique used at the beginning of this section to
transfer states for linear systems, where gf-h(x) cA-b, a nonzero constant. Here
gf-h(x) can vanish.

Dzyroy. A state x is a singular point for an output y h(x) if gf"- h(x)= O.
Let M, denote the set of singular points for h in M.

The following results examine the behaviour of the system around singular points.
LMMA 2.3. Suppose that the system (2.3) is locally feedback linearizable and can

be globally observed using the output y= h(x). Then there exist C functions a,
b Range h R with the following property:

If x(t) is a trajectory then fh(x(t))=ao(y-(t)), gf"-lh(x(t))=bo(y-(t)),
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and for each time ts such that x( t.) Mh (i.e., x( ts) is a singular point),

d k

fh(x( t)) ak(y t)),
dt k

d k

dt
gf-lh(x(t))= bk(y"-(t))

for k 0, 1, 2,... where olh.

In particular, x(t)M if and only if bo(h-(x(t))) bo(y-(ts))=O.
Proof. By definition y-(t)=h-(x(t)) so that x(t)=(h-)-l(y-(t)) and thus

fh(x(t))=f"h((h-)-l(y-(t)))=ao(y-(t)) where ao(z)=fh((h- )-l(z)).
Similarly, if bo(z) gf-lh((h- )-(z)) then gf"-h(x(t)) bo(y- (t)). Now setting

O--Olh, we have

d d
d--f"h(x)(t))=- ao(y-(t))

d
d--’ ao(y(t), y(1)(t),..., y(,-l)(t))

Oao (i+

--i=o0Y 1)(t)

(dao)y-,)(y’(t), y2(t),. ., y"-’)(t), y"(t))

=(dao)y-,)(y’(t), y("-’(t), ao(y-(t))+u(t)bo(y-(t))),

and at time ts, bo(y"- (t.)) 0 so that

d
d-fh(x(t.)) a,(y"-(t)) where a,(z) (dao)z(Zl, z,, ao(z)).

Similarly, d/dtgf-h(x(()) b(y-(t.)) and a simple induction argument completes
the proof.

COROLLARY. Suppose that the system (2.3) satisfies the hypotheses of Lemma 2.3.
Then the functions ak, bk are defined inductively by

ag+,(z) (dak)(z2, ", z, ao(Z)),

bk+,(Z) (dbk)(z, z,, ao(z))

where a ah and

ao(z) f"h((h- )-(z)),

bo(z) gf"-’h((h- )-’(z))

for z Range h - R.
Proof These are the functions constructed in the proof of Lemma 2.3.
As in [12] we can define the degree of singularity (Xo) of a singular point Xo that

is connected with the number of extra restrictions placed on y(t) when a trajectory
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x(t) passes through Xo at time t. When (2.3) can be globally observed using the output
y h(x), then fl(x) is simply the least positive integer k such that bk(h-(Xo)) 0 and
fl(Xo) oo if bk(h-(Xo))=O for all k. Note that if XoM then fl(Xo) 0.

LEMMA 2.4. Suppose that the system (2.3) can be globally observed using the output
y h(x), and M, f, g, h are real analytic. Then (Xo) < oo for all Xo M.

Proof Suppose/3(Xo) =oo for some Xo M,. Then bk(h-(Xo))=O for all k>0. If
x(t) is any trajectory for (2.3) with X(to) Xo, then from Lemma 2.3,

d k

dt
gf-lh(x(to))-- b(y-(to))= bg(h-(X(to)))=0

for k-0, 1, 2,..., where a h. Thus the Taylor coefficients in the Taylor series
expansion of gf-lh(x(t)) about t--to are zero and hence gf-lh(x(t))=O for all

R. This, in turn, implies that gf-h =-0 on M, which contradicts the definition of
a (i.e., gf"-h 0). Thus fl(Xo) <oo and the proof is complete.

In light of Lemma 2.4 we can reasonably assume that/3(x) < oo for all x M. If,
in addition, the system (2.3) can be globally observed using the output y h(x), then
the degree of a singularity can be expressed in terms of the outputs. That is, define

(z): [3((h- )-l(z)),

a function defined on Range h -. Thus when x(t) is a trajectory for (2.3) with output
y(t) then (x(t))=((h-)-h-(x(t)))=(y-(t)), Now we can associate with this
system the functions ao, a,. ., bo, b,. from Lemma 2.3 as well as the function/.

DEFINITION. Let h(Xo) denote the set of all Coo functions on R with the following
properties:

(i) y- (t) Range h - for all t;
(ii) y- (to) h - (Xo);(iii) If bo(y-(ts)) =0 at time ts, then y(’,+g)(t,) ak(y-(ts)) for 0=< k < (y-(t.)).
THEOREM 2.5. Suppose that the system (2.3) can be globally observed using the

output y h(x). Then each function in )]h(Xo) is an output for the system resulting from
a continuous input. Furthermore, h(Xo) contains all output functions which result from
C inputs.

Proof Let u be a Coo input to the system (2.3) that results in the trajectory
x(t) and the output function y(t)=h(x(t)). Then y-(t)=h-(x(t)), and thus
y-(t)6Range h - for t_-> to. Also y-(to) h-(x(to)) h-(Xo). Finally, suppose that
bo(y - (ts)) 0 for some time t, Let c ah. From Lemma 2.3 y()(t) ao(y (t)) +
u (t) bo(y (t)). Thus if /3 =/3 (y - (t.)) then bo(y (t)) (d / dr) bo(y (ts))
(d-/dt-)bo(y-(t.))=O and (dt/dt)bo(y-(t))O. This means that

d ()(
d

y(+l)(t) =-- ao(y-(t))+u t)bo(y-(t))+u(t)-t bo(y-(t))

so at time ts

y(+’)(t) -- ao(y-(t.))+u () O+u(t.) 0

=a,(y-(t.)).

Similarly, y(+k)(t.)=ak(y-(()) for 0<_--k</3. Thus if u is Coo then yZth(Xo).
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Finally, suppose that Yd Odlh(Xo) Define the feedback control

y(t)-ao(h"-(x))
when bo(Yd(t))O,

ua(t,x)= bo(h-(x))
r(t,) when bo(y(ts)) 0

where r(t.) (yd+t)(t,,) at(y (()))/b(y(t,)). The proof will be complete if it can
be shown that using Ud results in a trajectory x(t) with the property that t- Ud(t, X(t))
is continuous and y(t)=h(x(t))=yd(t). Of course y(to)=h-(Xo)=y-(to) so that

Y =- Yd if y() yCd . If t., then

y( t) ao(y- t)) + Ud( t, x( t))bo(y- t))

yd( t) ao(y- t))
ao(y (t)) + bo(y (t))

bo(y-(t))

yd)(t),

SO that Y=--Yd for to<--t<t,. At time t,, bo(y(t,))=O and Ud(t,,x(t,))=r(t,). Now

lim_ Ud t, X(t)) lim_
t--> t--

yd- )( t) aO(y( t))
bo(y(t))

yd+’( t) d/ dt)ao(y( t))
lim
-C (d/dt)bo(y(t))

using l’H6pital’s rulemnote that y(a")(t.)=ao(y(t)) since yh(Xo). Now if/3> 1,
then (d/dt)bo(y(t.))= bl(y3(tL))=O and y(a"+(t.)=(d/dt)ao(y3(t,))=a(y(t,))
since y h(Xo), SO using l’H6pital’s rule

y(a"/( t) d2/ dt2)ao(y3( t))
lim Ud t, X(t)) lim

2/,-,,- ,-,7 (d dt)bo(y3(t))

and continuing this process

lim_ Ud t, X(t)) lim
t-> t->

yV+t)( t) dt/ dt)ao(yt( t))
(d/ dt)bo(y( t))

y(d’*+t( ts) at(y( t,))
b(y(t))

r(t.)

=ua(t,,x(())

and it follows that ua is continuous and the proof is complete. Note that in open-loop
form the control corresponding to Ya is

y(d)(t)-a(y(t))
when bo(y(t))O,

(2.8) Ud(t) bo(y(t))
r(t,) when bo(y(t)) 0

where r( ts) (yd+t)( t) at(y( t,)))/ bt(y( t)).
In 3 the set h(Xo) of output functions is used to deduce the reachable set and

perform state transfers using inputs derived from output tracking. This section ends
with a number of examples.
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Example 2.3 (Example 1.1 continued). Here M R2, f(x) (0, e,), g(x) (1, 0),
and x(O)=xo=(a,b). To find an output h(x) with ah=dimM=2 requires gh--0.
Thus h is a function of x2. We are led to try h(xl, x2) x2. Thus gh -= 0, gfh(xl, x2) eq

so that ch =2, and since ha-(Xl,Xz)=(x2, eX’), a diffeomorphism of M into R2, this
system can be globally observed using the output y h(x). Since gf-l(x, x2) e’’ # 0
there are no singular points, i.e., /3(x) =0 for all x M, and thus (Xo) consists of
Coo functions y with

(i) (y(t),.f(t))Rangeh-=RxR+ (R+ (0, ee)),
(ii) (y(0), 3)(0)) h-(Xo)=(b, ca).

That is, h(Xo) {ye Coo(R)ly(O)=b, 3)(0) e and y increasing}.
Example 2.4. Consider the system model where f(x, x2) (0, x+x2+ 1),

g(Xl, X2) (X "3I" X2, 0) and x(0) Xo (a, b) M R. Here adsg(x xz)
(Xl + x2+ 1,-(Xl + x2)) so that condition (2.4) is satisfied (when a + b # 0). To find an
output h M R2 such that the system is globally observed we require ah dim M 2.
Since this means gh (oh/OXl)(Xl + x2) -= 0, h must be a function of x2 alone. Trying
h(xl,x2)=x2 we have fh(x,x2)=x+x2+l so that h-(x,x)=(Xz, X+x2+l) is a
diffeomorphism of M R2 into R2 (in fact, Range h - R2), and h will suffice. Since

y h(x,, x) x,

.9=fh(xl, x2) x + x2+ l,

ji f2h(x xz) + ugfh(x, xz)

(x, + x+ )+ u(x, + x)
))+ u())- 1)

it follows that ao(y,)))=29 and bo(y, 3)=))-l. Here the singular set is M,=
{(xl, x2) Ix1 + x =0}, and from the corollary to Lemma 2.3,

a y, 29) da%.,s. f, f; 29

bl (Y, f;) db%,s. (, f .
Thus if bo(y"-(t))=bo(y(t),(t.))=(t.)-l=O at time t, (i.e., 3)(t)= 1), then

b(y-(t))=:P(t.)=l#O, hence /3=1. Since Range h-=R2, it follows that h(Xo)
consists of all C functions with the property that

y-(O)=(y(O),(O))=h-(Xo)=(b,a+b+l) and if bo(y-(t))=(t)-l=O
then (t)=a(y(t,))=(t,) 1.

That is, h(Xo) {ye Coo(R)ly(O)= b, 3(0) a+ b+ 1, and when ))(t)= 1 then j;(t)
1}.

Example 2.5. Consider the system

)1 Xl/,/, Xl(0) a

2=ln x, x2(0) b

where M R+ x R. This system can be globally observed using h(x) x2 (or ex:, etc.).
Here h-(xl, x2)= (x2, In x)’M R is a diffeomorphism onto R2, and j;’= u so that
gfh(x, x2)= 1 and there are no singular states. Thus

h(Xo) {Y Coo(R)IT(0)= b, 3)(0)= In a}.

3. The set of reachable states. Let x(t, u, Xo) denote the solution to the differential
equation (2.3) where u is a continuous control. A state x M is said to be reachable
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from Xo at time if x x(t, y, Xo) for some (continuous) control u. The collection of
all states reachable from Xo at time is denoted by ,(Xo), the reachable set at time t.
The system (2.3) is called strongly controllable if ,(Xo)= M for all > to.

For systems that can be globally observed using an output h we can essentially
determine ,(xo) from the collection of output functions OYh(Xo). Define h(Xo) to be
the subset

.h(Xo) {(h -1y (t)ly %(Xo)}_ M.

THEOREM 3.1. Suppose that the system (2.3) can be globally observed using the
output y h x ). Then

(i) t(Xo) - ht (Xo) for all t> to;
(ii) (xo) is dense in ,(Xo), in fact cl (int (Xo)) cl (int ,(Xo)) for all t> to;

and
(iii) ,(Xo)--M if and only if (Xo)--M.
COROLLARY. Suppose that the system (2.3) can be globally observed using the output

y h(x). Thenwecantransferthestateofthesystemfromx(to) XotOX(h) xe h, (Xo)
as follows:

(i) Choose y Yh(Xo) such that y(t) h-(Xl).
(ii) Set Ud(t)=(y)(t)--ao(y-(t)))/bo(y-(t) for all such that bo(y-(t))O

(iii) If bo(y-(())=O set Ud(t)=(y"+t3)(t)--at(y"-(t)))/bt(y-(t)) where =fl(y- t.)).
Then Ud is a continuous control that steers the system from X(to) Xo to x(t) x.
Proof of Theorem 3.1. From Theorem 2.5 OYh(Xo) contains all outputs that result

from C inputs, and each yeYh(Xo) is an output y( t) h(x( t)) for the system
corresponding to a continuous input u(t). Thus y-"(t)= h-(x(t)) and (h-)-y-(.)
x(.) is a system trajectory so that (i) follows. Since the set of states we can reach at
time using C inputs has an interior that is dense in ,(Xo) (cf. [15]), (ii) follows.
Of course ,(Xo) M if and only if int ,(Xo) M, if and only if ,h(Xo)= M, and the
proof is complete.

Proof of the corollary. This result is proved in 2. In particular, u(t) is described
in (2.8).

Example 3.1. Consider the system from Example 2.3. Here y e Yh (Xo) if and only
if y(0) b, p(0) e and y is increasing (x(0)= (a, b)). Thus y(t)> b and p(t)> 0 for
any > 0, so that

ht(Xo)=(h-)-{(y,y2)[y> b, y2> 0}.

Furthermore, h-(x, x2)= (x, e) so that (h)-(y, yz)= (ln y., y), and thus

(Xo) {(In Y2, Y)lY, > b, yz > 0}

R x (b, oe).

Since h (Xo) is a dense subset of Y,(Xo), and M R, clearly the system is not strongly
controllable. In fact,

cl 9, (Xo) cl (Xo) R x [b, oo) # R

Example 3.2. Consider the system from Example 2.4. Here M R, h-(x, x)-
(xe, x+x+l) so that (h-)-(y,y)=(y-y-l,y), and x(O)=(a,b). Suppose
x(0)-- (1, 1). Then y h(Xo) if and only if y(0)= 1, ))(0)=3 and whenever (t.) 1
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then/9(ts) 1. This means that y is increasing when y(tL)= 1, and hence if y h(Xo)
then 3)(t) will always be greater than one. Thus y(t)> y(0)+ + 1 and

h(xo)=(h-)-l{(yl,y2)[yl> t+ 1, y2> 1}

={(y2--y--l, yl)ly> t+ 1, y2> 1}

={(x,,xglx> t+ ,x>-x}.

Thus cl ,(Xo) cl h (Xo) {x2 >- + 1, x >- -x2} # R2 M, and the system is far from
being strongly controllable.

Example 3.3. From Example 2.5, y h(Xo) if and only if y(O)= b, .f.(0)=ln a
where x(O)=(a, b) so that y(t) and .f(t) are unrestricted. Here h-(x,x2)=(x2,1nxl)
so that (h-)-(y, y2)=(ey2, y) and

O,(Xo) (h-)-’(R2)

Thus ,(Xo)= M and the system is strongly controllable.
In Example 3.1 there are no singular states but the range of h- R2 and the

system is not strongly controllable. In Example 3.1 Range h - R2 but there are singular
states, i.e., M,--, and this system also failed to be strongly controllable. Example
3.3 is a strongly controllable system with M,- and Range h - R2. The connections
between ,(Xo) and Range h - are not explored, but when Range h - R (n =dim M)
strong .controllability is related to the existence of singular states.

THEOREM 3.2. Suppose that the system (2.3) can be globally observed using the
output y h(x) with Range h R. IfMh ( then the system (2.3) is strongly control-
lable. If MSh( and b(h-(x))>O (or <0) on Mh (e.g., fl=l on M and M is

connected) then (2.3) is not strongly controllable.
Proof Suppose that the above system has M, . Then

h(Xo)={y C(R)ly-(to)=h-(Xo)}, and

h -lyt(Xo)={(h -(t)lyqYh(Xo)}

={(h-)-’zlz6R "}

Thus using Theorem 3.1 we conclude that t(Xo)= M for any Xo M and > to.
Now suppose b(h-(x))>O on M,, M,, and the system (2.3) is strongly

controllable. Choose x M,. Then there exist a control u and trajectory tx(t) such
that X(to)=Xo, x(ts)=x and x(2ts)=x where ts> to. Here x(ts) Mh so that

bo(h- (x( ts))) bo(y"- t)) 0

d
bo(h_(X(ts))=

d
d- -d b(y- t)) b’(y- t)) > O

by assumption. This means that bo(y-(t)) is increasing at time ts. Also x(2ts) M, so
that bo(y-(2ts))=0, and hence bo(y-(t)) must become zero on (t, 2t]. If bo(y-(q))=0
for some t (ts, 2ts] then (d/dt)bo(y-(q))<=O, which contradicts b(h-(x))>O for all
x M,. Thus (2.3) cannot be strongly controllable.
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AN APPROXIMATION THEORY FOR THE IDENTIFICATION
OF NONLINEAR DISTRIBUTED PARAMETER SYSTEMS*

H. T. BANKS?, SIMEON REICH$, AND I. G. ROSEN

Abstract. An abstract approximation framework for the identification of nonlinear distributed parameter
systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone

operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to
be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of
finite-dimensional approximating identification problems to a solution of the original infinite-dimensional
identification problem is demonstrated, using the theory of nonlinear evolution systems and a nonlinear

analogue ofthe Trotter-Kato approximation result for semigroups ofbounded linear operators. The nonlinear
theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to

be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic
partial differential equations to which they lead. An application of the theory to a quasilinear model for
heat conduction or mass transfer is discussed.

Key words, nonlinear evolution systems, nonlinear distributed parameter systems, maximal monotone

operator, identification, Galerkin approximation, nonlinear heat conduction
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1. Introduction. In this paper we develop a general abstract approximation
framework for the identification of nonlinear distributed parameter evolution systems.
Our intent is to define relatively straightforward and easily verified criteria that are
applicable to broad classes of nonlinear systems; these criteria will guarantee the
convergence of solutions to a sequence of finite-dimensional Galerkin approximation
based parameter estimation problems to a solution of the original, underlying, infinite-
dimensional identification problem. The results that we present below generalize and
extend the theory recently developed by Banks and Ito in [2] and [3] for regularly
dissipative or abstract parabolic, linear systems. It is, to the best of our knowledge,
the first such general approximation theory for inverse problems involving nonlinear
distributed systems.

The sufficient conditions set down in our framework include a relatively weak
continuity assumption with respect to the unknown parameters to be identified, an
equiboundedness and an equistrong monotonicity assumption on the nonlinear
operator describing the system dynamics. In addition our theory requires a standard
approximation assumption on the Galerkin subspaces used to effect the finite-
dimensional, or finite-element, approximations. We demonstrate that solutions to the
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finite-dimensional identification problems approximate a solution to the infinite-
dimensional identification problem via a convergence result for solutions to the forward
problems. This result is obtained using the theory of nonlinear evolution systems and
a nonlinear analog of the well-known Trotter-Kato approximation result for linear
semigroups.

In the present paper, we are concerned only with theory; implementation questions
and conclusions drawn from our numerical or computational studies will be reported
on elsewhere. Also, while we have tried to make our framework as versatile as possible,
the treatment below does have limitations. For example, our theory can handle quasi-
autonomous systems but it is not applicable in the fully nonautonomous case. The
development of a general theory that can handle nonlinear systems involving time-
dependent operators requires additional effort and is currently the focus of our ongoing
investigations. The particular difficulties inherent in the time-dependent case will be
described in greater detail in our discussions below.

We provide a brief outline of the remainder of the paper. In 2 we state a
fundamental existence and uniqueness result for infinite-dimensional nonlinear systems
and prove a general approximation result that is especially well suited for application
in the context of the inverse problems which are the central focus of our study. In 3
we define a class of nonlinear distributed systems and the associated parameter
identification problems. We define the Galerkin approximations and prove the general
convergence result. Section 4 contains some examples. We show that our nonlinear
theory subsumes the linear theory presented in [2] and [3] as a special case; we also
consider the application of our framework to a class of nonlinear elliptic operators
and the corresponding nonlinear parabolic partial differential equations to which they
lead. In particular, we look at the application of our results to a well-known quasilinear
model for heat conduction or mass transfer. In 5 we summarize our findings and
provide some concluding remarks.

2. An approximation result for nonlinear evolution systems. Let Xo be a Banach
space with norm 1"1o. We consider the nonlinear, quasi-autonomous initial value
problem in Xo given by

(2.1) o( t) + Aoxo( t) 9fo( t), 0 < <- T,

(2.2) x0(0) x
where Xo Xo, fo" [0, T] Xo and the nonlinear operator Ao" Xo 2 is in general
multivalued, not everywhere defined, and not continuous. The existence of solutions
to the initial value problem (2.1), (2.2) and the subsequent approximation result to
follow, are both consequences of Theorem 2.1 to be given below.

We require the following definitions. Let X be a Banach space with norm I.
For A:X- 2, a nonlinear, multivalued operator, the domain and range of A are
defined by Dom (A) {x X: Ax 0} and (A) [,-Jx dora(A) Ax, respectively. We say
that the operator A is accretive if for every , >0, x, x2 Dom (A) and y Axe,
Y2 Axe, we have

Ix xlx <-IXl- x+ A (y, y)l-

We say that A is m-accretive if A is accretive and (I + 1A) X for some > 0. We
note that if A is m-accretive, then (I+,A)= X for every , > 0 and for each )t > 0
the resolvent of A at )t, J(,; A) X - X, a single-valued, everywhere defined, nonlinear
operator on X can be defined as J(t; A)=(I +,A)-.
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A two-parameter family of nonlinear operators { U(t, s): 0-< s =< -_< T} defined on
a subset 1)c X is called a nonlinear evolution system on 1) if for each x e we have
U(t,s)x, U(s,s)x=x, and U(t,r)U(r,s)x=U(t,s)x for O<-s<=r<=t<-T, and
U(t,s)x is continuous from. the triangle A {[s, t]: 0<=s-< t-< T} into X.

A strongly continuous function x:[0, T] X is called a strong solution to the
quasi-autonomous initial value problem

(2.3) (t)+ Ax(t) f(t), O< t<- T,

(2.4) x(0) x

where f: [0, T] X and x X if x is absolutely continuous on compact subintervals
of (0, T), differentiable almost everywhere and satisfies f(t)- (t) Ax(t) for almost
every [0, T] and x(0) x.

THEOREM 2.1. Let X be a Banach space with norm I" Ix and suppose that A X - 2x

and f: [0, T] - X appearing in (2.3) satisfy
(1) That there exists an to R for which the operator A + wI is m-accretive,
(2) f6 L,(0, T; X).

Then a unique, nonlinear evolution system { U(t, s): 0 <= s <= <-_ T} on Dom (A) can be
constructed that satisfies

(i) U( t, s)ch U( t, s)l <- e’’-)]ch d/l,for ch, q Dom (a) and O<- s <- <-_ T,
(ii) IU(s+t,s)ch-U(r+t,r)chl<-_2oe’-lf(’+s)-f(-+r)lxd" for all

4) Dom A and all > 0 such that s + t, r + <= T.
(iii) Ifx Dom (A) and the initial value problem (2.3), (2.4) has a strong solution

x, then

x(t)=U(t,s)x(s) forO<-s <-t <-T.

When x6 Dom (A), the strongly continuous function x:[0, T]- X given by x(t)=
U(t, O)x is referred to as a mild or generalized solution to (2.3), (2.4).

Theorem 2.1 is a direct consequence of results given by Crandall and Evans in
[7] and [9]. Henceforth, we will assume that Ao: Xo- 20 and fo: [0, T]-* X, satisfy
(1) and (2) in the statement of Theorem 2.1 and that Xo Dom (Ao). We then let
{Uo(t, s): 0<-s-< t<_-T} denote the corresponding nonlinear evolution system on
Dora (Ao) and consider the approximation of mild solutions to the initial value problem
(2.1), (2.2).

Our approximation result is in the spirit of those given for nonlinear semigroups
and evolution systems by Crandall and Pazy in [8] and Goldstein in [10]. However,
our theorem differs from these earlier treatments in two ways. First, we require that
the time-dependent perturbation fo be only L1 as opposed to it being continuous as
in [8] and satisfying a Lipschitz-like condition in [10]. This distinction is especially
relevant in the case of control systems where discontinuous input is common. The
second difference is that we give our result in a form that is most appropriate for
application to the development of a general approximation theory or framework and
computational schemes for the parameter identification problems to be discussed in
the next section.

We require some set theoretic notation. For sets Hn, n 0, 1, 2,. ., by lim Hn
Ho we mean: given Xo Ho, there exist xn Hn such that xn Xo as n- o.

THEOREM 2.2. For each n Z+ { 1, 2, 3, } let Xn be a closed linear subspaee of
Xo. For n O, 1,. , let An Xn -* 2x,, be a possibly multivalued nonlinear operator on
Xn, and letfn [0, T] Xn be an Xn-valued measurablefunction defined on [0, T]. Suppose
that there exists an tOo R, independent of n, for which the operators An +tOoI are
m-accretive, that there exists a function g Ll(O, T;Xo)for which If,(t)[<-_g(t), for
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almost every [0, T], and that lim D, Do where Dn Dom (A,) and Do Dom (Ao).
Suppose further that for some Ao > 0, we have

lim J(Ao; An + OOI)4’n J(Ao; A + WoI)$o

whenever bn X, with limn_oo dp, Cko Xo, and that

lim f,(t)=fo(t) fora.e, t[0, T].

Thenfor each n Z/ there exists a unique nonlinear evolution system { Un t, s)" 0 <-_ s <= <-
T} on Dn corresponding, (in the sense of Theorem 2.1) to An and fn andfor ok, D, with
limn_.oo d)n Cko DO we have

(2.6) lim U,(t,s)ckn= Uo(t,s)cko, O<-s<=t<= T,

with the limit being uniform in for Is, T].
Proof. We follow Goldstein (see [10], [11]) and use an approach.first suggested

by Kisynski [13] for demonstrating the convergence of approximations to linear
semigroups, to prove the theorem via an application of our existence result,
Theorem 2.1.

Let X={={x,} n=o xn Xn, n =0, 1, 2,..., and lim,_.xn =Xo} and for :X
set I][[ =sup, [Xn[o. Then ]1. defines a norm on the linear vector space X, and the
space X together with the norm [1" is a Banach space. Define the operator A:X 2x

by

dom (A) {: {xn}=o X" xn Dom (A,), and for each n 1, 2,. there
exists a yn Anxn such that limn_.. Yn Yo Aoxo}, for : Dom (A), 33
{ Yn } n--o A if and only if Yn Anxn, n 0, 1, and limn_.oo y, Yo.

Define an essentially x-valued function f on the interval [0, T] by f(t)= {fn( )}n=o.
The assumptions on thefn are such thatfn (t) fo(t) for almost every [0, T]. However,
by appropriately redefining on a set of measure zero, we may infer from the assumptions
on the functions fn that f:[0, T]X with f L1(0, T; X).

It is readily seen that the operator A+woI is m-accretive. Let )1 {X ln}n=0,cx3
2= {xZ,}n__o Dom (a), and let 31= {yl,}n__o a and 332= {y2,},=o a2. Since for
each n 0, 1, 2,. ., An + WoI is assumed to be m-accretive, for A > 0, we have

2 2 =ll- sup ]2 in X]o <= sup ]xl, Xn + A (y, + WoX, --(y2, + WoXn))lo

and therefore that A+ WoI is accretive. Now let 33 {y,}Oon=o X and set : {Xn}*n=o
with x, J(Ao; A, + WoI)yn, n =0, 1, 2, where Ao is chosen as in (2.5). It is immedi-
ately clear that for each n =0, 1, 2,..., xn Dom (An)c X,. Since 33 X we have
limn_.y, =yo and therefore, by assumption (2.5), that limn_ xn = Xo or X.
Setting zn=(yn-(l+AoWo)Xn)/Ao, n=0,1,2,..., it follows that znAnx, and
limn_.oozn=zoAoxo. We conclude that :6Dom(A), (I+Ao(A+woI)), and
that I + Ao(A + WoI)) X.

We have shown that the operator A and the function f satisfy conditions (1) and
(2) given in the statement of Theorem 2.1. Therefore, a unique nonlinear evolution
system { U t, s)" 0 <- s <- <= T} on Dom (A) corresponding to A andfcan be constructed
with U(t, s) { U,(t, s)}=o. Using assumption (2.5) it can be shown that Dom (A)
{:={x,}n=oX xnDn, n=0,1,2,.., and limn_.xn =Xo}. Since Yt(U(t,s))cX, it
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follows that

(2.7) lim U(t, s)4), Uo(t, s)4)o, O<=s<- t<- T

whenever b, e D, and lim,_oo b, b0e Do. Since each of the operators A, and the
functions f, satisfy conditions (1) and (2) of Theorem 2.1, unique nonlinear evolution
systems { U, (t, s)" 0 <- s -< -<_ T} on D, corresponding to A, and f, can be constructed.
Recalling that Dora (A) X,__o 3,, we may define the family of operators { V(t, s)"
O<-_s<-t<-_ T} on Dom (A) by

(2.8) V( t, s) { V,( t, s)x,},=o--- { U,( t, s)x,},=o

for {x,},=o Dom (A). Uniqueness (see [9]) dictates that for each n 0, 1, 2,. ,
U,(t, s)x, V,(t, s)x, whenever {x,}=o Dom (A). This together with (2.7) and (2.8)
establish (2.6). The fact that the convergence in (2.6) is uniform in for [s, T] is
argued exactly as it was for the convergence of approximations to nonlinear semigroups
in the proof of Theorem 3.2 in [10].

We note that (2.5) is also a necessary condition for the conclusion to hold (see,
for example, Theorem 1 of [14]).

3. An approximation theory for identification problems. Let H be a real Hilbert
space with inner product (.,.) and corresponding norm 1. I. Let V be a reflexive real
Banach space with norm I[" and let V* be its dual. (Our entire theory can be developed
in complex spaces if necessary; see [6].) We denote the usual dual norm on V* by
I1" I1 and assume that V is densely and continuously embedded in H with
v V, for some positive constant/z. Identifying H with its dual, we obtain V H-
H* V*. For h V* and v V the duality pairing between b and v is denoted by
(b, v). When b H, its pairing with v V agrees with the inner product of b with v.

2It follows for u e H and v e V that [[u[[.=/x[u and Ilvll._-< Ilwll. Let 2 and Z be
metric spaces and let Q be a nonempty, compact, subset of . The spaces and Z,
and the set Q are referred to as the parameter space, the observation space, and the
admissible parameter set, respectively.

We recall that a single-valued operator A" V V* is hemicontinuous if
lim,_.o A(u + tv)= Au for all u, v V where the limit is taken in the weak sense.

For each q Q let A(q)" V-. V* be a single-valued, hemicontinuous (in general,
nonlinear) operator satisfying:

(A) (Continuity)" For each v V, the map qA(q)v is continuous from Q=
into V*.

(B) (Equi V-monotonicity)" There exist an to R and an a > 0, both independent
of q Q, such that

(a(q)u-a(q)v, U--U)-t-O.)IU--uIZ og]IU--UII 2,
for every u, v V.

(C) (Equiboundedness)" The operatorA(q) maps Vbounded setsinto V* bounded
sets, uniformly in q . That is, if S is V bounded, then there exists Ms
depending on S such that

sup {[]A(q)v[I , v S, q } <= Ms.
For each qQ, let f(.; q)L(O, T; H) and u(q)H, and assume that the

mapping q- u(q) is continuous from Qc into H and that the mapping qf(t; q)
is continuous from Q c into H for almost every [0, T]. Also, for every z Z, let
u (u; z) be a continuous map from C(0, T; H) into R/.
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We consider parameter identification or inverse problems of the following form"

(ID) Given observations z Z, determine parameters Q that minimize

b(q)=(uo(q); z)

where uo(q)= Uo(" ;q) is a mild solution to the initial value problem

(3.1) fi(t)+A(q)u(t)=f(t; q), 0<t < T,

(3.2) u(O)=u(q)

corresponding to q Q.
By a mild solution to (3.1), (3.2) we mean a solution in the sense of Theorem 2.1.

To be more precise, for each q 6 Q we define the operator Ao(q)" Dom (Ap (q)) H - Hto be the restriction of the operator A(q) to the subset of V given by Dom (Ao(q))=
{v V" A(q) H}, and prove the following theorem.

TEORE 3.1. For each q Q the operator Ao(q)" Dom (Ao(q)) H -. H is densely
defined and the operator Ao(q) + wI is m-accretive.

Proof We first show that for each q Q the operator A(q) + oI" V- V* is coercive.
If {v.}= V with lim,_ IIv,[I =, then from assumptions (B) and (C) we obtain

lim ((a(q) + wt)v,,

lim {((a(q)v,-a(q)O, v,)+oo[v,[)/llv, ll+(A(q)O,
_-> lim {allv, ll2/l]v,l]-I(a(q)O,

>= lim {a v A(q) 011,} --> lim a v t oo

where 0 denotes the zero vector in V and /3 > SUpq o IlA(q)Oll,. It follows that for
each A >0, the operator I+)(A(q)+oM)" V- V* is monotone, everywhere defined
on V, hemicontinuous, and coercive. Consequently, Yt(I+,(A(q)+ooI))= V* (see
Barbu [6, Thm. II.1.3]) and therefore Yt(I+,(Ao(q)+ooI))=H. Also, for u,v
Dom (Ao(q)), we may use assumption (B) to conclude that

I/

<=lu-vl+ X((A(q)+oI)u-(A(q)+oi)v, u-v)

=((I+A(A(q)+ooI))u-(I+A(A(q)+oI))v, u-v)

<--I(I + ) (Ao( q) + ooI))u I + A (Ao( q) + wI))vl lu vl
or

lu vl -<- ]u v + A ((Ao(q)+ wI)u -(Ao(q)+ oI) v)l,
which proves that Ao(q)+wI is m-accretive on Dom (Ao(q))c H.

In light of Theorem 3.1, we may apply Theorem 2.1 with X H, A Ao(q) and

f=f(., q). We conclude that there exists a unique nonlinear evolution system
{ Uo( t, s; q): 0 =< s -< <- T} on Dom (An (q)) c H satisfying (i)-(iii) of Theorem 2.1. The
mild solution Uo(’; q):[0, T] H to the initial value problem (3.1), (3.2) is given by
Uo(t; q)= Uo(t, 0; q)u(q) for t[0, T].

While it is not true in general that Dom (Ao(q))= H, we can, in several special
cases of importance, argue this equality. We present two such cases.
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LEMMA 3.1. If the operator A(q) satisfies, in addition to (A), (B), (C), thefollowing
condition, then Dom (Ao(q)) H" A(q) takes H bounded sets into V* bounded sets.

Proof To show Dom (Ao(q)) H, we let u H and for each n 1, 2,. , we set
un J(1/n; Ao(q)+ wI)u Dom (Ao(q)). Then, arguing as we have above, we find that

[un[+(1/n)a[lu[[<-(u-(1/n)A(q)O, u)
_-< [u[ ]u,[ + (1/n)l[A(q)O[[,[lu,

where 0 is again the zero vector in V. But then

(3.3) lu.[ =+ Ilu.[I z< [u[2+ [[a(q)Oll

from which it immediately follows that the u. are uniformly bounded in H. Indeed,
from (3.3) we see that (1/n)]u.[[ , and hence [[u.[[/ is bounded so that
as .

Thus we find that (using the fact that {Ao(q)u.} is V* bounded)

u u[[,= () [[(Ao( q) + I)u,[[,

1
(Ao(q) +

1

Since the last term in the estimate above tends to zero as n , we find u, u in V*
as n . This, together with the fact that V is dense in H imply that u, u weakly
in H as n. Since Ao(q)+wI is m-accretive, DomAo(q) is convex from which
Dom (Ao(q))= H immediately follows.

We note that the additional condition (A(q) takes H bounded sets into V* bounded
sets) of Lemma 3.1 allows for a number of nonlinearities that arise in applications.
For example,, in a typical case (H L(0, 1), V= H2(0, 1)) this condition is satisfied
by A given by (Av)(x)= Iv(x)[ sgn v(x) for 0 a 2.

We can also establish the results of Lemma 3.1 by strengthening condition (C).
LMM 3.2. Ifthe operator A(q) satisfies (A), (B), and thefollowing condition, then

Dom (Ao(q))= H"

(C) ere exists a constant fl > 0, independent of q Q such that [[A(q)v[],

Proof The arguments are exactly the same as those for Lemma 3.1 except that
(3.3a) must be replaced by

1
<- + +<

n

Remark. Under additional hypotheses on f(. q) and u(q) other existence results
can be applied to obtain somewhat different notions of a solution to the initial value
problem (3.1), (3.2). For example (see [6, pp. 140-144]), iff(. q)6 W’(0, T; H) and
u(q) Dom (Ao(q)), then there exists a unique u(., q)." [0, T] V satisfying u(.; q)
W’(0, T;H), A(q)u(.;q),L(OT;H) and fi(t;q)+A(q)u(t;q)=f(t;q) for
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almost every t [0, T]. Or, if u(q) H and f(. ;q) L2(0, T; V*) then there exists a
unique u(.; q) that is V*-valued absolutely continuous almost everywhere on [0, T],
u(.; q)6 C(O, T; H)fqL2(O, T; V), ti(.; q) L2(O, T; V*)and ti(t; q)+A(q)u(t; q)--
f(t; q), for almost every 6[0, T]. If, in addition, the mapping t- tvf’(t; q) is an
element in L2(0, T; V*) for some y->l, then the mapping t-tvft(t; q) is in
L2(0, T; V) L(0, T; H). In particular, when f(.; q)=0, the nonlinear semigroup
{So(t; q): 0_-< -< T} on H defined by So(t; q)= Uo(t; 0; q), t[0, T], with generator
-Ao(q) behaves as does a holomorphic linear semigroup in that it smooths. That is,
So(t; q)u(q) Dom (Ao(q)), (0, T], and the mapping t- t(d/dt)S(t; q)u(q)is an
element in L(0, T; H) for every u(q) H. Also, some generalizations are possible.
For example, in assumption (B), the term llu- vii can be replaced by a term of the
form a ([I u vll)ll u vii where a (.) is a continuous, strictly increasing function on
[0, ) satisfying a(0) =0 and limx_ a(x)=. Or, the terms Ilu- vii in (B) and Ilvll
in () can be replaced by [lu-vll and IIll -*, respectively, for any p>= 2.

The development of computational methods for the solution of the infinite-
dimensional optimization problem (ID) requires the finite-dimensional approximation
of the abstract initial value problem (3.1), (3.2). The general framework that we are
proposing is based on a classical Galerkin approach. For each n 1, 2,... let Hn
denote a finite-dimensional subspace of H that is a subset of V. Let Pn :H - Hn denote
the orthogonal projection of H onto H. with respect to the (.,.) inner product. We
assume that the approximating subspaces Hn, and the projections P, satisfy

(D) For each v V, lim ]lPnv vii O.

Note that assumption (D) and V densely and continuously embedded in H imply that
limn_ [PnU- U[ 0 for each u H.

For each q Q and n 1, 2, we define the single-valued operator An(q): H, -H by A,(q)u, v,, for u, Hn where v, satisfies

(A(q)u,, w,)= (vn, w,), wn 6 Hn.
That A,(q) is a well-defined operator from H, into Hn follows from the Riesz
Representation Theorem applied to the Hilbert space H, and the bounded linear
functional (A(q)u,,.) on H.. Also, define f,(.; q)" [0, T]Hn and u(q)H, by
f,(t; q)= Pnf(t; q), 0 <- t<= T, and u.(q) Pnu(q), respectively. Note that f,(.; q)
L(0, T; H,)= L(0, T; H) and that If,(t; q)l<-lf(t; q)l for qQ and almost every
t[0,

We consider the sequence of approximating identification problems given by the
following"

(IDn) Given observations z Z, determine parameters / Q that minimize

qbn(q)=(un(q); z)

Where un(q)= un(’; q) is a mild solution to the initial value problem in H,

(3.4) fi,(t)+an(q)un(t)=f,(t; q), 0<t-< T,

(3.5) u.(O)=u.(q)

corresponding to q Q.

From the definition of the An(q) and the assumptions (B) and (C) on A(q), using
arguments analogous to those used to prove Theorem 3.1, it can be shown that the
operators An(q)+ooI are m-accretive on H,. It then follows from Theorem 2.1 that
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for each n 1,2,. there exists a unique nonlinear evolution system {U.(t, s; q)"
0 <-s _-< <- T} on H. satisfying (i)-(iii) in the statement of that theorem with X H.,
f(t)=f.(t; q), and x=u(q). The mild solution to the initial value problem (3.4),
(3.5) is given by u.(t; q)= U.(t, 0; q)u.(q), t[0, T].

If we assume for the moment that the approximating identification problems (ID.)
have solutions t]. Q, then it is desirable that they in some sense approximate a solution

to the original identification problem (ID). This is in fact the case. For suppose that
it can be shown that for any sequence {q.} c Q with lim._. q. =q Q, we have

(3.6) lim u.(q.)= uo(qo) in C(0, T; H).

Then {t].}c Q and Q a compact subset of the metric space o@ imply that there exist
a subsequence {cT..j}c {t].} and a t Q such that lim_. t]..i . For any q Q the
continuity of implies

4’() (I:’(Uo(q); z)= \J-(!im u.;(.i);. z)
lim (I)( u..,(.,); z) Ji_)m 4%(.,)

=< lim b.(q) lim (u.j(q); z)

(lim Un(q); Z)--(I)(/0(q) Z)
th(q).

Note that in the discussion above we did not assume that a solution to problem (ID)
exists. But rather we have shown that the existence of solutions /. to the approximating
problems (ID.) and (3.6) imply the existence of a solution t to problem (ID). When
the solution to problem (ID) is unique, the sequence {t].} itself converges to

The existence of a solution (/. to problem (ID.) for each n 1, 2,... will follow
from the compactness of Q and the continuity of once the following continuous
dependence result has been established: lim.,_.ou.(q.)=u.(qo) in C(0, T; H.)
whenever {q,.} Q with limm_ q,.=qo. Although continuous dependence for the
finite-dimensional systems (3.4), (3.5) could be demonstrated via a modification to any
one of a number of familiar continuous dependence results for ordinary differential
equations (see, for example, Hale [12, Thm. 1.3.4]), it is also easily handled with the
approximation theory developed in the previous section. This and the convergence in
(3.6) are addressed in the following theorem.

THEOREM 3.2. If assumptions (A)-(D) hold, then
(a) If {q.} Qwith lim._ q. qo then lim._. u.(q.)= uo(qo) in C(O, T; H); and
(b) If {q,.} Q with limr._ q,. qo then lim,._ u.(q,.) u.(qo) for each n Z+.
Proof Assumption (D) and the continuity of the map q- u(q) from Q into H

oimply lim._ u.(q.)= u(qo) in H. Hence, we will have verified (a) if we can show
that lim._.o U. (t, s; q.) w. Uo(t, s; qo) Wo, 0 <-_ s <- <-_ T, uniformly in for s, T]
whenever w. H. with lim._. w Woe H. We argue this using Theorem 2.2. Note
that assumption (D) implies lim._. H. = H and assumption (D) together with the
assumed continuity of the map q -f(t; q) from Q into H for almost every [0, T]
imply lim._.f(t; q.)=f(t; qo) in H for almost every t[0, T] with the f.(.; q.)
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dominated by a function g LI(0, T; H), which is independent of n. Thus, we need
only to demonstrate that for some ho> 0, we have

(3.7) lim J(ho; A.(q,,)+ toI)w. J(ho; Ao(qo) + toI)wo

in H whenever w. H., n Z/ with lim._. w. Wo.
Let ho>0 and set v.=J(ho;A,(q.)+tol)w, and Vo=J(ho;Ao(q)+toI)wo. We

first show that v is uniformly bounded in n. From assumption (B) we obtain

o v. =--< o,Olv = / Ao(a(q.)v. a(q.)O, v.)
=((I+Ao(A.(q.)+toI))v., v>-Ivol =

+ Ao(A(qo)O-A(q.)O, v.)-Ao(A(qo)O,

(w,,, v.>-Iv,12+,o(A(qo)O-A(q.)O, v.)-Ao(A(qo)O, v,)

--< w. I1,11 . / Aoll A(qo)O A<q.)O II, v. / AollA(qo)0 II, v.
where 0 denotes the zero vector in V. This estimate together with assumption (C) yields

Recalling assumption (A) and that lim._ w. Wo in H, we find that the desired
uniform bound on IIvll has been established.

Once again, from assumption (B), we find

o, v roll = --< o,[v Vo[ = / Ao(A(q.)v. a(q,)Vo, v, Vo)

AotO Iv,, Vol 2 + Ao(A(q,,)v, A(qo)Vo, v, P,vo)
+ Ao(A(q.)v,-A(qo)Vo, P.vo-Vo)
+ Ao(A(qo)Vo- A(q.)vo, v. Vo)

Aoto(Pnvo-Vo, Vn V0) + <(I + Ao(A.(q.) + toI))v.
-(I+Ao(Ao(qo)+toI))vo, v.-P.vo)+(Vo-V., v.-P.vo)
+ Ao(A(q.)Vn A(qo)Vo, P.vo- Vo)
+ Ao(A(qo)Vo- A(qn)Vo, v. Vo)

Aoto(P,vo- Vo, v. Vo)+(w. Wo, v,, P.Vo>-Iv. P.vol
+ Ao<A(q.)v,, -A(qo)Vo, P.vo- Vo)
+ Ao(A(qo)Vo- A(q.)vo, v. Vo)

-<_ Ao,O Povo- roll, v roll / w Woll, v= roll
/ w woll,llPvo- roll / Aolla(q.)v. a(qo)oll,llPo- roll
+ Aolla(qo)Vo-- a(q.)voll,llv roll.

The estimate ab<-(1/2rl)a2+(rl/2)b2 for any r/>0 and assumption (C) allow us to
argue that (here we let Ms be the bound of (C) for S= {llvll, Voile)

AoCr 3tO2Ao 3
2

v. Vo
z -<- "2w P.Vo Vo , /2o w. Wo =, / w. Wo , P.Vo Vo

3Ao+ Xollm(q.)v. A(qo)voll.llP.vo- roll /- [[a(qo)Vo- a(q.)vol[ 2

-<
2

/
2 liP.no- roll /

2o
/ Iw- wol

3Ao+ Ao2MsllP.vo- roll +-2"a IIA(q)v-a(q")vll=:.
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From this, lim._. w. Wo in H, and assumptions (A) and (D), we can conclude, that
lim._. v. Vo in V and that (3.7) holds.

An analogous, but somewhat simpler argument can be used to verify (b). We use
Theorem 2.2 to show that for nZ/ fixed, lim._ U.(t, s; qm)W, U.(t, s; qo)Wo, 0 <-
s <-- t--< T, uniformly in for [s, T] whenever w,, Wo H with lim._. Wm WO in
H. Clearly, lim,,_.f.(. q,.)=f,(.; qo) in LI(0, T; H.) so that we need only to show
that for some ho> 0,

lim J(Ao; A.(q,.)+ toI)w,. J(Ao; A.(qo)+ toI)wo

in H whenever lim,,,_.Wm=Wo in H. Let vm=J(Ao;A.(q,)+toI)w, and Vo
J(Xo; A.(qo)+ toI)wo. Then from assumption (B)

;to roll =--< ;to,O Oo1=/ Ao(a(qm)V -a(q)vo, v,, Vo)

=((I + Ao(An(q,.)+ toI))vm-(I + Ao(An(qo)+ toI))vo, v, -Vo)

-IVm V0I 2 + Ao(A(qo)Vo- A(qm)Vo, v, Vo)

(Win WO, Vm VO)--IVm V0I 2 + Ao(A(qo)Vo- A(q.,)Vo, v, Vo)

-< Ilw - Woll, v -roll / Aolla(qo)vo-a(q)voll,llv- roll
or

IIv -roll Iw - Wol+
1

[IA(qo)vo-A(q)voll,.
Aoa

Assumption (A) and lim,_.o w,, Wo in H yield the desired result and the theorem is
proved.

Remark. In practice, the approximating identification problems (ID,) are solved
using standard iterative search techniques (for example, steepest descent, Newton’s
method, etc.) requiring the evaluation of b,(q) for q Q at each step. This in turn
requires the integration of the finite-dimensional initial value problem (3.4), (3.5).
Once a basis for H, has been chosen, the solution to (3.4), (3.5) can be computed
using any standard numerical integrator for ordinary differential systems. Also, the
parameter space and the admissible parameter set Q are frequently functional in
nature and are infinite-dimensional. When this is the case, the set (2 must also be
discretized. Suppose that for each m 1, 2,. ., I":Qc 2 2 is a continuous map
with finite-dimensional range and that lim,,_. I"(q) q with the convergence uniform
in q for q Q. Set Q"= I"(Q) (note that Q" is a compact subset of ) and consider
the identification problems (ID,") defined to be the problems (IDa) with Q replaced
by Q’. It is clear that each of these problems admits a solution q and it is not. difficult
to argue that there exists a subsequence {q,} {q,"} with lim _. -m,q, q, q a solution
to problem (ID) (see, for example, [4]). Once bases for H, and the range of I have
been chosen, problem (IDa) involves the minimization of a functional over a compact
subset of Euclidean space subject to finite-dimensional constraints.

Remark (Nonautonomous systems). Theorems 2.1 and 2.2 remain valid for certain
classes of temporally inhomogeneous or time-dependent operators A A(t). To be
more precise, the family of operators A(t):X 2x must be m-accretive on X for
almost every z [0, T] and must satisfy

(3.8) IJ(A; A(t))x-J(A; A(s))xl, <----tlh(t)-h(s)lL(Ixl)
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for each xX, every A satisfying 0<A=<Ao for some Ao>0, some hELl(0, T;X),
some continuous, nondecreasing function L:[0, c)[0, ) and almost every t, s
[0, T] (see [8], [9]). (Note that for simplicity we have taken w =0; however, the
discussion to follow remains valid for any w R.) The primary motivation for develop-
ing the framework outlined above was to define readily verifiable conditions on the
operators A(q): V V* that, if satisfied, would (i) also automatically be satisfied by
the Galerkin approximation A,(q) and (ii) lead to the desired convergence of solutions
to the approximating identification problems to a solution to problem (ID). The natural
assumption to add to (A)-(C) that certainly satisfies criterion (i) and that could
conceivably lead to an estimate of the form (3.8) in H is that

<lh(t)-h(s)lf-,(lvl)(3.9) Ilm(t q)v- m(s, q)vll,-
for each v V, almost every s, [0, T] and some h LI(0, T; H) and some continuous
nondecreasing " [0, o0) [0, o), both ofwhich do not depend on q Q. Unfortunately,
however, we can only show that (3.9) leads to an estimate of the form

(3.10) IJ(A; Ao(t; q))u -J(A; Ao(s; q))u <=x/ Ih(t)- h(s)lL([ul)
for each u H. Moreover, it is not clear to us how, or if, the proof of the fundamental
Theorem 2.1 given in [9] could be modified so that (3.10) would suffice. We have
explored alternative approaches and developed other techniques for treating the non-
autonomous case (for example, in the linear case, based on some ideas in Tanabe [18],
and in the strongly monotone case, via a variational formulation which can be found
in Barbu [6]). These results will appear soon in forthcoming papers.

4. Applications and examples. We briefly describe some classes of systems to which
the general framework developed in the previous section applies. In our discussion
below we consider theoretical aspects only. Implementation questions will be treated
and the results of our numerical studies will be reported on elsewhere.

Example 4.1 (Linear regularly dissipative operators). The approximation theory
for inverse problems for systems involving linear regularly dissipative operators was
treated in detail by Banks and Ito in, and is the central focus of, 12] and [3]. We show
here that the linear theory is a special case of the nonlinear theory given in 3.

Let the spaces H, V, V*, and and the set Q be as they have been defined above.
For each q Q let a(q)( .,. be a sesquilinear form defined on V x V, which satisfies
the following conditions:

(A’) For each v V the mapping q a(q)(., v) is continuous from Qc into V*.
That is, given e > 0, there exists a 6 > 0 such that

sup la(qo)(U, v)- a(q)(u, v)[ < e
uV

whenever d(qo, q)< 6 where d denotes the metric on .
(B’)

(C’)

There exist an o R and an a > O, both independent of q Q, for which
a(q)(v, v)+oo[vl2>-allv[[ 2 for every v V.
There exists a constant/3 > O, independent of q Q, such that

la(q)(u,v)l<=llullllvll foreveryu, vV.

When conditions (A’)-(C’) are satisfied it is not difficult to argue that for each q Q
an operator A(q) (V, V*) can be defined by

[A(q)v](u) =(A(q)v, u)= a(q)(u, v),
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u, v V and that A(q)" V V* satisfies (A)-(C). It then follows from Theorems .2.1
and 3.1 that there exists a unique nonlinear evolution system { Uo(t, s; q)" 0 -< s <- <- T}
on H corresponding to the initial value problem

ft(t)+Ao(q)u(t)=f(t; q), O<t<-_ T,

u(O)=u(q)

where for each q Q,f(. q) LI(O, T; H), u(q) H, and Ao(q)" Dom (Ao(q)) c H
H is the restriction of A(q) to the set Dora (Ao(q)) {v V: A(q)v H}. The operator
-Ao(q) is the infinitesimal generator of an analytic semigroup {To(t; q): t>-0} on H
(see [18]) and for b H

(4.1) Uo(t, s; q)cb To(t s; q)c + To(t r; q)f(-; q) dr.

It can be shown that the semigroup { To(t; q)" >- 0} admits an extension { T(t; q)’ ->_ 0},
which is an analytic semigroup on V* with generator A(q)" Vc V* V*. Also the
restriction of { To(t; q)" => 0} to V, call it { T(t; q)" t-> 0}, is an analytic semigroup on
V with generator A(q)" Dom(A(q))c V V, the restriction of A(q) to the set
Dom(A(q))={v V: A(q)v V} (see [3], [18]). Consequently, with appropriate
assumptions on f(. ;q), the evolution system { Uo(t, s; q)" 0<= s <- <= T} admits an
extension { U(t, s; q): 0 =< s -< =< T}, which is an evolution system on V* and a restric-
tion { U(t, s; q)" 0-<_ s -<_ -< T}, which is an evolution system on V.

It is clear from (4.1) that when A(q) is linear, we may take f(. q) 0 and consider
only the approximation of the semigroup { To(t; q)" => 0}. For each n 1, 2, let
the finite-dimensional subspaces Hn ofH and the corresponding orthogonal projections
Pn be as they were defined in 3 and assume that condition (D) is satisfied. Denote
the Galerkin approximations to A(q) (i.e., the restriction of A(q) to an operator from
Hn into H* Hn) by An(q) and set Tn(t; q)= exp (-tAn(q)), t>=O. Theorem 3.2 then
implies that

(4.2) lim IT,(t; qn)Pnu(q,) To(t; qo)u(qo)l=O

uniformly in t, for [0, T] whenever {q} c Q with limn_ qn qo Q, and the mapping
q u(q) is continuous from Q c into H. In addition, recalling that we required
that H V for all n 1, 2,. ., an inspection of the proof of Theorem 3.2 reveals
that in the linear case with the existence of the semigroup {7(t; q)’t >-0} on V, we
may apply Theorem 2.2 with X V and conclude that

(4.3) lim T(t; qn)Pu(qn) (t; qo)u(qo)ll =0

uniformly in for [0, T] whenever lim,_. q, qo, u(q) V and the map q u(q)
is continuous from Q into V (see. also [3]). Then for b H, setting

Un(t, s; q)P4) T,(t-s; q)Pn4)+ Tn(t-’; q)Pf(-; q) d"

under appropriate assumptions on f(.; q), (4.2) and (4.3) continue to hold with
T(t; q), To(t; q), and r(t; q) replaced by U(t, s; q), Uo(t, s; q), and U(t, s; q),
respectively, with the convergence being uniform in t, for e [s, T]. Hence the linear
theory and results of [3] are a special case of the nonlinear theory of 3.

We note that in the context of the identification problem, the fact that the stronger
V-convergence given in (4.3) can be obtained is significant. Indeed, (4.3) permits the
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relaxation of the continuity assumption on the performance index to the requirement
that for each z Z, the mapping u q(u, z) be continuous from C([0, T]; V) into R/.
This can have the effect of significantly enlarging the class of allowable observations
(e.g., see 1 ]). For example, in the case of a one-dimensional parabolic system formu-
lated in H L2 with V in H 1, spatially discrete (i.e., pointwise, as opposed to distributed
in space) measurements will suffice (see [3] and [5]).

Among the class of linear regularly dissipative operators that arise from a form
satisfying (A’)-(C’) are the familiar elliptic partial differential operators on L2. Briefly,

12+!+1let 12 be aregionin R and let =X,= L(12). Let Qbe a compact subset of
with the property that if q {(a0, hi, c): i, j 1,. , l) e Q, then for some a > 0 indepen-
dent of q Q,

E ai(x)i >= all 2

i,j=

for every x e 12, and every r e Rl. For q e Q and u, v e HI(12) set

v(x) + c(x)u(x)v(x) axa(q)(u, v)
io=,

ai(x). OX, OXj i=l

with H L2() and V any closed subspace of H(O) containing H(O), it can be
shown (see, e.g., [18, p. 29]) that a(q)(.,.) satisfies (A’)-(C’). The operator A(q) is
given formally by

(4.4) A(q)
0 0

ia =, Oxj
%(x) -’O-xi+ i=,

bi(x) -xi+ c(x).

When Of/is sufficiently smooth, A(q) is the elliptic operator given by (4.4), V is chosen
to be either H(f/) or H(12), and (3.1) becomes a parabolic partial differential equation
with either Dirichlet or Neumann boundary conditions.

For H L2(12) and V a subspace of HI(12), choosing the approximating subspaces
to be the span of an appropriate collection of first-order spline functions will typically
satisfy assumption (D) (see [15, Chaps. 2, 6] and Example 42 below).

Example 4.2 (Nonlinear elliptic operators). Let 12 be a bounded region in R
with smooth boundary F=01). For Of--(Ol,’’,0l) a multi-index, let lal=
a -t- O2 d- -t- a and denote the ath order generalized, or distributional derivative of
a function u by D"u; that is,

DS u(x) u(x), x e l2.
Oxs’ OxT’

Let rn be a nonnegative integer and let 8u denote the vector-valued function of length
N (i-)m) whose components are all of the partial derivatives of u of order greater
than or equal to zero and less than or equal to m.

For each multi-index a with ]a <= m, let (x, ) -+ as(X, ) be a real-valued function
defined on 12 x R N that is measurable in x and continuous in ’. We assume that

(1) There exist a g e L2(12) and a positive constant y such that

(4.5) [as(x, )1 <-,/(Ip()l/g(x)) where p(’)is any polynomial,

for almost every xe, each ’e R N, and all a with ]a[<=m; and
(2) There exists a positive constant h such that

(4.6) , (as(X, )- as(x, rl))(s rls) >-- A . Is rlsl
for almost every x e 12 and all ’, r/e R N.
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Let .H L2([’) and let V be any closed subspace of H"(I)) that contains H’(II).
Define the operator A’V V* by

(4.7) (Au)(v) f a(x, 6u(x))Dv(x) dx,

for u, v V. The operator A given by (4.7) is the distributional form of the formal
differential operator

(4.8) (au)(x)= 2 (-1)Da,(x, 6u(x)).

A differential operator of the form (4.8) is referred to as a nonlinear elliptic operator
and the partial differential equation

(4.9) O--U-u (t,x)+ (-l)"Da(x, 6u(t,x))=f(t,x)
Ot

is said to be of nonlinear parabolic type. When V H’(fl), a solution in V* to the
abstract equation

ft(t)+Au(.t)=f(t),

with A given by (4.7), corresponds to a variational solution to (4.9) which satisfies
Dirichlet boundary conditions. When V=H(fl), a variational solution to the
Neumann problem is obtained. Note that in the linear case we have

a,(x, 6u(x)) Z a’’t3(x)Dt u(x)

Under the assumptions above, it is not difficult to show that A given by (4.7) is
hemicontinuous and satisfies conditions (B) and (C) given in 3. With an appropriate
choice of the space and the set Q, condition (A) can be satisfied as well.

A quasilinear model for heat conduction or mass transfer, in which the heat or
mass flux is a function of the temperature or mass fraction gradient discussed in [16]
and [17], leads to a nonlinear elliptic operator and a nonlinear parabolic partial
differential equation.of the forms (4.8) and (4.9), respectively, with m 1. Let fl be a
bounded region in R with smooth boundary and let Lo(lq x R). Let Q be a
compact subset of 22 with the property that q Q if and only if the mapping " q(x, )
is C on R for almost every x fl, and there exists a A > 0 (which does not depend
on q) such that

(4.10) (q(x, r)’- q(x, r/)r/). (’- r/) => A[’- r/I 2

for almost every xf and all ’, r/ R. (When 1= 1, the function q(x, :)= q(sC)
(1-0.5 e-t) satisfies (4.10).)

Let H L2() and let V be any closed subspace of H(f) that contains H(Y).
Then V= H = V*, and for each q Q define A(q)" V V* by

(4.11) (A(q)u)(v) I, q(x, Vu(x))Vu(x) v(x) dx

for u, v V. Note that for each q Q the operator given by (4.11) is of the form (4.7)
with

(4.12) a,(x, u(x)) q(x, Vu(x))D’ u(x)
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for x fl and all a with I=1 a and as 0 for lal 0. The nonlinear parabolic partial
differential equation (4.9) takes the form

Ou(t,x)-V’q(x, Vu(t,x))Vu(t,x)=f(t,x), t>O, x,,Q.
ot

Taking I]" to be the usual norm on H(fl), it follows that

I]A(qo)u A(q)u II.
for each u V and qo, q Q. Since Q is a compact subset of L( x R), it is easily
verified that a given by (4.12) satisfies a growth condition of the form (4.5) with p
linear and and g independent of q Q. An application of the Mean Value Theorem
together with assumption (4.10) implies the existence of a A > 0, independent of q Q,
for which (4.6) holds. Consequently, (A), (B), and (C) given in ] 3 are satisfied, and
our general theory (including Lemma 3.2) can be applied.

With regard to approximation, polynomial spline function based Galerkin sub-
spaces can often be shown to satisfy condition (D). For example, when l= 1 and
O (0, 1) in the nonlinear heat conduction/mass transfer example discussed above,
the subspaces H can be chosen as the span of the linear B-spline ("hat") functions
with respect to the uniform mesh {0, 1/n, 2/n,. , 1} appropriately modified to satisfy
stable, or geometric, boundary conditions. Familiar error estimates for interpolation
and the Schmidt inequality can then be used to verify that condition (D) is satisfied
(see, e.g., [15, Chap. 6.3]). Generalization to higher dimensions is possible, and can
often be achieved via. tensor products of one-dimensional elements (again, see [15,
Chap. 6]).

5. Concluding remarks. We have developed a general abstract approximation
framework for the identification of nonlinear distributed parameter evolution systems.
The class of systems to which our theory applies are those whose dynamics can be
described by a nonlinear operator that satisfies conditions that are the natural nonlinear
extensions, or analogues, of the propeies of regularly dissipative, or abstract parabolic,
linear operators. The approach we have taken is based on the defining of a sequence
of approximating finite-dimensional identification problems in which the systems to
be identified are Galerkin approximations to the original, underlying, infinite-
dimensional nonlinear dynamics. Under a weak continuity assumption with respect to
the unknown parameters to be identified, equiboundedness and equimonotonicity
conditions, and an approximation assumption on the Galerkin subspaces (all of which
are readily verified for wide classes of nonlinear distributed systems and finite-element
subspaces), we are able to demonstrate that solutions to the approximating problems
exist, and, in some sense, approximate (i.e., subsequential convergence) solutions to
the original infinite-dimensional identification problem. We have shown that the linear
theory presented in [2] and [3] is a special case of our nonlinear framework and that
our results are applicable to a reasonably wide class of nonlinear elliptic operators
and corresponding nonlinear parabolic paial differential equations. In paicular, we
have considered application of our theoretical framework to a quasilinear model for
heat conduction or mass transport.

The general approximation result for nonlinear, evolution systems discussed in 2
is applicable to a much broader class of nonlinear dynamical systems than we sub-
sequently treated in 3. For example, this class of systems would include those with
dynamics described by set-valued maps or multifunctions, and (after nontrivial
modification to the general theory) time-dependent or nonautonomous operators. We
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are currently investigating these features of the general approximation theory in the
context of parameter estimation problems. (In this connection, see the last remark in

3.) Also, we would like to be able to weaken the somewhat restrictive strong
monotonicity condition. Any progress that we might make in these efforts would have
the potential to significantly enlarge the class of nonlinear systems to which our theory
and framework would apply. Finally, extensive numerical or computational studies
designed to demonstrate the feasibility and point out the limitations of our schemes
and general approach are currently underway and will be reported on in a forthcoming
paper.

After this paper was accepted for publication, related efforts by Kluge and
Langmach were called to the authors’ attention. Some of these efforts are related in
that those authors used monotonicity concepts to treat several specific estimation
problems for nonlinear partial differential equations. Motivated by problems involving
flow of viscous liquids through porous media [H. Langmach, On the determination of
functional parameters in some parabolic differential equations, in Theory of Nonlinear
Operators (Proc. Summer School Berlin 1977), Abh. Akad. Wiss. DDR, 6 (1978),
pp. 174-184], Langmach discusses conditions to guarantee existence and convergence
of approximations to best fit parameters in first-order parabolic systems where the
unknown coefficients are monotone functions of the gradient of the system solution.
His approach is in the spirit of the efforts on inverse problems for elliptic systems by
Kluge and Langmach On some problems of determination offunctional parameters in

partial differential equations, in Modeling and Identification of Distributed Parameter
Systems, Lecture Notes in Control and Information Science 1, Springer-Verlag, Berlin,
New York, 1977, pp. 298-309] and differs substantially from the approach taken in

2 and 3 of this paper.
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OBSERVABILITY OF SYSTEMS ON LIE GROUPS AND COSET SPACES*

D. CHENGt, W. P. DAYAWANSA:, AND C. F. MARTIN

Abstract. The purpose of this paper is to study the observability of a class of systems for which the
state space is a Lie group and the output space is a coset space. The study of this type of system was initiated
by Brockett [SIAM J. Control, 10 (1972), pp. 265-284]. In this paper, Brockett’s observability results are
generalized and necessary and sufficient conditions for observability are obtained. Effective algorithms are
established to verify such conditions. Finally, as an application, some disturbance decoupling problems are
considered.

Key words, observability, global observability, Lie groups, analytic systems

AMS(MOS) subject classification. 93B

1. Introduction. In this paper, we study the observability properties of systems
that are described by a state equation that evolves on a Lie group G and an output
equation that takes values in a coset space of G. These equations are assumed to be
of the form

(1.1) A(x) + Z Bi(x)tli, X G,
i=1

(1.2) y Cx

where A(x), Bl(x),’. ", B,,(x) are right-invariant vector fields on G, C is a closed
subgroup of G, and the notation Cx is to be interpreted as the right coset of C in G
that contains x.

This system model has been studied by Brockett [1] where G was assumed to be
a group of matrices. Brockett has shown 1 that there are many important applications
in engineering and in physics that have models of this form. Jurdjevic and Sussmann
[2] have extended (1.1) to an abstract Lie group G and have obtained a set of basic
controllability properties of (1.1). Our work is related to and extends the work of 1 ].

The observability properties are discussed by Brockett [1]. To describe Brockett’s
observability result, we need a preliminary definition.

DEFINITION 1.1. TWO points Xl and x2 are distinguishable if there exists some
control that gives rise to different outputs for the two starting points.

Let S be a subset of G. We denote by {S} the subgroup generated by S, i.e., the
smallest subgroup of G containing S. Let Y{ be a set of right invariant vector fields of
G. We denote by {YLr}LA the Lie subalgebra generated by Y{’, and

exp ({Y{}LA)= {exp X IX {Yg’}LA}.

The main observability result of [1] is Theorem 1.1.
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THEOREM 1.1 [1]. Let and be Lie algebras in gl {n, [}, and suppose that all
the points reachable from the identity for matrix system

2= A+ uB x, y=({exp})x
i=1

are {exp }. Then the set ofinitial states , which are indistinguishablefrom the identity,
contains {exp Y’} if and only if {adY}ac . Therefore a necessary condition for all
states to be distinguishablefrom the identity is hat contains no subalgebra such that
{adz {}LA (22 ,

It is shown by example in Brockett 1 that the preceding theorem is not sufficient.
An important point in this theorem is that the "unobservable" part is related to an
-invariant subalgebra {adY{}LA, which is contained in the Lie subalgebra .of the
output subgroup.

Motivated by this fact, we investigate the "unobservable" part in more detail. The
results of Jurdjevic and Sussmann [2] enable us to describe the controllable set, which
corresponds to {exp} of Theorem 1.1. Based on [1] and [2], we give necessary and
sufficient conditions for the system (1.1), (1.2) to be observable.

The paper is organized in the following way. Section 2 contains two main results
local observability conditions and global observability conditions. In 3, we develop
algorithms that are useful for studying groups ofmatrices. In 4, we give some examples.
Finally, in 5 the input-output decoupling problem is discussed as an application.

2. Observability results. To avoid unnecessary complexity, we assume throughout
this paper that the .controls are piecewise constant..In fact, this is not essential. For
instance, if we replace the set of piecewise constant functions by the set of the piecewise
continuous functions, all of the arguments remain valid.

Let R(x) be the reachable set starting from x, i.e., R(x) is the set of points y such
that there exist a piecewise constant control u and a time T->_ 0, such that the solution
of (1.1) satisfies x(O)= x, x(T)=y. We denote by R(x, t) the reachable set at time t,
starting from x.

It is proved in Jurdjevic and Sussmann [2] that for the right-invariant system
(1.1), the reachable set of x is related to the reachable set of the identity e by

(2.1) R(x)=R(e)x.

Using this fact, we prove the following elementary result, which shows that distinguish-
ing two arbitrary points is equivalent to distinguishing a point from the identity.

LEMMA 2.1. Two points p and q are indistinguishable if and only if for each
rR(e)

(2.2) Ad (r)pq-’ 6 C.

Proof By the structure of the output (1.2) it is clear that p and q are indistinguish-
able if and only if for all t, R(p, t) and R(q, t) are in the same coset of C. From (2.1),
it follows that

(2.3) Crp Crq for all r R (e),

that is,

rpq- r- Ad (r)pq- C. [3

Now we may define an unobservable state as follows. (It is similar to the linear
case" x and x2 are indistinguishable if and only if x- x2 belongs to an unobservable
subspace.)
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DEFINITION 2.1. A point h is called unobservable if there exist p and q such that
pq-= h and p and q are indistinguishable.

Remark 1. Let h be unobservable. Then it follows from Lemma 2,1 that for any
pair (p , q) if p (q)- h, then p and q are indistinguishable.

Let

H {h e G[h is unobservable}.
By definition of unobservable state and equation (2.2), it is clear that

(2.4) Hc C.

In fact, H has a subgroup structure that is shown in the following lemma.
LEMMA 2.2. Assume C is closed. Then the unobservable set H is a closed Lie subgroup

of O.
Proof By definition and Lemma 2.1,

(2.5) H= {h e Glrhr- e C for all re R(e)}.
Let hi, h2 e H. Then,

rhhr-= rhr-rhr-= (rhr-1)(rhzr-)- e C.

Thus, H is a subgroup of G.
Since C is closed, if for a sequence {h,} c H, h, h, as n-* c, then

rh,r- rhr- e C.

Thus, h e H, and hence H is closed. Now the result follows from the well-known fact
(see for example, Hausner and Schwartz [4]) that a closed subgroup of a Lie group
is a Lie subgroup.

If C is closed, the output mapping has an analytic structure that is described by
the following well-known theorem.

THEOREM 2.1 [3]. Let G be a Lie group and C a closed subgroup of G. Then the
quotient space C\G admits the structure of real analytic manifold in such a way that the
action of G on C\G is real analytic, that is, the mapping G x C\G C\G which maps
p, Cq into Cpq, is real analytic. In particular, the projection G C\G is real analytic.

Let {R (e)} be the subgroup of G generated by R(e) and let {R (e)} denote the
closure of {R(e)}. For convenience denote the vector fields A(x), B(x),..., B,,(x)
by A, B,. ., B,,, respectively, where A and Bi are elements in Cg(G), the Lie algebra
of G. Then we have the following lemma.

LEMMA 2.3. Assume h e H, Then

(2.6) Ad(r)heH for all re{G(e)}.

Proof First, we claim that

(2.7) Ad (r)h e H for all re G(e).

Since R(e) is a semigroup [2], for any e R(e) we have re R(e). Thus,

(r)h(r)-= (rhr-)- e C for all e R(e).
It follows that rhr- e H.

From its defining properties, it is clear that

{R(e)} { exp tsX,) exp tX) t , s Z/,
(2.8)

Xie A+ ujBj uje i= l,. ,s
j=l
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Set

E ={(tl,..., t)eRSlAd (exp (tXs)... exp (tlX1))h e C}.

Then, to prove (2.6) for re{R(e)} it is enough to show that E =[, s= 1,2,. ..
We proceed by induction. For s 1, if Ad (exp tlX1)h - C, then there exists 71 such that

d
Ad (exp tlX)h : (gp),C(C)

dt
where p Ad (exp ?lX1)h, (C) is the Lie algebra of C and Rp is the right translation,
i.e., Rp"G G is defined as x xp. In other words, there exists a right-invariant
one-form w(x) generated by w e ((C))- such that

( d Ad(exptlX1)hlO"(2.9) WP)"l r
By analyticity, (2.9) holds in an open dense subset of . But according to (2.7), for
t e +- {t e , >= 0} the left-hand side of (2.9) is zero; this leads to a contradiction.
Now, assume that

Ad (exp (t-lX_l) exp (qX1))h e C,

and

{Ad (exp (tX) exp (tlX1))hl(tl,... t) e} C.

Then there exists ’= (’1,."", t) such that

d
Ad (exp (tXs) exp (s-,Xs_l)’’’exp (’lX,))h e (C).

dt

Similar to the case when s- 1, we have a contradiction.
Thus, we have shown that (2.6) holds for all re {R(e)}. By continuity, it holds

for all re {R(e)}. !-I
Remark 2.1 It is clear by (2.8) that {R(e)} is a path-connected group, hence a

Lie subgroup [5]. Now since {R(e)} is a connected Lie group, and A,
generate ({R(e)}), then [2, Lemma 6.2]

{R(e)} {exp txX) exp tX1) ti e I, s e Z+,
(2.10)

Xie{A, B1,’"", B,,}, i= 1,’’ ",s}. I-I

Next, we investigate the relations among the Lie algebras (H), (C), and (G),
which are the Lie algebras of H, C, and G, respectively.

Let {Xl(X),..., X(x)} be a set of right-invariant vector fields generated by
Xi e 3(G), i= 1,..., s, respectively. Let A denote the subspace of 3(G) spanned by
{xl,""", xs}. A subspace A of (G) is called Y e (G) invariant if

Likewise, for right-invariant we form wl(x), ", w(x) generated by wi e *(G), the
cotangent space of G at the identity e, we have a right-invariant subspace

span {wl,. ", w.}.

This remark was suggested by an anonymous reviewer.
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f is Y invariant if

{Lywlwf}cO.
The following two lemmas are generalizations of Theorem 1.1.
LZMMA 2.4. (H) is A and Bi, i= 1,..., m, invariant.

Proof. Let X A or Bi, N, p exp (tX). According to Lemma 2.3 and (2.10),
(Ad exp (tX)).Cg(H)c Cg(H). Now let Ye (H). Then

d
Ad exp (tX),Y (H).IX, Y]= ,=o

LEMMA 2.5. (H) is the largest A and B, i= 1,..., m, invariant Lie subalgebra
contained in ( C).

Proo We claim that

(2 11) (H)= ad-’ ad’(C)X
XI,’",Xp{A,B1,"’,Bm}

pZ

First, we show that (2.11) implies(H) is the largest A and B invariant Lie subalgebra
contained in (C). Assume (H)= (C) is also A and B invariant. Then, for any
X, X. {A, n, nm},

ad.., ad.() = ()= (C).

Thus,

-(c).(n)ad,. adx
Since X,..., Xp are chosen arbitrarily, we have that

() = (H).

Next, we prove (2.11).
() Lemma 2.4 shows that (H) is A and B invariant. The inclusion follows by

an argument similar to the above.
() Let

Y ad], ad](C).
x,-..,xp {A,,-..,n,,,}

pZ

To show that Y (H), it is enough to show that

exp(rY)H for all r.
Using (2.10), it suffices to show that for any

x, , x. {A, n,, , n,}, (t, , ,) ",
(2.12)

Ad (exp (tpXp)...exp (fiX)) exp rY C.

Since Ad (exp (tpXp)...exp (tX)) is a diffeomorphism, we have

Ad (exp (tpXp)...exp (qX)) exp rY= exp (Ad (exp (tpXp)...exp (tlX)rY)).

Now to prove (2.12), it suffices to show that

(2.13) Ad (exp (t,X.) exp (tX))Y (C).

Let us denote the right-hand side of (2.11) by . Now since

Ad (exp tpXp) exp tX1)rY)

Ad (exp t.X.) Ad (exp t._X._) Ad (exp (tX))r,
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it suffices to prove, that

But

Ad (exp (tiX1)rY) e

Ad (exp (tlXl)’ry) exp (ad (tlXl))7"y

2
(ad (tx))

(ry).
n=o n!

Therefore, obviously, Ad (exp (tlXl)zy) . U
We are now ready to discuss the observability properties of (1.1), (1.2).
DEFINITION 2.2. System (1.1), (1.2) is locally observable at x if there exists a

neighborhood Vx of x such that

tx Vx {x},

where Ix is the set of points that are indistinguishable from x. System (1.1), (1.2) is
locally observable if it is locally observable everywhere. System (1.1), (1.2) is (globally)
observable if

Ix {x}.

In fact, Lemma 2.5 leads to the following local observability result, which is now
obvious.

TEOREM 2.2. System (1.1), (1.2) is locally observable if and only if the largest A
and Bi, i= 1,..., m, invariant subalgebra contained in (C) is zero. Moreover, if W is
a neighborhood ofe such that Ie f’) Ve { e}, thenV, Rx (Ve) is a neighborhood ofx such
that Ix (q Vx {x}.

Let S be the centralizer of {R(e)}, i.e.,

(2.14) S={x Glrx=xr for all re{R(e)}a}.

According to (2.10), we may express S in an easily verifiable form as

(2.15) S= {x 6 GIx exp (tX) =exp (tX)x, X 6 {A, BI,’’ ", B,,}}.

We will use S to establish a global result.
It is obvious that S is a closed subgroup of G, and hence is a Lie subgroup.

Moreover, by the construction of {R(e)} we see that to verify that x S it is enough
to verify that

for

Ad (x) exp (tY) exp tY

Y{A, B1," ,B}, t.

Now we state our global observability theorem.
THEOREM 2.3. System (1.1), (1.2) is globally observable if and only if the following

two conditions are satisfied:
(a) (H) {0},
(b) S f"l C {e}.
Proof. Necessity. The necessity of (a) has been proved in Theorem 2.2. The

necessity of (b) is obvious, because if e h S f’) C, then h H, i.e., h is indistinguish-
able from e.
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Sufficiency. From (a) we see that H is a discrete subgroup of G. Now for each
h H, we define a mapping b {R(e)} H as

ch(r) Ad (r)h.

According to Lemma 2.3, b maps {R(e)} into H. Now, since {R(e)} is connected
and b is continuous, {Ad (r)hlr{R(e)}}c H is connected, but since

h {Ad (r)hlr {R(e)}}
it follows that

{h} {Ad (r)hlr {R(e)}6},

Ad(r)h=h for all r{R(e)}.

In other words, h S. Now using condition (b), we see that h e, i.e., H {e}.

3. Algorithm. In the previous section, we saw that the Lie subalgebra (H) of
the unobservable Lie group H plays an important role in investigating the observability
of the system (1.1), (1.2). The following algorithm gives a method to compute it.

ALGORITHM 3.1.

no (c)

A - d- LA’k d- LB.’k, k > 1’k+l k
i=l

Algorithm 3.1 produces an increasing sequence of right-invariant subspaces. To
see that it provides (H), we need the following theorem. The proof may be found
in Isidori [6].

THEOREM 3.1. In Algorithm 3.1 if flk*+l k* then

(3.1) (H) n..
Note that the algorithm converges since the sequence of subspace {OK} is

increasing.
Since every Lie algebra over the field of real numbers is isomorphic to some

matrix algebra, we may consider further algorithmic details for the Lie algebras of
groups of matrices.

First, let o(x) V*(G) be a right-invariant covector field (one-form) generated
by *(G), and let A(x), B(x) V(G) be the right-invariant vector fields generated
by A, B (O), respectively. Then,

(LA, B)= (LA(X), U(x))
(3.2)

LA((X), n(x))--((x), [A(x), B(x)]).

Since (o(x), B(x)) is constant, the first term of the right-hand side of (3.2) is zero.
Thus, we have

(3.3) (LAO, B)= -(, [A, B]).

Now we consider a group of matrices. Assume the group considered is GL (n, )
(or a subgroup of it). Then, A, B egl (n,) may be considered as matrices A (aj)
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and B (b,..i), respectively. Let to gl* (n, R). We may assume to is also expressed as
a matrix to (toij) and define

(3.4) (to, A): toijaij.
i=lj=l

NOW,

<LAto, B)= -(to, [A, B]>

i-----1 j=l

p=l q=l k=l

Thus

(3.5) Lato [to, A 7-] toAr Ato,
where T stands for transpose. To apply Algorithm 3.1, formula (3.5) is helpful.

Remark 3. As shown in Brockett 1 ], a right-invariant vector field on d(n, ) may
be written as

A(x)=Ax,

where A A(e) and A(x)= (R).A(e) Ax. Similarly, a right-invariant covector field
may be written as

(x) (x)-’

where (e) and (x) (R-l)*(e) (xr)-’.
To see this, we only have to show that

<w(x),A(x)>=(w,A>.

In fact, if we denote y x-, x (x), and y= (yj), then

<w(x),A(x’)=(wY)(a,ox)
p q

p q

p

In fact, if we rewrite A(x) in the "usual fashion" as a vector

A(e)= (a,,,..., a,,, a,,..., a,,..., a,,,...,

then

Similarly,

A(x)=(xr-i-xr-i .-i-xr)A(e) n terms.

to(x) to(e)((x)-’ 4- (xT") -’ 4-’’’
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where "-i-" denotes the direct sum of matrices, and (xr-i x r 4-...-i-x r) and ((xr)-
(xr)-4 4-(xr) -1) are the Jacobian matrices of R,, and Rx-l, respectively.

4. Examples. In this section, we present some examples to demonstrate our results
and algorithms.

Example 4.1. Consider a system

(4.1)

(4.2)

where x GL (3, R), C SO (3), and

uBx,

y Cx

B= 1 0

0 0

Now 3(C) is the following set of skew-symmetric matrices"

fl lff(C)=span -1 0

0 0

According to Algorithm 3.1, we set

1 0 0 0 0 0 0 0

llo=span 0 0 0, 0 1 0, 0 0

0 0 0 0 0 0 0 0

span {w, w2, w3, w4, ws, o6}.

Using formula (3.5), we see that

0 0 0

LBw= 0 0 0 LB(o5 0

0 0 0 0

*Thus, f (G) and k, 1. Therefore,

0 0 0 0 0 0
0 -1 0 0 0 -1 0

0 1 0 0 0 0
1 0 0 0 1 0

0 0 LBW6 0 0

1 0 0 0

={o}.

Next, let us consider

SCIC={xeCIxexp tB=exp(tB)x, for all tR}.

Let x (xo) e C. Since

exptB= 0

0 0 1

011

we set

Xll -I- X12 X12 XI3
xexptB= x2+tx22 x22 x23 =exp(B)x=

231 -I" tx32 X32 X33

It follows that

Xll X12 X13

tx + x21 tX2 "+- X22 tX3 + X23

X31 X32 X33

(4.3) X12 0, Xll X22 X13 0, X32 0.
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Since x C SO(3), the only solutions of (4.3) are

(4.4) xl =e,
-1 0 01x2= 0 -1 0
0 0 1

According to Theorem 2.3, system (4.1), (4.2) is not globally observable.
Example 4.2. Consider the following system:

(4.5) : Ax + uBx,

(4.6) y Cx

where B and C are as in Example 4.1, and

0 0 1

A= 0 0 0.

0 0 0

As in the previous example, we see that (H) {0}. So the system is locally observable.
Now

e= 0 1 0.
0 0 1

According to (2.15), we have only to check the commutativity of both xl and x2 of
(4.4) with exp (tA). For x the answer is "no." Therefore, x e 13 is the only element
in S fq C. It follows that system (4.5), (4.6) is globally observable.

Remark 4. In Example 4.2, if we consider eAt, e at, e -Bt e-A’ em eAt and their
products, it is easy to see that

{R()} 1

0

It follows that

x, Y6[, x #O1
and therefore,

sc=I.
But in general, it is difficult to calculate {R(e)} and S. In fact, Example 4.2

shows that to use Theorem 2.3 it is not necessary to construct {R(e)} and S directly.
We may check the global observability by the following rule, which may be considered
as a corollary of Theorem 2.3.

COROLLARY 4.1. System (1.1), (1.2) is globally observable, if and only if,
(a) (H)= {0},
(b) {xClexp(tX)x=xexp(tX), X{A,B,,. .,B,,}, t}={e}.
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5. Decoupling problems. As an application, we consider a decoupling problem.
To keep the right-invariance of A(x) and Bi(x), we consider only a constant feedback

(5.1) u=a+u
where a and flGL(m,).

Now assume

(5.2) =A(x)+ u,B(x)+toW(x),
i=1

(5.3) y Cx

where to is a disturbance.
LEMMA 5.1. The disturbance to does not affect the output y if and only if

(5.4) W (H).

Proof. In fact, we may choose a local coordinate chart (b, U) around e, say
x (x 1, x2), such that

2 =0}.C U={p Ulxp
Thus,

y=x2(q), qE U.

Now, it is easy to see that on U, (H) is the largest A and Bi invariant distribution
contained in the ker (y.). Note that constant feedback does not affect 3(H). Thus,
the canonical decoupling result shows that (Isidori et al. [7]) (5.4) is a necessary and
sufficient condition that to does not affect y on V. By the analyticity, it is also true
globally. I3

Next, we consider the input-output decoupling problem. Assume C1, , Ck are
Lie subgroups of G. Let C CI (’l. f’l Ck. Then it is easy to see that

y Cx
(5.6)

Yk CkX

in the sense that p and q are indistinguishable in (5.5) if and only if they are
indistinguishable in (5.6).

Let qd(H i) be the largest A and B invariant Lie subalgebra contained in
(( C1 f’) C_ f’) C/ f’) Ck). Consider the system

: A(x) + Z u,B,(x),
(5.7) i=1

yj= Cx, j=l,...,k.

We say that the input-output decoupling problem is solvable if there exists
/3 (/3j) GL (m, ), suchthat for

u v
there exists a partition of v, namely v=(v, vk), such that v affects only the
corresponding y, 1,. ., k.

(5.5) y Cx

is equivalent to
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THEOREM 5.1. For the system described by (5.7) the input-output decouplingproblem
is solvable if and only if

B= Bf’l (H1)+ .+B (Hk)
where B span {B,. ., Bm}. Moreover, if the system (5.7) satisfies the controllability
rank condition (i.e., ({Re}G)--c(G)), then v controls yi completely.

Proof. The proof is immediate from Lemma 5.1 and the well-known decoupling
results of Nijmeijer and Schumacher [8] and Cheng [9].

6. Conclusion. We have considered a system defined on a Lie group with outputs
in a coset space as described in Brockett [1]. The main results of this paper are two
observability theorems, Theorems 2.2 and 2.3, that give necessary and sufficient condi-
tions for local and global observability, respectively. Algorithm 3.1 calculates the A
and Bi invariant Lie subalgebra contained in a given Lie subalgebra, which makes the
condition in the above two theorems computably verifiable. Some examples are
included. Finally, we have briefly discussed the input-output decoupling problem of
a system on a Lie group with output in a coset space.
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Abstract. Necessary and sufficient conditions for the existence and the uniqueness of the solution of
the optimal control problem of discrete-time linear time invariant two-dimensional systems are determined.
Given a system that satisfies these conditions, the optimal control law is obtained using an algebraic Riccati
equation with coefficients in the polynomial ring R[z]. Since the feedback implementation of this law does
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Key words, two-dimensional systems, linear quadratic optimal control, Riccati equation, 12 stabilizability,
stability

AMS(MOS) subject classifications. 93C55, 93D15, 49E20

1. Introduction. Underlying a study of a two-dimensional system is often a motiva-
tion to improve its dynamical behaviour.

Recently, some authors 1]-[3] concentrated their efforts in two-dimensional state
space models stabilization by means of feedback compensators. Their synthesis objec-
tive being to obtain a prescribed stable closed-loop characteristic polynomial, the
approach they followed is reminiscent of the classical one-dimensional pole placement
method. However, the pole placement design usually exhibits a poor control on the
short-term system response, since it essentially affects the asymptotic evolution.

in this paper we take a different approach and concentrate our study on design
procedures that are based on the minimization of a quadratic cost functional J. The
two-dimensional system, which is the end result of this optimal design, is not merely
internally stable, but satisfies additional requirements on the state and input evolutions
that are summarized by the structure of J.

The class of discrete time two-dimensional systems we will consider has as a
prototype the linear model described by the state updating equation [4]
(1.1) x(h+l,k+l)=Alx(h,k+l)+A2x(h+l,k)+Blu(h,k+l)+B2u(h+l,k)
where x(h, k) R and u(h, k) R are the local state and the input value at (h, k)
and A1, A2, B1, B2 are real matrices of suitable dimensions.

Assuming that the initial local states x(i, -i) have been assigned, the state dynamics
is completely determined by the input function u(., ). Our prime concern in the next
section will be to pose in precise terms the optimum LQ problem for the system above.
In fact, if no constraint is imposed on the structure of the infinite set of initial local
states we might expect that initial conditions contribute per se an infinite value to the
corresponding cost functional. It turns out that a satisfactory theory requires us to
assume that both the space of allowed initial conditions and the space of input functions
are [2.

Within this framework, a fundamental property is the one that reduces the existence
and the uniqueness of two-dimensional optimal control to a pair of rank conditions
on two-dimensional polynomial matrices. This result constitutes a nontrivial extension
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ofthe corresponding one-dimensional polynomial criteria based on PBH controllability
and reconstructibility matrices.

One further point of contact with the one-dimensional theory is that the optimal
control can be expressed in a linear feedback form, so that the resulting closed-loop
system is also a linear dynamic system. In this respect, however, a deep difference
arises, since one-dimensional optimal control law preserves the original causality
structure of the system, while two-dimensional causality is completely lost. This is
essentially due to the fact that the optimal control value at (h, k) depends on an infinite
number of local states that are not located in the past of (h, k).

The main tool for solving the problem is a special extension of the algebraic
Riccati equation, whose coefficients are polynomial matrices in one variable. When
the solvability conditions are satisfied, this equation admits a unique stabilizing solu-
tion, which induces a feedback matrix analytic in an open neighbourhood of the unit
circle.

The analyticity property is extremely important in two respects. First, it allows us
to obtain the optimal feedback law using the coefficients of a Laurent series expansion.
Second, it naturally calls for an approximation procedure that provides a suboptimal
control through the truncation of the above series.

A noteworthy advantage is that this suboptimal control stabilizes the closed-loop
system while preserving a weakly causal two-dimensional structure, that recursively
generates the feedback input values.

The 12 approach followed in the paper is mainly motivated by the necessity of
guaranteeing that the optimal control problem is a meaningful one. Usually, when
dealing with the internal stability of two-dimensional systems, a more general approach
is taken into account [5], since an I constraint is the only requirement imposed on
the set of initial conditions. The control law we obtained by solving the 12 optimal
control problem still holds in an I setting and, interestingly enough, the 12 stabilizability
criterion, based on the rank of a two-dimensional polynomial matrix, provides a
necessary and sufficient condition for I stabilizability also.

2. Prollem formulation. Denote by

(k {(i, j): +j k}, k 0, 1, 2,"

the kth separation set in Z x Z. For purposes of future manipulation, it is useful to
single out the restrictions of the input function u(.,. and the state evolution x(.,.
to the separation sets and to consider such restrictions either as .bilateral sequences or
as Laurent formal power series in one variable. So, the restrictions of u(.,.) and
x(.,.) to k will be denoted by the sequences

(2.2)

or by the series

Ilk := {u(--i, k + i); e Z},

k := {x(--i, k + i); e Z},

(2.3) ltk() := u(--i, k+ i)i,
i:oO

(2.4) Y,() := x(-i, k+ i)(’.

In the following, sequences (2.2) will be called global states.
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For each initial global state Yo on the separation set Co and each input function
u(.,. ), we introduce the quadratic cost functional

(2.5) J(u, Yo): [xr(h,k)Qx(h,k)+ur(h,k)Ru(h,k)]
h+k_O

with R > 0 and Q _-> 0. The optimal control problems we aim to solve are the following:
(i) Given o, derive conditions for the existence and the uniqueness of an input

u(.,.) that minimizes the cost J.
(ii) Whenever these conditions are satisfied, explicitly compute the optimal input

and the corresponding value of J.
It is apparent from the structure of J that admissible input functions must belong

to the space ID(R’) of R’-valued functions u(.,. defined on

Z2+:={(h,k)ZxZ h+k_->0}= [._J
k__>0

and satisfying the finite norm condition

Ilu(’,’)llN:- Y uT(h,k)u(h,k) <.

Furthermore, we are only interested in state dynamics x(.,.) that belong to
l2(Rn). Although this condition is not necessary for guaranteeing the finiteness of J
in case Q is singular, it fulfills the natural requirement of imposing a stable pattern
on the admissible state evolutions. In fact, x(.,.)e I2D implies that the associated
global states , satisfy

(2.6) II,ll := 2 xr(-i,t+i)x(-i,t+i)<,

(2.7) 2 II,IIN IIx(.,.)ll
t=0

showing that [1, - 0 as t- o.
Just putting 0 in (2.6), we argue that the allowable bilateral sequences of initial

conditions must belong to 12(Rn). In this way, the optimization problem we aim to
solve-is completely couched in an 12 setting.

It is well known that the infinite time least squares problem for stationary linear
one-dimensional dynamical systems may be treated analytically via the algebraic Riccati
equation. The questions of the existence and uniqueness of a stabilizing optimal
solution, however, can be settled a priori, without explicitly solving the equation. In
fact, a necessary and sufficient condition for both properties is that the polynomial
matrix

(2.8) [I-Aw Bw]

has full rank for any w in the closed unit disk and the polynomial matrix

(2.9)
I-Aw

has full rank for any complex w in the unit cirle [6], [7]"

Throughout the paper, r means transpose, v conjugate, and conjugate transpose.
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In two-dimensional optimal control problems, the existence and uniqueness
properties of a two-dimensional stabilizing control still reduce to rank conditions on
polynomial matrices in two variables and the optimal control law is obtained via an
algebraic Riccati equation whose coefficients are polynomial matrices in one variable.
A precise statement of the main results is given by Theorem 1.

THEOREM 1. The following facts are equivalent:
(1) OS (optimal solution). For each global state 3o in 12(R") there exists an I

solution of the optimal control problem, i.e., there exists an input u( .,. in l(R’) such
that x(.,. belongs to 122(R ") and the corresponding value ofJ is minimized.

(2) RC (rank conditions). The two-dimensional polynomial matrix

(2.10) [I- Azl A2z2 BZl + B2z2]

has full rank on the set

d//= {(z,.z2) C C:[zl Iz21 _-< 1}

and the two-dimensional polynomial matrix

(2.11)
I-Azl A2z2

has full rank on the unit torus --- {(z,, z2)c x c. Iz,I- Iz=l- 1}.

(3) AREz (algebraic Riccati equation). The following polynomial algebraic Riccati
equation"

P(z) Q + (A( + Afz-’)P(z)(a, + azz)

(2.12) -(a(+ a z-’)P(z)(B, + B2z)[R + (B(+ Bfz-I)P(z)(B + Bzz)]-
x (BT + BTz-’)P(z)(A, + A2z)

in the unknown matrix P(z) admits a unique solution in an open annulus that includes, with the following properties"
(i) P(eJ’) P*(eJO’)>-O, forallog[O, 27r].
(ii) The matrix

(2.13) K(z):= -[R +(BT + BT2 z-’)P(z)(B + Bz)]-a(BT + Bfz-’)P(z)(A, +A2z)
is analytic in an open annulus that includes .

(iii) The matrix

(2.14) ’(to):=(A+A2e)+(Bl+B2eJ’)K(e)
is asymptotically stable for all oo in [0, 2r].

Moreover, whenever the above conditions are fulfilled, the input u(., considered
in OS is uniquely determined by the stabilizing feedback law

(2.15) u(h, k)= Kx(h / i, k-i)

where the matrices K are the coefficients of the Laurent series expansion

(2.16) K(z)= Kiz .
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The implications OS RC of the above theorem will be proved in 3 and the
implications RC AREz OS in 4. In 5 an Iv extension of some results will be
given, while in 6 a suboptimal solution is discussed, which seems quite attractive
from the implementation point of view.

3. Necessary conditions for 12 solvability. An obvious necessary solvability condi-
tion of the 12 optimal control problem is that for any initial global state 3o in 12, there
exists some input u(.,.) in I that provides an I state evolution.

Denoting by 7/’(3o) the affine variety of all inputs in I with this property, the
above requirement is formally restated as

(3.1) F(3o) # V3o 12.
It is intuitively clear, however, that the existence of input functions inducing finite

values in the cost functional does not necessarily imply that the infimum of J(Yo,"
is effectively attained for some input function in OF(3o). So we expect that additional
conditions, besides (3.1), must be fulfilled to guarantee the existence of an optimal
control in F(Yo).

The following theorem shows that in some sense it is meaningful to discuss
separately the existence of I state evolutions and that of optimal controls. Actually,
the first problem is connected with the rank of the matrix (2.10), whereas the second
depends on the rank of both (2.10) and (2.11).

The results of the theorem that provide necessary conditions for solving these
problems will be supplemented by those of 4, showing that the same conditions are
also sufficient. Thus an elegant check is available for the feasibility of two-dimensional
optimal control which constitutes a nontrivial extension of the results already available
in the one-dimensional case.

THEOREM 2. If OF(3o) for all initial global states o I, the polynomial matrix

(2.10) has full rank for all (z, z2) in [/l. If moreover, for each 3oI, there exists an
input Uopt OF(3o) such that

(3.2) J(3o, u)--- J(3o, Uopt) Vu OF(3o),

then the potyr,omial matrix (2.11) has full rank for all (Zl, z2) in -.
Proof Suppose that (2.10) is not full rank at (z, z2) (b ej, b ej) .
Then there exists a nonzero vector v C" such that

(3.3) vT(I-A,z-A2z)=O, vT(B,z+Bz)=O.
We now introduce the following initial global state 3o 12"

3o := {x(i, -i) 0 for : O; x(O, O) v}

and suppose that there exists an input u(., I whose corresponding state evolution
x(.,. is in I. Since 0 < b _-< 1, the functions Ub and xb defined by

(3.4) ub(h,k)=u(h,k)bh+k, h+k>=O,

(3.5) Xb(h, k) x(h, k)b h+k, h + k >-_ 0,

are in I2D and Xb represents the state evolution determined by 3o and u when A,
B, BE in (1.1) are replaced by bA, hA2, bB, bB2. Therefore, taking the double
Fourier transforms of Ub and Xb

(3.6) tb(to, tO):= Ub(h, k) e -ih’, e -k",
h+k>--O

(3.7) )b(O)l, tO2):= E Xb(h, k) e-ih, e-’,
h+kO
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it is easy to prove that

(3.8) v=[I-bA e-J’’-bA2 e-J’2].b(W, w2)-[bB e-J’,+ bB2 e-J’2]ab(w,, w2)

holds almost everywhere in [0, 2rr)x[0, 2rr). Letting

(3.9) a(wl w2):= -[(I- barl
L (-bB( ej’, -bBf e)v J’

premultiplication of (3.8) by v* gives

Ub(W,, W)
< Ila(w,,I1 11 =

which in turn implies that

(3.10) ,,,2)II / ,o=)II >- Ilvll/i[a(oo, o) 22.
Since a(O, O) 0, it is easy to obtain a quadratic upper bound of the following

form:

I[a(w, oo)ll <= M[(w O)z + (wz- "0)2]
and inequality (3.10) can be replaced by

(3.11)

The right-hand side of the above inequality being not summable on [0, 2rr)x
[0, 2rr), we have that the same is a fortiori true for the left-hand side. This contradicts
the original assumption that Ub(’,’) and Xb(’,’) were I2 functions. In fact that
assumption implied, by Parseval’s Theorem, the summability of both tb and b on
[0, 2rr) x [0, 2r).

Note that in the above proof a complex valued global state o was considered.
However the conclusion of the theorem is correct even when only real global states
are allowed: we have just to analyze the dynamics that correspond to the real or
imaginary part of o.

The proof of the second part of the theorem is quite long and will be omitted for
sake of brevity. It may be found in [8]. U

4. A Riccati equation for two-dimensional systems. It is very well known that the
algebraic Riccati equation plays a crucial role in the solution of one-dimensional
optimal control problems. In this section we will derive a Riccati equation for two-
dimensional systems that provides a closed-loop optimal solution to the problem of
minimizing the quadratic cost functional J defined in (2.5).

As a matter of fact, the actual evaluation of the minimum cost and the explicit
computation of the optimal input function lead us to study the existence of a particular
solution of the Riccati equation, which we characterize in terms of positive definiteness
and analyticity.

Let us first start with a preliminary analysis of the open-loop system dynamics in
terms of Fourier transforms. We assume that 3o and lit belong to 12. Then, by equation
(1.1) all global states 3,, 1, 2,... are in I and the Fourier transforms

(4.1)

,(w)= 2 u(t+h,-h) e -ih’,

:,(w) E x(t+ h, -h) e -’h’
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have components in L2[0, 27r]. Letting

(O0) A1 "k" eJ’A2, /(w) B, + eJ"B2,
equation (1.1) can be rewritten as a first-order recursive equation

(4.2) t+,(w) (w),(w)+ (w),(w),
whereas Parseval’s and Beppo Levi’s Theorems allow us to express the cost functional
in the following form"

J= 2 (2)-’ Y(w)Q,(m)+ (w)R,(w) dw
t=0

(4.3)

,= o Q ,()
Suppose that the tD norms of the input function u(.,. and of the state dynamics

x( .,-)-are both finite, i.e.,

II(’," )11 (2)-’ 2 T(),() d <,
t=O

(4.4)

IIx(,,.)ll-- (2r)- ,*(w),(w) deo <
t=O

Then, for every Hermitian matrix /3(w)=/3"(o) with elements in L[0, 2r], we
obtain the following identity:

(4.5)

o= o*(o,)/;(o)2o()- ,*(o)b(),()
t=O

+ Y [.l*(w)*(w)+*(w)A*(w)]P(w)[A(w),(oo)+(w),(w)]
t=O

()()o()
*(w)(w)(W) *(w)P(w)A(w) t()

+2,=o [(w)(w)] L*(w)(wlB(w) *(wl(w)A(w)- (w) ,(w)

Integrating (4.5) between zero and 2 and adding the resulting identity to J, we
obtain

(4. +(- 2 [(
=0

x o () L,()
where

(4.7)

(4.8)

(4.9)
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Clearly, if we are able to choose /3(w) in such a way that /(w) is zero almost
everywhere in [0, 27r], then (4.6) reduces to

J (27r)- o*(W)/3(W)o(W) dw + (27r)-’ *,()

and the minimum value of J

is attained using the closed-loop control given by

(4.11) fit(w)=/ (w)t(w).
The conclusion we have drawn so far depicts the situation in a way that may

convince us of the intuitive reasonableness of the result. However, some caveats are
in order, since the validity of the procedure depends heavily on the existence of/3(o9)
and on the fact that both the input and the state dynamics given by (4.11) and (4.2)
belong to 122D.

More precisely, the solution of the optimal control problem outlined above makes
sense if we are able to give a positive answer to the following questions"

(i) Is there any solution /3(to)=/3*(to) of the equation /(to)=0, i.e., of the
to-dependent Riccati equation (AREto)

a() Q+A*()(,),()-A*(,)(,)()
x [R + *(,o)(,o)(o)]-’*(o),()(o) ?

(ii) Among these solutions, is there any solution P(w) that provides, through
(4.7), a feedback matrix/(to) mapping L2[0, 2rr] into L2[0, 2r]? This requirement is
necessary for guaranteeing that the feedback law (4.11) (reinterpreted in the time
domain) always transforms an 12 global state 3, into an 12 input sequence

(iii) In particular, does (AREto) possess any (Hermitian) solution that ensures
asymptotic stability of the closed-loop system, in the sense that, for any 3o Iz, the
resulting global states sequence {3,} can be viewed as an element of [P? Note that
this condition is needed in order to have a feedback input (4.11) that belongs to (3o).

For every fixed to in [0,27r], (AREto) is the algebraic Riccati equation of a
one-dimensional system over the complex field. So, if the rank conditions of Theorem
1 are fulfilled, for each to in [0, 27r] the equation has a unique positive semidefinite
solution/3(to) =/3,(to), that makes the one-dimensional closed-loop system matrix

(4.12) ’(to) A(to) + (to)I(to)
asymptotically stable [7].

Clearly P(to), viewed as a matrix function of to, satisfies the first question we
raised above. Actually, it provides a solution that also satisfies questions (ii) and (iii).
However showing this property deserves an accurate investigation of the analytic
structure of P(to). A first result in this direction is provided by Theorem 3, which
shows that the map

(4.13) p. y
_
C,n. eJO ./5(to)

admits an analytic extension to a suitable open annulus including 71, and the extension
P(z) satisfies (2.12).
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THEOREM 3. Assume that the matrices (2.10) and (2.11) are full rank for any
(zl, z2) in ill and in -, respectively. Then the equation (2.12) admits a (unique) solution
P(z) that fulfills the following conditions:

(i) P(z) is analytic in an open annulus that includes the unit circle
(ii) For all to in [0,27r], P(ej) coincides with the unique Hermitian positive-

semidefinite stabilizing solution P(to of (AREto).
For the proof, see the Appendix.
To completely answer questions (ii) and (iii), we need to discuss certain important

properties of the solution P(z) obtained in Theorem 3 that shed some light on the
structure of the optimal feedback law and on its stabilizing character.

(1) Because of the analytic nature of P(z), there exists a Laurent series expansion

(4.14) P(z)= Z Phzh

that converges in an open annulus including yl. The coefficients Ph of (4.14) are real
matrices that satisfy the conditions

(4.15) Ph=Pr_h, h=0,1,2,’’’.

The proof of this property depends on the following lemma.
LEMMA 1. Let P(z) be the solution of (AREz) considered in Theorem 3. Then

P(z)=PT(z-)
in a suitable open annulus that includes yl.

Proof For all to [0, 2r], the matrix P(e1) P(to) is a solution of (AREo). On
the other hand, taking the transpose of both sides of (AREo) and substituting to with
-to we check easily that pT(e-J) is still a solution of (AREo). So P(e’) and P(e-’)
are both Hermitian positive-semidefinite solutions of (ARE0) for any to in [0, 2r].
Because of the uniqueness of the stabilizing solution, proving that these solutions
coincide reduces to show that the matrix

(4.16) (to)-/(to)[R + *(to)PT(-)(to)]-*(to)pr(e-’)(to)
is asymptotically stable for any to in [0, 2r]. This is again obvious, since the conjugate
of (4.16) is F(-to), which is asymptotically stable by hypothesis.

Thus P(z) and PT(z-) are analytical in an open annulus that includes y and
assume the same values on yl. By the identity principle of analytic functions, this
implies P(z)= PT(z-1) for any z in the annulus.

We therefore have (4.15), as an immediate consequence of the lemma. Moreover,
in (4.14) the Hermiticity of P(e) gives Ph P’h, h =0, 1,2," .

The above equalities and (4.15) imply P*h Pr-h, which proves the realness of
all matrices Ph.

(2) The coefficients Ph in the expansion of P(z) decay exponentially as Ih]
increases, i.e., there exist M > 0 .and A (0, 1) such that

(4.17) [[Ph < MAIhl, h Z.

(3) Since P(e’) is positive semidefinite for any to in [0, 2r],

R +(B[+ Bz-1)P(z)(B1 + B2z)

is invertible for every z y and, by a continuity argument, for every z in an open
annulus that includes yl. Hence the matrix

K(z) =-JR + (B[ + BT z-’)P(z)(B, + B2z)]-’(BT + Bfz-’)P(z)(A, + A2z)
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extends analytically/ (o) in the annulus and therefore admits a Laurent power series
expansion

(4.18) K(z)= Khz’.

Clearly, the feedback law (4.11) is well defined, since it associates an input
,(w)L2[0,27r] to every global state ,(w)L2[0,27r]. This provides a positive
answer to question (ii).

We conclude at once from these properties that the state dynamics x(.,.) and
the corresponding input function u(.,.) are, for any initial global state Yo in t,
elements of Io, which is all we need to answer question (iii). Actually, the Lyapunov
equation

(4.19) Q(w) I + ’*(w) (w)’(w)
admits a unique positive-definite solution, given by the sum of the following pointwise
convergent series"

E
h=O

Furthermore, the linearity of (4.19) and the uniqueness of its solution for every
o in [0, 2r] imply that the matrix "’(w) is a continuous function of w and hence its
spectral radius p(w) is uniformly bounded by some positive p.

Combining all these properties and applying Beppo Levi’s and Parseval’s
Theorems, we obtain

IIx( .,. )IIN- ,=o2 II ,IIN-(2 r)- ,2= *o(W)P*(w)’(w)’,o(W) dw

So x(.,-) and, obviously, u( .,. belong to I.
Tying together the results of Theorem 3 and its consequences, discussed at points

(1)-(3), we have that the implications RC ARE OS in Theorem 1 are completely
proved.

To conclude this section, we wish to investigate some important consequences of
the time domain structure of the optimal control law

(4.20) u(h, k) Y Kix h -31- i, k- i).

Clearly the input value at (h, k) linearly depends on the whole sequence of local
states on the separation set including (h, k). So, the quarter plane causality is completely
lost in the closed-loop system.

As the coefficients Ki decay to zero exponentially, it is reasonable to expect that
a suboptimal control law could be achieved by truncating the infinite series (4.18) and
hence by using a finite number of local states in the feedback law (4.20). This will be
discussed in detail in the sequel. Here we only remark that the input (4.20) actually
minimizes the cost functional, whose value is given by



592 M. BISIACCO AND E. FORNASINI

(4.21)

""Po "’P, i’:". x(1, -1)
""P-1 Po P," x(O, O)

"-.P.-2 ,P,-1 ,Po x(-1,. 1)

Remark. In case the system is autonomous (i.e., B B2 0), the stabilizability
condition (2.10) reduces to

(4.22) det (I AlZ A2z) 0

for Iz[ Iz21 <= 1 or, equivalently, to the internal stability ofthe one-dimensional matrices

A+A e’ for all to in [0, 27r]. Note that the stability of A+A2 eJ’ for all to is
equivalent to two-dimensional internal stability 5] and hence to det (I A z A2z2)
0 in the unit closed polydisk 1 {(Z1, Z2)" ]Zl[ <- 1, [z21 -< 1}.

Under the same hypothesis, (AREo) reduces to the to-independent Lyapunov
equation for two-dimensional systems and (4.21) gives the Lyapunov function associ-
ated with its free dynamical evolution [5].

5. Ioo stabilization. The feedback law (4.20) we obtained in the previous section,
using an I spaces approach, is well defined even when the initial global state
belongs to an I space

(5.1) Ila;oll:- sup
hcZ

Actually, the exponential decay of the matrix sequence {K} as i +oe implies
that (4.20) converges for all bounded sequences of local states, which shows that 1I,
and Y, are in Io for any >- 0. Now it seems quite natural to ask whether the closed-loop
asymptotic stability (4.20) realized in the 12 case is preserved when Ioo initial global
states are allowed.

Here asymptotic stability means that x(h, k) converges to zero uniformly as
h + k- oe.

We first note that there exist positive constants M and A, O< A < 1, such that

I1’(o)11 < MA’, t=O, 1,2,"

for any to in [0, 2r] (for a proof, see Theorem 5 in the Appendix). Let us assume that
all local states of Yo are zero except for a single local state x. Then we have

(5.2) Ila,ll--< Ila;,ll=
in case Yo is an arbitrary l sequence, any local x(h, h) Y, is the superposition

of + 1 contributions determined by the initial local states x(h,-h), x(h-1,-h +
1),. , x(h t, -h + t). Consequently,

(5.3) II,l[=supllx(h,-h+t)llz<(t+l)mA’ilol[
hcZ

shows that the global states converge uniformly to zero.
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Note that the above discussion implies that an I stabilizing control does exist as
soon as matrix (2.10) is full rank on . In fact, assuming Q In in the cost functional,
an 12 optimal feedback law is computable through the solution of (2.12) and, as the
above discussion shows, the same law provides an too stabilizing control.

It turns out that the rank condition on (2.10) is not only sufficient but also necessary
for the existence of Lo input functions that drive any initial global state 3o Iv uniformly
to zero. This is proved in the following theorem.

THEOREM 4. Assume that the matrix [I-Alzl-A2z2 Blzl + B222] is not full rank
for some (Zl, zOo) . Then there exists an initial global state o Ioo, with Ilaoll 1,
having thefollowingproperty. For any sequence { It t} with elements in Ioo, the corresponding
sequence of global states {3t} satisfies
(5.4) II ,ll -> 1, t=l,2,’’..

0 Z) (p ejO’ eJ2), 0 <Proof. Let (zl, p p 1 and define

/z := ej(%-,) F := A1 +/zA2 G := B1 +
Since the one-dimensional polynomial matrix [I-Fz G] is not full rank at

z--p e,, the one-dimensional system (F, G) is not stabilizable. This implies that,
modulo a change of basis in the state space, the matrices F and G have the following
block structure:

and the spectrum of F includes the eigenvalue y -1 e-O,.
Referring the local state space of the original two-dimensional system to the same

basis and partitioning its matrices conformably with the partition of F and G

Ai-- A(i? A(i)[, Bi i= 1 2,
,-,2 . B(2i).]

we have

(5.5) Z’t2,A(1) -I-’-x21A(2)= 0, B(21) +/zB(22)= 0.

An easy inductive argument shows that the polynomial matrices (A1 +A) and
(A +A)-(B+ B), r 1, 2,. have the following form:

(5.6) (A’+A)= M?()(-) Mi()(-)+F2

(5.7) (Al+A2)r-l(Bl+B2)=
Nr-l()(-)

where M?(), M)(), N_(), and (*) denote polynomial matrices with elements
in C[].

We now introduce the r-steps reachability matrix

(5.8) [(B, + B:) (A, + A:)(B, + B) (A, + A2)-I(B, + B:)].

Then the global state r() that corresponds to an initial global state 3o(:), and
to inputs Ho(O, HI(:)... Hr-(:), is expressed as [9]

(5.9)
tt,-.l()

3(:) (A, + A2:)ro(s) + r()
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Using (5.7), we rewrite the reachability matrix as

r(:)
(:--)[ go(:) NI()’’" gr-()

which shows that the .forced state evolution in (5.9) has the following structure"

(5.10)
r--1 (_ )q()

(-) Z .()-,-i()
i=0

To satisfy (5.4), we introduce an initial global state

(5.11) Yo(’)= [0 +
where v is a unitary eigenvector of F22 associated to the eigenvalue y. Since Yo()(-
) 0, it is easy to see that the corresponding free state evolution in (5.9) is

(5.12) (Al +Az)ro() yo()+ [(;).
Here (*) denotes some arbitrary bilateral formal power series.
Since Ho(), HI()""" H_()are bounded (i.e., [[H[[<, i=0, 1,..., r-l),

Y() is also bounded. So, we combine (5.10) and (5.12) and get the inequality

(5.13) -One additional consequence of the boundedness of () is that the series q()
q we introduced in (5.10) is I and therefore there exists a positive M such that

q < for all k in Z
Now consider in (5.13) the coecients of the series

rv -+(--lq(:= 2
k k

It is immediate that g v+q_-+q, and summing over k yields
N-1

(5.14) g Nv + q_-q_
k=0

where N is an arbitrary positive integer. We therefore have

k=o N

and since N 1 was arbitrary, I]Y()]] p- 1. This shows that (5.4) holds indepen-
dently of the choice of the inputs H in I.

By the argument used in the conclusion of Theorem 2, the statement of the theorem
is correct even when only real global states are allowed.
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Remark 1. When dealing with globally reachable two-dimensional systems, i.e.,
systems whose reachability matrix ,(:) is right invertible in R(), it has been proved
in [9] that every initial global state Yo can be driven to zero in a finite number of steps,
irrespective of the rank condition of Theorem 4. Actually this does not involve a

contradiction, since the finite-time control considered in [9] was not restricted to use
only I inputs. For instance, assuming in (1.1) A= A2 1, B -B2 1 gives a globally
reachable two-dimensional system whose PBH matrix (2.10) is zero at (z, z) (1, 1).. The global state

is controlled to zero in one step by the unbounded input

lto(:) =--Yk ks

Remark 2. A sufficient stabilizability condition based on the rank of (2.10) has
been proved in [10] using different techniques and referring to dynamical models
where the local stateat (h, k) linearly depends on all local states and input values of
the separation set

In Kamen’s paper, however, stabilizability means by definition the existence of a
stabilizing state feedback, whereas the stabilizability definition considered in the present
paper is essentially open loop. Actually, no a priori hypothesis has been assumed here
on the way the stabilizing input functions could be generated, and the possibility of
implementing the stabilizing control by a state feedback law is a theorem rather than
an assumption.

,The major consequence of this approach is that open-loop stabilizability, closed-
loop stabilizability, and the full rank of (2.10) on M are equivalent properties.

6. Weakly causal suboptimal feedback. The control law (4.20), we obtained
through the solution of (AREz), provides a state feedback that stabilizes (1.1) both in
the I2 and in the I settings.

Although this approach is conceptually appealing, the difficulties when no approxi-
mation is used can be very great. We already noted that, in general, the input value
at (h, k) depends on the (infinitely many) local states x(h i, k + i), Z. So, implement-
ing (4.20) completely destroys the quarter plane causality of the original system and
produces a half plane causal two-dimensional system, whose updating equation is
required in principle to cope with an infinite-dimensional state vector. Moreover, to
determine the solution of (2.12) is by no means a trivial task. In particular, a difficult
problem that has no one-dimensional counterpart is that of obtaining the analytic
structure of the feedback matrix K (z) and computing the coefficients Ki that provide,
in the time domain, the optimal feedback law.

We will give here two examples. The first shows how the solvability conditions
based on the rank of (2.10) and (2.11) reflect into the analytic structure of/3(o). The
second gives an idea of some difficulties involved in the computation of Kis even in
dimension one.

Example 1. Assume as in (1.1) m n 1 and A1 B B2 1 and A2---1. Fur-
thermore, let R Q 1 be the weighting matrices of J.

In this case the solution of AREz can be obtained in closed form as

+/5+2z+2z-P(z)=
2(2+z+z-1)
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Letting z ejw, we obtain a negative solution and the solution

(,o) 1

-1 +v/5 +4 cos to

The first cannot be taken into account, since we are looking for nonnegative
solutions only; the second is positive for all to in [0, 27r], except at to r, where P(to)
diverges. Actually this is not surprising, because (2.10) is not full rank at (1/2,-1/2) .
Hence a stabilizing optimal feedback law does not exist for some initial global state
in 12.

Example 2. Let us change only the sign of A2 in the previous example. In this
case the unique positive-definite solution of (AREw) is given by

2
P()

(i + 16(1 +cos w):_ (3 +4 cos w)

and the corresponding feedback matrix is

4(1 +cos w)()
1 +1 + 16(1 +cos )"

A plot of fi(w) is given in Fig.1.
Since fi(w) attains its minimum value at w , we have

Jmin(o) (2)-1 #()1o()1= d e I1o11#()

and Jm. can be made arbitrarily close to the lower bound if we consider initial global
states whose spectral content is concentrated in a narrow neighbourhood of .

The computation of the K’s depends on the evaluation of the following integrals:

o

z" 4(1 + cos c2(

Since infinitely many K’s are different from zero, the optimal feedback law (2.15)
cannot be implemented by a finite-dimensional device, and the resulting closed-loop
system is a half-plane causal two-dimensional system.

To overcome the storage and computation problems, it seems natural to investigate
whether, in the case (1.1) satisfying the rank condition of Theorem 3, the stabilizing
feedback matrix could be constrained to have all elements in the bilateral polynomials
ring R[z, z-]. An obvious advantage of this control law is that u(h, k) would only

FIG.
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depend on a finite number of local states, which makes the closed-loop system weakly
causal 11 ].

The question above can be positively answered. Actually, we will prove that the
bilateral polynomial matrix

N

KN(Z) := E Klz’
i=-N

obtained by truncation of the Laurent series (4.18) gives an (I2 and Iv) stabilizing state
feedback, provided that N is large enough. Furthermore, when N diverges and 12
initial states are considered, the corresponding cost functional JN asymptotically
converges to the minimum value Jmin.

To prove the first statement, recall that the coefficients Ki exponentially decay as

1il - . This implies that KN(ei’) and the corresponding closed-loop matrix F(ej)
uniformly converge to K (e) and F(e), respectively.

Denoting by p < 1 the maximum spectral radius of F(e) as w varies in [0, 2],
it will suffice to prove that for every w the spectral radius of F(e) does not exceed
(1 +p)/2 for large values of N. It even suffices to prove that for every w the distance
between the eigenvalues of FN(e) and those of F(eJ) is less than (1-p)/2 for large
values of N.

By the Ostrowski Theorem 12], there exists a positive real 6 such that the distance
between the eigenvalues of FN(e) and those of F(e) is less than (l-p)/2 if

(6.1) IlF(e)-F(e)ll <
for every in [0, 2]. But the uniform convergence of F(e) to F(e) guarantees
that (6.1) becomes true as N diverges.

To prove that J converges to Jm. we introduce a frequency-dependent quadratic
Lyapunov function that provides a very convenient integral representation of the cost
functional J.

LEMMA 2. Assume that the feedback law ,()= (),() stabilizes the system
(1.1) in the usual 12 sense and denote by () the corresponding closed-lo@ matrix. e
cost functional associated to an initial global state o() is given by

(6.2) J (2)-1 (w)(w)no(W) dw

where (w) is the (unique) solution of the following Lyapunov equation"

(6.3) P() =r ()P()F()+[Q+*()R()].
Proo By Parseval’s and Beppo Levi’s Theorems, the cost functional .can be

represented as

J (2)-’ E= [(w)Qh(w)+(w)R(w)] dw

=(2)-1 (w) E *(w)h[Q+*(w)R(w)](w)ho(W) dw.
h=O

Since if(w) is asymptotically stable for every w in [0, 2], it is easy to check that
the series

E *(w)[Q + *(w)R(w)](w)
h=O

converges pointwise for every w to the unique (positive-definite) solution of (6.3).
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As a consequence of the above lemma, we have

(6.4) JN Jmin (27r) -1 o* (w)[/3N (o9)-/3(09)]o(O9) dog.

Here P(w) is both the stabilizing solution of (AREto) and the solution of the
Lyapunov equation (6.3) that includes theAoptimal feedback law/(w) and the corre-
sponding closed-loop system matrix F(w ). PN (W) is the solution of a Lyapunov equation
that includes the truncation KN(oo) of the optimal feedback law and the corresponding
closed-loop system matrix f’N(W).

The matrix solution P(w) of (6.3), associated with the optimal feedback law, is
unique and its elements ij(oo) continuou,,sly depend on the elements of f’() and K(oo).
Therefore the uniform convergence of KN(W) and [’N(OO) to /(w) and F(o)) implies
that PN(W) uniformly converges to P(w). Using (6.4) we conclude that JN converges
to Jmin. [’]

The stabilizability condition we referred to in this paper

(6.5) [I-Az-A2z2 Bz+B2z2] full rank in M

is weaker than the condition

(6.6) [I-Azl-A2z2 BlZl + B2g2] full rank in P,

which is necessary and sufficient [1] for the existence of a stabilizing state feedback
law that preserves the quarter plane causality of the closed-loop system.

Clearly, in the case where (6.5) holds and (6.6) does not, losing quarter plane
causality is the price we pay for achieving the closed-loop stabilization.

Although condition (6.5) is in general weaker than (6.6), if we assume B1 B2 0
both conditions collapse. Actually, in this case neither causal nor noncausal feedback
can stabilize the system, unless it is originally stable.

Appendix.
Proof of Theorem 3. Let P [pij] belong to Cn" and introduce the map f: C

C C given by

f(z, P)= P-Q-(A+ Arz-)P(a + Az)
(A1) +(AI +Arz-)P(B+B2z)[R+(Br+Brz-)P(B+Bz)]-x (B+ Bz-’)P(A, + Aez).

We therefore have that the problem of obtaining the solutions of (2.12) reduces
to that of solving, with respect to the matrix variable P, the implicit equation

(A2) f(z, P) O.

The proof will break up into two parts. The first is devoted to a local solution of
the implicit equation on the neighbourhood of an arbitrary point of the unit circle. It
will be shown that, given e, there exists a unique analytic matrix Po(" ), defined on
an open disk centered in e./’, that solves (A2) and satisfies the condition

P(e’0) P(w).

The second part is concerned with the existence of a global solution of (A2). An
analytic continuation P(z) of the local solution will be provided on an open neighbour-
hood of y in such a way that the condition

P(eJ)= f)(w)
holds for any w [0, 27r].
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As far as the local solution of (A2) is concerned, the definition of P(w) implies
f(eiO,/3(03)) 0, so that, to apply the Implicit Function Theorem, we must check that
the Jacobian matrix off with respect to the variables Pij is nonsingular at (ej,/3(o3)).
Assume that the entries of P and the components off(z, P) have been lexicographically
ordered, so that equation (A2) takes the following form;

(A3)

Letting

fl(z, p, P2," Pt., P2," P2n," Pnn) 0,
flz(Z,PI,P2," ,Pln,P21," ",Pzn," ",Pnn)--O,

f,,.( z, p, pz, P., P2, P,,, P..) =0.

F(z, P)= (A, + Az)-(B, + Bzz)[R + (BT + Bfz-’)P(B, + B2z)]-’

x (Br+ Bfz-’)P(A, + A2z),

some elementary algebraic manipulations on (A1) yield the (i,j)th indexed columns
of the Jacobian matrix

(A4) Of OP [,r(z_ pr)( O__P_P]F(z p).
Opi Opi

In particular, if (A4) is evaluated at (eJ,/3(03)), we obtain

of eief p,(03) r
eie F(w)(A5)

Opij

where e denotes the ith column of the n x n identity matrix and F(w) has been defined
in (4.12).

Thus, for i, j, r, s 1, 2,..., n, the entries of the Jacobian matrix are

(r,s)(i,j) V-i,(03)F, (03)

and its (r, s)th row can be expressed as

err(R) e/-(erP*(03))(R) (e,rPr(03))= (err(R)ef)[I-’*(03)(R)’r(03)].
This shows that the Jacobian matrix of f with respect to P is given by

(A6) i f..(03) (R) f.r(03)
and is a nonsingular matrix because of the asymptotic stability of F(03).

Before beginning with the "global part" of the proof, we need to investigate some
properties of the local solution. Since the closed-loop matrix

F(03)= F(e, P(eJ))

is asymptotically stable, by a continuity argument P(e) is a stabilizing solution of
(AREo) for any ej in a suitable open arc c(03) of ’t centered in e.

Thus both P(ej) and P(w) provide a stabilizing solution of (AREo) in
and, by the uniqueness of the Hermitian stabilizing solution of (AREo), it suffices to
prove that P(e), e in a(03), is an Hermitian matrix for concluding that

(A7) P(w) P,(e0’) V e a(03).
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Actually, taking the conjugate transpose of the identity f(ej’, P, (ej’)) 0, ej’ in
a (o3), we obtain f(eJ’, P*a (e’)) 0, e’ (). On the other hand, we have

p(e) *()= ()= P(ej)

so that the uniqueness of the solution of (A2) in a neihbourhood of (e, P($)) implies

P(ej) P(eJ), e e () D()

where D() is a suitable open disk centered at e.
This last result has really been our main goal. We use it to associate with each

point ee T an open disk D(), centered in e and an analytic function P(z),
defined in D() and satisfying P(eJ) (w) on T D().

Extracting from the infinite open covering {D(o)} e [0,2] a finite subcovering
of T and piecing together all functions that correspond to it, we obtain a function
P(z) that is analytical in an open annulus including T and that fulfills the condition

(A8) P(e) (w) Vw [0, 2].

THEOREM 5. Let (.)’[0, 2] C"" be a continuous function and assume that
(w) is asymptotically stable for any w in [0, 2]. en there exist M > 0 and A (0, 1)
such that

11’()112 MA’,

Proof By the continuity assumption, there exists a real > 0 such that (w)(1 + )
is asymptotically stable for every w.

Then the Lyapunov equation

#(w) I + *(w)#(w)(w)(1 + 6)2

admits a unique positive-definite solution

+
() Z *()’()’( + )’,

t=0

which is continuous in [0, 2].
Let M2 denote the maximum spectral radius of (w) in [0, 2] and A := (1 + 6)-.

Then, for every v in C" we have

t=0

which proves our assertion.
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Abstract. In this paper properties of the orbit space of controllable generalized state-space systems
modulo restricted system equivalence are derived. In particular, it is shown that this space isa smooth
quasiprojective variety of dimension nm. Then the possible degenerations of controllable systems under
transformations of restricted system equivalence are characterized and it is proved that every noncontrollable
system can be approximated by a family of controllable systems that belong to a single equivalence class.
In the single input case, this class is uniquely determined, whereas in the multivariable case a noncontrollable
system may lie in the boundary of finitely or even infinitely many equivalence classes.
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O. Introduction. Consider the system of differential equations

2= x+ u
1 1

and the family of systems resulting from high-gain state feedback via F e

2=
1
x+ u

0]:

(i.e., there are entries of A + BF that become arbitrarily large as e - ). Generalizing
the approach of Young, Kokotovic, and Utkin in [20], we may obtain a "limit" of this
family of systems by replacing each system E, with an equivalent one in such a way
that a limit exists as e - o. "Equivalence" in this case means restricted system equivalence
that consists of: (1) left multiplication by a nonsingular matrix L, and (2) change of
coordinates in the state space via a nonsingular matrix R. Specifically, we have

Ax + Bu is equivalent to LR LARx + LBu.

In the example above, we could transform each system E by

1 -1]L and
e 1

resulting in the family

1 1/e 1

1/e 0 ]Re
0 1/e

x+ u.
(e+l)/e 1

Taking the limit as e , we obtain the system
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Note that different choices of equivalence transformations (L, R) may result in
different limits.

In general, a limit of a high-gain feedback family

2 (A + BF)x + Bu

may be given by the limit as e oe of

LR2 L(A+ BF Rx+ LBu
for some choice of equivalence transformations (L, R). As in the example above,
there is no guarantee that lim_,oo LR is nonsingular. Hence a natural setting for limits
under high-gain feedback is that of generalized state-space systems (or semistate sys-
tems), i.e., linear systems of differential equations of the form

(0.1) E2(t) Ax( t) + Bu( t), E,AK"xn, BKnxm (K=RorK=C).

To secure unique solvability of (0.1) on + we always assume

(0.2) det (sE A) O.

If E is singular, the system is called singular, otherwise it is called regular. Besides
arising naturally as limits under high-gain feedback, generalized state-space systems
are of interest in their own right and have received growing attention in control theory
(see [16], [18], [1]-[3], [19], [15], [21]).

To provide a mathematical basis for a systematic analysis of high-gain state
feedback, we must first understand limits of generalized state-space systems under
transformations by restricted system equivalence. This is the basic question we address
in this paper.

Besides being central to any analysis of high-gain state feedback, the determination
of limits under equivalence transformations is an important part of the basic theory
of generalized state-space systems. Basic system properties like controllability, observa-
bility, and stability are invariant with respect to equivalence transformations. However,
every asymptotically stable system 2 Ax is equivalent to a system that is arbitrarily
close to an unstable system (see 10]). An analogous statement holds true for controlla-
bility. Thus, although these structural properties are invariant with respect to
equivalence, they may be lost in the limit under equivalence transformations. In this
paper we show that, in the case of generalized state-space systems, the limit of a
controllable system under restricted system equivalence transformations is not control-
lable unless it is equivalent to the original system. Moreover, we characterize these
uncontrollable systems that occur as limits of a given controllable system under
transformations of restricted system equivalence.

This characterization of limits under equivalence transformations generalizes the
results of Khadr and Martin 13] on regular systems. The natural concept of equivalence
for regular state-space systems is similarity, which is the restriction of restricted system
equivalence to the set of regular systems. Two regular state-space systems of the form

(0.3) 2=Ax+Bu, (A,B)L(n,m):=K+’’) (K=orK=C)

are said to be similar if one can be transformed to the other via a linear change of
basis in the state space K ". In geometrical terms, this means that both systems lie in
the same orbit under the similarity action ofthe general linear group Gl, (K) on L(n, m):

(0.4)
GI,(K) x L(n, m)- L(n, m),

(S, (A, B)) S" (A, B)=(SAS-’, SB).
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The geometric structure of the orbit space of state-space systems under similarity has
been analyzed in detail (see, for instance, [7], [8], [13], [17]). In both the case of
singular systems and that of regular systems, equivalent systems may be viewed as
different representations of the same physical system. Thus the set of equivalence
classes may be considered as the true space of linear systems. We describe the geometry
of this space, extending the theory for regular systems to singular systems.

For singular systems, the nondegeneracy condition (0.2) guarantees that the system
(0.1) admits a unique distributional solution Xxo.u for arbitrary initial values x(0-) Xo
K and control functions u(.) C(R/, K’). If E is singular, the solution formula
for Xxo., will contain the Dirac impulse and some of its derivatives for certain Xo
(see [2]). It is to this ability of the system (0.1) to produce impulsive solutions that
the term "infinite-frequency behaviour" refers (see [18], [15]).

Restricted system equivalence preserves both the finite- and the infinite-frequency
behaviour. It was for this reason that restricted system equivalence was introduced by
Rosenbrock 16] as the natural equivalence relation on the set of generalized state-space
systems. The concept of restricted system equivalence was adopted from the theory of
matrix pencils (cf. [4], [16], [15]). The equivalence classes are orbits under the group
action of restricted system equivalence

(0.5)
r/ (GIn(K) x G1 (K)) x K

((L, R), (E, A, B)) (LER-’, LAR-’, LB).

We restrict our attention to the case of singular systems of the form (0.1), i.e.,
without an output equation y Cx. The same questions that we address in this paper
can certainly be asked about singular systems with output and we could try, for example,
to extend the results in [17, IV.5]. This would, however, require an additional careful
analysis. Due to limitation of space, we do not consider the output question in the
present paper. To provide a mathematical basis for a systematic analysis of high-gain
state feedback, it suffices to pursue the above questions for systems of the form (0.1)
(without an output equation).

In 1, we develop tools and preliminary results to be used in the rest of the paper.
In particular, we establish basic properties of the space of equivalence classes under
left equivalence:

(0.6) (E,A,B).--(LE, LA, LB), L Gln(K).

We also discuss the concept of controllability for semistate systems and study, for any
a K, the map p that associates with any system (E, A, B) satisfying det (aE A) # 0
the state-space system

(0.7) (A,B)=((aE-A)-IE,(aE-A)-IB)L(n,m).
This correspondence is obtained from a standard reparameterization of matrix pencils
[4, XII, 2] that transforms a given regular pencil (E, A) into a pencil (aE- A, E) in
which the first matrix is nonsingular. The transformation (0.7) has been used in the
context of singular systems before (see, for example, [21]).

In 2, we study the space Se (n, m)! r/of restricted equivalence classes of control-
lable systems. In particular, we show that Se(n, m)/rl is a smooth quasiprojective
variety of dimension nm.

Restricting attention to the first two components of the action (0.5), it is obvious
that, in order to characterize the orbit closures of r/, we must first describe the orbit
closures of regular pencils under strict equivalence. In 3 we obtain such a description
by using the results of Gerstenhaber [5] about orbit closures under the conjugation
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action on single matrices. As a consequence of the characterization, we see that there
are only finitely many orbits contained in the orbit closure of a regular pencil.

Finally, in 4, we obtain a complete characterization of the systems that lie in
the boundary of a controllable orbit and we show that every noncontrollable system
can be approximated by a family of controllable systems that all belong to a single
restricted equivalence class. In the single input case (rn 1), this equivalence class is
uniquely determined. Hasse diagrams are used to illustrate the results.

1. Preliminaries. The space of all generalized state-space equations with m input
and n semistate variables is

(1.1) S(n, rn)= {(E, A, B) Kn(2"+": det (sE-A)O}.

The set S(n, m) is an open dense subset of K n(2n+") with respect to both the Zariski
topology and the standard topology. In the following, we provide S(n, m) with the
topology induced by the standard topology on K n(2n+"). However, we will make use
of the fact that S(n, m) is a (Zariski) open subset of an affine variety. The space
L(n, m) K "("+") of systems of the form (0.3) may be embedded in the space S(n, m)
via the map

(1.2) i: (A, B)(I,A, B).
For L GIn(K), we say that (E, A, B) is left-equivalent to (LE, LA, LB). Clearly,

two left-equivalent system equations E Ax + Bu and LE LAx + LBu have the
same set of solutions (x(.), u(.)). Conversely, two system equations that have the
same solution set are left-equivalent (see [2, Thm. 3]). Identifying in S(n, m) all triples
that determine the same solution set, we obtain the orbit space of the algebraic
Gin (K)-action:

GIn(K) x S(n, m) S(n, m),

(L, (E,A, B)) L. (E,A, B)=(LE, LA, LB).

The orbit space ( n, rn) S( n, m)/A is canonically provided with the quotient topology,
i.e., the finest topology for which the projection

(1.4)
S(n,m)S(n,m),

(E,A,B)-O(E,A,B)={(LE, LA, LB)" Le Gln(K)}

is continuous. Since rk[E, A] n by (0.2), h is a free action of Gin (K), i.e., all the
stabilizers of points in S(n, m) are trivial:

(1.5) Staba (E, A, B) {L GIn(K)" L. (E, A, B)= (E, A, B)}= {In}.

Because Stabh (E, A, B) is trivial, Oh(E, A, B) is isomorphic (as a variety) to GIn(K).
It follows from the Closed Orbit Lemma 11, Lemma 8.3] that all the orbits Oh (E, A, B)
are closed in $(n, m).

In the following, we will embed S(n, m) into the Grassmanian Grassn(V), where
V--K:zn+m. The set Grassn(V) of n-dimensional linear subspaces of V is endowed
with the structure of a compact analytic manifold and of a projective variety. To see
that Grassn(V) is in fact a projective variety, consider the Pliicker embedding

p: Grass.(V) (AnV),

span {

(For more details, see [17, p. 15].) If we associate with every element (E,A, B) in
S(n, m) the n-dimensional linear subspace viE, A, B] of V spanned by the row vectors
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of the compound matrix [E, A, B], we obtain a map from the space S(n, m) to

Grassn V)"

(1.6) " S(n,m)Grass,(V), (E,A,B)v[E,A,B].

To realize the map " in terms of the Pliicker embedding, let I (il,’", in) with
1-<i1<i2< .<in<=2n+m determine a choice of n columns of [E,A,B] and let
E, A, BI be the determinant of the n x n matrix consisting of those columns. Let 5
be the set of all subsets of {1, 2,..., 2n + m} with n elements:

Then we have

o={(i,...,in)" 1-<il<i2<...<in_<-2n+.m}.

p ’(E, A, B) (IE, A, BI,),s.

Thus, under the Plficker embedding of Grassn(V) into P(AnV), we see that " is a
regular (polynomial) map. The induced injection

(1.7) ’: S(n,m)Grassn(V), O(E,A,B)-v[E,A,B]

is a homeomorphism that maps (n, m) onto an open dense subset of the compact
analytic manifold Grassn(V). As such, S(n, m) is provided with the structure of a
K-analytic manifold itself, and dim: (n, m) n(n 4- m). Since Grassn(V) is a projec-
tive variety, the embedding also provides (n, m) with the structure of a quasi-
projective variety.

,Of special importance in our context is the subset S (n, rn) of controllable systems
(E, A, B) in S(n, m). Controllability of a singular system (0.1) is usually defined via
a decomposition Kn= XIO3X of the semistate space that decomposes (0.1) into the
standard form (see [4, p. 28])

(1.8) 1 AIX1 + Bu, A232 x2+ B2u

where dim X=degdet(sE-A), xX, xzX2, and A2 is nilpotent. The pairs
(A, B), (A2, B2) are uniquely determined up to similarity [6]. Following [19], we
call a system (0.1) controllable if for any tl > 0 and all Xo X1, z K n, there exists a
smooth control function u(. such that the solution x(. of (1.1) with x(0) xo satisfies
x(t) z. Various necessary and sufficient criteria for controllability can be found in
the literature (see [16], [19], [3], [21]). In particular,

(1.9) (E, A, B) is controllable :> (A1, B) and (A2, B2) are both controllable.

The following two conditions are particularly useful for our purpose.
PROPOSiTiON 1.1. The system (0.1) is controllable if and only if it satisfies one of

the following equivalent conditions"
(a) Im (cE -A)+ Im B K for all ce K, and Im E + Im B K n.

n--1(b) i=o Im (((cE-A)-IE)i(ceE-A)-IB) Kn for some (or all) a K such that
det (cE A) # 0.

For a proof, see [19] and [21], respectively.
It is easy to verify that controllability is invariant with respect to the group action

A. Moreover, Proposition 1.1 implies that the following subsets are open and dense in
S(n, m) and in S(n, m), respectively,

SC(n, m)= {(E, A, B) S(n, m)" (E, A, B) is controllable},

(n, m)= Trx(S(n, m)).
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Proposition 1.1 leads us to consider the correspondence between (E, A, B) and
.B) := ((aE -A)-E, (dE -A)-B). For any a K, let

S(n, m) {(E, A, B). S(n, m)" det (dE A) # 0}.

S (n, m) is an open dense subset of S(n, m) for each a K. Furthermore, S (n, m) is
a principal open subset of Kn2n/m) (the nonzero set of a single polynomial), and so
it is an affine variety (see [11, p. 10]). Because GIn(K) acts on S(n, m) with closed
orbits, we conclude from a theorem of Mumford and Fogarty [14, p. 30] that the

q,uotient ,,(n, m) is an affine variety. In fact, we will see in Proposition 1.2 that
S, (n, m) is isomorphic to L(n, m). Because deg det (sE. A) <- n for every (E, A, B)
in S(n, m), it follows that, for any n + 1 distinct numbers al," ", an/l, we have

n+l

(1.10) S(n, m)= I,_J S,(n, m).
i=1

The.correspondence motivated by Proposition 1.1 results in the h-invariant mappings

(1.11) p," S,(n, m)--> L(n, m),

and the induced maps on the quotient sets

(1.12) fi," ’,(n, m)-> L(n, m),

(E,A,B)o(A,,B)

Ox (E, A, B)---> (A, B,,).

The following proposition, together with (1.1.,0), establishes that, for any set of
n + 1 distinct numbers a,..., an/, the family (S,(n, m), ,)__<i____n/ forms an atlas
of analytic charts on S(n, m).

PROPOSITION 1.2. For any a K, the mapping p S, n, m) -. L( n, m) is regular,
surjective, and invariant .on A-orbits, and the induced map on the quotient set

" ,(n,m)L(n,m)
is an isomorphism of varieties, which preserves controllability"

(1.13) /,((n, m))= LC(n, m).

Proof The mapping p is clearly regular and A-invariant. For any pair (,/)
L(n, m), let

(1.14) E=A, A=aA-I, B=B.

Then tee A I and hence (E, A, B) S (n, m), and we have p (E, A, B) (A, B).
Therefore, the mapping p is surjective.

Now assume that (Ei, Ai, Bi)S,(n,m), i=1, 2, and that (aE1-A)-E
)-B (aE2 A)-B If we set L(cE A2)-E2 and (aE1-A1

(teE1 A1)(ceE2 A2)-, then LB B1, LE2 El, and L(ceE2 A2) aE A It
follows that LA2 A1 and so (El, A, B1) Ox (E2, A2, B2). Thus the mapping t3 is a
continuous bijection. The first part of this proof shows that the mapping p, has a
regular right inverse, and so the inverse mapping $1 is regular. Finally, we see from
Proposition 1.2 that the isomorphism/ respects controllability, gl

Remark 1.3. The Liusternik-Schnirelmann category cat X of a topological space
X is, by definition, the smallest cardinality of any open covering of X consisting only
of subsets contractible in X (see 12] for a survey). As a consequence ofthe proposition,
we have

(1.15) cat S(n, m) <- n + 1.
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2. The orbit space of semistate systems under restricted system equivalence. The
group action of restricted system equivalence r/ described by (0.5) is an extension of
the action A to a larger transformation group. The space S(n, m) is invariant with

respect to r/, and r/induces the following algebraic Gl,(K)-action on the quotient
S(n,m):

(2.1)
Gln(K) x (n, m)- (n, m),

(R, O(E,A,B))Oa(ER-’,AR-’,B).

The action is the restriction to S(n, m) of the following algebraic action on the
Grassmannian"

(2.2)
/" GI,(K) x Grass,(V)- Grass,(V),

(R, v(E, A, B)) v(ER-’, AR-’, B).

Under the variety isomorphisms/, defined by (1.12), the orbits of the group action
are mapped onto the orbits of the similarity action (0.4). The following proposition

exhibits the precise relationship between the -action restricted to S.(n, m)

(2.3) s IGI,(K) s(n, m)

and the similarity action o- on L(n, m) defined by,,(0.4).
PRoPosrrioN 2.1. For any a K, the map s Ss(n, m) L(n, m)is an equivariant

isomorphism of varieties with respect to the Gln(K)-action s on Ss(n, m) and the
Gin K)-action tr on L( n, m ).

Proof The fact that the map/3s is an isomorphism was established in Proposition
1.2. It only remains to show that t3s satisfies, for any R GI,(K),

(2.4) s(s(R, Oa(E,A,B)))=r(R,s(Ox(E,A,B))).

But this is a direct consequence of the following equality that is obtained directly from
the definition of ts (see (1.3) and (1.12))"

(2.5) s(O(LER-,LAR-,LB))=(RAsR-1, RBs), L,RGIn(K). [3

DEFINITION. Let G be a reductive algebraic group acting on a variety X with
orbits O(x), x X. A point x X is regular if there is a Zariski open neighborhood
U of x for which dim O(x) =dim O(y) for all y U (see [14, p. 10]). A point xX
is pre-stable if there is a G-invariant Zariski open neighborhood U of x such that the
action of G on U is closed.

The following proposition characterizes the regular points of the actions and .
PROPOSITION 2.2. An element (E,A,B) of S(n,m) (respectively, an element

Ox (E, A, B) of (n, m)) has a trivial stabilizer with respect to r (respectively, if and
only if E, A, B) is controllable. Furthermore, every noncontrollable system has a stabilizer

of dimension greater than zero.

Proof If (E, A, B) Ss (n, m) is controllable and (LER, LAR, LB) (E, A, B) for
some L, R 6 Gln(K), then by Proposition 1.1, (As, Bs) is controllable, and by Proposi-
tion 2.1,(RAsR-, RBs) (As, Bs). For controllable state-space systems, the stabilizer,
with respect to the similarity action, is trivial (see, for instance, [17, IV.1.4]). Therefore
R I, and L[E, A] IF, A]. Since IF, A] is of full rank, it follows that L I,. Thus
the stabilizer of (E, A, B) (respectively, Ox (E, A, B)) with respect to r/ (respectively,
) is trivial.
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Suppose (E, A, B) is not controllable. Then (As, B) is not controllable and so
its controllability subspace X has dimension r < n. Then K X1@ X2 and, for some
R 6 Gin (K), we have

AJ 0

But the pair (RAoR -1, RB,) is stabilized by the family (L@aln-r),el,:.. Therefore, the
stabilizer of (As, B has dimension greater than zero. If S Gl(K) stabilizes (As, B, ),
it follows from Proposition 2.1 that ((aE-A)S(aE-A)-I,S) stabilizes (E,A,B).
Therefore, the stabilizers of (E, A, B) and of Oh (E, A, B) have dimension greater than
zero.

It follows from Proposition 2.2 that the rt-orbits in SC(n, m) (respectively, the
-orbits in S’:(n, m)) are the orbits in S(n, m) of maximal dimension. Thus the open
set SC(n, m) (respectively, C(n, m)) is the set of regular points relative to the action
r/ (respectively, ). Because the orbits in S(n, m) (respectively, (n, m)) are all of
the same dimension, it follows from the Closed Orbit Lemma [11, Lemma 8.3] that
GIn(K) GIn(K) (respectively, GIn(K)) acts on S"(n, m)(S(n, m)) with closed orbits.
Therefore the set of prestable points in S(n, m) (,(n, m)) relative to n() is the set
SC(n, m) ’(n, m)). From the definition of S(n, m)/rl and of ,C(n, m)/, it follows
that they are homeomorphic.

We conclude this section by proving that the quotient S(n, m)/.O is a smooth
quasiprojective variety. For this we need the following terminology. An increasing
sequence I (i, , in) of n integers, 1 <_- i < i2 <" < in <- (n + 1)m, is called a selec-
tion of (n, rn). Let 5 be the set of all selections of (n, rn) and order 5 lexicographically.
If C(A, B) [B, AB, , A"B] is the extended controllability matrix for a controllable
state-space system (A, B) L n, m and I 5, we let C(A, B)I, denote the determinant
of the nn matrix consisting of the columns of C(A,B) selected by /. Let
(IC(A, B)I,),s be the sequence, ordered by the lexicographic ordering on 5, of these
determinants. We say that I is a nice selection if, whenever the jth column of AiB is
selected by I, then the jth column of AB is selected by I for all r, 0 <- r < i. Note that
in this case is necessarily strictly less than n.

Let s=ldl=(n+,)") and define a map from the tr-orbit space of L(n, rn) to
projective (s 1)-space:

(2.6) q" L(n,m)/tr(-’)(K), O(A,B)--,(IC(A,B)I),.
The map 0 is well defined because

IC(RAR-’, RB) I, IRC(A, B)I, (det R)IC(A, B)I,

for any R e GIn(K).
LEMMA 2.3. The map q’L(n, m)/trP(-’(K) is injective.
Proof For any (A, B) L(n, rn), let

g(A, B)= row span/( C(A, B).

Then it is easy to verify that, for arbitrary (A, B) LC(n, rn), i= 1, 2,
g(A, B) g(A2, B2) :> C(A2, B2) RC(A, B) for some R GIn(K)

z)A2 RAR- and B2= RB for some R GI,(K).

Thus the map

g: LC(n, m)/r- Grassn(K("+)")
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is injective (an algebraic embedding). Now, if p’Grassn(K (n+)n) -->P(-)(K) denotes
the Pliicker embedding of Grassn(K (n+lm) (see 1), then 0=p g. Hence the map q
is injective.

THEOREM 2.4. The geometric quotient " n, rn)/ l is a smooth quasiprojective variety
of dimension nrn over K.

Proof We begin by showing that the quotient c(n, rn)/l is a variety. (For a
general definition of variety, see [11].) In 1 we found that, for distinct a,. , an+
K, the set {S,(n, m)}<__i,+ is an open affine cover of (n, m). For each ai, the map
fi, defines an isomorphism between the affine varieties S, (n, m) and L(n, m) (Proposi-
tion 1.2).

Let { U} nice be the finite open affine cover of LC(n, m) described by [17, p. 52],
i.e., for each nice selection I define

UI {(A, B) L(n, m)" IC(A, B)[, #0}.

Let U[ "-p, (U). Since U is a principal open subset of the affine variety , (n, m),
it is an affine variety. Thus the set {U}<__i<__/. nice is a finite open affine cover of
St’(n, m). Let

(2.7)

be the quotient map. The sets V r(U), 1 _-<i<= n + 1, I a nice selection, form an
open cover of ,(n, m)!l. Because GI(K) acts on the affine variety U with closed
orbits, the geometric quotient V/ is affine [14, p. 27], i.e., there is an isomorphism
sc V A onto an affine variety A for each index (i, I).

For each index (i, I), 1 <- =< n + 1, I 5, define a map o-/" S(n, m) K by

(2.8) o[(E,A, B)=IC(A,,, B,)[, det (aiE-A)"+,
where m is chosen so that [C(A,.. B,.)I det (aiE- A)" is a polynomial in the entries
of (E, A, B) for all (i, I). For each pair of indices ((i, I), (j, J)), 1 _-< i, j =< n + 1, /, J

IJ. V[ --> K bynice selections, define a map
J

IJ
o" o O(O (E, A, B))) o-j (E, A, B)

cr[(E, A, B)"

If we let

IJa {a a[" o’ij ( (a)) 0},
L] J -1 j-I IJ Jlthen r([-’(a0 ))= U[ f3 Uj 7r (:j (A’)). Thus a0 and Ai are both quotients

of U[ f-) U] under the action . By the uniqueness of quotients, it follows that there
/J’J" aJ --> A)J such that q0 sC[o zr, scJo 7r, on U[ fq U] Thusis an isomorphism q!i

the open cover {V/}-<i_-<,+,Inice patches together to form a prevariety structure on
C(n, rn)/Ct. To see that (n, rn)/ is in fact a variety, we use the fact that a prevariety
is a variety if any two points lie in an affine open set [11, p. 23]. For any two elements
(Ei, Ai, Bi), 1, 2, of S(n, m), choose a K such that (Ei, Ai, Bi) S (n, m), 1,
2. Choose coefficients {a }, nice SO that the following mapf is nonzero on Ox (Ei, Ai, Bi)
for i= 1, 2:

f: S(n,m)-K, O;t(E,A,B),IniceaIlC(A,B)]I.

(To see that the map f is well defined, see equation (4.6) in 4.) The set

S,,(n, m)f= {0 (E, A, B) S,(n, m)" f(Oa (E, A, B))# 0}



CHARACTERIZATION OF ORBIT CLOSURES 611

is a principal open subset of ; (n, m) and so it is affine. Because (n,m)f c e(n, m)
and Gln (K) acts on e(n, m) with closed orbits, it follows that zr,(S (n, re)i) is an
open affine set containing the two points "rr.(Ei, Ai, Bi), 1, 2. Therefore, (n, m)/
is a variety.

The variety L(n, rn)/o is smooth and andhas dimension nm (see [7]). It follows
from Proposition 2.1 that .rr,((n, m)= (n, m)/t is smooth and has dimension nm.
Since the open sets (n, m)/t cover (n,.m)/., the same holds true for ,C(n, rn/’.

To show that C(n, rn)/. is quasiprojective, we embed it in projective space
Pr-1(K). Let r-((n+/)")(n + 1), corresponding to the pairs (i, I), ordered lexicographi-
cally, where 1 _<- _<- n + 1 and I 5. We define

(2.9)
p" (n, m)/’zr-’(K),

O(Oh (E, A, B)) (cr[ (E, A, B)),<=i<=n+l,,

where the maps o-[ are those defined by (2.8). Clearly, p is a polynomial map.
To see that q is injective, we first show that is injective on each open set

,(n, m)/, 1 __-< =< n + 1 (where the elements ai K are those chosen for the definition
of the maps r[). It follows from Proposition 2.1 that ,(n, m)/ and L(n, m)/cr are
isomorphic as varieties via

p," S,(n, m)/ (n, m)/o, O(O(E, A, B)) o(a,, B.)

From the definitions of the maps p, p, and (from Lemma 2.3), we see that
on S(n, rn)/. It follows from Lemma 2.3 that p is injective on ,(n, m)/q.

If p(O(Oh(E,,A,B)))=q(O(O(Ez, Az, B2))) for some (Ei, A,B)
S(n, rn) then choose j, 1 <j < n + 1 such that o’.(E A B) 0 for some 1 5. It
follows that the orbits O(O(E, A, Bi)) lie in (n, m)/#, i= 1, 2. Since p is injective
on Sj(n,m)/, we have O(O(E,AI,B))=O(O(Ez, A:,B)). Thus the map
is an embedding of ’(n, rn)/ into Pr-’(K) and so the quotient (n,m)/ is
quasiprojective. [3

Remark 2.5. In [9], Helmke and Shayman show that the quotient (n, m)/ is
compact with respect to the standard topology. This fact, along with quasi-projectivity,
establishes that (n, rn)/ is a projective variety.

The analytic structure of the quotient ’(n, m)/ is described in the following
proposition.

PROPOSITION 2.6. e(n, m)/ is a connected analytic manifold of dimension nm.

Proof The fact that ;’(n, m)/ is an analytic manifold of dimension nm follows
from the proof of Theorem 2.4. The fact that this manifold is connected was established
in Proposition 4.4 of [6].

3. Orbit closures of regular pencils. We say that a system Z (E, A, B) degenerates
to a system Z (E, A, B) (with respect to the group action 7) if (E, A, B) is contained
in the boundary of (E, A, B), i.e.,

(E, A, B) OO(E, A, B):= O(E, A, B)\Ov(E, A, B)

where the closure is taken in the space S(n, m). (Because an orbit under an algebraic
group action is a constructible set [11, Lemma 8.3], the Zariski closure of an orbit is
the same as closure in the standard topology.) The main goal of this paper is to
characterize the orbit closures of controllable systems with respect to the group action. Thus we want to determine those systems to which a given controllable system can
degenerate.
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For any continuous group action on a Hausdortt space, the closure of an orbit is
a union of orbits. Thus we see that if X degenerates to X, then any system in the orbit
of X degenerates to any system in the orbit of E"

(E, A, B) O,(E, A, B) :> O,(E, A, B) O,(E, A, B).

By restricting our attention to orbit closure within the open subsets S(n, m), we
see that /-orbit closure in S(n, m) corresponds to r-orbit closure in L(n, m).

LEMMA 3.1. If (E, A, B) and (E, A, B) are in S (n, m), then

(3.1) (E, A, B) O(E, A, B) p(E, A, B) O(p(E, A, B)).

Proof. It is easy to show that r/-orbit closures in S(n, m) are projected by 7r onto

-orbit closures in (n, m). Thus the statement (3.1) is equivalent to

rx (E, A, B) O,(,r (E, A, B))
(3.2)

<=>,(ra (E, A, B)) O,(O,(’,(E, A, B))).

Since the mapping fi is an orbit-preserving isomorphism of varieties (Proposition 2.1),
we have

O((r (E, A, B))) (O(,r (E, A, B)))

,[ O(r,(E, A, B)) ].

The result (3.2) follows.
Let P(n) be the set of regular n x n matrix pencils

P(n)={(E,A) K" det (sE-A)O},

provided with the standard topology induced from K". The open covering {S(n, m)}
of the space S(n, m) induces an open covering of the space P(n)" for any a K, define

P(n)={(E,A)P(n)" det(aE-A)O}.

If (E, A, B) O, (E, A, B), then it is clear that (E, A) O(E, A), where e is the
GI(K) x Gl(K)-action on the first two components"

e" GI(K)XGln(K)xP(n)->P(n), ((L,R),(E,A))->(LER-,LAR-).
Thus any characterization of rt-orbit closure in S(n, m) involves a characterization of
e-orbit closure in P(n). In this section we give such a characterization. The following
lemma allows us to reduce the problem of e-orbit closure to that of orbit closure under
the conjugation action 3/ on the space K of single matrices, a well-known result
that appears in [5].

LEMMA 3.2. If (E, A) and (E, A) are in P(n), then

(3.3) (E, A) O(E, A) : A, Ov(A).

Proof If we embed P(n) in S(n, m) via (E, A)o (E, A, 0), then P(n) is embedded
(as a closed r/-invariant subset) in S(n,m). Since (E, A) O(E, A) if and only if
(E, A, O) O(E, A, O), it follows that (3.3) is a direct consequence of Lemma 3.1. [3

LEMMA 3.3. If (E,A), (E,A)P(n) and (E,A)O(E,A), then det(sE-A) is

a nonzero scalar multiple of det (sE- A).
Proof. Suppose limk_ LkER-= ff and limk_. LkAR-= fi,. Then we have

det (s/- fi)= lim det (Lk(sE-A)R-)
ko

lim det (LkR-) det (sE- A).
k--
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Since det (a/ ) 0 for some a K, it follows that limk_ det (LkR-1) exists and

lim det (LkR-) c O.
kx

The conclusion follows.
A consequence of this lemma is

(3.4) (E,A)P,(n)O(E,A)c P(n).

A necessary and sufficient condition for two regular matrix pencils to be in the
same e-orbit was first established by Weierstrass. We follow [4, XII.2] in the following
presentation. In describing conjugacy classes of single matrices via the associated
invariant polynomials or the elementary divisors, we consider the matrix pencil sI- A.
To extend these ideas to strict equivalence (i.e., e-equivalence) of pairs of matrices
(E, A), we consider the homogeneous matrix pencil sE + tA. Thej j minors of sE + tA
are homogeneous polynomials of degree j in the variables s and t, with coefficients in
K. Let Dj(E, A) be the greatest common divisor of all of the j j minors of sE + tA
(with the coefficient of the highest power of s equal to one) and let Do(E, A)= 1. In
particular, the polynomial Dn(E, A) c det (sE + tA), for some c 0, is the normalized
"characteristic polynomial" of the pencil (E, A). It is easy to see that

D(E,A)[Dj+(E,A) forO<=j<- n-1.

The invariant polynomials of the matrix pencil (E, A) are defined by

D,_k+(E,A)
(3.5) ik(E,A)= l<-_k<-_n.

D_k(E,A)

The following result is an easy consequence of the criterion of Weierstrass (see [4,
XII.2]).

PROPOSITION 3.4 (Weierstrass). Two regular matrix pencils (E, A1) and (E2, A2)
are in the same e-orbit, i.e., there exist L, R Gl(n, K) such that

LE1R E2 and LA1R A2,

if and only if both matrix pencils have the same invariant polynomials.
The elementary divisors of a matrix pencil (E, A) are the powers of the irreducible

factors obtained by decomposition of the invariant polynomials. It follows from
Proposition 3.4 that the elementary divisors, up to scalar multiple (equivalently the
invariant polynomials or the polynomials D(E, A)) parameterize the e-orbits in P(n).

For each irreducible homogeneous polynomial F in K[s, t] and each pencil of
matrices (E, A), define

dj,F(E, A) the multiplicity of F in Dj(E, A),

mk,F(E, A) =the multiplicity of F in ik(E, A).

Note that do,F(E, A) =0 and that mk,F(E, A) d,-k+,F(E, A) dn-k,F(E, A), 1 <= k <= n,
so that

J
(3.6) mk,v(E, A) d,,v(E, A)- dn-j,z(E, A), j 1,’", n.

k=l

In particular, for each irreducible factor F of det (sE / tA), the (nonincreasing) family

mv(E, A):= (mI,F(E, A), m,,F(E, A))

is a partition of dn,F(E, A), i.e., d,,F(E, A)=k= mk,v(E, A).
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Using the standard form for matrix pencils described in [4, XII.2], it can be seen
that, given any homogeneous polynomial D(s, t)=I=o F, with distinct irreducible
factors Fo, , Fh and given a partition Pi (Pi, ",Pin), Pi ->" "=> Pin, of each
i=0,..., h, there is a matrix pencil (E,A) in P(n) with

(3.7) mv,(E,A)=pi foreach i, O<-i<=h.

More specifically, if D(s, t) is decomposed over the field C,
h

(3.8) D(s, t)= ct r I-I (s-k- fii) ri, /1,""", Ah distinct,
i-=1

then a pencil satisfying (3.7) is given by

J(Al,Pl)

(3.9) E=[Ir0 J(0, po)
A=

0

J(Ah,ph)

where r=hi=l ri and J(Ai, Pi) is the ri x ri Jordan matrix with eigenvalue Ai and block
structure given by

In the sequel, we will use the following ordering on partitions of a positive integer.
DEFINITION 3.5. If a >-- a2 -> an => 0 and b _-> b2 >- >- bn => 0 are partitions

of n (i.e., i=l ai ni=l bi n), then we say that

a a2 an) bl b2 bn in the dominance order if

ak----< bkforallj=l,...,n. U
k=l k=l

In the space K of single matrices, orbits under the conjugation action 3’ are
classified by the Jordan form. It follows from the proof of Lemma 3.3 (with E I and
L R) that orbit closure under the conjugation action 3’ preserves the characteristic
polynomial det (sI-M). Therefore, the orbits in the boundary of a given y-orbit
Or(M) are completely described by the partitions specifying the block structure of
the associated Jordan form. In fact, Gerstenhaber has shown in [5] that, for a given
matrix M in K"n, a matrix M is in Or(M) if and only if

(3.10) rank (AI ]t) <- rank (AI M) for all N and all A C.

In terms of the complex Jordan forms

h h

JJl-- 0 J(ti, Pi) and JM @ J(ii, Pi)
i:1 i:1

of M and M, respectively, (3.10) is equivalent to

(3.11) det (sI- M) det (sI- M) and Pi Pi, 1, , h.

Since Pik, respectively Pig, is the multiplicity of the irreducible factor (s-Ai) in the
invariant polynomial ik(I, M), respectively, ik(I, M), we obtain from (3.6) and (3.11)
that

(3.12) 1I Or(M) C-e,, D(I, M)ID(t, r) forallj, l <-_j<--n.

To carry the characterization of y-orbit closure over to the setting of matrix pencils,
we consider the following degree-preserving automorphism of K[s, t]"

(3.13) F(s, t) 13(s, t)= F(as+ t,-s),
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where a K. Given a pencil (E, A), choose a such that (E, A) P,(n). Then this
automorphism maps any j j minor of sE + tA onto the corresponding minor of
(as+ t)E-sA s(aE-A)+ tE. Hence

(3.14) Di(E, A)- Dj(aE -A, E).

A consequence of Proposition 3.4 is that the polynomials Dj(E, A) are invariant on
e-orbits. In particular, we have

(3.15) D(aE-A,E)=D.i(I, (crE-A)-IE)=D(I,A,), (E,A)P,(n).
Remark 3.6. For a given homogeneous polynomial D(s, t) of degree n, define

Po {(E, A)" det (sE + tA) cD(s, t) for some 0 c K}.

Replacing sE-A (respectively, sE-A) with sE + tA (respectively, sE + tA) in the
proof of Lemma 3.3, we see that

(3.16) (E, A) Po and (E, A) O(E, A) (E, A) Po.
Because the correspondence (3.13) is a degree-preserving automorphism of K[s, t],
we obtain from (3.14) and Proposition 3.4 that the map (E, A)-(aE-A, E) induces
a bijective correspondence between the e-orbits in Po and the e-orbits in P3.

The following result characterizes the e-orbit closures in the pencil space P(n).
THEOREM 3.7. Let (E,A), (E,A)P(n). (E,A) O(E,A) if and only if one of

the following equivalent conditions is satisfied"
(i) D(E, A)lDj(ff,, ft for all j, l <-j <- n.
(ii) mr(E, A) mr(E, A) for all irreducible factors F of det (sE + tA).

Proof. It follows from (3.16) that we need only consider the set Po for a fixed
homogeneous polynomial D. Choose a K so that D(cr, -1) 0, i.e., Po c P (n). By
Lemma 3.2, we have

(E, A) O(E, A) :> A, Ov(A).

From (3.12), we have

fi Ov A, c:> D. I, A, D.i I, fi, forallj, l <-j <- n.

From (3.14), (3.15), and the fact that the correspondence (3.13) is a degree-preserving
automorphism of K[s, t], it follows that

D I, A, D I, fi,, :> Dj E, A D ff, fi

Therefore, (E, A) O(E, A) if and only if condition (i) is satisfied. To see that
conditions (i) and (ii) are equivalent, we note that condition (i) is equivalent to

(3.17)
d.z(E, A) <-_ d,(E, A) forallj, <=j <- n,

and for all irreducible factors F of det (sE + tA),

hence by equation (3.6), to condition (ii).
In the case E E =/, Theorem 3.7 coincides with Gerstenhaber’s Theorem in [5].
The following is a direct consequence of the theorem.
COROLLARY 3.8. Let (E, A) P(n). Then
(i) 0 (E, A) contains only finitely many orbits,
(ii) 0 E, A) is closed in P n if and only if mk.z (E, A) <- 1

for all k, 1 <- k <- n, and for all irreducible factors F of det (sE + tA).
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Remark 3.9. Using the standard form (3.9), it is clear from part (ii) of the corollary
that every closed orbit contains a pencil of the form

S 0

where S is semisimple (diagonalizable over C).
To better understand the consequences of Theorem 3.7, we introduce the concept

of Hasse diagrams for orbit closures. A Hasse diagram is a directed graph whose
vertices represent orbits and whose directed edges represent orbit closures. More
precisely, the orbit at the terminal node of an arrow is in the closure of the orbit at
the initial node of the arrow. Of course the diagram is transitive. It follows from (3.16)
that there are an infinite number of disjoint components in the Hasse diagram of
e-orbits, each component consisting of e-orbits in P for a fixed homogeneous
polynomial D(s, t) of degree n in K[s, t]. Because e-orbits are classified by partitions
of the multiplicities of the irreducible factors of D, P contains only finitely many
orbits. For any positive integer m, m N n, there is a unique largest paition of m (with
respect to the dominance order) p*= (m, 0,..., 0)eN and a unique smallest one
p. (1,. ., 1, 0,., 0) N. It follows that there are unique e-orbits O* and O. in P
such that P and every e-orbit in P has O. in its closure. In paicular, the
Hasse diagram for P is connected and has unique maximal and minimal veices.
These smallest orbits O. (of minimal dimension within P) are the closed e-orbits,
which we described in Remark 3.9. From Theorem 3,7(ii), we see that the maximal
orbit O* in P must be the set of pencils (, A) in P that satisfy the following:

(3.19) m.(E, A) 0 for k > 1 and for all irreducible factors F of det (s + tA).

Using the standard form (3.9), we see that the pencils which satisfy (3.19) are those
that are equivalent to pencils of the form

where N is a nilpotent matrix with one Jordan block and J has one Jordan block for
each eigenvalue. We illustrate these ideas with the following example.

xample 3.10. In the case D st, the set P consists of pencils of 4 x 4 matrices
(, A) such that det (s + cA)= cst for some 0 ce K. Figure 1 is the Hasse diagram
for P, where each vertex is given by a representative from an e-orbit. We denote the
2 x 2 Jordan block with eigenvalue 0 by J and the 2 x 2 identity matrix by I.

[[’; :I. I;’ ,o,]] [[’o’ ,,I. [o

[[’o’ oi. [o
FIG. 1.
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4. Orbit closures of controllable semistate systems., In this section, we describe
orbit closures of controllable systems (E, A, B) under the restricted equivalence action

7 given by

(L, R). (E, A, B)= (LER-’, LAR-’, LB).

We will denote the triple (LER -1, LAR-1, LB) by L(E, A, B)R -1.
Analogous to the case of regular pencils that was studied in 3, we can restrict

our attention to Sa(n, m); it follows from (3.4) that

(4.1) (E,A, B)S(n, m)==> O,(E,A, B)c S(n, m).

Thus we can reduce the problem of r/-orbit closures in S(n, m) to that of r/-orbit
closures in Sa(n, m), a K. From Lemma 3.1, we see that r/-orbit closures in Sa(n, m)
correspond to g-orbit closures in L(n, m) via the map Pa defined by (1.11).

LEMMA 4.1. Suppose that (E, A, B) and (E, A, B) are in S(n, rn) and that (Lk)
and Rk are sequences in Gin K such that

(4.2) lim Lk(E, A, B)R- (if., ,, ;).

If E, A, B) is controllable, then

(4.3) Y lim Lk and X- lim Rk

exist in K and

(4.4) YE EX, YA AX, B YB.

Proof. Choose any ceK such that det(cE-A)0. Then, by (4.1), det
(a/ -/) 0. The a-controllability matrix of (E, A, B) Sa (n, m) is, by definition, the
controllability matrix of p (E, A, B) (Aa, Ba)"

(4.5) C(E,A,B)=[Ba, AaBa," ,A-lBa].
By direct computation, we obtain

(4.6) Ca(Lk(E, A, B)R-) RkCa(E, A, B),

and from (4.2) it follows that

(4.7) lim RgCa(E, A, B)- Ca(E, A, B)
k->c

because the mapping Ca" (E, A, B) Ca (E, A, B) is continuous on Sa (n, rn). Since
(E, A, B) is controllable, it follows from Proposition 1.1 that Ca (E, A, B) has rank n
and hence X limk_. Rk exists. By the hypothesis (4.2), we have

lim Lk(aE -A)R- aft, -,g,,(4.8)
k-.

hence

(4.9) lim Lk(E-A)=(aE-A)X.
kco

Since det (aE- A)# 0, it follows that Y limk_o Lk exists and we have

(4.10) Y(aE-A)=(aE-A)X, YB= B.

Since (4.10) holds for every a such that det(aE-A)#O, the equalities (4.4)
follow.
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Remark 4.2. Let (E, A, B), (E, A, B) S (n, m) and suppose that they satisfy (4.4).
Then

(4.11) Y=(a-)X(aE-A)-and we can rewrite (4.4) in terms of As and B"

(4.12)
XA AX,

XB B.

X(aE A)-’A (c/

Conversely, the existence of X K satisfying (4.12) implies the equalities (4.4)
where Y is defined by (4.11). Using the equalities (4.12) and induction, it is straight-
forward to show that

(4.13) XC(E,A,B)=C,(E,A,B).

If the system (E, A, B) is controllable, then Ca(E, A, B) has full rank and it follows
that X is unique. It then follows from (4.11) that Y is unique.

We are now in a position to describe the 7-orbit closures of controllable systems
in S(n, m).

THEOREM 4.3. Let (E,A,B), (E,A,B)S(n,m) and suppose that (E,A,B) is

controllable. Then (E, A, B) On (E, A, B) if and only if the following two conditions are

satisfied"
(i) There exists a uniquepair ofmatrices X, Y K such that YE EX, YA AX,

and B YB.
(ii) Dj (E, A) divides Dj(E, A) for all j, 1 <-_ j <= n.

Proof First, suppose that E, A, B) On(E A, B). The existence of matrices X,
Y satisfying condition (i) follows from Lemma 4.1, and the uniqueness was established
in Remark 4.2. Clearly, (E, A) O(E, A), and so condition (ii) follows from Theorem
3.7.

Conversely, suppose that conditions (i) and (ii) are satisfied. By Theorem 3.7,
condition (ii) implies that (E,A) O(E,A). Then it follows from Lemma 3.2 that
A O(A) for any a K such that det (aE A) # O. (Recall that Y denotes the
conjugation action on K"".) Moreover, it follows from Remark 4.2 that XA A,X
and XB B. By Lemma 4.4 of 13], there exists a sequence (Rk) in G1, (K) such that

(4.14) lim RkAR-1= fi, and lim Rk X.

Define Lk G1, (K) by

(4.15) Lk (aft, fi.)Rk(aE A) -1.

It follows from (4.14) that

(4.16) lim LkER-= .
koo

On the other hand, the definition (4.15) of Lk implies that

(4.17) Lk(aE A)R- aft. ,.
This, together with (4.16), implies that

(4.18) lim LkAR- .
k-c

Because limk_. Rk- X and, by (4.12), XB B, we have

lim Rk(aE-A)-B=(aff-)-l.
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It follows from (4.15) that

lim LkB= lim (aff,- fi,)Rk(aE-A)-B

Therefore (E, A, B) O(E, A, B).

By duality, we obtain an analogous result for systems of the form

E2 Ax,

y Cx where det (sE A) O.

By [19], we see that such a system is observable if and only if the system

Et Atx d- fttl

is controllable. Applying Theorem 4.3 to the system (E’, A’, C’), we obtain Corollary
4.4.

COROLLARY 4.4. Suppose that (E, A) and (E, A) are regular pencils and suppose
that E, A, C) is observable. Let t be the action of GIn(K)x GIn(K) on matrix triples
given by

(L, R). (E, A, C) (LER-, LAR-, CR-).

Then (E, A, C) O(E, A, C) if and only if the following two conditions are satisfied"
(i) There exists a unique pair of matrices U, W K such that EW= UE,

AW UA, and C CW.
(ii) D) (E, A) divides Ds (E, A) for all j, 1 <- j <= n.
In the regular case where E E In, condition (i) coincides with the conclusion

of Theorem 4.1 in [13]. Thus Theorem 4.3 yields a straight generalization of the main
result of Khadr and Martin. The following corollary characterizes those systems
(E, A, B) S(n, m) that have a closed r/-orbit, i.e., those that degenerate only to
equivalent systems.

COROLLARY 4.5. For any (E,A, B) S(n, m), the orbi.,t O,(E, A, B) is closed in
S(n, m) if and only if (E, A, B) is equivalent to a system (E, A, 0) with

where S is semisimple.
Proof. If On(, A, B) is closed, then B is necessarily zero since every system

degenerates to one with B 0 via

lim el. E, A, B eI)-1 E, A, 0).
e--O

A system (E, A, 0) S(n, m) has a closed r/-orbit if and only if O(E, A) is closed.
Thus the corollary follows from Remark 3.9.

In the following proposition we prove that every noncontrollable system in S(n, m)
is the degeneration of a controllable system, i.e.,

S(n, m) 1.3 O,(E, A, B),
(E,A,B)SC(n,m)

whereas a controllable system cannot degenerate to a controllable system.
PROPOSITION 4.6.

(4.19) S(n, m)\SC(n, m)= O0,(E, A, B).
E,A,B) SC n,m
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Proof Since r/ is an algebraic Gl,(K)-action, orbits in the boundary of
On(E, A, B) have dimension strictly less than dim On(E, A, B); see [11, Lemma 8.3].
But we have seen in Proposition 2.2 that orbits of controllable systems all have the
same dimension. Therefore

S(n, m)\SC(n, m) I..J OOn(E, A, B).
E,A,B)SC (n, m)

To prove the opposite inclusion, let (E,A, B) be an arbitrary element of
S(n,m)\SC(n,m) and choose aK such that det(aE-A)#0. By Theorem 5.1 of
[13] there exists a state-space system (,/) LC(n, rn) such that

O,,(E, A, B) (A, B) O,(A, B).

By Propositionl.2, there exists a system (E, A, B) in S(n, rn) with p,, (E, A, B)
(A,,, B,,)= (A, B), and by Lemma 3.1 the r/-orbit of the system (E,A, B) contains
(E, A, B) in its closure. [3

Note that this result is stronger than the statement that S (n, m) is dense in S(n, m).
The closures of orbits of an rt-invariant open and dense subset of S(n, m) do not
necessarily cover S(n, m). For instance, the open and dense subset Srg(n, m) of all
regular systems is closed with respect to orbit closure, since no regular system can
degenerate to a singular system in S(n, m) (a consequence of (3.16)). For a given
noncontrollable system (E, A, B) in S(n, m), there will, in general, exist more than
one orbit O,(E,A, B)c S(n,m) that contains (E,A,B) in its closure. However, in
the single input case (m 1), this orbit is uniquely determined. A proof of this fact is
indicated in the following example.

Example 4.7. Let m 1 and suppose (without loss of generality) that the pencil
(E, A) is in standard form:

/=[Ir 0 I fi=[0 0 ]0 1if[ I,_ }n-r

where r deg det (sE- A) and N, J are in Jordan normal form and N is nilpotent. Let

Y= + J(Ai, pi)
i=1

where J(Ai, Pi) is an ri x r Jordan matrix with eigenvalue A and block structure p;
(see (3.9)). Let On(E, A, B) be an orbit in S(n, 1) that contains (E, A, B) in its closure.
Again we may assume that (E, A) is in standard form with N and J in Jordan normal
form. Since (N, b2) and (J, b) are both controllable (1.9), it follows that N has only
one nilpotent Jordan block J(0, (n-r)) and J has only one Jordan block J(Ai, (r))
for each eigenvalue Xi (for ease ofnotation, we let (a) denote the partition (a, 0, , 0)).
Thus the orbit O(E, A) is uniquely determined by (E, A).

Using [4, VIII.2], it is not difficult to show that any two controllable systems
(E, A, B) and (E, A, B’) are ,/-equivalent. Thus we may choose B to be the column
matrix with every entry equal to one. Thus, for any (E, A, B) S(n, 1), there exists a
unique (and easily constructible) orbit On(E,A,B) in SC(n, 1) with (E,A,B)
On(E,A,B).

In the multi-input case, the determination of all r/-orbits whose closure contains
a given noncontrollable system (E, A, B) is an open problem. It is not even known
under which conditions the number of such orbits is finite.

In the following examples, we consider the reverse situation" for a given control-
lable system (E, A, B), we seek to determine all the r/-orbits in the closure of
On(E A, B).
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Example 4.8. Consider On (E, A, B), where

E=[I2 00] A=[J2 0] B=[I2]0 0 12’
If (E, A, B) OT(E, A, B), then (E, A) O(E, A). Thus, from Fig. 1, we see that, up
to equivalence, there are two choices for (E, A)"

(a) (E,A)--(E,A).
(b) (E, A) is the pair at the bottom of Fig. 1.
Since (E, A, B) is controllable, the possibilities for B will be determined by the

matrices X, Y K"n satisfying YE ff,X and YA .X. In case (a), a straightforward
computation shows that X and Y must be of the form:

(4.20) X Y
a

0 Su
a,b,s,t,u,vK.

Hence the systems (E, A, B) in 07(E A, B) are those for which bzl --0 and bl
Since left multiplication of B by nonsingular matrices Y of the form (4.20) yields a
system (E, A, YB) in the same r/-orbit, we find that exactly 12 r/-orbits of the form
O7 (E, A, B) lie in O7 (E, A, B), namely, those determined by

with

(4.21) B 12, J2, or 0 and Be I2, J2, 0, or

Now consider case (b), where B YB and

(4.22) YE EX and YA AX.
Then X, Y must be of the form

(4.23)

0 a

X=y=
0 b

0

s
a,b,s,t,u, veK.

0

It follows that/ may be any matrix in K42 satisfying b bzl --0. TWO such systems
(E, A, B) and (E, A, B’) are equivalent if and only if there are nonsingular matrices
L, R such that

(4.24) LE ER, LA AR, B’ LB.
It follows that

IS 1 for some S, T Glz(K).
0

(4.25) L=R=
0 T

Then there are eight orbits of the form O7(E, A, B) in 07(E A, B): those for which

where

(4.26) B J2 or 0 and B2 12, J2, 0, or
0
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Although there are only 20 orbits in the closure of the r/-orbits in Example 4.8,
we see in the next example that there can be infinitely many orbits in the closure of
an r/-orbit, at least in the case m _-> 2.

Example 4.9. Suppose n and m >=2. Let E I,, let A =diag (c1, , c,) such
that c t E K and ai # cj for all # j, i, j >_-2, and let

B=

where B K is any matrix such that (I, A, B) is controllable (i.e., all rows Bi of B
are nonzero and B1 and B are independent). By Theorem 4.3, we know that (/, A, B)
O,(/, A, B) if there is a matrix X K such that XA AX and B XB. Consider
the family of n x n matrices

10 e
0

x()
0

eK,
0 0

and the resulting family of systems (I, A, B(e)), B(e)= X(e)B, in O,(/, A, B). Two
of these systems, (I, A, B(e)) and (I, A, B(e’)), are r/- equivalent if and only if there
exists T Gl,(k) such that TA AT and B(e’)= TB(e). If TA AT, then T is of the
form

T T2 D where T2 Glz(K) and D Gln-z(K) is diagonal

Hence

t B + eB2) ]
tZl (B1 + eB2)

TB() 0

0

If TB(e) B(e’), then t2 0 and

tl(B + eB2) B + e’B2.
Since B and B2 are independent, it follows that t 1 and e e’. Therefore, the orbits
{ On (I, A, B(e))}, K are distinct and so On (I, A, B) contains an infinite number of
orbits.

To date, there is no general description of the v-orbit boundaries that contain
only finitely many orbits.
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ON DIFFERENTIAL GAMES OF FIXED DURATION WITH PHASE
COORDINATE RESTRICTIONS ON ONE PLAYER*

K. HAJI-GHASSEMI"

Abstract. This paper considers differential games of fixed duration in which state constraints described
by a given closed set E are imposed on one of the players. Using Berkovitz’s definition of a game, the
existence of the value is obtained first and, under mild conditions, the existence of saddle points. Sufficient
conditions are then given for the value to be continuous or Lipschitz continuous.

Key words, differential games, phase restrictions, value, saddle point
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Introduction. Consider a differential game of fixed duration with terminal time T,
and dynamics"

=f(t,x,y,z),
(0.1)

x", yY, zZ,
where Y and Z are compact subsects of P and q, respectively. Using the definition
of a game according to Berkovitz, [1], the set-valued payoff, for a game with initial
point (to, Xo), is defined by

P[to, Xo, F, A] {g(q[T]): q e [., to, Xo, F, A]},
where F and A are strategies of the first and the second player, respectively, and
P[’, to, Xo, F, A] is the set of all motions resulting from (F, A) (see 1 for definitions),
and g" "--> is a given function.

Let E be a given closed set in ’. Suppose that in the above game we impose the
additional restriction that one of the players, say the first player (maximizer), must
choose his strategies in such a way that all resulting motions lie in E. Such restrictions
can be imposed by defining the payoff through, in place of g, an extended real valued
function V(.) defined by

f g(cp[ T]) if o[ t] E Vt to, T]
(0.2) v(

-oo otherwise.

Note. If player II (minimizer) were chosen as the restricted player, one would
replace "-oo" by "+oo" in the definition of V(o).

Games with phase coordinate restrictions as above have been considered previously
by Friedman ([4],[5]), Scalzo ([8]), Subbotin [9], and Zaremba ([10],[11]). Each
author, using a particular definition of a game, establishes the existence ([4], [5], [8],
[9], [10], [11]) and continuity (or Lipschitz continuity) ([4], [5], [8]) of the value. In
[4] and [5] it is also shown, under assumptions which guarantee the existence and the
continuity of the value, that saddle points exist if one restricts the class of strategies
appropriately. These are termed "X-saddle points." In this paper, using Berkovitz’s
definition of a game, introduced in [1], we obtain sharper results on the existence of
value and saddle points and the regularity of the value for the games described above.
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It is shown, in 1, that the techniques of 1 ], slightly extended, give the existence
of value in games where the restricted phase set is any closed subset of n. In 2, we
show that, in general, saddle points exist in such games if the strategies of player I
are limited to a smaller class. But, if the value is assumed to be always finite (but not
necessarily continuous), then saddle points do exist without restricting the class of
strategies. In 3, which comprises a large part ofthe paper, first the regularity properties
of the value are examined for an especially simple type of phase set, namely, a
half-space: {x En: xn_> 0}. This case occurs frequently in examples. Conditions are
given ensuring that the value is always greater than -00, continuous, or Lipschitz
continuous. Here Theorem 3.1 is of the same nature as the existing results of Friedman
and Scalzo ([4], [5], [8]), but with much less restrictive hypotheses (cf., for example,
[5, Thms. 8.1 and 8.3]). Then extensions to more general sets are briefly commented
on. We conclude by showing that if E is any closed set, continuity of the value of cgE

implies continuity on E.
Throughout this work, unless otherwise stated, we assume the following concerning

the data of the problems.
HI. (i) The function f in (0.1) is continuous on [0, T] x"x Y x Z.

(ii) There is a constant K > 0 such that

If( t, x, y, z) f( t, , y, z)l <= KIx 1
for all t[0, T], x,", y Y, zZ.

(iii) The function g, used to define the payoff, is continuous.
(iv) (Isaacs’ condition). For any (t, x) [0, T] x E, and s "

max min (s, f( t, x, y, z)) min max (s, f( t, x, y, z)).
y y

(v) The phase set E is closed.
Remarks. 1. For a discussion of the Isaacs’ condition, see [1, 9]. 2. In (ii), it

suffices, for our results, that f be locally Lipschitz in x.
We use the concepts and notations introduced in [1] throughout the paper. We

assume, therefore, that the reader is familiar with them. We will denote the Euclidean
norm of xE" by Ix[, {xEn: Ix-al<-_R} by BR(a), and if FcE",inf{]x-fl:fF}
by d(x, F).

1. Existence of the value. The main result of this section is Theorem 1.1. It asserts
the existence of the value in games described by (0.1) and (0.2). We lead to it through
several lemmas. We assume HI throughout this section.

LEMMA 1.1. Let A be a strategy of the second player defined on to, T], to [0, T],
such that for some c , and X, a compact subset of E,

(1.1) [’,to, Xo, A], xoXV()<c.

Then there exists an e > 0 such that for any Xo X and ,I dp[., to, Xo, A],

(1.2) g(p[T]) >= c ::l [to, T] such that d(p[/’],E)_->e.

Proof. If the conclusion were false, then there would exist sequences {xn} in X,
e 0, and [., to, x, A] such that

g([T])_->c and d([t],E)<en, Vt[to,T].

Since by [1, Lemma 6.2] t.J{[., to, x, A]: n 1,2,’’ "} is compact in the space of
continuous functions on to, T] with the uniform topology, we may assume, by taking



626 I. HAJI-GHASSEMI

a subsequence, that there exist an Xo X, and a motion q [., to, Xo, A] such that as
n- c, xn Xo, and qn- q, uniformly on to, T]. Hence, for any to, T],

d(p[t], E): lim d(q[t], E) =0.

Since E is closed, this gives q[ t] E for all to, T]. Therefore, by the definition
of V and the continuity of g,

V(q) g(q[ T]) lim g(q,[ T]) c.

This contradicts (1.1).
LEMMA 1.2. Let ce . The set D() {(t, x): w+(t, x) < c} is open. (In particular,

w+( ., is upper semicontinuous.)
Proof Let (to, Xo)D(a) and O<6<(a-w+(to, Xo))/2. Take c=a-6. Then

w+(to, Xo) < c. Hence, by the definition of w+(to, Xo), there exists a strategy A such that
for any q [., to, Xo, A], we have V(q) < c. Let e > 0 be as in Lemma 1.1. Let tl [0, T],
and define s tl, T] - to, T] by s(t) to + (T- to)(t tl)/(T- tl). Let xl E. Let 19
t0(to, Xo, tl, xl) be the one-one onto map from the set of all strategies in the game with
initial point (tl, xl) to those with initial point (to, Xo) defined using s(.) as in [1,
p. 181]. By [1, Lemma 6.5], for every motion o[., t,x,19-A], there exists a
motion q3 [., to, Xo, A] such that

(1.3) max {iq[t]-[s(t)][: t[tl, T]}_-< r/(p)

where p=-lto-tll+[Xo-X,I, and r/(p)0 as p0.
Let G be a bounded neighborhood of (to, Xo). It follows from HI that there exists

an R > 0 such that any motion q with its initial point in G satisfies Iq[ t]l <- R. By the
continuity of g(. ), there exists trl > 0 such that

(1.4) 0< or, < e/Z, and lg(x)-g(x’)l<6/2 [X,x’GBR(O),Ix--x’I<o-1.

Let o-2>0 be such that p<cr2r/(p)<
[’, tl, xl, (R)-A]. Let q5 [., to, Xo, A] such that (1.3) holds. Then either there exists
a ?[tl,T] with q[t--] E, in which case, V(q) =-c, or q[t]E for all t[tl,T], in
which case, by (1.3) and (1.4), d([t],E)<e/2, forall It1., T]. Hence, bythe choice
of e, g([T])<c. Now, by (1.4) and the choice of 6, g(o[T])<e+/2<a. Thus in
either case, V(q) < a 6/2. Since [., tl, xl, 19-1A] was chosen arbitrarily, we have

w+(tl, Xl) <- sup P[ t,
I"

We have shown that ]to-tl+lXo-Xll<rz(t.,x,)D(a). Therefore D(c) is
open. I-1

COROLLARY. Let (to, Xo) [0, T] E, v w+( to, Xo), and

C+(v)={(t,x): w+(t,x)>= v}.

Then C+(v) , and is closed. Moreoverifv -, then any (t, x) C+(v) has x E.
Proof C+(v) since (to, Xo)C+(v). The last statement is clear. Closure

follows from Lemma 1.2.
Lemma 14, below, is the analogue of [1, Lemma 8.3]; i.e., it states that the sets

C+(a), above are "u-stable"; see Remark below. For future reference, we separate
out the main argument of its proof in the next lemma. The proof is essentially the
same as that given in [3]. We will therefore omit some of .the details.
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LEMMA 1.3. Let tl [0, T], and X c E be a compact set such that for some real
number c,

W+(tl,X)<C, VxX.

Then there exists a strategy A*, defined on [tl, T], such that

V(q) < c for all p e {[., t,, x, A*]: x e X}.

Proof Since X is compact and, by Lemma 1.2, w+ is upper semicontinuous, there
exists an x* X such that w+(t, x*) max {w+(t, x): x X}. By assumption c-
w+(t,x*)>O. Let tr (0, c-w-(t,x*)). Then w+(t,x)<c-o for all xX. There-
fore, by the definition of w+, for every x X, there exists a strategy h(x) such that

a,[., t,,x,A(x)] V()< c-.

Now, by Lemma 1.1, there exists an e > 0 such that for any q [., t, x, A(x)],

(1.6) g(q[T]) -> c tr =:> d (q[ t-I, E) _-> e.

It follows from [1, Lemma 6.5] and the continuity of g that there exists a 6(x) such
that if X, Ix-1 <(x) then for all gs[.,t,:,(R)A(x)], there exits a q

[., t, x, A(x)] (with (R) (R)(t, , t, x) as in Lemma 1.2) such that

(1.7) (a) ]q[t]-[t][<e/2, ’t[t,,T],

(b) Ig(q[T])-g([T])l<cr/2.
By (1.5), (1.6), and (1.7), either g([T])<c-cr/2 or for some [tl, T], d(q[t--], E)_->
e/2. In either case V(q)< c-r/2. Thus if [x-:] < 6(x), then

(1.8) V() < c-o’/2, Vp [., t,, , (A(x)].
Let B(x) be the ball of radius 6(x) centered at x. Then X c t2 {B(x): x X}. Since

X is compact, there exist x,..., Xk such that Xc (3 {B(xi):i= 1,’’’, k}. Now we
define a strategy A* as follows (see [3] for a more formal definition): if H,,i denotes
the nth-stage partition of A(x), i= 1,..., k, let the nth-stage partition of A* be
I-I, U {II,,: 1, , k}. Given the initial point x X, let j =j(x) min {i: _-< _-< k
and ]x-xl<g(xi)}. Then A*, at the nth-stage, plays the nth-stage of (R)A(xj). Note
that this is possible since the partition points of 1-I,,j are among those of 1-I,. It follows
that if U {[., t, x, A*]: x X} then q [., tl, x, (R)A(xjx))]. Therefore, by (1.8),
V(q)<c-tr/2<c for all q U{[., t, x, A*]: xX} as desired.

LEMMA 1.4. Let a, and C+(a)={(t,x): w+(t,x)>-a}. Let (’, ) C+(a) and
let " < t < T. Let v( be any control of the second player on -, T]. Then there exists a
relaxed control rl such that the corresponding relaxed trajectory d/(. ), with initial point
(’, ) satisfies (t, b(tl)) C+(a).

Remark 1. The property described above will be referred to as the "u-stability"
(or simply "stability") of the set C+(a).

Proof Suppose the assertion were false, then there would exist t (-, T) and
v(. ), a control function for player II, defined on [-, T] such that if q(. is a relaxed
trajectory corresponding to a relaxed control r/, then (q, q(t)) C+(a). Let be the
set consisting of all points q(t) for all such q. Then is compact ([1, Lemmas 6.1,
6.2]). Set X VI E. X is compact since E is closed and is compact. Also, for all
xX, (t,x)C+(a). Therefore, by the definition of C+(a), w+(t,x)<a for all
x X. Since w+ is upper semicontinuous and X is compact, there exists a’< a such
that w+(t, x) < a’ < a, for all x X. Hence, by Lemma 1.3, there exists a strategy A*,
defined on [’, T], such that

(1.9) V(q) < a’, Vq 6 U {(I)[., t,, x, A*]: x X}.
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Let be the concatenation of v(. ), on [r, tl], and A*, on tl, T]. Then for every
q [., r, :, ], there exists a motion q [., t, q[t], A*] such that

(1.10) [t]=q[t], t 6 [tl, T].

Hence V() V(q). By the definition of , and [1, Lemma 6.1], there exists a relaxed
trajectory 0 such that 0(t) q[ t] for all % tl]. Therefore if q[ t] E for all -, t],
then (p[t]X. By (1.9), V(q)<a’. Using (1.10), we have V()<a’<a. Since
[., t, :, A] was chosen arbitrarily, we conclude

w+(-, )<= sup {V(q) q3 [., % , ]}<- a’< a.

This contradicts the assumption that (r, ) C+(a), proving the lemma.
Remark 2. Lemmas 1.2 and 1.4 have shown that if C+(a), a ff is nonempty,

then it is closed and "u-stable." Hence we may define extremal strategies,
re(C+(a)), as in [1, p. 189].

The next lemma is the analogue of [1, Lemma 10.1]. Note that Lemma 9.1 of [1]
is valid in our setting since it is independent of the pay-off. Therefore, using the closure
and the u-stability of C+(a), the same arguments as in [1, Lemma 10.1] prove the
next lemma.

LEMMA 1.5. Let HI hold and let (to, Xo)[O,T]xE. Let v=w+(to,xo), and
Fe Fe(C+(v)). Then for every motion q ap[., to, xo, Fe],

(t,q[t])C+(v), t[to,T].

It follows from this lemma, therefore, that V(q)=g(q[T]) >- v, for all
t:I)[., to, Xo, 1-’el. Now the existence of the value follows easily.

THEOREM 1.1. Let HI hold and let (to, Xo) [0, T] E. Then the differential game
described by (0.1), and (0.2) has value W(to, Xo).

Proof Let v=w+(to, Xo). If v=- then clearly w-(to, Xo)=-o also, and the
value exists trivially. Suppose v-, and let 1-’ --I’e(C+(v)). Then by Lemma 1.5,
for every motion q [., to, Xo, [’e], V(q) v. Hence,

w-(to, Xo) _>- inf P[ to, Xo, Fe, A] -> v w+(to, Xo).

Since the reverse inequality always holds, we are done.
Remark 3. It is clear that games with phase restrictions on the minimizer, player

II, can be treated similarly. Thus games with phase restrictions on only one of the
players, in the sense described above, have value.

We conclude this section with a discussion of the set

C-(a)={(t,x): t6[0, T],xE, and w-(t,x)<-a},

in games with phase restrictions only on the maximizer. Let (-, :) C-(a) (some
aR), and t161% T]. Let u(.) be a control function of the first player, defined on
[% tl], with the property that for any control function, v(. ), of the second player and
a solution, q, of

(1.11) ( t) f( t, x, u(t), v(t)), a.e. t[’, t], x(r)=,

q satisfies (t)E for all t[r, t]. Then by arguments similar to those of Lemma
1.4, we can show that there exists a relaxed control sr such that the corresponding
relaxed trajectory q, satisfies

(1.12) (tl, ffy(tl)) G C-(a).
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Now if see int (E), it follows from HI that there is a 8 8(:)>0 such that for any
control function v(.) and solution q of (1.11) q(t)EE, t[’, -+8]. Hence we have
the following lemma.

LEMMA 1.6. Let (’, ) C-(a), some a. Let :int(E). Then there exists a
8 8()> 0 such that for any (’, " + 8), and any u(. ), a control of the first player,
defined on [-, tl], there exists a relaxed control such that q, the corresponding relaxed
trajectory, satisfies (1.12).

2. Saddle points. In this section, we consider the question of the existence of
saddle points in a game of 1 with initial point (to, Xo). If W(to, Xo)=-oo, then there
exists a A* such that V(q)=-oe for all o [., to, Xo, A*]. Hence for any F, the pair
(F, A*) forms a saddle point trivially. Hence we will assume, below, that W(to, Xo)
We will first show, in Theorem 2.1, that, in general, saddle points exist if we restrict
the class of strategies of the first player, appropriately. We will then prove the main
theorem of this section, Theorem 2.2, which states that if w(t, x) > -oe for all (t, x)
[0, T] x E, (but not necessarily continuous there), then saddle points exist without any
restrictions on the class of strategies.

We will use the following notation in this and later sections. For a pair of strategies
(r, a),

1. ,, (., to, Xo, F, A) will denote the set of all mth-stage trajectories resulting from
(F, A) with initial point (to, Xo).

2. @,,, (’, to, Xo, F) k.I {@,, (., to, Xo, F, A): A}.
3. 8,,(F)= sup {max,,o,r d(q,(t), E): r e@,,(., to, Xo, F)}.
4. H, {(t, x): x 6

DEFINITION. Let us call a class F of strategies F of the first player, "restricted"
if 6r (F) 0 as m - oe, uniformly in F E F.

THEOREM 2.1. Let (to, Xo) [0, T] x E, with w( to, Xo) > -oe, and F0 be the extremal
pointing strategy defined with respect to C+(w(to, xo)). Then for any restricted class F
of strategies ofplayer I, there exists ho such that

(2.1) (a) P[to, Xo, Fo, Ao] {W(to, Xo)},

(b) For all A and all F F,
P[ to, Xo, F, Ao] --< P[ to, Xo, Fo, Ao] -< P[ to, Xo, Fo, A].

The theorem follows easily from Propositions 2.1 and 2.2 below. We first prove
these propositions.

PROPOSITION 2.1. Let F* be the set of all strategies, F, ofplayer I such that for any
q [ ", to, Xo, F], q[ t] E, for all to, T]. Then for any F F*, we have 8,, (F) ---> 0
as m-->o(3.

Proof Suppose that for some F the conclusion were false. Then, by taking a
subsequence, we may assume that there exists an e > 0 such that 8,.(F)> e for all m.
By the definition of 8,,(F), there exists a q,, ,.(., to, Xo, F) such that

(2.2) d (q, (t,,), E) > e for some t,, 6 to, T].

We may assume, by taking another subsequence if necessary, that there exist a ? to, T]
and a q5 E [., to, Xo, Fo] such that

tm ?,
(2.3)

as rn , and

uniformly on [to, T], as m

Assumptions HI ensure that {q,,} is an equicontinuous sequence. Hence, it follows
from (2.2) and (2.3) that d(qS[t-], E)=> e, contradicting the hypothesis. [3
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Remark. In particular, by Lemma 1.5, t$m(l"0) 0 as m-. It follows that if F is
a restricted class then IF {Fo} is also a restricted class. Hence we will always assume

from now on that a restricted class contains Fo. Note that, in a similar way, if F IF*
and IF is restricted, then IF U {F} is also restricted.

PROPOSITION 2.2. Let IF be a restricted class. Then there exists a Ao such that

and

P[ to, Xo, F, Ao] <= W( to, Xo) for all F IF,

P[ to, Xo, Fo, Ao] W(to, Xo).

Proof The second assertion follows from the first and from Lemma 1.5. We now
prove the first assertion. Let Vo W(to, Xo)>-c. By definition,

Vo inf sup P[ to, Xo, F, A].
A F

Hence for every n there exists a A, such that, for every F F,

(2.4) P[to, xo, F,A,]<=sup P[to, xo, F,A,]< Vo+ 1/n.

Claim. For every n, there exists an re(n) such that if m > m(n), then for any
q,, [_J {,,,(., to, Xo, F, A,): FF}, we have g(q,,(T)) < Vo+ 1/n.

Verification. From (2.4) we have that for all q[., to, Xo, A,], V(q) < Vo+ 1/n.
By Lemma 1.1, there exists an e, > 0 such that for all q [., to, Xo, A,],

(2.5) g(q[T])--> Vo+ 1/n :1 [to,T] satisfying d(q[t-], E)_-

Since F is restricted, there exists an re(n) such that

(2.6) m>-_m(n),,(F)<e,/2, ’q’F F.

Hence if m >- re(n) and q,, t_J {,,(., to, Xo, F, A,): F F} then,

(2.7) max {d(q,(t), E): t[to,T]}<-6,.(F)<e,/2.

Now suppose that the claim is false. Then there exists an n and a sequence
m(i) --> as --> c, and {o,,i)} = U {,,i)( , to, Xo, F, A,): F F} such that g(q,,i(T)) ->_

Vo+ 1/n. Since {q,,i)} is a sequence of m(i)th-stage trajectories of A,, there exists a
motion q [., to, Xo, A,] such that q,,i)--> q uniformly on to, T], as --> . Hence
by the continuity of g, g(q[T])---Vo+ 1/n. Therefore, by (2.5), there exists a [to, T]
such that d(q[t-], E)=> e,. Since q,, converges to uniformly, we have

d(q,,)(), E) _>- e,/2,

for all sufficiently large. This contradicts (2.7), proving the claim.
Now define/Xo as {A,.,,), II,.,,,} where I-I,. is the ith-stage partition of A,. That

is, the nth-stage of Ao is the m(n)th-stage of A,. Hence if F IF, q [., to, Xo, F, Ao]
and { q, } is the sequence of nth-stage trajectories converging to q, then, by the definition
of Ao, q, m,)(’, to, Xo, F, A,). Therefore, by the above claim, g(q,(T)) < Vo+ 1/n.
Hence V()-<_ g(q[ T]) =< Vo. Since F in F and q [., to, Xo, F, Ao] were chosen
arbitrarily, we conclude:

(2.8) P[ to, Xo, F, Ao] _--< Vo for all F F,

as desired.
Proof of Theorem 2.1. As noted above,

(2.9) P[ to, Xo, Fo, Ao] W(to, Xo).



DIFFERENTIAL GAMES WITH STATE CONSTRAINTS 631

On the other hand, by Lemma 1.5, W(to, Xo) --< P[ to, Xo, Fo, ] for any A. Hence, using
(2.8) and (2.9), we have

P[ to, Xo, F, Ao] --<_ P[ to, Xo, Fo, o] <- P[ to, Xo, Fo, ]

for all strategies A and all F ll’, as was claimed.
Before we state and prove Theorem 2.2, let us note that if c [0, T] x E is closed

and "u-stable," then Lemmas 9.1 and 10.1 of [1] prove the following lemma.
LEMMA 2.1. Suppose E is closed and u-stable. Let X be a compact subset of E and

let [0, T] be such that 1)f3 H, . Let F be. the strategy defined extremally with
respect to 1). Then there exists a constant C > O, independent of 1), such that for any

t_J {[., t, x, Fe]: x X} we have

d((’,

Proof If (t, x) e 1) then the proof is exactly the same as that of 1, Lemma 10.1 ].
Otherwise, using the same notation as in [1, Lemma 10.1], we have k k(m)= 1, and

lim e,,(’)=d((t,x), C+(a)t-I,),

where em (’) =- d ((, q,, (’)), C+() f3 H). As in that Lemma, we obtain

e2m(t) e2(r) et: +E(6m)(et( -1)//3, Vre[r, T],

where E(. is a function, depending on X and the modulus of continuity of f, such
that E(r)- 0 as r 0, K Lipschitz constant of f and/3 is a constant, which in our
setting depends only on f and X. Letting m-* oo, we obtain the desired conclusion
with C eK/2. [l

We are now ready to state and prove Theorem 2.2.
THEOREM 2.2. Suppose that w( t, x) > -oo for all t, x) [0, T] E. Then saddle

points exist; i.e., for every (to, Xo) [0, T] x E, there exists o such thatfor any F and A,

P[ to, Xo, F, Ao] -<- P[ to, Xo, ro, Ao] <---- P[ to, Xo, ro, A],

where Fo is the extremal strategy with respect to C+(to, Xo).
Remark. Conditions which guarantee w(t, x) > -oo for all (t, x) [0, T] E can

be given when more information is known about E; see, for example, Proposition 3.1
below.

Proof It can be easily verified that w(t, x)>- for all (t, x)e [0, T] E if and
only if [0, T] E is u-stable. Now, let (to, Xo) e [0, T] E. Let R > 0 be such that all
trajectories with initial point (to, x), x in a bounded neighborhood of Xo, remain in
BR(O) on [to, T]. Let M=max{If(t,x,y,z)l: t[to, T],
denote the extremal strategy defined with respect to [0, T] E. By Lemma 2.1, there
exists a constant C>0 such that for all qeLl{(I)[., to, X, Fe]: ]xI=<R}, we have
d q[ t], E) <- Cd (x, E). Fix Y{’>C. Then it follows from the compactness of
LI{[., to, x, Fe]: Ix]<--R} (cf., [1, Lemma 6.1]) that there exists an m* such that if
m ->_ m* then

(2.10) d(q,(t),E)<=Y{d(x,E), for all ,, Ll{CI)m(., to, X, Fe): ]xl<=R}.
Without loss of generality, we will assume that m*= 1.

Now let V={F: 6m(F)<-__C[6m(Fo)+M(T-to)/m]}. Then, by Proposition 2.2,
there exists a Ao such that

(2.11) P[ to, Xo, F, Ao] _--< P[ to, Xo, Fo, Ao], for all F l.

Claim. Ao has the desired property; i.e., (2.11) holds for any F.
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Verification. Suppose that the claim is false. Then there exists a strategy F and a
motion o [. to, Xo, F, Ao] such that V() > Vo. In particular, q[ t] E, for all
[to, T]. Let {q,(.)} be the sequence of mth-stage trajectories converging to q. Let
(u,,, v,,) denote the controls of q,. We will show that there exists a F IV such that
q [’, to, Xo, F, Ao]. This contradicts (2.11), proving the claim.

Before defining F, observe that since q[ t] E, for all t to, T], then

max {d(q,,(t), E): te[to, T]}-*0 as m-->.

Hence for every m, there exists n(m)>= rn such that

max {d(q,(t), E)" t[to,T]}=<g,,(Fo), ifn>=n(m).

Let N={n(i)" i=1,2,...}, and define as follows. =(’,,,Hm) where 1-I,=
{to < ’ <’" < ’,, T} is a uniform partition of [to, T] into rn subintervals of length
(T- to)/m. Now if m N, then let F,, be the mth-stage of the extremal strategy Fo. If
rn N, then F,,.i u,, to, ’i), for 1,. , k(m), where u,, is as defined above, and
k k(m)>-1 is the smallest index such that

(2.12) max {d(q3,,(-), E)" ’ [’k-1, ’k]} > 6,,(Fo),

and qS,, is the trajectory, with initial point (to, Xo), resulting from F,, versus some
on [to, ’k]. Note that if (2.12) never occurs or if k m then F,, has been defined
completely. If k < m, then for every j->_ k + 1, define F,,.j extremally with respect to
[0, T] x E. Observe that,

d (q,. (’,), E) -<_ d (q3., (’_,), E)+ M(T- to)/m <-_ a.(ro)+ M(T- to)/m,

where the second inequality follows from the definition of k. Therefore, if m N, using
(2.10), we have that for all - [-, T],

d (q., (-), E)_-< Y{’d (q., (-), E)<= Y{(6. (Fo)+ M(T- to)/m).

By the definition of F, if m N, then d(q.,(-), E)=< 6.,(Fo). Thus, F ’. Furthermore,
for me N, (u.,, v.,) is the ruth-stage outcome of F and Ao. Therefore,
(I)., (., to, Xo, F, Ao) if m N. Since q. -> q, we have q (I)[ , to, Xo, F, Ao]. This proves
the claim and the theorem, l-]

3. Regularity of the value. Although by Lemma 1.2, the value of the game con-
sidered in 1 (i.e., with phase restrictions on only the maximizing player) is upper
semicontinuous, it can easily fail to be continuous or even finite valued in general, as
shown in the following example.

Example 1. Consider the game with dynamics

)=y-z-e

with e > 0, Y [0, 1 ], Z [0, 1 ], E {x " x => 0}, and g(x) x. It is clear that w(t, x)- for any initial point (t, x) with 0<= x < (T-t)e, T final time.
In this section we will discuss conditions which imply the finiteness, continuity,

or Lipschitz continuity, of the value.
To avoid cumbersome notation, for our first two results (i.e., up to Theorem 3.3)

we will assume that the phase set E is of a particularly simple type, namely"

(3.1) E={xe"" x" >-_ 0}.

These results extend easily to more general types of sets, as remarked below.
Clearly, the difficulty with Example 1, above, is that, for some initial values (t, x),

the second player can always force the first player to violate his phase constraint. The
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following condition will prevent such situations, ensuring the finiteness of the value.
H2. For any (t, x) [0, T] 0E,

max minf" t, x, y, z) _-> 0.
y

PROPOSITION 3.1. If HI and H2 holds then w( t, x) isfinitefor all t, x) [0, T] x E.
Proof W(to, xo) supv infa P[ to, Xo, F, A] is finite valued if and only if there exists

a strategy F such that for any q [., to, Xo, F], q[ t] E for all [ to, T]; i.e., q"[ t] _>- 0,
for all to, T]. Let

f(t,x)={y Y: min f"(t,x,y,z)>-O}.

Then, by H2, f(t, x) , if x" 0. Consider the strategy F {Fro, I’[m} where the
ruth-stage partition lI,, { to < r < "/’2 <" < 7"m T} is a uniform partition of to, T]
into m intervals. Let 3m =- IIn (T- to)/m. Let F,, be defined as in [1, p. 189] using
a positional strategy U(t, x) satisfying U(t, x) 12(t, x, x"-, 0). Let p

[’, to, Xo, F] with {qm(" )} as the sequence of ruth-stage trajectories converging uni-
formly to q.

Claim. q"[ t] >_- 0 for all to, T]. If not, then there exists a { to, T] such that
q"[ {] < 0. Let ? inf { < i: q"[ r] < 0 for all r (t, {]} and r {- . We will arrive at
a contradiction. By the definition of and the continuity of q, we have p"[ t-]- 0, and
q"[t]<0 for all t(?, ?+r]. For each m, let k=k(m) and j=j(m) be the smallest
integers satisfying

(i) ?[to, rk) and (ii) ?+tr[’,+)

Then,

(3.2) (a) Tk and r- + tr as m c.

(b) o,(rk)q"[?]=0 as m.

(c) p,(t)<0, tt[rk, z], for rn sufficiently large.

Define h(t, x, y) min {f"(t, x, y, z)" z Z}. It follows from HI that

(3.3) (a) Ih( t, x, y) h( t, X, y)l <- KIx- [, Vt[0, T];yY;

(b) h(t,x,U(t,x))>=O ifxn=0,

where K Lipschitz constant of f as a function of x. Statement (b) follows from the
definition of U(t,x). Let R>0 be large enough so that max {l,,(t)l" t[to, T]}<-R
for all m. Define M max {If(t, x, y, z)]" [0, T], Ixl _-< R, y Y, z Z} and

to(r)=sup{If"(t,x,y,z)-f"(t’,x’,y’,z’)l" I(t,x,y,z)-(t’,x’,y’,z’)l

<-_ r, Ixl R, Ix’l <-- R},

then o(r)0 as r0. Now if t[zi, ri+], then

f"( t, q,,( t), y,, vm( t)) >--_ f"(ri, qg,,,(ri), Yi, v,,,( t)) to((M + 1)m)

where yi U(zi, tp,,(ri)). Hence

(3.4) q(t)>=o(r)-,,,o((M+ l))+
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By the definition of h, for almost every - [’i, t], we have

fn(%, Pn(’i), Yi, Urn(7")) h(%, q,,,(’i),

Let m(t)((t), "-(t)m,0), then by (3.3),

h(Ti, m(i), Yi) h(Ti, m(i), Yi)- K[(7i)] -K](r,)].
Therefore, from (3.4), we get:

(t)(i)-mK[(Ti)l-m((M+l)m), VtG[Ti, i+l)-

Using (3.2.c), we obtain that if kij then

(3.5) (t) (i)(1 + 6K)- 6w((M + 1)m).

It follows, using (k)<0, that for any t[k, ),
(t) (k)(1 + 6K)k- 6w((M + 1)6)( 1 +’’" + (1 + 6K k--l).

Since k-j m, we may replace k-j by m (note that (g)<0):

Z(t) ()(1 + aK)-((M+ 1))(1 +... + (1 + aK)).
This gives, after summing the last expression on the right and regrouping, that for
every 7k, ],

Z(t) [() aw((M + 1)am)](1 + aK) -((M+ 1)a)/.
Letting mo and using (3.2.a), (3.2.b), the fact that 6 =(T-to)/m and w((M+
1)6m) 0, we get "[ t] 0 for all ?, ?+ ], contradicting the choice of
and proving the proposition.

COROLLARY. IfE is as i8 (3.1) and H2 holds, then for any (to, Xo) [0, T] x E the
game with initial point (to, Xo) has a saddle point.

Proof To obtain the proof, combine Theorem 2.2 and Proposition 3.1.
That condition H2 is not sufficient in itself for the continuity of the value can be

seen in the following example.
Example 2. Consider the game with dynamics"

=0, =y-z, 3=xy,
control sets Y=Z=[O, 1], g(x)=x2, where x=(x,x2, x3), and some T>0 as the
fixed final time. The phase set is E {x 6 3: x 0}. Consider Xo OE (i.e., x 0) and
some initial time to< Z If x=0 then the optimal plays are y* 1 and z* 1 and
W(to, Xo) x. However if x < 0 then the only admissible choice for player I is y* 0.
Hence, W(to, Xo)= x-(T-to). Therefore, on OE, w is discontinuous.

Remark. It is not difficult to find examples of games where w is discontinuous in
the interior of [0, T] x E. However, as will be shown in Theorem 3.3, if the value w is
discontinuous on [0, T] x E then it is also discontinuous on [0, T] x OE.

Let us also observe that the value in the following variant of the above example
is continuous"

Example 3. In Example 2, let us change 3 to

= xly + e

for some e > 0. Consider the resulting game. For (to, Xo) (with Xo E), the value is
given by:

if x -e
W(to, Xo)= x+((/Ixl)-l)(T-)

where ?= min T, to + x/(Ixl- )), Hence w is continuous.
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Note. The existing results ([4], [5], and [8]) do not apply to this example because
of their restrictive hypotheses.

We will show, in Theorem 3.1, that, in fact, the following strengthened versions
of H2 and HI ensure the continuity of the value:

H3. For every [0, T], x OE (i.e., x 0),

max minf" t, x, y, z) > O.
y

HI’. Same as HI except for Hl-ii) which is changed to the following.
(ii) There exists a constant K > 0 such that

If(t, x, y, z)-f(t’, x’, y, z)l <= K(lt-t’[+lx-x’[)
for all t, t’ [0, T], x,x’E, y Y, zZ.

We begin the discussion leading to Theorem 3.1 by introducing some of the
parameters to be used in the proofs below.

Note 1. H3 and our continuity assumptions on f imply that for any R > 0, there
exist/3 =/3 (R) > 0 and eo co(R) > 0 such that

(3.6) max minfn(t, x, y, z)--> fl
y

for all (t, x) 6 [0, T] x {x "" Ix[ =< R" [xl =< R, Ix"]-< Co}. We will denote by 37(t, x) any
element of Y which attains the maximum in (3.6).

Note 2. Let (?, g) 6 [0, T] x {x ": Ixl -< R, [xl <_- o), and let qv be a solution of

=f(t, x, (?, ), v(t)), a.e. [, T], x()

where v(.) is some control function of player II. We will denote by hi h(R) a
positive number such that

(3.7) f"(t,ov(t),f(?,g),v(t))>-_/2, a.e. t[?,+hl]

for any choice of v(. ). That such an h exists follows easily from (3.6) and the continuity
assumptions on f

Note 3. Let (to, Xo), (t, xl) be given in [0, T) X, where X is a bounded subset
of E. Let s’[tl, T]--[to, T] be defined by s(r)=to+(’-fi)(T-to)./(T-t). Recall
from [1, Lemma 6.4] that if HI’ holds then there exists a constant K, independent of
the initial points (t, x), such that if q, ’ are solutions to

(3.8) =f(t,x,u(t),v(t)), a.e. t[t, T], x(tl)=x,

and

(3.9) =f(t,x, u(s-(t)), v(s-(t))), a.e. t6[to, T], X(to)=Xo,

respectively, for some pair of controls (u(.), v(. )), then

(3.10) max {l(t)-q(s(t))]" t[t, T]}<=K([to-t[+[Xo-X[).
We can now state and prove the main lemma leading to Theorem 3.1.
LEMMA 3.1. Suppose HI’ and H3 hold. Then for every compact subset X ofE, there

exist Ix > 0, 6 > 0, and C > 0, depending on X, such that given a pair ofpoints (to, xo)
and tl x) in [0, T) X with

(3.11) ]to- tl + [Xo- xl < ,
there exists a strategy F* on [tl, T] with the following property. If o* [. t, Xl,

and t* min t + Ix, T), then

(3.12) q*[t] E, /t[t,t*].



636 K. HAJI-GHASSEMI

Moreover, there exists a motion q [., to, Xo, Fo], where Fo is the extremal strategy
defined with respect to C/(w(to, Xo)), such that

(3.13) Iq*[t]-q[s(t)]l< c(Ito-t,l+lXo-xl]), lt[t,, t*],
where s(. is as defined above.

Proof Let R > 0 be large enough so that all motions with initial points in [0, T] x X
always remain in BR(O). This is possible using HI’ and the compactness of X. Let/3,
h, eo, and K be defined as in Notes 1-3 above with respect to this R. Let

(3.14) =min (eo/2/, flh/4I).
To define F*, note that, by the remark following Proposition 2.1, there exists an

integer m* such that any mth-stage trajectory resulting from Fo satisfies

(3.15) max (d(,,(t),E)" t[to, T]}<eo/2, if m>-m*.

We define F, the mth-stage of F*, for m >-m*. Let II,, {to < ’ <’’’ < z,, T} be
a uniform partition of [to, T], with norm IlII.ll--(T-to)/m. Set ri=s-l(zi), i=
1, , m, and take II*, the mth-stage partition of F*, to be {O’o < rl <- < or,,}. Note
that II*m is also a uniform partition. Let a be any strategy of the second player. We
will now describe how F*m chooses a control function on [o’i, o’i+) playing against Am.

To facilitate the description of F*, let us denote by u*.i(" ), the choice of F*,, on
[ri, ri+), and by U’m(" the concatenation of u*,,.i’s. Similarly, v*,,.i(" will be the choice
of A on [o’i, ri+) and v*,, their concatenation. Let u, be the choice of Fo.m on [zi, 7"i/1)
playing against a control function v,, which will be constructed using v*. Once u*,*,
and v are determined on an interval Its, o-i), we will denote by q*m(" the trajectory
determined by (3.8) on Its, r;] using u* and v*,*,. Similarly, qm(’) will denote the
trajectory on [to, ri] resulting from (u,, v,) with initial point (to, Xo).

We are now ready to define F*i, i=0,...,m-1. For i=0, set F*,,.o
Fo.,.o(S(t)), t[t, cry). For i>0, if *m(o’;) E then define

U,i(l)-"Urn,i(S(t)),
where u,.i, defined on [i, "/’i/1), is the choice of Fo., on [zi, "/’i/1) playing against v,
defined by

v() v* (s-’ (7")), z[to, "ri_,).

Let k=k(m)> 1 be the smallest integer such that *(r)ZE. Define h=(4///3)
(Ito-t,l/lxo-xl). Note that h<h, by (3.11) and (3.14). Let = (m) be determined
as the smallest integer such that

(3.16) [O’k, O’k + h) c U {[o’k/i, O’k/i/l)" 0,’’’, U}.
Note that O"k "-h [crk+ O’k+v+l] and therefore

(3.17) I+-(+h)l-<-IIl-I*mll-0, as moe.

Now on the intervals [O’k+i, O’k+i+l) i--0,. , z-1, define

u,+,(t)=- y(, *(,)),
where 37(., .) is as in Note 1 above. Observe that 37(O’k, q*(rk)) is defined since, by
(3.15), ]q>*(Crk)l < eo. Define h,,  llrI* ll. Then, since II* is a uniform partition, we
have rk+ O-k + h,. Let

,,.k+(t) u,,.k(s(t- h,,)), for

Note that Urn,k( is defined on 7’k, 7"k+l) and depends only on the restrictions of u,
and v, to to, "rk).
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For -> v+ 1, define v,,(. on [to, ’k+-) by

if re[to, ’k)
V,.(’)= v*,,(s-(’)+h,,) if’[to,’k)

ZO if r rk, ’k+i-) and s-(r) + hm T,

where Zo Z is some arbitrarily chosen fixed element. Now, let U,,.k+i- be the outcome
of Fo.,, against v,,, and for i=> u + 1, define

U*,,.k+i(t)=u,,.k+i_(s(t--h,,,)), t-[Crk+i, O’k+i+l).

This completes the definition of F*.
From the above constructions it follows that u*,,, v*,,, u,,, and v,, satisfy the

following relationships:

f u,(s(t)) [tl, O’k)
(3.18) U*..,(t) ]f(trk, q*(trg)) [trk, O’k+)

U,(s(t-- h.,)) Jerk+,,, T],

and

v*,,(s-l(r)) t[to, ’k)
(3.19) V,,, (’) v(s-’(’)+hm) t[rk, S-(T-h,,,))

Zo 6 [s-l( T- hm), T].

Let us also observe that since u, is an outcome of Fo (by its construction), q,, is
an mth-stage trajectory resulting from Fo.

For the analysis that follows we will need a third trajectory, q3,,(. ), defined on
[t, T] with controls (,,, m) and initial point (tl, x), where

(3.20) (a) m(t)=u,,,(s(t)), t[tl, T],

(b) ,(t)=v,,(s(t)), t[tl, T].

Observe that q3,, is an mth-stage trajectory resulting from OFo, where O is the map
defined using s(.) as in [1] (or see Lemma 1.2 above).

We now verify that. F* has the desired properties. Let q* [., tl, x, F*, A], for
some A. Let {q*,,} be the sequence of ruth-stage trajectories converging to q*. We may
assume, without loss of generality, that q*,,,(tl)= x. Let q,,(. )= q,,(., to, Xo, u,,, Vr)
and qS,,(. )= q,,(., tl, x, tTm,/Tin) where (u,,, v,,) and (a,,, 3,.) are related to (u*,,, v*,,)
through (3.18)-(3.20). We claim that there exist constants tx > 0 and C > 0, independent
of q* and (t, x), i= 0, 1, such that

(3.21) (i) max{d(q*(t),E)’t6[t,t*]}-.O, as m-.

(ii) lim Iq*(t) q(s(t))l C(Ito- tl + IXo- x,I).

Before proving (3.21) we finish the proof of the lemma using (3.21). It is clear
that (3.21(i)) implies (3.12). As for (3.13), consider the sequence {q,,}. Extracting a
subsequence, if necessary, we may assume that, for some q [., to, Xo, Fo, A],
uniformly on [to, T]. Therefore, by (3.21(ii)), we have

Iq*[t]-q[s(t)]l < C(Ito- tl+lXo-xl).
Thus the lemma is proved once we establish (3.21). The proof of (3.21) is similar to
that given by Soner, in a different context, in [11, Lemma 3.2].
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Verification of (3.21(i)). Note that, by the definition of trk, q*(t) e E for all
e [tl, crk-1], and all m ->_ m*. Also, since IO’k Crk_ll IIn* ll- 0 w get

(3.22) d(q*..,(trk),E)-O, as mo.

Recall that an [cry, o’+], u*,,-= )7(cr, o*(o’)). Hence, by (3.7),

f"(t, q*m(t)., fi(O’k, q*m(O’k)),.V*m(t))fl/2>O, ftG[O’k, O’k+].

Therefore, max{d(q*m(t),E)’t[trk,rk+]}=d(o*(trk),E). Hence, by (3.22), we
always have

(3.23) max {d(q(t),E)" t[tl,rk+]}’*O, as m-c.

Let > 0 be such that

(3.24) y(l) =- Kl eK + M(e 1) _-</3/4,

where K is the Lipschitz constant off (see HI’), and M max {If(t, x, y, z)l" [0, T],
Ixl-< R, y e Y, z Z}. Now suppose O’k+ < t* (otherwise we are done by (3.23)). Define= t*-hm (recall h,,  llnll* ll , and (. by

d/(t)=(q)n(t+hm)-(,)n(t), for t6[crk, ],
where qm is related to * as explained before. Then, for Jerk, [],

(3.25)
(t) I]](O’k) -- [fn(s + hm, qgem(S + hm), U*m(S nt- hm), V*m(S nt- hm))

-f"(s, ,,(s), ft,,(s), 5,(s))] as.
Let 1 denote the integral on the right, then, by (3.18) and (3.19),

I [f"(s + h,,,, q*m(S+ h,,), am(S), ,,,(s))-f"(s, m(S), grin(S), fire(S))] as.

By the Lipschitz continuity of f,

(3.26) I1-< g[h,/l(s/h)-,(s)l]ds, [r, r].

In a similar way, for s [o-, ?],

Iq*m(s+hm)--Cpm(S)l<--lq*m(O’k+hm)--m(Crk)[+ K[hm+lq*m(7-+hm)-m(y)[] ds.

Using Gronwall’s lemma, we get, for s e [trk, [],
(3.27) [q*m(s+hr)-,,(s)l<=[[q*m(Crk+h,,)-,,(Crk)l+Kh,,l] eI-.
Also, since q*(O’k)= qS(trk), we have

]qg*m(O’k nt- hm)- q3m (Crk)] If(s, q*(s), u(s), v(s))[ ds <- Mh,,.
+hm

Together with (3.27) we obtain

(3.28) Iq*m(s+h.)-.(s)l<=(M+Kx)h.,e(-, s e [r, ?].

Substituting in (3.26) and integrating we get

(3.29) II[<-hm(Ktxe:+M(e:-l))=-h,y(l),
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(where (. was defined in (3.24)). Thus, from (3.25) and (3.29), we obtain

(3.30)

On the other hand,

(3.31) 0()=(+hm)-() f(s, (s), u(s), v(s)) ds.

Recall that + h [+, ++1]. Since, by definition, + h +, we have,
using (3.17),

Ih-hlllll0, as m-.

Since h < h, there exists an m such that h < h if m > m. Hence, by (3.7) and (3.31),

@(k) h/2, form>m.
Substituting into (3.30), we obtain

(3.32) O(t)h[/2-y()], te[k, ?], m> m.
By the choice of (see (3.20)),

(3.33) @(t)h/4.

Next, noting the relationship between and , we have from (3.10),

(3.34) max {l(t)-m(s(t))l" te[t, T]}(Ito-tl+lxo-Xll).
Hence if p =max {d((t),E)" te[to, T]}, then, using (3.34), we get

(3.35) max{d((t),E)" te[to,

Observe that (. is an ruth-stage trajectory resulting from Fo. By Lemma 1.5, p - 0,
as m-. From (3.33) and the definition of @(. ), we have

( + h) flh/4 +(t)

h/4-max {d(m(t),E)" t[to,

Taking the minimum of the left side on [k, ?], and using (3.35), we get

min {"(t + hm): [k, ?]} hm/4- ’(I to- tl+lxo-xl)-p.
Since hm - h (=4 (I to- t[ + IXo- x[)/) and p 0 as m -, we conclude

lim min {(t+hm)" t[k, g]}0.

This is the desired conclusion since + h g+ and ?+ h t*.
Verification of (3.21(ii)). By the triangle inequality,

(3.36) I(t)- ,,(s(t))[ I(t)- ff(t)l + lea(t)- m(S(t))].
We already have an estimate of the second term on the right, namely (3.34). Let us
consider the first term.

Case 1. k+ t*. Recall that for any e t, k], (t) m(t). Now, if e (k, ?],
then

[(t) m(t)l I(t + h) (t)l + I(t+ hm) (t)l
N(M+k)her(’-)+Mh (using (3.28))

h[(M + k.) e + M].
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If E ’, t*], then

Iq(t) q3m(t) =< Iq(t hm) (t)l + I*(t h,,,) q3,, (t h,)l

=< If(r, o*(r), u*(r), v*(r)) dr+ hr[(M + kix) e Kz d- M]
h

+it_ If(r, Pm(r), fim(r), (r))’ dr
h

<-2h,,M+ hm[(M+ kix) er" + M]= h,,[3M+(M+ kix)

Case 2. trk+ t*. Here, since q*,,,(trk)----5,,(O’k), we have, for E [trk, t*],

I*(t)-,L(t)l -< If(r, q*,,(r), u*,,(r), v(r))-f(r, qs,(r), am(r), 7(r))l dr

_-< 2M( O’k) <---- 2Mh,,
where the last inequality holds since (t o’k) =< (t* o’k) =< crk_ crk _<--- h,. Hence in
both cases

[*(t)-m(t)l<--_hm[3M+(M+Kix) eK’], [t[O’k, t*].

NOW, using this and the fact that hm - h (4//3)K (I to- ti + IXo- xl), we have

(3.37) lim I,*(t)-,(t)l<=(lto-t,l+lXo-X,I), Vt>--crk,

where =(4/)((M+KIX) eKE +M).
Combining (3.37), (3.34), and using (3.36), we obtain (3.21(ii)) with C t +/.

Note that C depends only on R > 0 and f. This completes the proof of Lemma 3.1. [3

Before stating Theorem 3.1, we make some technical notes which will be used in
the proof of the theorem.

Note i. For the assertion of Lemma 3.1 to be applicable to a pair of points (to, Xo),
(tl,x), we need Ito-hl+lXo-Xl<min(flh/4I,eo/2I). It would be convenient,
below, to also assume to-tl < /2. Since Ix depends only on R > 0 and f, this causes
no problem. Hence, assume for Lemma 3.1 that

(3.38) Ito- tl + [Xo- xl < 6* _a_ min (flhl/4, eo/2/, Ix/2).

Note ii. Assume (3.38) holds. Note that if to, t T-IX, T] then

(3.39) s(t + Ix) ->_ T,

since tl + Ix ->_ T, s(T) T, and s(. is nondecreasing on h, T]. If to, t [0, T- IX ], then

(3.40) s( t + Ix)>= to+ Ix
To see this, recall that s(t)= m(t-t)+ to, with m (T-to)/(T-t). Now if tl >-to,
then m ->_ 1 and s(t + Ix) => to + Ix. If t < to, then

0< to- t <Ix/2< T- t,)/2.

Now 2(to- h) < T- t is equivalent to m _-> 1/2. Hence (3.40) holds.
Note iii. Let a(t) t- s(t) (1 m)t +(mt- to), [h, T]. Since a(. is a linear

function, max {la(t)l’tE[t, T]} occurs either at tl or at T. But a(T)=0. Hence,
la(t)l->-I(t)l, for all [t, T]. That is,

(3.41) It--tol>-_l.t-s(t)l /t[t,, T].
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Note iv. In the proof of Theorem 3.1, as well as some other results in the later
sections, we will use inductive arguments. The following device will be useful in these
arguments. Let R > 0 and denote by S(R) the set of all initial points (to, Xo) [0, T] E
such that any solution q(. of the dynamics (0.1) with q(to)= Xo satisfies Io(t)l-<_ R
for all [to, T]. It follows from HI that given any (to, Xo) [0, T] x E, there exists

Ro>0 such that (to, Xo)6 S(Ro). Hence [0, T]x E U {S(R)" R >0}. Furthermore the
following two properties hold.

PI. Let (to, Xo) S(Ro). Then for every motion q[., to, Xo, F, A], resulting from
some pair of strategies F and A, and for every [to, T], we have

(t, q[ t, to, Xo, F, A]) 6 S(R).

P2. S(R) is closed (hence compact).
We prove P1. Property P2 can be proved along similar lines.
Proof of PI. Let tl[to, T] and q[.,to, xo, F,A] for some F and A. Set

x q[tl]. Let {q,(., to, Xo,,, u,,(. ), v,(. ))} (we will write q,,(. for convenience) be
a sequence of ruth-stage trajectories converging to 0. We need to show that if, for
some pair of controls (u(.), v(. )), r/(. satisfies

l(t)=f(t, rl(t), u(t), v(t)), a.e. t6[t, T], r/(tl)=X,

then rl(t)l <--R. Define a, and ,, by

a,,(t)_{Um(t) ift[t0, t) {V,,(t) ift[t0, t)
u(t) ift[tl, T]

and ,,(t)=,v(t) ift6[t,T],

and let ,,(’)=m(’,to, Xo, a,,(’), t,(’)). Since (to, Xo)S(R), Im(t)l<-__g for all
to, T]. By the continuous dependence of solutions of differential equations on their

initial values, we have

r/(t)= lim q3m(t), for t[t,T].

Hence Ir/(t) -< R for all
In what follows we will use the following notation. If Ft is a subset of N x N", let, {(s, x) gl" s t}, and fl,-- {(s, x) fl" s [r, t]}. We now state and prove the

following theorem.
THEOREM 3.1. If HI’ and H3 hold then w(.,. is continuous (or locally Lipschitz

continuous) on [0, T] x E if g(. is.

Proof We will prove that if g is locally Lipschitz then so is w; that is, for every
compact set X E, there exists a constant C* such that for every (to, Xo),
[0, T]xX,

[W(to, Xo) w( t, Xl)[ :< C*(I to- t,I / [Xo- x,I).
The modifications needed for the other statement are straightforward.

Let R > 0 be such that S(R) contains [0, T] x X. Since by P2, above, S(R) is
compact, we obtain from Lemma 3.1 the constants/z > 0, C > 0,/ > 0, h > 0, 6" > 0,
etc. Now, for some positive integer r,

S(R)c
k=l

We will show, by induction, that for each k 2,..., cr there exist constants 3k, Ck
such that for every (to, Xo), and (tl, xl) in S(R)--k/2,rj, we have

(3.42) Ito-t,l/lxo-xl<8lW(to, Xo)-W(t,,x)l<=c([to-tl/lxo-xl).
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Then, since S(R) [0, T] x X, it follows that (3.42), with k r, holds for every (to, Xo),
(t, x) [0, T]x X. We then show that this gives the desired conclusion. We now
proceed with the proof of (3.42).

Case k 2 (i.e., ti T-/, T]). If to-- T, then we let F* be the extremal strategy
with respect to C+(w(tl,x)). Note that for all q[., tl,x,F*], q[t]E for all

t, T] and since q is a Lipschitz function with constant M--where M is as defined
following (3.2)--we obtain,

[q[ T] Xo[ -< [([ T] q[ t][ + [x- Xo[ -< M{[ to- t[ + Ix Xol},

where we assumed, without loss of generality, that M >_-1 and used T-to in the last
inequality. Therefore, by the Lipschitz continuity of g(. ), we obtain

w(t, Xl) ->- W(to, Xo)- CgM{[to- tl[ + IXl- Xo[},

where Cg is the Lipschitz constant of g. The case t T leads to the same inequality
in a similar way using Fo, the strategy extremal to C/(w(to, Xo)), in place of F*, and
noting that w(t, xl) g(x).

Now let us assume to, t[T-/, T). Take 62=6* (see (3.38)). Let A be any
strategy of the second player on Its, T] and F* be as in Lemma 3.1. If

[., t, x, F*, A] then, since tl +/x _-> T, by that lemma we have

(3.43) q*[t]E for every t[t,T].

Moreover, there exists q [., t, x, Fo], where Fo is as defined above, such that

(3.44) [q*[t]-q[s(t)][<-C([to-tl.l+lXo-Xl[) VtG[tl, T].

Since s(T) T, and Fo is extremal with respect to C/(w(to, Xo)), we have g(q[s(T)]) ->_

W(to, Xo). Using (3.43), (3.44) and the Lipschitz continuity of g, we get

(3.45) V(q*) g(q*[ T]) -> w( to, Xo) C2(1 to t,[ + IXo-
with C2 CgC. Hence, taking sup over all strategies F, we obtain

sup P[ tl, X,, r, A] W(to, Xo) c _(I to t,I + Ixo- x,I).
F

Since A was chosen arbitrarily, taking the infimum over all A on the left, we get

w(t,, x,) => W(to, Xo)- C2(I to t,I + IXo- x,I).

We may assume that C>= CgM so that the above inequality holds for all to, tl
T-/x, T]. Switching the roles of (to, Xo) and (t, Xl), we obtain the same inequality

with (to, Xo) and (t, x) interchanged. This proves (3.42) in this case.
Now assume (3.42) holds for k, and consider the case for k+l; i.e.,

T (k + 1)/x/2, T], 0, 1. We distinguish two possibilities"
First. to, t are both in [T-(k+ 1)/x/2, T-ktx/2]. Then we take

6+1 min (6", 6/2C, g/2)

and suppose [to-q[+lXo-X[ < g+. As before, let A be an arbitrary strategy of the
F* A] Thensecond player on It1, T] and q*e[ t,x,

(3.46) q*[ t] e E for every e t, t +/z],

and there is a motion q e [., to, Xo, Fo] such that

(3.47) I*[t]-[s(t)]l<=C(lto-t,l+lxo-xll)<gk/2, Vt6[t,tl+tZ].
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Now note that s(tl + tz) T- ktx/2, T], by (3.40). Clearly tl + l T- kt/2, T], also.
Moreover, it follows from (3.41), and the definition of 6k/1, that

(3.48) It+tZ--s(t+l)l<<-It--tol<6k+<--6k/2.
Thus, by (3.47) and (3.48), we have

Using our induction hypothesis, and propey PI of S(R), we have"

]w(t,+, *[t,+])-w(s(t+),
C(It + -s(t + )[ + I*[t + ]-[s(t + )][)

(3.49)
C(Ito- tl+ C(]to- tl+lxo-xl)) by (3.47)

C(C + 1)(I o-tal+lXo-xl).
Let Fe be defined on [t +, T] extremally with respect to C+(w(t +, *[tl +

])). Define as the concatenation of F* on t, t +] with F on [t + , T]. Then
there exists a motion ff [., t, x, F, A] such that

[ t] v*[ t] E t, t, +
and

[t,+,T]O[.,t,+m*[t+],r].
Therefore, by the properties of extremal strategies,

v() g([ T]) w(t + , *[t + ]).

Using (3.49) and the fact that w(s(fi + ), [s(t + )]) W(to, Xo), we obtain

v() W(to, Xo) c(c + 1)(I to tl + Ixo xl).
Taking the sup over all F’s and the inf over all ’s, as in case k 2, we get w(t, x2)
W(to, Xo)-C(C + 1)(lto- tl+[xo-xl). Switching the roles of (to, Xo) and (t,, x,), we
obtain

[W(to, Xo) w(t,, x,)l c(c + 1) t0- tl + IXo-
Second. One of to, t, say t, is in (T-k/2, T]. Let us define (tz, X2)

(T- k/2, Xl). Then, with +1 as before,

Its- t + lx- 11t tl lt tol /,

and

Its- tol +-ol Ito- t + IXo- x,I +1.
Therefore, using the first case and our induction hypothesis,

[W(to, Xo)- w(t,, x,l [W(to, Xo) w(t, x)l + Iw(t, x) W(tl,

Oc + l(Ito- tl+lxo-xl)+ O(It,- tol)
C+l(lto-tll+lXo-X,l),

with C+I C(C +2). Hence in either case, (3.42) is satisfied with C+, and +.
This concludes our induction, proving (3.42). It remains to show that the conclusion

of the theorem follows from (3.42). Note that it follows from (3.42) that w(.,.) is
continuous on [0, T] x X = S(R). In particular, there exists a constant L> 0 such that

Iw(t, x)l ; u(t, x) [0, ] x x.
Let C* max (C,, 2L/6). Then given a pair of points (to, Xo) and (t, Xl) in [0, T] x X,

lto- t,I + lXo- x,[ < L lw to, Xo wt, xl c*l to- t,I + Ixo- x,l,
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(using (3.42)) and

to tl + [Xo xl >-- 6 w( to, Xo) w( tl, Xl)l -< 2L _-< C*([ to tl[ + IXo xl[).
That is, w(., is Lipschitz on [0, T] x X with constant C*. The proof of the theorem
is now complete, r-1

Condition H3 is not necessary for the continuity of the value. This can be seen
from the following example:

Example 4. Consider Example 2, again"

=0

3 xly,
Y Z [0, 1], E {x" x3>- 0}. Here, however, we change the payoff function, g(. ),
to g(x)=-x2. It can easily be verified that for any (to, Xo) [0, t] E, W(to, Xo)=-Xo.
Thus w is continuous on [0, T] E.

Note that H3 is not satisfied here but the optimal play, y*= 0, automatically gives
:/3 _> 0. In some examples, such as the above, it can be directly verified that the extremal
strategies automatically respect the given state constraints. Condition H4, below, says
just this. We will show in Theorem 3.2 that HI and H4 ensure that the value is
continuous (or Lipschitz continuous) if g is continuous (Lipschitz continuous).

H4. (i) =Ix E such that w(0, x) >
(ii) If [0, T], x E and a are such that US(t, x), the extremal strategy with

respect to C/(a), is defined then

minfn(t, x, y*(t, x), z) >-O,

where y*(t, x) is the outcome of U (t, x).
Remarks. 1. By Proposition 3.1, H2 implies H4-(i).
2. H4 implies H2; in particular, w(t, x) , for all (t, x) in [0, T] x E. To see this,

note that, by H4-(i), there exists an Xo E such that w(0, Xo) . Let a w(0, Xo). Then
U"(t,x) is defined for all (t,x) in [0, T]E since for all t[0, T], C+()f’l
{(t, x): x R } . Now given (t, x) with x 0, let x (x, x2, x "-1, 1/k).Then,
using H4-(ii),

max minf" (t, x, y, z) >- minf" (t, x, y*(t, x,,), z) >- O.
y

Since (t, x) maxy minzfn(t, x, y, z) is continuous, H2 follows.
3. H4-(ii) is always satisfied if the following conditions (a), (b) hold:
(a) Y Y1 Y2, and Z Z Z2, for some compact sets Y/ and Z, such that

f(t, x, y, z) --fi(t, X, yl, zl), for i= 1,. ., n 1,

and

f"(t, x, y, z)=f"(t, x, y, Y2, z2);

i.e., f" has controls distinct from the controls off f"-
(b) For every (t,x,y,z2), if xc!E then =IY2 Y2 such thatfn(t,x, y2, z2)>=O.
Proof Suppose y*(t, x) (y*, y*) is the outcome of an extremal strategy U (t, x)

at (t, x), x E. Then, by the definition of extremal strategies, there exist some z*=
(Zl*, z*) Z and w C/(c) such that for all z Z, y Y,

(s, f( t, x, y*, z)) >= (s, f( t, x, y*, z*)) >= (s, f( t, x, y, z*)),
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where s w x. Note that wn => 0, since C+(or) c [0, T] x E, and x < 0. Hence, s" > 0.
Let 3 denote the first n- 1 components of a vector v in [". Then we have

(, f( t, x, y* z,))+ sf( t, x, y*, z2) >= (s, f( t, x, y*, z*))

>= g, f t, x, y z* )) + s"f t, x, y, Z’z).

Taking z (z*, z2), in the first inequality, y (y*, Y2), in the second, and using s" > 0,
we obtain

f"(t,x,y*,z2)>-f"(t,x,y*,z*z)>=f"(t,x,y*,y2, z*z), for all zzZ2, and y2

By assumption (b), the right side can be made nonnegative by an appropriate choice
of Y2. Therefore, we have f"(t, x, y*, Z2) - 0 for all z2 Z2, as desired.

Let (to, Xo)e [0, T] x E, and Vo W(to, Xo). Then Vo R by Remark 2 above. Let
Uo(t,x) be the extremal pointing strategy defined with respect to C+(vo). Note that
Uo can be used to define an extremal strategy Fo in a game with initial point (tl, Xl)
as long as tl>_-to. Since C+(vo) c [0, T]x E, it follows from Lemma 1.5, that, for any
motion q e [., h, xl, Fo], q[ t] E for all t, T]. If H4 holds, then more is true,
namely the following lemma.

LEMMA 3.2. Let (to, Xo) and Vo be as above. If H4 holds and t Xl) to, T] x E,
not necessarily in C+( vo), then for any motion q [ t x Fo], we have q[ t] E for
t[tl, T].

Proof Let q e [., t, x, Fe] with {q,,} as the ruth-stage trajectories converging
to q. Suppose there exists a { e t, T] such that q"[ {] < 0. Then, as in Proposition 3.1,
letting ? inf { < {: q"[ ’] < 0 for all r (t,/]} and tr {- " we have

(3.50) [t-]=0, "[1<0 v[, +].

Let R>0 be such that Iq,(t)[-< R for all te[t, T] and all m. For each m, let rk and
rj be defined as in Proposition 3.1, with [+ cr in place of [+ 6. Then, just as in that proof,

r- , ’- [+r as m-,

,(rk)0 as m-,

q,(t) < 0 V r, rj ], for rn sufficiently large.

Let to (r) and the constant M be defined as in Proposition 3.1. Now, for ’i, ri+),
k<-i<.

f"(t, p,(t), Yi, v,(t))>=f"(r,, q,,,(r,), yi, vm(t))-to((M+ 1)6m),

where ,,=(T-to)/m and yi U"(r, q,.(ri)), a=w(t,xl). Hence, by H4-(ii)

f"(r,, qm(r), y,, z) --> 0 Vz 6 Z

Therefore,

P /n qg nm 7"i mto M -F1)m ), [ G 7"i, 7"i+ ).

Using this, we obtain for e -, r],
p(t) >= pm(r)-(j- k)mto((M + 1)m)

>= q(r)-- m.to((M + 1)m).

Letting m o, we get

pm[t] 0 Vt -, --F or],

contradicting (3.50).
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THEOREM 3.2. Let HI and H4 hold. Then w,(.,.) is continuous on [0, T] x E if
g(. is continuous on E, and w(.,. is locally Lipschitz continuous on [0, T] E if g(.
is locally Lipschitz on E.

Proof. We consider the assertion about Lipschitz continuity. The modifications
needed for the other statement are straightforward. Let X c E be compact. We show
that there exists a constant K > 0 such that for all (to, Xo) and (tl, xl) in [0, T] X,

IW( to, Xo) W(t,, X,)J =< K (Ito- t,I + IXo- x,I).
Let Vo W(to, Xo), v= w(t,x). Suppose tl -> to. Let Fo, F be defined on Its, T]
extremally with respect to C/(vo) and C+(vl), respectively. Note that because of H4,
Vo and v are finite (see Remark 2). Define

dl=-d((t,,Xl), C+(vo)lH,,).
Then, by Lemma 2.1 with 12= C+(vo), there exists a C>0 such that for any
q:)[ ", tl, x, Fo],

(3.51) d((t,q[t]),C+(vo)Ht)<-Cdl Vt[tl, T].

Specializing to T, we have that for any q @[., t, Xl, FO] there exists x such that
(T, x) C+(vo) and Ixq- q[ T]I -< Cdl. It is easily verified (see end of proof) that there
exists a constant/x > 0, independent of (ti, xi) (i= 0, 1), for which we have

dl =</z (I to-- t,I + [Xo-- X,I).(3.52)

Hence

It follows that

T]I c(I to- t,I + IXo-

Ig(x,)- g([ T])I CC/(Ito- t,I + IXo-
where Cg is the Lipschitz constant of g on a sufficiently large compact set. Since
g(x,)>= Vo, we have

g(q>[ T]) >- Vo CgCI ([ to t,I + IXo x,I).
By Lemma 3.2, o[t] E for all [t, T]. Therefore, V(q) g(q[ T]). Since q
@[., t, x, Fo] was arbitrary, we obtain

inf P[q, x, Fo,/x]_> vo-fgflz([to-

Hence, taking the sup over all F’s on the left, we have

(3.53) w( t, x) >= Vo- CgCp([to- t[ + IXo- xl).
To obtain a similar relation with (to, Xo) and (q, x) interchanged, we proceed as
follows. Note that we may not be able to define a strategy over to, T] extremally with
respect to C/(v) since t >-to. Instead, let Fo be defined on [to, T] extremally with
respect to C/(vo). Define ’ as the concatenation of Fo on [to, tl] and F on Its, T].
Then given a motion q3 @[., to, Xo, F]; there exists q [., to, Xo, Fo] such that

(3.54) (a) q3 I[to, t] q I[to, tl]

(b) q [tl, T] 6 [’, tl, qS[tl], I-’1].

Applying Lemma 3.2 to q, we have that qg[t]6 E for 6[to, ta]. In particular, by
(3.54(a)), q3[tl]E. Also, again using Lemma 3.2 and (3.54(b)), [t]E for all
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[tl, T]. Thus, we have qS[t] E, for all t6 [to, T]. Now define d2=
d((tl, q3[tl]), C+(vl)fq H,,). It can be shown (see end of proof) that regardless of the
choice of

Using (3.54(b)), it follows from Lemma 2.1, with 12 C+(vl), that there exists x such
that T, x) C+(v) and

Hence

Since g(x) >- v,

I’[ T] xel ca C(I to- t,I + IXo- xl).

Ig(qs[ T])- g(x)l GC(I to- t,I + IXo-

g(qS[ T]) Vl-CgCl(lto-tl+lxo-xl).
Since the choice of q3 was arbitrary, we get, as before,

(3.56)

Let K CgCtx. Then, from (3.53) and (3.56), we have the desired conclusion. It remains
to verify (3.52) and (3.55).

Proof of (3.52). Take q@[., to, xo, Fo] and let {qm(’)} be the sequence of
ruth,stage trajectories converging to q. Since by Lemma 1.5, (t, q[t]) C+(vo), we

d =< I(tl, x,) (tl, 99[ tl])l lim

(3.57)
_-< lim {l(t,x)-(to, Xo,,,)]+](to, Xo,,,)-(t, (t))l},

where Xo,,, (to). Then, for any m,

Im(t)- 1o,,,I If(t, m(t), Urn(t), vm(t))] dtMlt-to[,
to

where M max {If(t, x, y, z)]" [0, T], Ix] R, y Y, z Z}, and R > 0 is sufficiently
large so that any trajectory with initial point in [0, T] x X lies in B(0). Hence, together
with (3.57), we have

d ](to, Xo)- (t, x)I+4M+ lto-
where 1 +(M2+ 1. Note that depends on X (through M) but not on the initial
points (to, Xo) and (t,, Xl).

Proof of (3.56). Since (t, x) C+(v),

d2l(t, [t])-(t,x)[ lira ](t, (t))-(t,x)[,
m

where {} is the sequence of ruth-stage trajectories converging to . As in the proof
of (3.52), above, if xo,,, m(to),

d2 lira {l(t, (t))-(to, Xo,,,)l+[(to, Xo,,,)-(t,x)[}

(MZ+ l[t-tol+l(to, Xo)-(t,x)l

,(Ito-
This completes the proof of Theorem 3.2.

w( to, Xo) >= Vl CgCIL (I to- tl[ "31- IX0- Xl[)"

have
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Remark 4. (Restrictions on the minimizer). If the phase restriction x _-> 0 is placed
on the minimizer rather than the maximizer, then we clearly need to adjust conditions
H2, H3, and H4 accordingly. We record these changes here for later reference:
H2 (for minimizer): for all [0, T], x OE

max minf t, x, y, z) _-> 0.
y

H3 (for minimizer) is the same as H2 with strict inequality.
H4 (for minimizer):

(i) There exists an x E such that w(0, x)>-oo.
(ii) If [0, T), x E and c are such that V (t, x), the extremal strategy with

respect to C-(c), is defined then

minf"(t, x, y, z*(t, x)) >-O,
Y

where z*(t, x) is the outcome of V" (t, x).
Remark 5 (More general sets E). The arguments used to prove Proposition 3.1,

and Theorems 3.1 and 3.2 are essentially of a local nature. Using this fact, we can
extend these theorems to the setting where E is a closed set with nonempty interior
and C2 boundary. In doing so, it is only necessary to extend Lemmas 3.1 and 3.2 to
the new setting. Now, through a change of coordinates, E can be locally mapped onto
a subset of {x: x-> 0}. We then apply the results obtained above the problem in the
new coordinates.

Clearly assumptions H2, H3, and H4 have to be expressed in terms different from
before. Such adjustments are straightforward; for example, H3 would read:
H3’: If [0, T], x OE and n(x) is the inward normal to OE at x, then

max min (n(x),f(t, x, y, z)) > O.
y

In a similar manner, these theorems extend to sets E of form E
E1 rl E2 (’1... fl Ek, where each of the Ei’s is a closed set with int (Ei) and C2

boundary with the further restriction that if x E1 r-1E2 rl rl Ek, and n(x) the
(inward) normal to 0Ei at x, then the set {hi(x): 1-< i_-< k} is a linearly independent
set of vectors. This covers, for example, the case of E- {x: xl>= 0,..., xk>- 0}.
We refer the interested reader to 4 of [6] for the details.

Our last result differs from Theorems 3.1 and 3.2 in that we make no assumptions
on the shape or smoothness of the phase set E.

THEOREM 3.3. Suppose w is continuous on [0, T]OE, then w is continuous on
[0, r] .

Before starting the proof, we make an observation. Suppose (to, Xo) C+(a), for
some a , and to. Referring to the proof of Lemma 2.1, we note that given a
compact set X c E containing Xo, if Fe is the strategy defined on It1, T], extremally
with respect to C+(a), then there exist constants /3, K and a function E(.), all
depending only on f and X, such that for any m m(’, t, x, Fe), x X, we have,
for all Its, T],

d2((t, q[t]), C+(a) ("1Ht) <- etK d((tl, x,), C+() Ht,)+ E(t3,)(el-/fl),
where (T-tl)/m. It follows that if C > et:)/2 then there exists an m*, indepen-
dent of the set C+(c), such that for any ,, (., t, x, Fe), if m >_- m*, then

d((t, qm(t)), C+(a)lH,)<-Cd((t,,x,), C+(a)rIH,,), Vt6[tl, T].
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Proof of the Theorem. Let (to, Xo) [0, T] x E. By Lemma 1.2, we only need to
show that w is lower semicontinuous; i.e., /e > 0, !6 > 0 such that

(3.58) ]to- tll + lXo- Xll < 6:::> w( tl xl) > W( to, Xo) e.

Let G be a bounded neighborhood of Xo and R > 0 be such that any trajectory with
initial point in [0, T] x G is contained in BR(O). Since w is, by hypothesis, continuous
on [0, T] x OE, there exists a cr > 0 such that for any t, t’ [0, T] and x, x’ OE 1"1B(O),

(3.59) [t-t’l+lx-x’[<tr==>l[w(t,x)-w(t’,x’)l<e/2.
Case 1. tl >_ to. Define, for any x G, a strategy F(q, Xl) as follows. The ruth-

partition is a uniform subdivision {fi < - <... < -,, T} of [q, T]. The ruth-stage
strategy is defined positionally as follows. Let F,,.o Uo(q, x) where Uo Ue(C+(vo)),
and Vo W(to, Xo). Suppose u,.(. ), the outcome ofF,, versus some A,., has been defined
on [q, ’) and o,, is the corresponding trajectory on Its, zi]. Let v,,(. be the outcome
of A,, on [t, ’i). Then if q,,(ri) E define F,,.+l(um, Vm) Uo(r, q,,(ri)). Suppose
u u (rn) is the smallest index such that q,, (-) E. Define t,, inf { t’ < -" qm (r) E,
for all r(t’, r]}. Note that tmS[r_, r), by its definition, and m(t,,)OE. Let
v,, W(tm, qm(t,,)) and U,, U(C+(vm)). Now, define Fm.i+(Um, v,.)=
U,,(ri, q,,(’i)), for all i_> u.

It follows from the above observation, with X G, that if q,, is an ruth-stage
trajectory of F(q, xl), then

(3.60) d((t, Om(t)), C+(vo)fqHt)<=Cd((q,x,), C+(vo)fqH,,), It[tl,

and

(3.61) d((t, qm(t)), C+(v,,)lqH,)<=Cd((7",,, q,,(’k)), C+(V,,,)fqH.), lt6[rK, T].

Now recall that, as observed in the proof of Theorem 3.2 (cf. (3.52)), there exists
a constant/x, depending on X, such that

(3.62) d((t,, x,), C+(vo) I"1 Hi,) <-_/z{[to- t,I + [Xo+ xl},
(3.63) d ((’, q,, (rK)),
From (3.62) and (3.63), we have that for all m-> m*,
(3.64) d((t, o(t)), C+(vo)n,)<-f{Ito-tl+lxo-xl}, It6[t,

Let 0% C+(vo) (’] to, T] x (OE fq/R(0)). is compact, being bounded and closed.
For each m, define Pm as follows. If : or if q,,(t) E, for all t, T]
and all qm(t) G (I)rn(’, tl,Xl,[’(tl,X)) then p., =0. Otherwise
sup {d((t,., q,.(t.,)), )" q,. m(’, t,xa,F(q,xa))}, where t, is as defined above.

Claim. For every positive number or, there exists a 6 > 0 such that if lto- ti / IXo-
Xll t, tl-----to, then p.,-< tr for all m-_> m*. To prove this statement suppose, on the
contrary, that there exist tr> O, sequences (t., x.)- (to, xo), t. _-> to, and {m(n)} such
that p,..)> tr for every n. By the definition of p,., we obtain a sequence {q,..)} with

(3.65) d((tm(n), qgm(n)(tm(n))), o;)=>Cr,

Applying (3.64) with t= t,.,), we have that :iz, such that (tin(n), Zn) C+(t0) and

(3.66) ]z, rC,,,)( t,,,))] <- C(It, tol + IXo-
It follows that {z,} is bounded. Hence, by taking a subsequence, we may assume that
there exist t* and z* such that t,,,) t* and z,- z*. Therefore, from (3.66) we get
that q,,,)(t,,,) - z*, as n oo. Since qm,)(t,,,)) OE for all n, we conclude that
z* OE. Also, since C+(vo) is closed, we have (t*, z*) C+(vo). Therefore (t*, z*)
But now q,,,)(t,,,)) z* and tm,) t* contradict (3.65).
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We now prove (3.58) for this case. Let o- be as chosen in (3.59). By the above
claim there exists 61 > 0 such that if Ito-tl / Ixo-xl--< then/9,.-< tr. Now let q be
any motion in [., tl, xl, F(q, xl)] with {q,.} as its mth-stage trajectories. Without
loss of generality, we may assume that qm(tl) Xl (i.e., qm @,.(’, tl, X, F(t, xl))).
We claim that q[ t] E, for all tl, T] and g(q[ T]) => Vo- e.

Verification. Suppose that for all m sufficiently large, K K(m) < m ( as defined
above); otherwise the desired conclusion follows from (3.64) and the continuity of g.
Recall that t,. [’K-1, ’K). Hence, since the norm of the partition tends to zero as
m- c, we get

(3.67) Ir-tml+lqm(tm)-q,.(-k)lO as m.

It follows from (3.61), (3.63), (3.67) and the fact that, by the definition of
(tm, q,.(t,.)) C/(vm), that

(3.68) lim max d((t,(t)), C+(v)fqH,)=O.
T

Hence, by the continuity ofg( ), for all m sufficiently large,

(3.69) g(qm( T) >-__ Vm e/4.
Note also that by the definition of ’K, and since tm [7"-1, 7"K),

max d(q,.(’),E)= max d(qm(-),E)-O, asm-.
t[ tl ,’K] t[ t,n,’rK]

Furthermore, since C+(/)m) c [0, T] E, we get from (3.68), that

max d(qm(t),E)O, asm.

Hence, q[t]E, for all t[tl, T]. Therefore, V(q)=g(q[T]), and using (3.69),

(3.70) V(q) g(q[ T]) >= v,. e/2,

for all m sufficiently large. Now, bythe choice of 61, for every m, there exists (?,., 2,.)
such that I?,.- t,.l + Iq"(t")- "[-< r. Therefore, by (3.59) and the fact that ffc C+(vo),
we have

(3.71) v,. W( tm, q,.( tm)) W( m, m) 1/2 I)0 el2.
Thus, by (3.70), V(q) ->_ vo- e. Since q @[., t, x, F(q, xl)] was arbitrary, taking inf
over all q’s and sup over all F’s, we have w(tl, x) >-_ W(to, Xo)-e, as desired. This
completes Case 1.

Let us note that we have actually shown, above, that for an initial point
with tl -> to, if the first player plays that mth-stage of F(tl, Xl) at the mth-stage, then
any for q,. ,.(., tl, xl, F(tl, xl)), we have

(3.72) g(q,.(T)) >- Vo-3e/4,

(cf., (3.69) and (3.71)) for all m sufficiently large, provided Ito-tll+lXo-Xl[ < 61.
Case 2. q<to. Let M=max{1,1f(t,x,y,z)l: t[0, T],lxl<-_R,y Y,zZ}. Let

6 min { 61, or}/(m + 1). Suppose that to- tlllXo- xll < 82. Define a strategy F(
as follows. The mth-stage partition is H { tl < ’1 <" < r,. to <" < 7"2m T} where
]ri r-ll (to- tl)/ m if =< m and ]’ ’-11 T- to)/m if i> m. For the mth-stage
strategy, take F,..o Ul(tl,xl), where UI= U(C+(w(q,x))). Suppose u,.(.) is the
outcome of F,.(tl,Xl) versus some 3,,. defined on [tl,r) and q,.(.)=
q,.(’, tl,xl, u,., v,.) defined on [tl, ’]. If q,,(r) E, then

q,.(zi)) if/< m
F,..+l(u,., v,.)=

Uo(r, q,,(r)) ifi -> m.
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Let K K(m) be the smallest index such that q,,(zK) E. Then define tm :- [z_, ) as
before, let v,,=w(t,,, q,,(tm)) and Um Ue(C+(v,,)). NOW, define F,,.i/(Um, v,,)=
U,,(zi, qm(Z)), for all i->K. Note that if 0,, m(’, tl,X,F(t,xl)), then

It- tol + qgr,, (t)- X0I--<--It- to[ +
(3.73)

--<__ (M + 1)(I to- t[ + IXo- x[) < 62, for all t, to].

Now if q,,(t) E for all t, to], then, because of the definition of F(t, x), we
have that (3.72) holds. On the other hand, suppose that for some t, to], qm(t) E,
then k-< m. We may assume, in this case, that Xo OE, for if Xo int (E) then, by
shrinking 82, if necessary, we can arrange to have q,,(t)int (E) for all t[t, to].
Now, by arguments similar to those of Case 1, we have g(o,,(T)>= vm-3e/4,.(cf.,
(3.69)), for all m sufficiently large. But, by (3.73), It,,- tol+lq,,(t)-Xo[ < 82< o-. Hence,
by (3.59), we have

Vm W( tin, qgm( tm)) >- W( to, X0)- e/2.

Thus, (3.72) holds in this case also. Note that, just as in Case 1, using the fact that
sets C+(ce)[O, T]E for any a, we have that if o[.,t,x,F(t,x)) then
q[ t] E for all tl, T]. Hence it follows from (3.72) and the continuity of g(" that

V(o) g(o[ T]) _>- Vo e.

Taking inf over all o’s and sup over,all F’s we obtain w(t, x)>-W(to, Xo)-e in this
case. Therefore if 8 min (8, 82), we have (3.58) as desired. This completes the proof
of the Theorem.

Example (Battle of Bunker Hill). The dynamics are:

.f(,1 __cpx z

92 --CZ

2 -c2P2xy

24
--c2y

where the c’s and p’s are positive constants. The control sets are Y Z [0, 1], and
T some given final time. The terminal payoff is defined through either of the following
functions: g(x)= xl- x and g2(x)= xlx4-x3x2. This game was studied heuristically
by Isaacs in [7] (cf. [7] for an interpretation of the game). One of the players, say
player I, is restricted to E {x: x3->0, x4=> 0}. It is assumed further that the initial
point of the game is such that xl=> 0 and x2-> 0 are automatically satisfied throughout
the game. It is then easy to check that if Xo O E, then the only admissible control for
player I is y 0. Hence, for Xoe OE the game reduces to an optimal control problem
for player II. Its value is easily seen to be continuous. Therefore, by Theorem 3.3, the
value of the original game, which exists by Theorem 1.1, is also continuous.

Remark 6 (Hamilton-Jacobi-Isaacs’ equation). In Theorems 3.1, 3.2, and 3.3, we
have given conditions under which w(.,. will be continuous. By essentially the same
arguments as those of [2], but not using a Lipschitz continuity assumption on W, it
follows (cf. [6]) from the stability of C+(ce) and Lemma 1.6 that w satisfies the following.

(1) If o is continuously differentiable on a neighborhood of [0, T] x E and w-q
has a local max at (to, Xo) (0, T)x E, then

qt( to, Xo) + H(to, Xo, Dq(to, Xo)) ->_0;
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(2) If q is continuously differentiable on a neighborhood of [0, T] x E and w-q
has a local min at (to, Xo) (0, T)x i.nt (E), then

to, Xo) 4- H(to, Xo, D,p( to, Xo)) N O,

where H(t, x, p) =maxy minz (p,f(t, x, y, z)) and Drp (O(o/oxl, ", OO/OXn).
Let us note that conditions (1) and (2) are precisely the ones proposed by Soner

in 12] as defining "constrained viscosity solutions" of the Hamilton-Jacobi equation.
Under a mild restriction on OE, by combining the methods of Ishii ([13]) and Soner
([ 12]), we can show (cf,, [6]) that (1), (2), and the terminal condition w(T, x) g(x),
for all x e E, determine w uniquely on [0, T] x E. We note that this type of uniqueness
theorem is not new. The first such result was obtained by Soner (cf., [12]). More
recently, Capuzzo-Dolcetta and Lions have given a detailed treatment of viscosity
solutions for problems with state contraints in [15] (see also [14]). In this paper they
obtain, in addition to many other interesting results, uniqueness theorems of the type
mentioned above for more general functions H (cf., [15, Thms. III.l-III.4]).
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author would like to thank his major advisor, Professor L. D. Berkovitz, for suggesting
the problem and for his subsequent, invaluable suggestions and guidance.
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Abstract. In this paper the problem of the H optimization of multivariable distributed systems in the
four block setting is studied. This work is based on several previous papers and employs the skew Toeplitz
framework developed in Operator Theory: Adv. Appl., 32 (1988), pp. 21-43], Operator Theory: Adv. Appl.,
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1. Introduction. In the past few years, there has been a major research effort
devoted to the study of the H optimization of linear systems. We refer the reader to
[13] for an extensive set of references. In this paper we consider the problem of the
H-optimization for multivariable distributed systems.

Motivations leading to the H optimization in systems theory lie in the most
natural problems of control engineering such as robust stabilization, sensitivity minimi-
zation, and model matching. It can be shown that, in the sense of H optimality, these
problems are equivalent, and can be stated (see 13]) as one standardproblem. Consider
the setup shown in Fig. 1. In this configuration w, u, y, and z are vector-valued signals
with w the exogenous input representing the disturbances, measurement noises, etc.,
u the command signal, z the output to be controlled, and y the measured output. G
represents a combination of the plant and the weights in the control system. The
standard H problem is to find a stabilizing controller K such that the H norm of
the transfer function from w to z is minimized. For finite-dimensional systems an
expression for a suboptimal controller is given in [2] and [4] using a state-space
approach.

W

G

FIG.

* Received by the editors November 21, 1988; accepted for publication (in revised form) July 12, 1989.
This work was supported by National Science Foundation grants ECS-8704047 and DMS-8811084, and by
Air Force Office of Scientific Research grant AFOSR-88-0020.

? Department of Electrical Engineering and Control Sciences and Dynamical Systems Center, University
of Minnesota, Minneapolis, Minnesota 55455.

: Department of Electrical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 and
Department of Electrical Engineering, Technion, Israel.

653



654 H. OZBAY AND A. TANNENBAUM

Now it is quite well known that an optimal solution of the standard problem can
bereduced to finding the singular values of a certain operator (the so-called four block
operator) that will be defined below. For details we refer the reader to [5]-[7].
Depending on the specific problem considered, the corresponding four block operator
can be simplified to a 2-block or a 1-block operator.

This paper is based on several previous papers [6]-[ 12], [21], and basically employs
the skew Toeplitz framework of [3] to study the standard problem. We should note
that software for the implementation of the techniques used in this paper has already
been written at the Systems Research Center of Honeywell, Minneapolis in collabo-
ration with Blaise Morton, and has been applied to several distributed systems including
a flexible beam problem. We plan to write a paper with several such "benchmark"
examples with Blaise Morton in the near future.

The present paper is organized as follows. In the next section we set up some
notation and give some background on the ideas taken from previous work. In 3 we
derive our main result which is a rank type formula for the singular values of the four
block operator. We illustrate a special case of our main result by considering SISO
plants in 4, and by giving an explicit example in 5. Finally, in 6 we summarize
our results and make some comments.

2. Problem definition and preliminary remarks. We will now state the standard
H problem and define the four block operator. We will also present some preliminary
results from earlier work [3], [6], [7]. Throughout the paper all Hardy spaces are
defined on the unit disc D in the standard way. For an integer m we denote the
canonicalunilateral shift (defined by multiplication by z) on H2(Cm) by S:H2(Cm)
H2(C") and the bilateral shift on L2(Cm) by U L2(C") - L2(C"). Let W, F, G, L and
M be H matrices, of sizes p x m, p x l, q x m, q x l, and p x p, respectively, with
p N max {m, l}, where W, F, G, J have rational entries, and M is a nonconstant inner
matrix. These matrices are associated with the weighting matrices and the plant in the
usual way of transforming the standard problem to the 4-block framework (i.e., via
Youla parametrization and some inner outer factorizations; see, e.g., [13] and [20]).
It is impoant to note that for many problems of interest, in the case of rational
weights and distributed stable plants, this reduces to the kind of problem described
below. See [15] for all the details. The standard H problem amounts to finding

G ’QHpxm
where for a k x n matrix of the form [ g], (A, B, C, D having appropriate sizes with
entries in L), we set

C D =ess sup
C() D() l l 1

(For the norm on the right-hand side the k x n matrix is taken as a linear operator
from C to Ck for each fixed " in OD, the unit circle.) Note that if F G J 0 then
this problem reduces to the classical Nehari problem, which is also known as the
1-block problem. For F J 0 we have the 2-block problem.

To the p x p inner matrix M, we associate the spaces H(M) := HZ(cP)@MH2(Cp)
and L(M):= Lz(CP)@MH2(CP). Let Pn(4):H2(CP) H(M),
L(M), PH2:Lz(CP)H2(CP), and PI2eH2:LZ(CP)LZ(CP)@Hz(CP) be orthogonal
projections.
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We now define the 4-block operator (see [5] and [7]):

A := [P.() W(S) P(M)F( U)]G(S) J(u)

Note that A: He(c")@ Le(C/) - L(M)@ Le(cq).
In the paper, by a slight abuse of notation, " will denote a complex variable as

well as an element of OD. The context will make the meaning clear. Note that W(S)
can be seen as the operator defined by multiplication by W(’), and similarly for G(S),
F(U), and J(U). Using the commutant lifting theorem 18, pp. 257-259], we can show
that/z is equal to [IA]I. (See [5] and [7] for the details.) Note that I[A[I 2 is the largest
element of o’(A*A), the spectrum of A*A. tr(A*A) consists of the discrete spectrum
(i.e., eigenvalues with finite multiplicity), which we denote by rd(A*A), and its
complement O’e(A*A), the essential spectrum. The essential spectrum of A*A consists
of those A C for which there exists

H-( ) L2(C’)
Y,

with

and [y] "> 0 weakly as n-* oo, such that

(hi-A’A)[x’] -->0
Y.

The essential norm, denoted by IIAlle, is defined as

as n --> .
IIm[12 max {A" A O’e(A*A)}.

In the SISO case we have that (see [7, Thm. 3.2])

A lie max (a, fl, y),

=1 Vn>_-l,
2

where

max
G(’) J()

e O-e(T)

/3 =max {ll[G(sr) J(’)]ll: eoD},

Y j(sr)J

In the case of infinite-dimensional MIMO systems it may be difficult to find the essential
norm of A. Nevertheless, upper and lower bounds can be obtained in terms of a,/3,
3’. This is discussed in detail in 3.2.

Note that when Ilall > I[all, Ilall 2 is an eigenvalue of A*A. Here we are going to
develop a rank type formula for the eigenvalues of A*A. We will show that this formula
is obtained by a certain linear system of equations (called the singular system in [7]).
These equations are derived from the inversion of two Toeplitz operators and the
essential inversion of a skew Toeplitz operator. It is important to note that in the

O-e(T)--.

tre(T) denotes the essential spectrum of the operator T:= PH(M)S[H(M). We let
be the set of all h OD that do not lie on any of the open arcs of OD on which M(sr)
is a unitary operator-valued analytic function. Then from [17] and [18], we have that
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2-block problem, one of the Toeplitz operator inversions disappears, and in the 1-block
case the same is true for both of the Toeplitz operator inversions. The Fredholm
conditions on the invertibility of the skew Toeplitz operator (which is essentially
invertible) and the coupling between various systems ofequations constitute the singular
system. See also [3] and [7].

3. Main results.
3.1. Discrete spectrum. Let us begin with the following assumption W= B/k,

F Ck, G Dk, and J E k, where B, C, D, E are polynomial matrices and k is
a scalar polynomial. We denote by n an upper bound for the degree of the entries of
all polynomial matrices appearing throughout the paper.

Now it is easy to see that p2 is an eigenvalue of A*A if and only if there exists
a nonzero

such that

(la)

and

[;] G Hg-(cm) L:Z(C/),

(p:’k(S)*k(S)I- B(S)*PH(M)B(S)- D(S)*D(S))x
-(Pn2(B( U)*PL(M)C( U)+ D( U)*E( U)))y =0,

-(( C( U)*PH(M)B(S) + E( U)*D(S)))x
(lb)

+(p:’k( U)*k( U)I- C( U)*PLM>C( U)- E( U)*E( U))y O.

Note that PHB(S)x B()x- M()PH2M()*B()x. Following the techniques used
in [3], we make the factorization

(fl) M(sr)*B(sr) flb(’)Mb(’)*,

where l’lb(’) is a polynomial matrix of size p x m and M(’) is an inner matrix of size
rn x m. We now decompose the space H(C") as H(Mb) MbH(C’), and express
x Xb + MbX where x H(M) and x, H2(C’). Then we have

PnM()*B()x PHab()Mb()*(Xb + MbX’).

Since Mb is inner,

P, M()*B()x flb()x + PH:I-Ib()Mb()*Xb.

By (fl) we see that the right-hand side of this last equality is equal to

M()*S()Mb()x+ Pn2flb()Mb()*Xb.

We can write lqb()=flbO+flbl+ "+l’lb,,". The fact that Xb H(Mb) implies

Mb()*Xb -’u_, + -Zu_+"
for some u_i e C’, >- 1. Therefore,

i=l j=i

Combining the above computations we get

PH(M)B(S)x B(S)Xb- MXo,b.
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Similarly, for the computation of

P,.(,C( U)y C( U)y- MP,.,: M* Cy,

we use the factorization

(f2) M()*C() f(sr)M(sr)*,
where f(’) is a polynomial matrix of size p and M is an inner matrix of size x I.
As before we write y=y+My’ where yeL(M) and y’eH:z(Ct). Let f(’)=
fco+ D.," +. + lqc.’". Then

P#fcM* Yc fcjJ-i
v-i =: Ywc

i=1 j=i

for some v-i Ct, i= 1,..., n. This leads us to

Pt,(MC( U)y C( U)y- Myw.
Now we see that, with the above factorizations and decompositions, (la), (lb) are
equivalent to

(pEk(S)*k(S)I- D(S)*D(S)- B(S)*B(S))Xb
(2a) -PH((B(U)*C(U)+D(U)*E(U))yc+D(U)*E(U)McY’c)

+(pk(S)*k(S)I D(S)*D(S) MbX -B(S)*MXwb PH B( U)*Myw,
and

(p2k( U)*k( U)I- E( U)*E( U)- C( U)*C( U))y
(2b) -(C( U)*B(S)+ E( U)*D(S))Xb E( U)*D(S)MbX’b

+(p2k( U)*k( U)I- E( U)*E( U))Mcy’ -C( V)*Myw- C( V)*MXwb.
Now we will compute PH2(B( U)*C( U)+ D( U)*E( U))y. First write

B( U)*C(U) .1. D( U)*E( U) Q. U* ,1,... ,1, Q 4-... + Q u.
Then,

PH2Q1, U*y Q[, PH2U*yc QS*’(P2y,:).
Let Yc +Y(-)- + Yc(o) + Yc(1)’-t"" Then

PH2Q Uiyc QS’(PH2Yc) + Q(’-’Yc-l +"" +Yc-,).
Therefore,

PH2(B( U)*C( U)+ D( U)*E( U))yc

=(B(S)*C(S)+ D(S)*E(S))(Pn2y)+ Q(sr-y_+ .+ y_,).
i=l

Similarly, we have

p,2 D( U)*E(U)My’ D(S)*E S)McY’c
Hence (2a) is equivalent to

(p2k(S)*k(S)I D(S)*D(S) B(S)*B(S))Xb + (p2k(S)*k(S)I D(S)*D(S) MbX’b
(3a) -((B(S)*C(S)+ D(S)*E(S))y+ + D(S)*E(S)My)

-B(S)*MXwb- B(S)*Mywc+ O(’-’y-,+’"+y-,),
i=1

where y+ := pn2y. Note that we have y y+ y+ + My’c, where y[ e L(Mc)H(M),
+y e H(M), and y’ e H(Ct).
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We will separate the equation (2b) into two parts by taking the orthogonal
projections on H2(C) and LZ(Ct) H2(Ct). As in the above discussion, if

p2k(U)*k(U)I-E(U)*E(U)-C(U)*C(U)=: Q2_,,U*"+. .+Q+. .+QU
then we have

PH(p k( U)*k(U)I E U)*E(U) C U)*C U))y

=(p2k(S)*k(S)I-E(S)*E(S)-C(S)*C(S))y+ + O(’-’y(_)+" "+y(_)).
i=l

Hence the projection of (2b) on H2(Ct) gives

(p2k(S)*k(S)I- E(S)*E(S)- C(S)* C(S))y+ + (p2k(S)*k(S)I- E(S)*E(S))My’

(3b) -(C(S)*B(S)+ E(S)*D(S))xb-E(S)*D(S)MbXb

=-C(S)*Mywc-C(S)*MXwb- Q/(r’-’yc_,)+...+y_,)).
i=1

We now study the projection of (2b) on L2(C/) H2(CI). First note that

PZ?eH2Q_, U*"y Q_, U*y+ Q-,(-Vo+"" +

and

Hence

PZ?eH2Q U’yc Q U’y Q(r’-ly(_l)+... + y(_,)).

P?on(p2k( U)*k( U)I- E( U)*E( U)-C( U)*C( U))y

(pEk( U)*k( U)I- E( U)*E(U)- C( U)*C(U))y-

+ Q_i(- YcO q- "t- -lyc(i_l))
i=1

,C’-’y_,)+... + y_,)).
i=1

This takes care of the first term in (2b). For the projections of the other terms we use
the following notation"

ok( U)*k( U)I- E( U)*E( U)=: O.u*n + "+ +" "+ OU,
C U)*B(U) + E U)*D(U) =: O. U* +"" + O+"" +QU,
E U)*D(U) =: O. U* +"’ + O+"" + U,
M() =: Mo+M,I+M+

M() =: Mo+ Mcl +M +" ",

M(C) =: Mo+ M1’+M+
c( u)* =: c + ct u* +... + ct u*,
x() =: Xo+ x,’ +. .,
y’() =: y’o+ y’c,1+.

x,(ff) =: X,o+ x,1+. ..
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With this notation, taking the projection of (2b) on Lz(Ct) () H2(Ct), and then multiply-
ing both sides of the resulting equation by ’-" (this is equivalent to the operation U*",
which is left invertible on L2(CI)( H2(CI)) will give us

(4a) X3(sr-’)y := F3(sr-),
where X3("-) Q_,sr-z" +... + Qo2 +... + Q2,, and

E Yc(j)
i=1 j=l i=1 j=0

n-k

c*, 2 2
i=1 j=0 k=0 s=l

i--j

Q3-i -"-J Mc(i-j-k)Y’ck
i=0 j=l k=O

i--1

--n+j--i
n-k

E E Ms- E
i=1 j=0 k=0 s=l

We now play the same game with (3a) and (3b). Indeed, we multiply both sides
of these equations by r". (This is equivalent to the application of the operator S",
which is left invertible on H2(CI) and HZ(Cm).) Set

pk(S)*k(S)I- D(S)*D(S)- B(S)*B(S)=: Q6,S*" +... + Q+ + Q6,S",
pk(S)*k(S)I-D(S)*D(S)=: Q7_,,S*" +...+ Q70+. .+ Q7,S",

D(S)*E(S)=: Q8,S*" +...+ QSo+. .+ Q8,S",
B(S)* =: Bo* +’’" + B.* S*".

For any polynomial of degree -<_n, p(r), we define /3(,):= .np,(.-1). Then it is easy
to see that (3a) combined with (3b) is equivalent to

(4b) Xl( IX+b]
_
X2(,)[Mb 0 ][X] [F(’)]LYe 0 Mc Y’c F2()

where

-(B+/D) (02ckI E C)

X2() := [(p2kI-D --5 ]-D (p2kI- E)
’--I

"--’+J Q7_
i-,

{,,-i+sF,(’):= Q6_, y Xbs + E E MbO-k)Xk
i=1 j=0 i=1 j=0 k=O

i--1

+ Q y sr +- Q[ -,,-,+s’SYc(-s) Y Ycs
i=1 j=l i=1 j=0

i--1

Q .--i+j i--jE E M(j-k)Yck /(srlM("1 E D.b," u-
i=1 j=0 k=0 i=1 j=l

i--1 n-k

i=1 j=0 k=0 s=l i=1 j=l

i-1 n-k-- B*i E n--i+j E Mj-k E ac(s+k) V-s,
i=1 j=0 k=O s=l
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and

i--I i--1

F2(’) O_ ,,-i+j Q3_ ,,-i+jE Yj + E E Mc(j-,yc
i=1 j=0 i=1 j=0 k=0

i-1

i=1 j=l i=1 j=O

i= j=o k=0 =1 j=l

i= j=0 k=0 s=l i= j=l

i-1 n-k

+ c E C"-’+ E - E as+V_s.
i=1 j=0 k=0 s=l

Let us summarize the above results in the following"

PROPOSiTiON 1. p2 is an eigenvalue ofA*A if and only if there exists x e H(M),
xg e H2(C), y e H(M), y2 e L(M)@ H(M), y e H2(C), not all zero, such that (4a)
and 4b hold.

Defining

Mo:=[Mb O]0 M
we see that

Now set

[xb]y+ H(Mo)= H2(cN)@MoH2(CN), N=m+l.

Xo := + x:= F:= "p.
Yc Yc

Then (4b) can be rewritten as

(5) X,()Xo+ X()Mox[= F().

Remark. Equation (5) is exactly the same type of equation that we obtained in
12] for the 2-block problem. In the 1-block case, we get a similar equation with X(sr),
a scalar. In fact, if we assume that db(’):= det X(’) is not identically equal to zero,
then (5) can be put in the form

(6) Xo(’)Xo+ db()Mox= Fo(),

where Xo XX, Fo X F, and X(r) is the algebraic adjoint of X2(r), i.e.,

X()X2() X2(sr)X;(s) db()I.

For (6), we make the factorization

(f3) Xo()M() Mo()ao(),

where Ml(sr) is N x N inner and l)o(sr) is N x N polynomial. Then, as shown using
skew Toeplitz theory in [3], there exists X(o-l, an N x N H-matrix, such that

X(o-lXo= I+ MEo and X(o-lMo= ME
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for some Eo and El, N x N H-matrices. Multiplying both sides of (6) by Xo-) and
taking the orthogonal projection, of the resulting equation, on H(M) we obtain

Now we make our first assumption of genericity.
Assumption (al). The operator z:= PHM,)IHMo)is invertible.
With this assumption we obtain

(7a)

and

(7b) db (sr)x PH2(Mo()*(I-Xor-’Pn<M,)Xo-’))Fo).
Next, applying the algebraic adjoint of X3(’-), X("-) to both sides of (4a)

we get

(7c) dd(-’)y- X’(’-’)F3(’-’),

where dd(-) =det X3(-). Equation (7a) gives the conditions for inveibility of a
ceain skew Toeplitz operator. See also [3]. We see that it is coupled, via Fo, to (7b)
and (7c), which give the inveibility conditions of two Toeplitz operators.

We will now show that (7a)-(7c) give finitely many interpolation conditions for
p to be an eigenvalue of A*A. From this we will derive the finite matricial rank
condition for the determination of the singular values of A. First note that there exists
y L(M)H(M) satisfying (7c) if and only if there exists H(C) satisfying

(7d) da ()Y; PH(-Ix()F3()).

Indeed, this follows since L(C)H(C) is isomorphic to SH2(Ci) H(Ct) and
the natural isomorphism is given by the reflection operator: ff- ft.

Next it is easy to see that the right-hand sides of (7a), (7b), and (7d) can be put
into the form

r-’P.(,)X-’)()Fo() Ko(),

P.:(Mo()*(t- Xo(C)r-’P...)X-’)())Fo()) K().

P.:(-’X()F()) K().

where Ko(), K(ff) are H matrices of sizes N x r and Ka() is an x r polynomial
in (these all can be explicitly computed from Mo, M, Xo, X-), X3, Fo, and F3),

-)Yo" Y,-)Yo
,T U uT, r, T T

"’’y,_) V "’’V_ y_)’’’y_,)],

and r= 2n(m+ l)+ n(m+21). With this notation we immediately get the following
identities:

(8a) K,,id Xo,

(8b) Kbicb .. dbjXO( i--j),
j----0

(8d) Kdialp-" E ddjfi-(i-j),
j=o
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for all i= 0,. ., n, where

Ka(sr) =: Kao+ Ksr+ K2sr2 +
Kb(’) --: Kbo+ Kb -t- Kb2 +. .,
Ka (st) =: Kao+ Kal+Ka+
Xo(’) =: Xoo + xol" + Xo +" ",

x,(’) =: X,o+x,+ x, +. .,
;2() =: ;c-o + -, C +;-C+’",
db() =: dbo +" q- db2nN2nN,
dd (r) =: ddo +" + dd.r2"l.

Rearranging terms in (8a), (8b), (8d) and combining them into one equation we obtain,

(9) K=0,

where K is a constant matrix that can be computed from the K, Kb, Kd, db, and
,ddi, =O, n.

We now make our second assumption of genericity.
Assumption (a2). db(.’) and dd() have distinct roots, all of which are nonzero.
Then, as in [6], [7], and [10], we see that db has roots a,..., arb inside D,

arb+,""" a(2nN_rb on OD and 1/.1,,’’" 1/.rb outside /3. Similarly, dd has roots
/31,"" ",/3e inside D, fire+i,’’’, flE,,l--r,) on OD and 1/ill,’’’, l/lArd outside D.

We are ready to state our main result.
THEOREM 1. Assume (al) and (a2). Then, p-> [[AII2 is an eigenvalue of A*A if

and only if
rank R < r,

where

K
Kb(Cel)

(9a) R:= Kb(a(2,N-r))
.()

K.(/(_)
Proof. By Proposition 1, p2 is an eigenvalue of A*A if and only if there exists

Xo H(Mo), xeH2(Cr) and )3;-e H2(Ct), not zero, such that (7a), (7b), (7d) are
satisfied. By an argument similar to the one used in [3], [6], [7], and [11], we see that
the existence of such Xo, x, )3;- is equivalent to finding a nonzero such that

gb(oi)tI --0, 1," 2nN- rb,

Kd(ii)t 0, 1,. ., 2nl- rd,

and (9) holds This completes the proof
Remark In the absence of the genericity assumptions, the matrix (9a) takes on

a certain degenerate form exactly as in [11]. We see from Theorem 1 that the largest
value of/9 that gives a solution for the equation

det R*R 0
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is the norm of the 4-block operator A. From R, we can determine the singular values
and singular vectors of the 4-block operator A.

3.2. Essential spectrum. We now give a sufficient condition for p to be strictly
greater than the essential norm of A; in order to do this we study the essential spectrum
of A*A.

PROPOSITION 2. Suppose that
(a3) the Toeplitz operator 7"2 :’-" PH2 M* Mo[/42 is invertible,
(a4) {z" detX,(z)=O}f3tre(To)=,
where To := Pn(Mo) SIH(Mo). Then, p> max {/3, y} implies p2: Cre(A,A) where and y
are defined as in 2.

Proof Let p > max {/3, y}. If/92 were in tre(A*A), then there would exist

X
n)

y(,) e H2(Cm))La(Ct)

x(,,)and [y(")] -’) 0 weakly as n , satisfying

with y(") 2

1 Vn _-> 1,

(4b)e Xl(’) [y+(,) + Xa(sr)
0 Mc y,c(,)j

--->0 strongly,

and

(7d)e X3(’)33-(")-* 0 strongly.

(These conditions for/9 2
E e(A*A) are sufficient as well.) This follows from Proposition

1 and equations (4b) and (7d). Note that Fl(sr), Fz(r), and F3(’) converge to zero
strongly as x(") and y

with

and

converge to zero weakly. In the above we have, as before,

X Xb" + Mbx’b(
y(,,) y2(,,) + y+(") + My’("),

y ,(.):= yc(,, (--1),

y+(,j
=: X(o") H(Mo),

y,c(,
=: X’o(" e Ha(C)@Ha(C/),

L2(C) H2(C/). They all converge to zero weakly as n.
Note that (7d)e means that

p2I-[F(S)*

Since p > % we see that

is invertible, and so )-(")

[ F(S)]) )3(")-> 0](Sl*]LJ(S

(6)

( aI-[F(S)* J(S)*][F(S)])P J(s)

converges to zero strongly.
Next from (4b) we get that

strongly.

Xo(’)X(o") + db()Mox("- 0 strongly.
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Taking orthogonal projections on M H2(CN) we see that

p,2 M* Xox(on) + pH M* Modb()x-0 strongly.

Recall that PH "00 SO it converges to zero strongly as X(o")
H(Mo) converges to zero weakly. Hence using Assumption (a3) we have that

(7)e db()X(nO strongly.

This implies, by (6)e, that

(8)e db(’) det X()X(o"-O strongly.

It is easy to see, by definition of/3, that for p >/3, db(’) has no roots on OD. Then we
can write

for some ,..., nr e D. Multiplying (7)e by
nN

il-I (1 ’c,)2’

which is in H (because all ai’s are in D), we obtain

m()x( 0 strongly,

where

Nl__[ Ol

ll (1 )"i=

This implies that xn0 strongly, because m(S)*m(S) is equal to the identity.
From (8)e, a similar argument gives that

(9)e det X()X(o-O strongly.

Let us assume now that d(’):= det X(r) has nonzero distinct roots. So dl(r) --0 at
points z,’’ ", z., inside D, 1/,..., 1/g., outside D, and z.,+, .+,..., z., .
on D. Using a similar trick as before, we obtain

where

Hence we see that

nN

m() H (- z,)(- g)X(o") 0 strongly,
i=n+l

m(sr) i=I-I1 1 i"

nN

H (’- z,)(’- )X(o") 0 strongly.
i=n+l

Taking the orthogonal projection of this last expression on H(Mo), we get
nN

1-I (To- z,)(To- )Xo")’* 0 strongly,
i=n+l

for X(o")0 weakly, and X(o") H(Mo). By Assumption (a4) none of zi, are in the
essential spectrum of To, therefore X(o") 0 strongly.
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In summary, we have established that )3-(n)-0 strongly, x(")0 strongly and
(n) (n)Xo) - 0 strongly. So, ty,,]- 0 strongly, which contradicts that [][y’")]l12 1 for all n _>- 1.

Thus /9
2 cannot be in Cre(A*A).

Remark. Note that a sufficient condition for (a4) to hold is p > a. So if ]]Alle > a,
then the above Proposition 2 gives an upper bound for the essential norm" [IA[[e-<_
max {/3, y}. Actually, we must prove, if possible, the equality as in the case of SISO
plants and MIMO finite-dimensional systems. However this is not easy in our case"

All we can show is that if p y then (7d)e holds for some 337(") such that [[-(")[[2 1
^-(n)for all n >- 1, and yc 0 weakly. This implies that p2 E ere(A’A), and ]]A[le -> 3’. But

the difficulty is with/3" if p =/3 then there exists

y(,) E H2(cm)) H2(C) with =1 Vn>_-l,
2

x(n)-and [y(-j 0 weakly as n o, such that

(10)e X2()[x(n)]y(,) 0 strongly.

In the SISO case, by multiplying (10)e by Mo(ff) (which then commutes with X2(’)),
we get the result that IIAlle >-. Moreover, in the MIMO finite-dimensional case we

X tO(decompose [y(-j as X(o")+Mo and as before X(o" H(Mo). Since in the finite-
dimensional case H(Mo) is finite-dimensional, X(o") 0 weakly implies X(o") 0 strongly.
Hence we obtain that (4b)e holds; then []A[[e=/3. The infinite-dimensional MIMO
case is much more subtle.

We now summarize the above discussion with two corollaries to Proposition 2.
COROLLARY 1. Assume (a3) and a<-max {/3, y}. Then,
(i) If y >= then A [[e Y.
(ii) If y < then y -<_ A [[ -<_/3.
COROLhRY 2. Considerfinite-dimensional MIMO case, i.e., M() is rational. Then,

max {/3, 3’}.

Proof. Let Mad denote the algebraic adjoint of M. Then

0 Mad G MadG MadjJ
=: L,

where m :-- det M. Clearly, L has all rational entries. Now let AL be the 4-block operator
associated to L. Then it is easy to see that IlALlle IIAIIe. In other words, without loss
of generality, we may assume that M is of the form mI where rn H is an inner
scalar-valued function. But in this case, we have that (a3) is satisfied since we can
choose M1 rn (see also the discussion below in 4). Hence by Proposition 2, and by
the finite dimensionality of H(m), we have the required conclusion.

Remark. In practice we do not need to compute the essential norm. All we need
to know is an upper bound /o for I[AII with which to start. Then the first zero of
det R*R (considered as a function of p) less than /Zo, will be IIAll. Of course, if

IIAII IIAII, then there is no first eigenvalue. Hence on the computer, ifwe plot det R*R
as a function of p, the graph of det R*R does not cross the p axis above IIAII, but
oscillates near this value, since the eigenvalues accumulate at IIAII. In this way we
can estimate the essential norm.
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4. SISO case. In this section we apply the above theory to SISO plants. The first
thing,to note in this case is that the factorizations (fl), (f2), (f3) are trivial, because
M(sr) is scalar, so it commutes with everything:

M()*B() B()M()*,

M()*C() C()M()*,

Xo()Mo() Mo(sr)Xo(sr).

Here we have Mo(’) M(sr)[ o]. Since Mo(sr) Ml(’) Assumption (al) holds (in fact,- is the identity). Moreover, we do not really have to compute Xo-1). Indeed, recall
the equation

(5) Xl(sr)Xo + X2()Mo()x= F().

Taking the projections of (5) on H(Mo) and MoH(C), we obtain

(Sa) Xl(sr)Xo F(sr) Mo()PH:Mo()*F()+ Mo()PHMo()*XI()Xo,

and

(5b) X2(sr)x P,2 Mo()*F() PH2 Mo()*XI()Xo

These equations (5a), (5b), are in the form of the equations (24c), (24d) of [6]. Now
we can use similar computations to the ones used in [6] to obtain the final result,
namely, a rank type formula as in our main theorem.

In the next section we give an example illustrating the computations for the SISO
case.

5. A SISO 2-block example. For simplicity of notation and exposition, the fol-
lowing example is chosen in the 2-block setup and a SISO plant is considered. The
2-block problem for stable SISO distributed plants was first solved in [22]. Motivations
for studying the 2-block problem comes from the mixed sensitivity minimization (see,
eg., [14], [19]), which can be stated as follows. Consider the feedback configuration
shown in Fig. 2. The mixed sensitivity minimization problem is to find

/= inf sup{ Ilia]Cstabilizing 2

inf
WC(I+PC)_IW3jCstabilizing

O

FIG;. 2
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Invoking the standard Youla parametrization of all stabilizing controllers, we obtain
the following expression for/ for P stable:

Let us now choose some specific values for the weights and the plant: W1- 1,
W2 b, W3 / (s + 1), and P e -hS. Here 0 =< b < oo and 0 =< h < oo are free parameters.
We will find the dependence of/ on b and h. Note that if b 0 then the problem
reduces to the 1-block case.

Following the factorization techniques used in [15] and [19] we can show that

1 1

b 1
Q-+; s+l

In terms of our notation

1 (1 ’) b (1-)
W(r)

x/i + b2 2
G(sr) x/- + b2 2

and M(r)= e h(?;+l)/(;-1). We can compute the lower bound for/x as I[Al[e b/x/1 + b2.
Also note that if we set Q 0 then we find an upper bound for/x as one. Therefore
we seek solutions p2, to the eigenvalue equations (la), (lb) in the region:

l+b= p --1.

In this specific example, equation (5) turns out to be

(11) Xl()Xb + X2()M()x’b F(),

where Xb H(M), X’b H2, and where X1, X:, and F can be computed to be

(lla)
1 sr2 2Xl(sr)=( +(4,0 -2)’+ 1),

(llb) X2(’)=--
b2 ( (4(1+b24(1 b2) -2 + 2))p -2 st+ 1

1 b2 e -h 1
(llc) Fl(sr) = Xbo+ 4( 1 +b2---- Xo+4( 1 + b ((-l)M()+e-)u_,.

If we now take the projection of both sides of (11) on MH, we see that

b2
(12) X()X’b

4( 1 + b2------- (X,o

Thus from (11), (lla)-(llc) and (12), we have

b2(e-h-M())
(13) Xl()Xb-- XbO+ 4(1 + b2) Xo+

((-1 +(1 + b2)’)M(sr) + e-)
4( 1 + b2)
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It is easy to check that for b2/(1 + b2) <-_ p2 <_ 1, X2() has one root, r2, inside the unit
disc D, and that XI(’) has both roots, rl, r-1 on the unit circle OD. Therefore we have
Xbo r2u-1, and so

exp(_2hrl +1) -1-b2r2+(l+b2)rl
,-’1 -i:b-i i"

Hence from (13) we may conclude that

(14) hy +tan-1 yv/1 + b
x/l-bEy

where y:=/l/p2-1, O<_=y<-l/b, and tan-lyx/i+b2//i-b2y2[O, 7r/2]. Note that
for (14) to have a solution, we need h>-_ 7rb/2. Hence, if h <-7rb/2 then
b//i+ b2; otherwise/z =p 1//y2+ 1 where y is the unique solution of (14) in the
range 0 -<_ y <- 1/b. Note that when b 0, (14) becomes

hy + tan- y

which is exactly the same equation obtained previously in [9], [10], [16], and [21] for
the 1-block problem. Clearly, as b ’oo, we have that /x ’ 1. The physical meaning of
this situation is that in this case we infinitely penalize the energy of the command
signal u. Indeed, since P is already stable we are allowed to choose C 0, which will
make u 0, and hence solve the problem. However, in this situation the tradeott is
that the energy of the worst error signal cannot be less than the energy ofthe disturbance
signal d, so /x will be equal to one. Figure 3 gives an indication on how/z depends
on the parameters b and h.

6. Concluding remarks. In this paper we have studied H optimization of multi-
variable distributed systems. We took the most general case ofthe standard H problem,
namely, the so-called 4-block problem. Here, we developed a rank type formula for
the computation of the eigenvalues of the operator A*A. It is important to emphasize
once more that the crucial steps of the procedure presented here are: (i) to do the
factorizations (fl)-(f3), and (ii) to find Xo-). We refer to the paper [3] for the methods
of performing these steps. From a computational point of view, the same method may
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be used to solve the 4-block problem for MIMO lumped systems, and MIMO stable
distributed systems.

At this point we feel that the skew Toeplitz theory gives a satisfactory way of
solving the optimal version of the 4-block problem in a very general setting. We should
note that these techniques should also lead to the suboptimal solutions as considered
in [2] and [4] for finite-dimensional systems using a state-space point of view. Indeed,
since the operator A is derived from the commutant lifting theorem, we could in
principle get all of the suboptimal solutions via the one-step extension technique of
1 ], once we know how to do the optimal case. This program has already been carried
out for the 1-block case in [8]. Such a suboptimal parametrization would allow us to
make contact with the very important work of[2] and [4]. Finally, it would be interesting
to explore the possibility of combining state-space and frequency-domain methods in
the 4-block problem as was done in [16] and [23] in the 1-block case.
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AN EVASION GAME ON A ,FINITE TREE*

V. J. BASTON AND F. A. BOSTOCK’

Abstract. The paper considers the following two-person zero-sum multistage game. An evader starts at
a given vertex of a tree and, at discrete intervals of time, chooses either to move to one of the vertices
adjacent to him or stay where he is. A gunner with a single bullet may, at each of the same discrete intervals
of time, either fire the bullet at any of the vertices of the tree or hold his fire. The gunner always hits the
vertex at which he aims and the bullet takes one unit of time to reach its target. The payoff to the gunner
is if he hits the evader,/x (where I1 < 1) if he fires and misses, and 0 if he never fires. It is shown that,
whatever vertex the evader starts at, the value of the game is (1 +/x)/2.

Key words, two-person game, zero-sum game, time lag system, recursive matrix game

AMS(MOS) subject classifications. 90D05, 90D20

1. Introduction. Firing games in which there is a time lag have attracted attention
over a period of years. This class of games occurs in different guises in a variety of
situations such as.a bomber-battleship problem [5], [7], [8], and I-9] or a tank maneuver-
ing to avoid gunfire [10]. Other papers on this theme include [4], [13], and [14]. More
recently there has been considerable interest in problems in which an evader, moving
on a discrete set of .points, tries to avoid being hit by a gunner. Lee [11], [12] has
investigated the case where there is a safe point for the evader, while Bastol3 and
Bostock 1] have treated the case where the number of points is finite. In these papers
the gunner has a given number of bullets to start with, but Bernhard, Colomb and
Papavassilopoulos [2] consider the situation in which the gunner has an unlimited
supply. In the above papers the points can all be thought of as distributed on a line.
However, it was conjectured that the result in [1] could be extended to a finite tree
and the purpose of this paper is to prove that conjecture. The techniques employed
in this paper are broadly similar to those in [1], but the technology involved is
fundamentally different.

Let A, A2, , A, be the vertices of a finite tree. An evader starts at some given
vertex AL and, at discrete intervals of time 1, 2,. , chooses either to move to one
of the vertices adjacent to him or to stay where he is. A gunner with a single bullet
may, at each of the same discrete intervals of time, either fire the bullet at any one of
the vertices Ar or hold his fire. It is assumed that,the gunner always hits the vertex at
which he aims and that the bullet takes one unit of time to reach its target. The payoff
to the gunner is 1 if he hits the evader, x (where l/x] < 1) if he fires and misses, and
0 if he never fires. The special case where the tree has only two terminal vertices was
solved in [1]; note that we use terminal vertex for a vertex of valency one. As in this
special case we will obtain a solution for our game by modelling it as a recursive
matrix game. For the notation and a brief account of recursive matrix games, the reader
is referred to [1]; in particular we will have occasion to use Lemma 1 in that paper.
We will prove that no matter at which vertex the game starts the value is always
(1 +/x)/2; we also give an optimal strategy for the evader and show how an e-optimal
strategy for the gunner may be determined.

Of course we do not need the theory of recursive games to see a strategy for the
evader which holds the gunner’s expectation down to (1 + x)/2. He may, when at a
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vertex Ar at time t, simply choose two of his alternatives each with probability 1/2. It is
perhaps surprising that this bound is tight, since the evader could be starting at a
vertex with high valency. The situation for the gunner is however far more complex.
It turns out that our e-optimal strategy for the gunner is actually independent of
we will only deal with the case/z 0 as the result can be extended to ]/xl < 1 exactly
in the manner of [1]. Finally, in 5 we point out that our methods can be used to
solve the game in which the evader must move.

2. The model as a recursive game. Let Fr represent the game where the evader
starts at the vertex Ar ofthe tree G with vertices A1, A2, , An. We assume throughout
n _-> 3 since when n 2 the problem is trivial. If the evader is at a terminal vertex, then
the gunner can ensure himself an expectation of 1/2 by immediately firing at the terminal
vertex or its adjacent vertex, each with probability 1/2. Hence, the value of a game which
starts at a terminal vertex is ; thus, we may regard our problem in terms of the recursive
matrix game F (F1, F2,"" ", Fn), where for each terminal vertex Ai Fi (1/2) and for
each nonterminal vertex Ar the matrix Mr for Fr is described as follows. The columns
of Mr are indexed by the set Ar which consists of the vertices adjacent to Ar together
with Ar itself; an element Aj of Ar represents the pure strategy for the evader in which
he moves to the vertex Aj. The rows of Mr are indexed by Ar together with an additional
symbol that represents the pure strategy for the gunner in which he does not fire. A
row indexed by an element A of Ar represents the pure strategy for the gunner in
which he fires at the vertex A. The entries of Mr are given by

and

1
Mr(Ai, Aj)

0

when Ai Aj
when Ai Aj

when A is a terminal vertex

when Aj is not a terminal vertex.

At this juncture we find it convenient to have A, , An as the nonterminal vertices
of G and Av/, , An as terminal vertices. For each real N-vector W (w,. , wv),
let Mr(W) denote the real matrix obtained by substituting wi for each game component
F which occurs in Mr. The value map V from real N-vectors to real N-vectors is
defined by taking the rth component of V(W) as the value of Mr(W), regarded as an
ordinary matrix game. Now let Wo denote the zero N-vector and for k 1, 2, , define
Wk ---(wkl, wkN) by Wk V(Wk_l). Since all the number entries in all the matrices
Mr are nonnegative, and because the value of an ordinary matrix game is an increasing
function of its entries, it is easy to see by induction that the sequence Wk is increasing.

3. The value of the game. The next four lemmas enable us to show that each
sequence w kr converges to 1/2. The proof of Lemma 1 is routine and is left to the reader.

LEMMA 1. Let the real matrix A (a0) 1, 2, , tn / 1, j 1, 2,. , m be given
by,

and

10 when =j, 1 <= i,j <-_ m
aij when j, 1 <-_ i, j <-_ m

a.,/j aj, 1 <-j <= m,
where 0 <-al <-a2 <="" <--a,,. Then as an ordinary matrix game the value v and optimal
strategies are given as follows.
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(i) When 2im=l ai <---- 1, v 1/m and optimal strategies X* (Xl," , xm+l) for the
row player and Y* (yl, ., Ym) for the column player are given by,

xi l/ m for i= l, m, xm+ =O

and

yi= l/ m for i= l, m.

s-I
(ii) When ,’= ai >-1 and s is defined by = a < 1 <-_= a then v as/p where

s--1
0 1 + (s- 1)a.- = a, and the optimal strategies X* and Y* are given by

x,=(a2-ai)/p for i= l,. ,s-1

xi=0 fori=s,s+l,. .,m x,,,+=l/p

and

yi=a/p fori=l,...,s-1

Ys 1 ai p
i=1

yi=O for i= s+ l, m.

kLEMMA 2. Let Ar be any nonterminal vertex, then for all k, W < 1/2.
Proof We will prove the result by induction on k, so for the inductive step suppose

that for some k and for all nonterminal vertices A, wk < 1/2. Let Ar be any nonterminal
vertex, then the number, m say, of vertices in Ar, is at least three. By the definition of
W,

val

1 0 0

0 1 0

0 0 1

a a2 am
kwhere each aj is either 1/2 corresponding to a terminal vertex adjacent to At, or is W

or is some wk corresponding to a nonterminal vertex adjacent to Ar. Without loss of
kgenerality, we may take a w. By our hypothesis a < 1/2 and aa, a3 1/2, SO the evader

can restrict the expected payoff to strictly less than 1/2 by choosing columns 1, 2, and 3
with equal probability. Thus wTM < 1/2, and the proof of the induction step is complete.

oSince for all nonterminal vertices Ai, w 0 < 1/2, the result now follows by induction.
As we have noted earlier, the sequence Wk is increasing, so since it is bounded

above (by Lemma 2), it converges, say to (w, wa,’’ ", wN). We note here that for
r 1,. , N, 0 < w -< 1/2. The upper bound follows from Lemma 2, and the lower bound
holds since clearly Wr > 0 from Lemma 1. We also observe that because the value of
an ordinary matrix game is a continuous function of its entries, the vector
(W1, W2, WN) is a fixed point of the value map.

LEMMA 3. Let Ar be a (nonterminal) vertex with w< 1/2 and such that for all
nonterminal) vertices As w <= ws, then A has at least two adjacent nonterminal) vertices

Ai and Aj say, for which wi w w.
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Proof Let Ar be a (nonterminal) vertex with the hypothesis of the lemma. By our
note and observation immediately preceding Lemma 3, we have

0 0

0 0

(*) Wr =val m=>3

0 0 1

Wr a2 am

where each as is either 1/2 corresponding to a terminal vertex adjacent to Ar or is some

Ws corresponding to a nonterminal vertex adjacent to At, and the as’s are ordered so
that 0< Wr <--a2<= a3<= <= a, <= 1/2. In the ordinary matrix game, let X denote the
mixed strategy for the row player whereby he plays each of rows 1 and 2 with a small
probability e > 0 (the exact value of which is indicated later) and row m+ 1 with
probability 1- 2e. If E(X, s) denotes the expectation when X is used against column
s, then

E(X, 1) -(1 -2E)Wr WrAI-2E(1/2--Wr)>
(x, 2)= +(1 2)a w+ a- w+ 2(1/2- a)

> wr since wr < 1/2 and Wr <= a2 <= 1/2,
and for 3 -< s _-< m,

E(X, s) (1 -2e)an >- (1 -2e)a3
wr+2a3((a3-Wr)/(2a3)-e

> wr for a sufficiently small e, if a > wr.
Hence (,) can only be satisfied if a --wr and the result follows.

LEMMA 4. For each (nonterminal) vertex At, w =-.
Proof By Lemma 2, for each (nonterminal) vertex As, ws =< 1/2. Suppose that for

the vertex At, wr<1/2. Since the tree is finite we may choose A so that for all
(nonterminal) vertices As, w-< ws. Then by Lemma 3 there are two adjacent vertices

Ai and Aj with wi wj wr. Thus each vertex of the subgraph given by the vertices As
with w. wr has valency at least 2 and so is not a tree [3, p. 8].

4. Gunner strategies. The remainder of the paper is concerned with the determina-
tion ofan e-optimal strategy for the gunner. This is essentially achieved as an application
of our final lemma.

LEMMA 5. Let e > 0 satisfy 3(1/2-e)_--> 1, and let k be large enough to ensure that
for all (nonterminal) vertices Ai, wki >- 1/2--e. For any nonterminal vertex Ar let D denote
the set of suffixes of those A which are nonterminal vertices adjacent to Ar then

k(i) If there exists in D with wk <-- W then for all j in,D not equal to i, W k < W.
k k(ii) If there exists in D with wk < W then for all j in D not equal to i; W < W.

Proof. Let e and k satisfy the hypothesis of the lemma, and let Ar be any
nonterminal vertex. As in the proof of Lemma 2,

=val

1 0 0

0 1 0

0 0 1

al a2 am’

where we also have ordered the aj’s so that 0<_-a <-a2<= <-a,,, and because Ar is
ka nonterminal vertex m -> 3. By Lemma 2 w < , so al 1/2. Since for all (nonterminal)
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vertices Ai wk->_ 1/2-e and 3(1/2-e)>_-1, we have from Lemma 1

W
k k+l

W a3/{ 1 + 2a3- al- a2} <- a3.

Now let in D be such that wk < wkr" If 2a3 al a2 > 0 then w kr <a3, SO W/k al
kand Wr a2 If 2a a-- a2 0 then al= a_ a3, so again wk

a2. Thus for all j in
D not equal to i, wk< w;

Now let in D be.such that wk< wk’r, then certainly 2a3-al-a2>O, so that
kWrk(= a2) < a3. Thus for all j in D not equal to i, Wr < W, and the proof of the lemma

is complete.
For each j let w denote the minimum of the w, over (nonterminal) vertices Ai.

With the hypothesis of Lemma 5 concerning e and k, let Aro, Ar,,’’’, Ar,,, A,,/, be
any path of distinct vertices with Wkro-- wk and Ar,,+, a terminal vertex; then Lemma 5
shows that for each 0, 1, p- 1, wk., < w kr,/, with equality up to some vertex Arj
say, and strict inequality thereafter so that W

k
W

k k
ro Wrj Wri+ W

k

This means that we have a subtree Go where for each vertex A of Go, wk=r wk and
k kfor each nonterminal vertex Ar of G in G-Go, W > W Assume that Go has at least

three vertices, and let A be a terminal vertex of Go. Let A, A,, Ai2 be any path of
three distinct vertices in Go, and let Aj,, Aj2,. ., A,, be the vertices in G-Go which
are adjacent to A. Note that because no terminal vertex of Go is a terminal vertex of
G the set of the A,.’s is not empty. Define a to be the minimum of the w,.’s or
to be 1/2 should all the A,.’s be terminal vertices of G. Now consider the vector

w ,..., wk+). By Lemma 1 and, since wk= wi, wi2(=w ),
k+ a/{l+2a_2wk}_wkW/k+l Wi

(a- wk)(1--2wk)/(1 +2a-- Wk}
>0 since ce>w/k=wk<1/2.

Thus w/k+l > wi,k+l Notice in particular that for any path Ar, A, At of three distinct
vertices of Go, w+= wk. Let G be the subtree of Go, obtained by removing the
terminal vertices of Go. For each vertex Ar of G, wk+= wk and if Ao, A, A,
A,,+, is any path of distinct vertices with A,,+, a terminal vertex of G and Ao in G,
then by Lemma 5 we have

W
k wk+l k+l k+l wk+l 1/2,So Ws Ws+ " s,

where A. is a terminal vertex of G. Since for all (nonterminal) vertices A of G,
w/k/1-->w ->1/2-e, we may again make use of Lemma 1 in passing to the vector

k/2 k+2 k+2), and, provided G1 has at least three vertices, we can removeW1 W2 WN
its terminal vertices to obtain an analogous subtree G of G. Continuing the process
in the obvious manner we arrive, after a finite number of steps m, say, at a subtree
Gm which has just either one or two vertices Let h k+ m, then for each vertex Ar
of G,,, Wh=r wk(--wh), and if A,o,A,,,... A,,, A,,,+, is any path of distinct vertices
with A,,,+, a terminal vertex of G and A, in.Gin, then Wk

Wtoh wt,h < Wt . < Wtt,h . 1/2,
and the first inequality is also strict unless A,, is the possible second vertex in G,.

We are now in a position to construct a stationary strategy X(e) for the gunner
which will ensure that his expectation is at least 1/2-e irrespective of what the evader
does. In the ordinary matrix game Mr(Wh), let Xr be the optimal strategy for the row
player which is given by applying Lemma 1, and define the stationary strategy *X for
Player in the recursive game by taking *X’ Xr for all t. Since V(Wh) Wh, the
condition (i) of Lemma 1 in 1] regarding *X and Wh is satisfied. By the work following
Lemma 5 regarding paths emanating from a vertex in Gin, we may conclude that for
the nonterminal vertex Ar there exist adjacent (nonterminal) vertices An and Aq such
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h. hh < h h and for all other adjacent vertices As, Wqthat either, (i) Wp w < Wq, w or (ii)
h h

Wp w,., and all other adjacent vertices are terminal. Thus, in the optimal strategy X,
h
Wh} in the event of (i) andthe probability of not firing (namely, 1/{l+2Whq--Wp

h h1/{1 + 2(1/2)-Wp-Wr} in the event of (ii)) is strictly less than one. This is true at each
nonterminal vertex, so since the tree is finite there exists a < 1 such that at all
nonterminal vertices the probability of not firing in an optimal strategy is never greater
than a. This means that for all strategies Y for Player 2 in the recursive game and for
all t, each matrix Qt(*X, Y) (see Lemma 1 in [1]) has each of its row sums at most
a. It is an easy exercise to see that condition (ii) of Lemma 1 in [1] is also satisfied.
Hence the strategy *X will ensure the gunner has an expectation of at least 1/2-e, and
our investigation for the case/x -0 is completed.

5. Conclusions. It is perhaps of interest to point out some of the properties of the
gunner strategy *X we obtained in the previous section. When e is small the gunner
fires with only a small probability when he sees the evader at a nonterminal vertex.
Furthermore, even if this nonterminal vertex has a very high valency, our analysis
shows that there is at most one adjacent vertex where the evader would be at least as
well off as his present position; at all other adjacent vertices the evader would be worse
off. Not surprisingly, therefore, our strategy tells the gunner to shoot with nonzero
probability only at the vertex where the evader is and at most one of the adjacent
vertices. The extension in [1] to the gunner having j bullets also applies here.

Our analysis may easily be adapted to show that, in the game where the evader
must move, the gunner may hit the evader with probability as close to one as desired,
no matter where the evader starts. In particular the adjustment of the gunner strategy
*X causes no difficulty. It is natural to consider generalisations to arbitrary graphs.
For such games each vertex gives rise, in an obvious manner, to a component matrix
of a recursive game. An iteration of the zero vector under the value map will again
converge to the value of the game. Furthermore, as in [6] an e-optimal or optimal
strategy for the gunner can be derived from the iterative process, but the strategy so
obtained is not necessarily stationary. Also, although this process may solve an

A A2

A3

FIG.

A5
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A3

A4

A A5 B
FIG. 2

B1 B2

B6

individual case, it would not, per se, show the general influence of graph structure on
the value. For instance, when the graph is not a tree, the components of the value may
not all be equal. In illustrating some of these points we shall restrict our attention to
games where the evader must move.

For the graph in Fig. 1 it is easy to show that the value v is given by Vl v2 ,
v3 , and vi 1/2 otherwise. Now consider the graph in Fig. 2 where it is considerably

Amore .difficult to establish that the value v=(vA, v B) is given by vA= va 1/2, v3
(5-x/if)/6, vA otherwise, and vA vff for all i. It appears from these two examples
that a comprehensive structure theory relating the value of a graph to the value of its
"constituent parts" in unlikely.
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Abstract. The problem of computing a fixed point of a nonexpansive function f is considered. Sufficient
conditions are provided under which a parallel, partially asynchronous implementation of the iteration
x :=f(x) converges. These results are then applied to (i) quadratic programming subject to box constraints,
(ii) strictly convex cost network flow optimization, (iii) an agreement and a Markov chain problem, (iv)
neural network optimization, and (V) finding the least element of a polyhedral set determined by a weakly
diagonally dominant, Leontief system. Finally, simulation results illustrating the attainable speedup and the
effects of asynchronism are presented.

Key words, parallel algorithms, asynchronous algorithms, nonexpansive functions, network flows, neural
networks, agreement, Markov chains, Leontief systems
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1. Introduction. In this paper we consider the computation of a fixed point of a
nonexpansive function f using parallel, partially asynchronous iterative algorithms of
the form x := f(x). We give sufficient conditions under which such algorithms converge,
we show that some known methods satisfy these conditions, and we propose some
new algorithms. The convergence behavior of our methods is qualitatively different
from the convergence behavior of most asynchronous algorithms that have been studied
in the past by many authors [1]-[3], [5], [8], [27]-[30].

We consider a fixed point problem in the n-dimensional Euclidean space ,n. We
are given functions f :n - , 1, , n, and we wish to find a point x* " such
that

x* f(x*),

where f: ,qt" ,qt" is defined by f(x) (fl(x)," ,f,(x)).
We consider a network of processors endowed with local memories, which com-

municate by message passing, and which do not have access to a global clock. We
assume that there are exactly n processors, each of which maintains its own estimate
of a fixed point, and that the ith processor is responsible for updating xi, the ith
component of x. (If the number of processors is smaller than n, we may let each
processor update several components; the mathematical description of the algorithm
does not change and our results apply to this case as well.) We assume that processor
updates its component by occasionally applying f to its current estimate, say x, and

then transmitting (possibly with some delay) the computed value f(x) to all other
processors, which use this value to update the ith component of their own estimates
(see Fig. 1.1).

We use a nonnegative integer variable to index the events of interest (e.g.,
processor updates). We will refer to as time, although need not correspond to the
time of a global clock. We use the following notations:

* Received by the editors November 14, 1988; accepted for publication (in revised form) July 21, 1989.
t Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge,

Massachusetts 02139. This work was supported by National Science Foundation grants NSF-ECS-8519058
and NSF-ECS-8552419, with matching funds from Bellcore and Du Pont, and by Army Research Office
grant DAAL03-86-K-0171.
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new

xi - fi (x)
localx
memory

(a)

new
x i

x i

(b)
FIG. 1.1. (a) Processor computes new estimate of the ith component of a fixed point. (b) Processor

transmits new estimate to other processors.

xi(t) ith component of the solution estimate stored by processor at time t.
an infinite set of times at which processor updates xi.

ru(t) a time at which the jth component of the solution estimate stored by
processor at time was stored in the local memory of processor j
(j 1,. ., n; e if/). (Naturally, to(t) =< t.)

In accordance with the above definitions, we postulate that the variables xi(t) evolve
according to:

f(X,(’i,(t)),’’’, X.(7"in(t))) if G -i,
(1.1) xi(t + 1)

[xi(t) otherwise.

The initial conditions xi(0) are given, and for notational convenience we assume
that xi(t)= xi(0) for t-< 0, so that the asynchronous iteration (1.1) is well defined for
’0(t) -< 0. We may view the difference -o(t) as a "communication delay" between
the current time and the time ’o(t) at which the value of the jth coordinate, used by
processor at time t, was generated at processor j.

Asynchronous computation models may be divided into totally asynchronous and
partially asynchronous. In the totally asynchronous model ]-[3], [8], [30], the "delays"
t--/(t) can become unbounded as increases. This is the main difference with the
partially asynchronous model, where the amounts t-’u(t are assumed bounded; in
particular, the following assumption holds.

Assumption A. (Partial Asynchronism). There exists a positive integer B such
that, for each and each e -i, there holds:

(a) O<-t-’i(t)<-B-l, for allje{1,. .,n}.
(b) There exists t’ -i for which 1 -< t’- -< B.
(C) "rii( t) t.
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Parts (a) and (b) of Assumption A state that both the communication delays and
the processor idle periods are bounded and can be expected to hold in most practical
cases; for example, (b) holds if each processor uses a local clock, if the ratio of the
speeds of different local clocks is bounded, and if each processor computes periodically
according to its own local clock (see [7], p. 484). Part (c) of Assumption A states that
a processor always uses the most recent value of its own component xi. This assumption
typically holds in practice, but it is interesting to note that, while it is necessary for
our results (see the proof of Lemma 2.3(a)), it is not needed in the convergence analysis
of totally asynchronous algorithms.

Partially asynchronous iterations have already been studied in the context of
gradient optimization algorithms, for which it was shown that convergence is obtained
provided that the bound B of Assumption A is sufficiently small [27]-[29]. Our results
concern a fundamentally different class of partially asynchronous methods which are
convergent for every value of the bound B. At least two interesting examples of such
methods are known: the agreement algorithm of [29] and the Markov chain algorithm
of [20]. However, it appears that these methods have not been recognized earlier as
a class. Their convergence behavior is somewhat surprising because their totally
asynchronous versions do not converge in general; for a counterexample, see [7, p. 484].

In this paper we focus on the convergence issues ofpartially asynchronous methods
with arbitrarily large values of the asynchronism bound B. Our main result (Proposition
2.1) is the first general convergence result for these methods. In 3-7, we show that
Proposition 2.1 applies to a variety ofmethods for several important problems, including
the agreement and Markov chain algorithms mentioned earlier. Some of our conver-
gence results are new, even when they are specialized to the case of synchronous
algorithms; for example, the convergence of Jacobi relaxation methods for strictly
convex cost network flow problems in 4.

2. A general convergence theorem. Throughout this paper, we let X*=
{x .t" If(x)- x} be the set of fixed points of f and, for each x ", we let Ilxll
max i__ ,...,, Ix, denote the maximum norm of x. For any x ", we denote by p(x) the
distance of x from X*, defined by

p(x) infyx. Ilx yll.

Finally, given any x n and x* X*, we let I(x; x*) be the set of indices of coordinates
of x that are farthest away from x*, that is,

I(x; x*)= {l Ix,-x,*l IIx- x*ll),

and we also denote

U(x; x*) {y ,t ]Yi xi for all I(x; x*),

and ly,- x*l < IIx- x*ll for all : I(x; x*)}.

Loosely speaking, U(x; x*) is the set of all vectors y with liy-x*ll IIx-x*ll that
agree with x in the components that are farthest away from x* (see Fig. 2.1).

Our main assumption on the structure of f is the following.
Assumption B.
(a) f is continuous.
(b) The set of fixed points X* is convex and nonempty.
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u (v;x*) --
(-I, -I

w x (i, i)

U (x; x*

FIG. 2.1. Illustration of the sets I(.; x*) and U(.; x*). Let n 2 and suppose that x* (0, O) e X*. For
the indicated points x, v, and w, we have l(x; x*)= {1, 2}, l(v; x*)= {1}, I(w; x*)= {2}. The set U(v; x*) is

the set of all vectors of the form (-1, c), where c satisfies -1 < c < 1, which is the segment joining the points
(-1,-1) and (-1,1), the endpoints excluded. Similarly, U(w;x*)={(c, 1)]-l<c<l}. Finally, we have
U(x;x*)={x}.

(c) IIf(x)- x’l] IIx-x*ll, for all x e ", for all x* e X*.
(d) For every x " and x* X* such that [Ix x*[[ p(x) > 0, there exists some

I(x; x*) such that f(y) yi for all y U(x; x*).
Part (c) of Assumption B states that f does not increase the distance from a fixed

point and will be referred to as the pseudo-nonexpansive property. This is slightly
weaker than requiring that f be nonexpansive (that is, [[f(x)-f(y)[[ <-_ [Ix-y[[ for all
x and y in ") and in certain cases is easier to verify (see 4). We interpret part (d)
as follows: Consider some x X*. Then f(x) x, and there exists some such that
f(x) xi. Assumption B(d) imposes the additional requirement that such an can be
found among the set of worst indices, that is, belongs to the set I(x; x*) of indices
corresponding to components farthest away from a closest element of X*. Furthermore,
if we change some of the other components of x to obtain another vector y U(x; x*),
we still retain the property f(y) yi, for this particular i. This part of Assumption B
is usually the most difficult to verify in specific applications.

Unfortunately, the following simple example shows that Assumptions A and B
alone are not sufficient for convergence of even the synchronous version of iteration
(1.1): Suppose that f(xl, x2)= (x2, xl) (which can be verified to satisfy Assumption 13
with X*= {(A, A)IA e }). Then the sequence {x(t)} generated by the synchronous
iteration x( / 1 =f(x(t)) (which is a special case of (1.1)), with x(O) (1, 0), oscillates
between (1, O) and (0, 1).

The difficulty in this example is that, at each iteration, while the worst coordinate
I(x; x*) is changed from 1 to O, the other coordinate is increased from 0 to 1, and

the distance p(x) from X* is not changed. The following assumption is designed to
prevent such behavior.

Assumption C. For any i, x e ,", and x* X*, if f(x) xi, then If(x)- x*[ <
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An important fact, shown below, is that any mapping satisfying Assumption B
can be modified by introducing a relaxation parameter, so that it satisfies Assumption
C as well.

LEMMA 2.1. Let h n be afunction satisfying Assumption B. Then the mapping
f:" - whose ith component is

f(x) (1 v,)x, + %,h(x),

where yl, ", % are scalars in (0, 1), has the same set offixed points as h and satisfies
both Assumptions B and C.

Proof. It is easily seen that f is continuous and has the same set of fixed points
as h, so it satisfies parts (a) and (b) of Assumption B. Since f(x) xi if and only if
hi(x) xi, we see that f satisfies part (d) of Assumption B. Since h is pseudo-
nonexpansive, for all i, x , and x* X*, both xi and hi(x) belong to the interval

ix,, -IIx x*ll, x,, + IIx x* II].

Therefore, f(x), which is a convex combination of xi and hi(x), must also belong to
this interval, proving that f is pseudo-nonexpansive, (cf. part (c) of Assumption B).
Furthermore, if hi(x) x, then the convex combinationf (x) must belong to the interior
of this interval, showing that f satisfies Assumption C.

We now prove our main convergence result, showing that Assumptions A, B, and
C are sufficient for the sequence {x(t)} generated by the asynchronous iteration (1.1)
to converge to an element of X*. To motivate our proof, consider the synchronous
iteration x(t + 1) =f(x(t)). Under Assumptions B and C, either (i) p(x(t + 1)) < p(x(t))
or (ii) p(x(t+l))=p(x(t)) and x(t+l) has a smaller number of components at a
distance p(x(t)) from X* than x(t). Thus, case (ii) can occur for at most n successive
iterations before case (i) occurs. This argument can be extended for the asynchronous
iteration (1.1), but because of communication and computation delays (each bounded
by B, due to Assumption A), the number of time steps until the distance to X* decreases
is upper bounded by roughly 2nB (see part (c) of Lemma 2.3).

PROPOSITION 2.1. Suppose that f:n-," satisfies Assumptions B and C, and
suppose that Assumption A (partial asynchronism) holds. Then the sequence {x(t)}
generated by the asynchronous iteration (1.1) converges to some element ofX*.

Proof For each integer _-> 0 denote

z(t)=(x(t-B+ 1),’’’, x(t)),

d(z(t))= min {max (]]x(t-B+ 1)-x*ll,’’ ",
x*X*

Notice that the minimum in the definition of d(z(t)) is attained because the set X*
is closed (as a consequence of the continuity off). For each >= 0, we fix an element
x*(t) of X* attaining the minimum

(2.1) x*(t) arg min {max (llx(t-B+ 1)-x*ll,’’’, Ilx(t)-x*llI}.
x*X*

As part of the proofof Proposition 2.1, we prove some preliminary facts in the
following two lemmas, which show that the distance d(z(t)) cannot increase at any
iteration while it decreases strictly "every few" iterations.

LEMMA 2.2. d(z(t+ l))<-d(z(t)), for all z(t),9t"B, for all t>=O.
Proof Wewill prove by induction that

(2.2) IIx( r) x*( = d z( ),
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which implies the result. From (2.1) and the definition of d(z(t)), this inequality holds
for r {t-B+ 1,..., t}. Suppose that it holds for all r{t-B+ 1,...., r’}, where r’
is some integer greater than or equal to t. We will show that it holds for r’+ 1. By
(1.1), for each i, either xi(r’+ 1)= xi(r’) or xi(r’)--f/(Xl(’/’il(r’)),’"" Xn(’l’in(r’)) ). In the
former case, we have Ix(r’+l)-x*i(t)l-]x,(r’)-x*(t)l<=d(z(t)) by the induction
hypothesis. In the latter case, we have by Assumption A(a), r’-B + 1 =< %(r’)-< r’, so
by the induction hypothesis, Ixj(’o(r’))-x(t)l<-d(z(t)) for all j. Using the pseudo-
nonexpansive property of Assumption B(c), we obtain

Ixi r’ + 1) x’i( t)l <-- max [Xj( "l’ij (r’)) x( t)[ _<-- d (z(t)).

Thus, in either case we have Ix(r’+l)-x*(t)l<-d(z(t)), and this is true for every
index i. Therefore, [Ix(r’+ 1)-x*(t)ll<-_d(z(t)), completing the induction.

LEMMA 2.3. Fix some t>=O for which d(z(t))>O and denote

J(r) {illxi(r)-x*i (t)l d(z(t))}, Vr >- t.

(a) If xi(r+l)#xi(r) for some r>-t, then i:J(r+l).

(2.3) (b) J(r+ 1)_ J(r), for all r > t.

(c) d(z(t+2nB+B-1))<d(z(t)).

Proof For convenience, we will use the notation

fl d(z(t)), x*= x*(t).

(a) If xi(r+ 1)# xi(r), we have re -i. Furthermore,

fi(Xl(Til(r)), Xn(Tin(r)))-- xi(r+ 1) # xi(r xi(Tii(r)),

where the last equality follows from Assumption A(c). Using Assumption C, we obtain

Ixi( r + 1)- x/*l < max IXj(’rij( r)) Xj*. <= ,
where the last inequality follows from r- B + 1 <_- %(r) <- r (cf. Assumption A(a)) and
Lemma 2.2 (cf., (2.2)). Thus, J(r + 1).

(b) If iJ(r+ 1), then part (a) shows that xi(r)=xi(r+ 1), which implies that
iJ(r).

(c) We first show by contradiction that, for all r >= t,

(2.4) d(z(r+ 2B)) =:>J(r+ 2B) e J(r).

Suppose that, for some r>-t, we have d(z(r+2B))=[3 and J(r)=J(r+2B). By part
(b), J(r)=J(r+ 1) J(r+2B). Denote J=J(r). Then, by part (a),

(2.5) x,(r) x,(r+ 1) x,(r+ 2B), Vi J,

and by the definition of J,

(2.6) Ixi(r)-x*l<,...,lxi(r+2B)-x*il<, /iJ.

Now, from the definition of J, x* and/3 we have that Ixi(r) x/*l --/3 for all J; hence
(2.6) implies

(2.7) I[x(r)-x*]l=, J=I(x(r);x*).
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Also by Assumption A(b), for each iJ, there exists ri {r+ B,..., r+2B-1} such
that rg . and the iteration (1.1) yields

(2.8) xi(r, + 1) =f(x(7"l(r)), ", xn(7"in(ri))), Vi J.

Let us denote

Xi-- (Xl(Zil(ri)),." ", Xn(7"in(l’i))) Vi J.

By Assumption A(c), %g(ri)=ri for all i J, which together with (2.5) implies that

xi(r d- 1) Xi(7"u(?’i)), Vi J.

Therefore, (2.8) can be written as

), ViEJ.(2.9) xi-fi(x

Furthermore, by Assumption A(a), r<= %(ri) <- r+2B for all J and all j, which
together with (2.5)-(2.6) implies that

xj--xj(r), ViJ, jJ,

i-xl<, ViJ, VjZJ.[x
Therefore from (2.7) we also have

(2.10) x U(x(r); x*), Vi 6 J.

It now follows that

Ilx(r)-x*ll > p(x(r)),

since if IIx(r)-x*ll- t,(x(r)), then in view of the fact I(x(r); x*)= J (cf. (2.7)) and
(2.9)-(2.10), Assumption B(d) would be violated.

Thus, we conclude that there exist y* e X* and 0 e [0,/3) such that Ilx(r)-y*ll o.
Let

e=max {Ix(m)-x*,llic-J, m=r+B,..., r+2B- 1},

M=max{Ixi(m)-y*illiC_J, m= r+ B, r+2B-1}

(see Fig. 2.2). Since X* is convex, we have that, for any to (0, 1), z* (1 to)x* + toy*

x(r)

. x (+B)
]x (r+2B-l)

FG. 2.2
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is in X* and, for m r + B,. , r + 2B- 1,

Ixi( m z*i Ixi( r) z*i
=< (1 w)]xi( r) x*i + to[xi(r) Y*

(1-to)fl + to0,

Ixi(m z*i <= (1 to )lxi(m x*i + tolxi(m y*i

=< (1 to)e + toM, li:J.

Since e < fl and 0 </3, we have that, for to sufficiently small,

Ilx(m)-z*ll<, Vm=r+B,...,r+2B-1.

This implies that d (z(r + 2B 1)) < fl, a contradiction.
Since by Lemma 2,2, d(z(r)) is nonincreasing, either d(z(t+2nB-1))<, in

which case the result is proved, or d(z(t+2nB-1))=. In the latter case, by (2.3)
and (2.4), J(t + 2nB) J(t + 2nB + B 1) , and

d(z(t + 2nB + B- 1)) max {llx(t + 2nB)- x* [I,""", [Ix(t+ 2nB + n- 1)- x* II} </3.
u

We now complete the proof of Proposition 2.1.
By (2.2), the sequence {z(t)} is bounded and, by Lemma (2.3)(c), d(z(t))

monotonically decreases to some limit ft. If/3 =0, then Lemma 2.2 and (2.2) imply
that {x(r)} has a unique limit point, which is in X*, and our proof is complete. Suppose,
to obtain a contradiction, that/3 > 0. Let

At 2nB + B- 1.

Since, by (2.2), {z(t)} is bounded, there exist some z*E no, z**" and a sub-
sequence T of {0, 1,..’} such that

(2.11) {z(t)}tT-->
Note that since d(z(t))->[3 and d is a continuous function, (2.11) implies that
d(z*)=d(z**)=.

From (1.1), Assumption A and the definition of z(t), we see that we can express
z(t + At) as a continuous function of z(t). In particular, we can write

(2.12) z( + at) g(z( t); F(t)),
where F(t)= (Fl(t),..., F(t)) and F,(t) denotes the set

(2.13) Fi(t)={(r-t, ’i(r)-t," ’,(r)-t)lr -iO{t," t+at}},
and g(. F(t)):.ts-->,ns is some continuous function that depends on f and F(t)
only. (Note that g(. F(t)) is the composition of the f’s in an order determined by
F(t) and is continuous because f is continuous.) Since (cf. (2.13) and Assumption A)
F(t) takes values from a finite set, by further passing into a subsequence, if necessary,
we can assume that F(t) is the same set for all T. Let F (F,..., F) denote this
set. Then from (2.12) we obtain that

z(t+At)=g(z(t);F), VtT.
Since g(.; F) is continuous, this, together with (2.11), implies that z**= g(z*; F) or,
equivalently, z(At)= z** if z(0)= z* and

{(r, Til(r),’’ ", ’in(r))ir_ if{0,’’’ ,At}}:l"i, i.

Since d(z*)=/3>0, this, together with Lemma 2.3(c), implies that d(z**)<d(z*),
contradicting the hypothesis d(z**)=/3. U
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The convexity of X* is sometimes hard to verify. For this reason we will consider
another assumption that is stronger than Assumption B but is easier to verify.

Assumption B’.
(a) f is continuous.
(b) The set of fixed points X* is nonempty.
(c) liT(x)- x*ll--< IIx- x*ll, for all x n, for all x* X*.
(d) For every x X* and x* e X*, there exists some I(x; x*) such thatf(y) yi

for all y U(x; x*) such that y X*.
Compared to Assumption B, part (d) of the new assumption is stronger but part

(b) is weaker because convexity is not assumed. Wehave the following result.
LEMMA 2.4. Assumption B’ implies Assumption B.
Proof It can be seen that Assumption B’(d) implies Assumption B(d), so we only

need to show that X* is convex. Suppose the contrary. Since X* is closed, then there
exist x*eX* and y*X* such that (x*+y*)/2C_X*. Let x=(x*+y*)/2. It can be
seen that IIx-x*ll- IIx-y*ll>0, xX*, and I(x; x*)= I(x; y*) (see Fig. 2.3). By
Assumption B’(d), there exists i I(x; x*) such that f(x) xi. Suppose that xi > y*.
Then if f(x)> xi, we obtain Ilf(x)-y*[I >=f(x)-y* > xi-y* Ilx-y*[I and if
f(x) < x,, we similarly obtain liT(x)-x’I[ > IIx-x*ll. In either case Assumption B’(c)
is contradicted. The case where x < y* is treated analogously.

Assumption B will be used in 4, while Assumption B’ will be used in 3, 6,
and 7.

3. Nonexpansive mappings on a box. Let g:,t n be a continuously differenti-
able function satisfying the following assumption:

Assumption D.
(a) For each i, =1 IOgi(x)/OXj[ -< 1, for all x
(b) For each and j, either Og(x)/Ox 0, for all x 6,9t n, or Ogi(x)/Ox O, for all

X ,q n.

x*- Y*II x*- Y*II
I(x;x*) I(x;y*) {2}. I(x;x*) I(x;y*) {1,2}.

FG. 2.3. Two configurations ofx* and y*.

(c) The graph with node set {1,. ., n} and arc set {(i, j)lOgi(x)/Ox 0} is strongly
connected.

Let C be a box (possibly unbounded) in n, i.e.,

C {x e,ql" l <- xi <- ci, V },
for some scalars li and ci satisfying l <-ci (we allow li =-oe or ci +ee). Let also Ix]+
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denote the orthogonal projection of x onto C, i.e.,

[x]/= (max {ll, min {Cl, xl}}, ., max {l,, min {c,, x,}}).
We use the notation xr to denote the transpose of a column vector x. The following
is the main result of this section.

PROPOSITION 3.1. Let g ,qt" - 9t" satisfy Assumption D. Ifeither g has afixed point
or if C is bounded, then the function h" R - ,qt" defined by

(3.1) h(x)=[g(x)]+

satisfies Assumption B’.
Proof Since both g and [. ]/ are continuous functions, so is their composition,

and part (a) of Assumption B’ holds.
By the Mean Value Theorem, for any x ", y .qt", and index i, there exists

: " such that

(3.2)
This implies that

gi(Y) g,(x) (Vgi()) 7" (y x).

-<- IIx-yll,
where the last inequality follows from Assumption D(a). Since the choice of was
arbitrary, g is nonexpansive with respect to the maximum norm. Since projection
onto a box can be easily seen as nonexpansive with respect to the maximum norm, it
follows from (3.1)that IIh(x)-h(y)ll<-llg(x)-g(y)}l. Thus,- h is nonexpansive with
respect to the maximum norm, and part (c) of Assumption B’ is satisfied.

We now show that h has a fixed point. Suppose first that g has a fixed point y*.
Choose/3 sufficiently large so that the set Y= {x e [[x-y*ll <-/3} c is nonempty.
Then for every x e Y we have, for all i,

y* - <_ gi(x) <= y* + fl,
and

either li <= gi(x) <= Ci or gi(x) < li <= y* + fl or y* <- ci < gi(x).

Since hi(x)=max {/, min {c, gi(x)}}, this implies that h(x) Y (see Fig. 3.1 below).

FIG. 3.1
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Since h is also continuous and Y is convex and compact, a theorem of Brouwer ([11 ],
p. 17) shows that h has a fixed point. Now suppose C is bounded. Since h(x) C for
all x C and C is convex and compact, the same theorem of Brouwer shows that h
has a fixed point. Thus, part (b) of Assumption B’ is satisfied.

We finally show that Assumption B’(d) holds. Suppose the contrary. Then
there exists some xX* and some x* X*, such that for every i I(x; x*) there

X* X*is an x U(x; x*) with xe X* and hi(x) xi. Let J-- I(x; ),/3 -[Ix- and fix
some J. By the Mean Value Theorem, there exists some s such that gi(xi)
gi(x*) (Vg(,)) "(x x*). Let aj gi()/xj. Then

fl Ix- xl Ih,(x’)- h,(x*)]
[g,(xg)-g,(x*)[

1 a2(xj-x)

jJ

where the first inequality follows from the fact that the projection onto [li, ci] is
nonexpansive and the last inequality follows from the fact (cf. Assumption D(a)) that

Y9 laj[ = 1. Since Ix-x,*.l < for all j J, the above inequality implies that a =0 for
all j J. Since the choice of J was arbitrary, we obtain from Assumption D(b) that
Ogi()/Oxi 0 for all : e ,n, J, j J. By Assumption D(c), we must have that
J {1,. , n}. In that case, U(x; x*) is a singleton and all the vectors x are equal.
It then follows from the equalities h(xi) xl, for all i, that each x is a fixed point of
h, a contradiction of the hypothesis xi X*. H

Since Assumption B’ is satisfied, the partially asynchronous iteration

x := (1- "y)x + "y[g(x)]+

(with 0< 3/< 1) converges (cf. Lemmas 2.1, 2.4, and Proposition 2.1).
An important special case is obtained if C n, g(x)= Ax + b, where A is an

n x n matrix and b is a given vector in ,". Thus, the problem is to solve the linear system

x Ax + b,

and Assumption D amounts to the requirement that A [a] is irreducible (see [22]
for a definition of irreducibility) and lanai =< 1, for all i. Then, provided that the system
x Ax + b has a solution (not necessarily unique), the partially asynchronous iteration

x := (1- y)x + y(Ax + b)

(with 0 < 3/< 1) will converge to such a solution.
As a special case of our results, we obtain convergence ofthe synchronous iteration

x(t + 1)= (1- /)x(t)+ /(Ax(t)+ b).

This seems to be a new result under our assumptions. Previous convergence results
[17], [22] have made the stronger assumption that either: (a) A is irreducible and

la,l----1, for all i, with strict inequality for at least one i, or (b) Yq lanai < 1, for all i.
Two other important special cases are studied below.

3.1. Quadratic costs subject to box constraints. Consider the following problem.
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Minimize xrQx/2 +p Tx
(3.3)

Subject to x C,

where Q [q] is a symmetric, irreducible, nonnegative definite matrix of dimension
n x n satisfying the weak diagonal dominance condition

(3.4) [qijl qii, qii > O, i,
ji

p is an element of , and C is, as before, a box in ,".
Let D denote the diagonal matrix whose ith diagonal entry is q,. Let A I D-Q

and b =-D-p. We have the following result.
PROPOSITION 3.2. The function g’,qt-> defined by g(x)=Ax+b satisfies

Assumption D.
Proof g is clearly continuously differentiable and (cf. (3.4))

j#i Iq,[/qii 1 for all i. Since Ogi(x)/OXj aij for all x " and A is irreducible, g satis-
fies Assumption D.

It can be seen (by using the Kuhn-Tucker optimality conditions [23]) that each
optimal solution of (3.3) is a fixed point of lAx+ b]/ and vice versa, where [. ]/
denotes the orthogonal projection onto C. Hence, if (3.3) has an optimal solution,
then (cf. Lemma 2.1, 2.4, and Propositions 2.1, 3.1, 3.2) the partially asynchronous
iteration

(3.5) x := (1 y)x + y[Ax + b]+

(with 0< y < 1) converges to such a solution. Note that for 3’-1, the iteration (3.5)
takes the form x := Ix-D-(Qx +p)]+ which is a diagonally scaled gradient projection
iteration. However, this iteration need not be convergent in the absence of additional
assumptions.

3.2. Separable quadratic costs with sparse 0, + 1, -1 matrix. Consider the following
problem.

Minimize w7"Dw/2 + fl rw
(3.6)

Subject to Ew >= d,

where D is an m x m positive definite diagonal matrix,/3 is an element of ,t’, d is
an element of ,", and E [eik] is an n x m matrix having at most two nonzero entries
per column, and each nonzero entry is either -1 or 1. Furthermore, we assume that
the undirected graph with node set {1,..., n} and arc set {(i,j)lek 0 and ek 0
for some k} is connected.

Consider the following Lagrangian dual [23] of (3.6).

Minimize xTQx/2 +p T"x
Subject to x _-> 0,

where Q ED-E r, p--d- ED-fl. We show below that this is a special case of the
problem considered in the previous subsection.

PROPOSITION 3.3. Q is symmetric, irreducible, nonnegative definite and weakly
diagonally dominant (cf. (3.4)).

Proof Since D is symmetric and positive definite, Q is symmetric and nonnegative
definite. To see that Q satisfies (3.4), let Ok denote the kth diagonal entry of D (a > 0),
let O(i) denote the set of indices k such that eik 0, and let qo denote the (i, j)th entry
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of O. Then

_, e,k oo, )- ej,
k

-1<= E
keO(i)f]O(j)

with equality holding if i=j. Hence, for each i,

ji ji keO(i)O(j)

kO(i)

qii

where the second inequality follows from the fact that if k e O(i) O(j) for some j,
then k
is connected and qij # 0 for i#j if and only if there exists some k such that eik 0
and ej

An example of constraints Ew. d satisfying our conditions on E is

wl and w0 for r=l,2,...,R,
k kKr

where K, K2,’", KR are some mutually disjoint subsets of {1, 2,..., m}. Such
constraints often arise in resource allocation problems.

4. Strictly eonwx cost ntwork flow problems. Consider a connected, directed graph
(network) with the set of nodes W={1,..., n} and the set of arcs WW. We
assume that i#j for every arc (i, j) and that at most one arc connects any ordered
pair of nodes, so that the arc (i, j) has unambiguous meaning. (These restrictions can
be easily removed.) For each node W, denote by (i) the set ofdownstream neighbors
of (that is, (i) {j(i, j) }) and by (i) the set of upstream neighbors of (that
is, U(i) {j](j, i) }). Consider the following problem"

(4.1) Minimize a0(i
(i,j)

(4.2) Subject to
j(i) jo(i)

where each a" (-, +] is a strictly convex, lower semicontinuous function and
each & is a real number. We interpret f as the flow on the arc (i, j), s as the supply
(or demand if s < 0) at node i, and a(fj) as the cost of sending a flow of fj on arc
(i, j). The goal is then to find a set of arc flows that minimizes the total cost while
satisfying the flow conservation constraints (4.2) (see Fig. 4.1). Note that capacity
constraints of the form

bij <= fj c0,

(i)

FIG. 4.1

(i)
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where bo, cij are given scalars, can be incorporated into the cost function aij by letting
ai(fq) + for fj [bij, c0].

The above network flow problem is an important optimization problem, with
applications to data networks, traffic assignment, matrix balancing, etc. The interested
reader is referred to [7, Chap. 5] for a detailed discussion of this problem. (Also see
[5], [6], [9], [12], [21], [24], [31]-[33].)

Denote by gi :,9i--> (-o, +e] the conjugate function ([23, 12]; [24, p. 330]) of
ao, i.e.,

(4.3) gj(n) sup {srr/- a(’)}.

Each go is convex and, by assigning a Lagrange multiplier p (also called a price) to
the ith constraint of (4.2), we can formulate the dual problem ([24, 8G]) of (4.1) as
the following convex minimization problem.

Minimize q(P)
(i,j), idg"

(4.4)
Subject to p

We make the following assumption.
Assumption E.
(a) Each conjugate function go is real valued.
(b) The set P* of optimal solutions of the dual problem .(4.4) is nonempty.

Assumption E implies (cf. [24, llD]) that the original problem (4.1) has an optimal
solution, and the optimal objective value for (4.1) and (4.4) sum to zero. Furthermore,
the strict convexity of the ai’s implies that (4.1) has a unique optimal solution, which
we denote byf* (. ,f,. )(i,j), and that every gi is continuously differentiable
([23, pp. 218, 253]). Hence q given by (4.4) is also continuously differentiable. Its
partial derivative Oq(p)/Op, to be denoted by di(p), is given by

Oq(p)
(4.5) di(p)---- 2 Vgo(Pi-P)- . Vgji(Pj--Pi)--Si.

Opi j(i) j6oli(i)

Given a price vector p ", we consider an iteration whereby the dual objective
function q is minimized with respect to the ith coordinate Pi, while the remaining
coordinates are held fixed. In view of the convexity and the differentiability of q, this
is equivalent to solving the equation di(Pl,’’’, Pi-, O, Pi+l,’’’, P,)=0 with respect
to the scalar 0. This equation can have several solutions and we will consider a mapping
which chooses the solution that is nearest to the original price pi. Accordingly, we
define a function h :"-->" whose ith coordinate is given by

(4.6) hi(p) argmin {10 -pilId(p ,..., p_, 0, pi+ ,’" ", p,) 0}.

We will show later in Lemma 4.1 that the set in (4.6) is nonempty and the minimum
in (4.6) is attained, so that h is well defined. Notice that h(p)=p if and only if
Oq(p)/Op d(p)=0 for every i. It follows that P* is the set of fixed points of h.

Since q is convex, the set P* is convex (P* is also nonempty by assumption).
Also from Proposition 2.3 in [6] we have that, for any p ,9i" and any p* P*,

min {p-p} <_- hi(p) -p* <-- max {p -p},
jdV" jdV"

and hence h has the pseudo-nonexpansive property

Ilh(p)-p*ll lip
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Furthermore, by using Proposition 1 in [5] and an argument analogous to the proof
of Proposition 2.5 in Chapter 7.2 of [7], we can show that the mapping h is continuous.
Therefore, h satisfies parts (a)-(c) of Assumption B. We show below that h is well
defined and also satisfies part (d) of Assumption B.

LEMMA 4.1. The mapping h is well defined and satisfies Assumption B(d).
Proof We start by mentioning certain facts that will be freely used in the course

of the proof.
(a) For any (i, j) , the function Vgi is nondecreasing. (This is because gij is

convex.)
(b) di" ,l --> ,t is a nondecreasing function of the ith coordinate of its argument

when the other coordinates are held fixed. (This is because the dual functional q is
convex and d Oq/Op.)

(c) A vector p*" belongs to P* if and only if, for every arc (i, j), we have
Vgo(p*-pj*.) =f. (This is a direct consequence of the Network Equilibrium Theorem
in [24, p. 349].)

We first show that h is well defined. Fix any p " and any i. We claim that there
exists 01 such that d(p+Oei)<-O, where e denotes the ith coordinate vector in
To see this, let p* be any element of P* and let 01 be any scalar sufficiently large so that

p,-p: + 0, >-_ p* -p, Vj 6 9(i),

pj --pi O < p -p*, lj (i).

Since 7gk is nondecreasing for all (k, l) d, this implies that

Vgo(p,-p:+ o)>-Vgo(p* -p:)=f, /j (i),

Vgj,(pj-p,- O,) <-_Vgj,(pj*. -p* f, Vj ll(i).

Upon summing the above inequalities, we obtain that

d(p+Ole)= Y 7go(p-pj+O)-Y 7gj(p:-p-O)-s
j(i) jR( i)

>--_ f- f:*-si
j(i) jll( i)

O,
where the last equality follows because the flows f. and f must satisfy the flow
conservation equation (4.2). Similarly, we can show that there exists 0_ such that
d(p+ 02e)<=O. Since d(p+ Oe) is a continuous function of 0, this implies that there
exists some 0 between 01 and 02 such that di(p+ Oe) =0. Therefore the set in (4.6) is
nonempty. Since this set is also convex (due to the convexity of q) and closed (due
to the continuity of d), the minimum in (4.6) is attained. Hence h is well defined.

Now we show that h satisfies Assumption B(d). We will argue by contradiction.
Suppose that h does not satisfy Assumption B(d). Then for some p P* and p* P*
such that lip -p*ll-- p(p) > o there exists, for every I(p; p*), a vector p’ U(p; p*)
such that h(p) p. (p(p) denotes the maximum norm distance of p from P*.) Let
/3 =p(p), J= I(p; p*), e=-max {[pk -p*i lli_J, kJ}, and

J-= {ilpi-p* =-fl},
J+= {iip,-p* }.

Then e > O, J J-LI J+ and, for all J,
(4.7) p-* < p! < *-/3+e= .,=p+/3-e, vj_J,

(4.8a) pj p.* -/3, /j J-,
(4.8b) p! p*. + fl, Vj J+
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Fix any i J- The relations (4.7), (4.8a) imply that

pl-pj<(p* -)-(p-)=p* -p ’Vje(i),

pj-pl > (p*. -B)-(p* -B)=p:*. -p* /j (i)

and, since g is nondecreasing for all (k, 1) ,
(4.9a) Vg(p-p)Vg(p-pf)=, Vj (i),

(4.9b) Vg,(p-p’) Vg(p-p) =f j (i).

Since J-, we have hi(p) por, equivalently, d(p) 0. Then (4.5) and (4.9a)-(4.9b)
imply that

O=di(p i)

p(E Vgij(pi-pj)- E Vgji( a-pi)-si
j(i) j(i)

j(i) j(i)

where the last equality follows because the flows f and f must satisfy the flow
conservation equation (4.2). It follows that the inequalities in (4.9a)-(4.9b) are actually
equalities and

(4.10a) Vgo(p-pj) f, Vj (i),

(4.10b) Vg ,(pj-p,) Vj

Since the choice of iJ- was arbitrary, (4.10a)-(4.10b) hold for all iJ-. By an
analogous argument (using (4.8b) in place of (4.8a)) we can show that (4.10a)-(4.10b)
hold for all J+ as well.

Let " be the vector whose ith component is

p+e ifieJ+,
(4.11) = p-e ifieJ-,

p if

We claim that

(4.12) Vg0(r,- 7r:) f, /( i, j) M.

To see this, we first note from the definition of 7r (cf. (4.11)) that

-75=p*-p*.: if iJ, jC:J or if iJ+,j6J+ or if i6J-, j6J-.

Also, from (4.7), (4.8a)-(4.8b), (4.11) and the fact e- fl we have that

p -p:=
p -p’. (p*-)-(pj*.+)<=Tr :<p* p,
p p => p + p:*. + e) 7r 7r > p p

p p < p p:*. + e) 7r ":r./ <- p pj-.-.

p’ p < p + e)-(pj*. + 7r 75 < p p

pl-p! > (p*- + e)- (p-/3) 7r 7r >p*-p*.j.--

if iJ+,j6J-,
if iJ-,j6J+,
if iJ+,jJ,

if iJ-,jJ,

if i_J,jJ+,
if i_J,jJ-
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Consider any (i, j) s4. The preceding inequalities show that "]’/’i- ’7/’j is always between
i_p! and p*-p*. The monotonicity of 7g0 and the equalities Vgij(p*-pf)=fPi

Vgo(p p!i- )(cf.(4.10a)-(4.10b))implythatVg0(Tr 7r) =f This completes the proof
of (4.12).

Equation (4.12) implies that 7r P*. Since (cf. (4.11) and the definitions of J-
and J+) lip rll < IIp-p*l[, this contradicts the hypothesis that p(p)= lip -p*ll. t3

Since h has been shown to satisfy Assumption B, we conclude from Lemma 2.1
and Proposition 2.1 that the partially asynchronous iteration

p := (1-3")p + 3"h(p)

(with 0 < y < 1) converges to an optimal price vector p*. The optimal flows are obtained
as a byproduct, using the relation Vgij(P* P) *-fij Notice that the iteration for each
coordinate Pi consists of minimization along the ith coordinate direction (to obtain
hi(p)) followed by the use of the relaxation parameter y to obtain the new value
(1- Y)Pi + yhi(p). As a special case, we have that the synchronous Jacobi algorithm

p( + 1) (1 3")p( t) + 3"h(p( t))

is also convergent, which is a new result.
A related result can be found in [5] where totally asynchronous convergence is

established even if 3’ 1, provided that a particular coordinate of p is never iterated
upon and that when this coordinate is fixed, the optimal price vector is unique. An
experimental comparison of the two methods will be presented in 8. We remark that
the results in this section also extend to the case where each arc has a gain of either
+1 or -1 (i.e., each fi term in (4.2) is multiplied by either +1 or -1).

5. Agreement and Markov chain algorithms. In this section we consider two prob-
lems: a problem of agreement and the computation of the invariant distribution of a
Markov chain. These problems are the only ones for which partially asynchronous
algorithms that converge for every value of the asynchronism bound B of Assumption
A are available [20], [27], [29] (in fact, these algorithms have been shown to converge
at a geometric rate). We show that these results can also be obtained by applying our
general convergence theorem (Proposition 2.1).

5.1. The agreement algorithm. We consider here a set of n processors, numbered
from to n, that try to reach agreement on a common value by exchanging tentative
values and forming convex combinations of their own values with the values received
from other processors. This algorithm has been used in [28]-[29] in the context of
asynchronous stochastic gradient methods with the purpose of averaging noisy measure-
ments of the same variable by different processors.

We now formally describe the agreement algorithm. Each processor has a set
of nonnegative coefficients {ai, ", ain} satisfying a, > 0, aij- 1, and at time it
possesses an estimate xi(t) which is updated according to (cf. (1.1))

(5.1a)

(5.1b)

xi(t+ 1)= fjxi(t)aqxj(7"q(t))
xi(1-B) xi(O)--i,

otherwise.

where 3-i and %(t) are as in 1 and 2i is the initial value of processor i. Let A be
the n x n matrix whose (i,j)th entry is ai and let 3’ (0, 1) be such that 0< 3’-<
min {al, ", an,}. By using the results from 1 to 3 we obtain the following.
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PROPOSITION 5.1. If A is irreducible and Assumption A holds, then {xi(t)} y for
all i, where y is some scalar between mini {)i} and maxi

Proof It can be seen that (5.1a) is a special case of (1.1) with f(x)= Ax. Let

D=(A-TI)/(1-T).
Then

(5.2) A= yI+(1-T)D,

and D [di] can be seen to satisfy Y Idil--< 1. Moreover, since A is irreducible, so is
D. Hence the function h :N" " defined by h(x) Dx satisfies Assumption D in 3.
Since h has a fixed point (the zero vector), this, together with Proposition 3.1 and
Lemma 2.4, implies that h satisfies Assumption B. Since (cf. (5.2)) f(x)=
yx + (1-y)h(x), this, together with Lemma 2.1, shows that f satisfies Assumption C.
Then by Proposition 2.1, the sequence {x(t)} generated by (5.1a)-(5.1b) converges to
some point x satisfying Ax= x. Since A is irreducible and stochastic, x must be
of the form (y,...,y) for some ye,91. It can be seen from (5.1b) that, for re
{-B,...,0},
(5.3) xi r) _-< max {).}, Vi.

Suppose that (5.3) holds for all re{l-B,..., t}, for some t>-0. Then by (5.1a) and
the property of the ai’s,

xi(t+ 1)--2 ai2x2(i2(t))

<: aij max
max {)2j},

for all such that e 3-i, and xi(tq-1)= xi(t)<-max {} for all other i. Hence, by
induction, (5.3) holds for all r e { 1 B, 2 B, }. Since xi(r) - y for each i, this implies
that y <_- max {)}. A symmetrical argument shows y _-> min {)}.

It can be shown [7], [29] that Proposition 5.1 remains valid if a, is positive for
at least one (but not all) and, furthermore, convergence takes place at the rate of a
geometric progression. The proof, however, is more complex. Similar results can be
found in [29] for more general versions of the agreement algorithm.

5.2. Invariant distribution of Markov chains. Let P be an irreducible stochastic
matrix of dimension n x n. We denote by Po the (i, j)th entry of P and we assume that.p, > 0 for all i. We wish to compute a row vector r*= (zr*,.. ", zrn) of invariant
probabilities for the corresponding Markov chain, i.e., zr*->0, i zr/* 1, r*= zr*P.
(We actually have or/* > 0, for all i, due to the irreducibility of P [14].) As in. 5.1,
suppose that we have a network of n processors and that the ith processor generates
a sequence of estimates {zri(t)} using the following partially asynchronous version of
the classical serial algorithm r := zrP (cf. (5.1a)-(5.1b)):

j=l PJi’lT"J(7"ij(t)) if e i,
(5.4) +.1

l l’i(t) otherwise.

ri(1-- B) 7"/’i (0),
where 3-i and to(t) are as in 1 and /’i(0) is any positive scalar. This asynchronous
algorithm was introduced in [20], where geometric convergence was established. We
show below that convergence also follows from our general results.
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PROPOSITION 5.2. IfAssumption A holds, then there exists a positive number c such
that "rr( t) cTr*.

Proof. We will show that (5.4) is a special case of (5.1a). Let

(5.5) x,(t) 7r / "rr ai: 7r p / er

Then the matrix A [ai] is nonnegative and irreducible, has positive diagonal entries,
and

/ r

where the second equality follows from r*= zr*P. Furthermore, it can be seen from
(5.4) and (5.5) that xi(t) evolves according to the iteration (5.1a). Therefore, by
Proposition 5.1 and the initial positivity conditions, {x(t)} c for all i, where c is
some positive scalar. It follows from (5.5) that 7ri(t) czr* for all i.

Upon obtaining cTr*, the desired solution 7r* can be recovered by normalizing czr*.

6. Neural networks. Consider a connected, directed network with node set
{1,...,n} and arc set _x. Let us, for each i, denote by (i) the set
{jl (J, i) } of upstream neighbors of i. Let trl," , tr, be a set of given scalars and
let {hi}(.j) be a set of nonzero scalars satisfying ou()IA,I-<- 1 for all i. We wish to
find scalars xl,..., xn such that

(6.1) /=b( hx+tr), li,
je(i)

where i’ ,- is a continuous nondecreasing function satisfying

(6.2) lim b,(:)=-l, lim b,(:)=l,

(see Fig. 6.1). Notice that the function b maps the box [-1, 1]" into itself and, by
Brouwer’s fixed point theorem ([11, p. 17]), the system (6.1) is guaranteed to have a
solution.

If we think of each node as a neuron, (6.1) and (6.2) imply that this neuron is
turned on (i.e., x-. 1) if the majority of its inputs are also turned on. Thus, x gives
the state ("on" or "off") of the ith neuron for a given set of connections (specified by
M) and a given external excitation (specified by o-i) (see Fig. 6.2.). Indeed, (6.1) and
(6.2) describe a class of neural networks that have been applied to solving a number
of problems in combinatorial optimization, pattern recognition, and artificial intel-
ligence 15]-[ 16], 19], [25].

-I

FIG. 6,1. The function i.
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ijXj

FIG. 6.2

Let f" "--> ," be the function whose ith component is

(6.3) f(/)=tk( hox+cr), ti.
jeR(i)

Then solving (6.1) is equivalent to finding a fixed point of f In what follows, we
consider a special form for bi and show that it gives rise, in a natural way, to a
nonexpansive function f that satisfies Assumptions B’ and C of 2. To the best of our
knowledge, asynchronous convergence of neural networks has not been explored
before. In some sense, asynchronous neural networks are quite natural since biological
neural connections may experience long propagation delay [25].

Let denote the right derivative of , i.e.,

The following result shows that, if is suciently small for a]] i, then f given by
(6.3) satisfies Assumption B’.

PROPOSITION 6.1. If is strongly connected and each i is continuous, satisfies (6.2)
and

(6,4) 0() 1,

then f given by (6.3) satisfies Assumption B’.
Proof We have seen earlier that f has a fixed point. Since each is continuous,

f is also continuous. Now we will show that f is nonexpansive. Fix any e . Since
(cf. (6.4)) the slope of is bounded inside the interval [0, 1], we have

[i(b)-(a)llb-a, Vae, be.

Hence, for any x " and y

je (i) je (i)

(6.5) } A,j(yj xj)
j (i)

X Ix01 lyj- xl.
j(i)

Since j(i)Ihu] 1, (6.5) implies that

If(Y)-f(x)l
Since the choice of was arbitrary, this in turn implies that

IIf(x)-f(y)ll IIx-yll, y

Therefore f is nonexpansive.
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It remains to show that f satisfies Assumption B’(d). Suppose the contrary. Then
for some x X* and some x* X*, where X* is the set of fixed points of f, there
exists, for every I(x; x*), an xi U(x; x*) such that

xiX* and f(x)=xi.
Let J I(x; x*) (J since x X* for all J) and/3 [Ix- x*ll. Fix any J. By
(6.5) and the fact x* =f(x*), we obtain that

Ixl- x *l <-- E
jR(i)

Hence

je’ll( i)

jet(i) je(i),jJ

je(i),jeJ

Since [x x][ < fl and ho 0 for all j e (i), j Z this implies that (i) J. Since the
choice of iJ was arbitrary, it follows that (i) J for all iJ. Hence is not
strongly connected, a contradiction of our hypothesis.

It follows from Lemmas 2.1, 2.4 and Propositions 2.1, 6.1 that the asynchronous
iteration

je (i)

(with 0 < y < 1) converges. Two examples ofd that satisfy the hypothesis of Proposition
6.1 are

i() 2(1 + e-2e)-1-1,
and

bi() max {-1, min {1, }}.
Let us briefly discuss an alternative form for the function b. If we assume that

each bi is continuously ditterentiable and its derivative Vb satisfies 0 < V4() < 1 for
all sc e ,1, then it can be shown that the restriction of the function f on a compact set
is a contraction. In that case, the asynchronous neural iteration

je (i)

can be shown to converge even under the total asynchronism assumption

lim ro(t)=+, Vi, W

(cf. [7, Chap. 6.2, Prop. 2.1]).
7. Least element of weakly diagonally dominant, Leontief systems. Let A aj] be

a given m x n matrix (with m n) and b (hi,’’’, b) be an element of . We
make the following assumption.

Assumption F.
(a) Each row of A has exactly one positive entry and the index set

I(i)={k[a>O}

is nonempty for all (i.e., every column has at least one positive entry).
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(b) j akj >----- O, for all k.
(c) For any (kl,""", kn)E I(1)x... x I(n), the n x n matrix [ak,j] is irreducible.
Since aki>O for all kE I(i), we will, by dividing the kth constraint by aki if

necessary, assume that aki 1 for all k I(i), in which case parts (a) and (b) of
Assumption F are equivalent to

(7.1) aki 1, akj -< 1 and akj ----< O, ’Vj i,
j#i

for all k e I(i) and all i.
Let X be the polyhedral set

(7.2) X={xe"lAx>-_b}.

We wish to find an element r/ of X satisfying

x>= rl, VxeX

(such an element is called the least element of X in [10] and [13]). Notice that if a
least element exists, then it is unique. Let h:n-*n be the function whose ith
component is

(7.3) h(x) max { bk- 2 akjXj}.kel(i) ji

It is shown in [10] that X has a least element for all b such that. X is nonempty if
and only if Ar is Leontief (a matrix E is Leontief if each column of E has at most
one positive entry and there exists y _-> 0 such that Ey > 0 componentwise). The following
lemma sharpens this result by giving a necessary and sufficient condition for X to
have a least element that is simpler to verify. It also relates the least element of X to
the fixed points of h.

LEMMA 7.1. Suppose that X # and that Assumption F holds. Then,
(a) X has no least element if and only if

(7.4) akj O, Vk.

(b) If r is a least element of X, then it is a fixed point of h.
Proof We first prove (a). Suppose that (7.4) holds and let e 6,91" be the vector

with all coordinates equal to 1. Equation (7.4) says that Ae 0. Thus, if x is an element
of X, then x-Ae E X, for all positive scalars A. It follows that X cannot have a least
element. Now suppose that (7.4) does not hold. We first show that X is bounded from
below (i.e., there exists some a " such that x->_ a componentwise for all x X). If
this were not so, then there would exist some v N" and some x X such that D 0
for some and x + Av E X for all positive scalars A. The latter implies that A(x + Av) ->_ b
for all A > 0 and hence Av>=O. Fix any scalars (kl,’’’, k,) I(1)x... x I(n) and
consider an such that vi =mini {vj}. Then (cf. Av>=O)

0<: akdVj (j akij) li nt akij(1)j-- Vi).
ji

Since V < 0 and vj V 0 for all j i, this, together with the facts (cf. (7.1)) j ak,j >= 0
and ak,j <= 0 for all j i, implies that j ak,j 0 and vi vj for all j such that ak,j O.
By Assumption F(c), there exists j i such that ak,j O. We then repeat the above
argument with j in place of i. In this way, we eventually obtain that v vn and
,j akij 0 for all i. Since our choice of (k,..., k,)e I(1)x... x I(n) was arbitrary,
(7.4) holdsmcontradicting our hypothesis. Hence X is bounded from below. Using
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(7.1), it is easily verified that if x’ and x" are two elements of X, then the n-vector x
whose ith component is min {x’i, x’} is also an element of X. Since X is closed and
bounded from below, X has a least element.

We next prove (b). Since r/ X, we have (cf. (7.1), (7.2)), agrl+Ti>=b,, lkI(i), fi.
ji

Thus,

hi(/) max ’{ bk akj’rljl <= "rli
kl(i) ji

Vi.

If r/is not a fixed point of h, then the set I {il hi(r/) < rh} is nonempty. Then we have

(7.5) akrl>bk, VkI(i), ViL

Consider the n-vector , defined by i rh- e, if i/, and ri r/i, otherwise. For e

positive and small enough, the inequalities (7.5) remain valid. On the other hand, for
all I and all k I(i) we have

Ea Y. agrb + E a(r/ e) -->_ E ar/ => b,
j.l jl

where we used the property akj <= 0 for all j such that k I (j). Thus, X, contradicting
the hypothesis that r/ is the least element of X.

Let X* denote the set of fixed points of h. Suppose that X* is nonempty (Lemma
7.1 gives sufficient conditions for X* to be nonempty). We will show that h satisfies
Assumption B’. Since (cf. (7.3)) h is continuous, it suffices to show that parts (c) and
(d) of Assumption B’ hold.

LEMMA 7.2. h (x) h (y)ll --< x y for any x 9" and any y
Proof Let z h(x), w h(y) and consider any e {1,. ., n}. We will show that

Izi- wil -< Ilx-Yl], from which our claim follows. Since zi hi(x) and wi hi(y), it
follows from (7.3) that, for some k in I(i),

(7.6a) akjX + Zi >- bk,

(7.6b) akjy + Wi bk.
j#i

Subtracting (7.6b) from (7.6a), we obtain, ak(xj-- y)+(Zi-- Wi)>--O.

This together with (7.1) implies that

wi z, <-_ , ak(xj Y.i
ji

Z lalllx-yll
ji

The inequality zi- wi <- I[x- y is obtained similarly.
LZMMA 7.3. h satisfies Assumption B’(d).
Proof Suppose the contrary. Then for some x X* and some x* X*, there exists,

for every I(x; x*), an xi U(x; x*) such that

xit:X* and hi(xi)=x i"
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Let J= I(x; x*), J- {il x,-x*= -/3}, J+= {il xi-xi } and/3 Ilx-x*ll. (We must
have J {1, , n} because otherwise the set U(x; x*) would be a singleton, implying
that the vectors xl, x" are all equal, in which case each x is a fixed point of h,
a contradiction.)

Fix any J-. By (7.3) and the hypothesis x* h(x*), there exists some ki I(i)
such that

E ae,Xf

i> bk. 2 x, soSince x= h(x), we then have 2 a,x= ak,., ak,(Xj- X) >-- O.

This implies (using (7.1) and the facts ki e I(i), e J-) that

0<-- ak,2+ Z ak,2+
jJ- jj+ jJ

-fl akd-- fl , la,21 + la,211xj- xl
jJ- jJ+ j-J

) ’-x.*l-/3).- 1 Z la,2l --2/3 Z la,21 + 2 la,21(Ix2
ji jj+ j.J

Since Ixj x’ </3 for all j J, (7.1) implies that

(7.7) , ak,j --1 and ak, O, Vj . J-.
j#i

Since the choice of was arbitrary, (7.7) holds for all J- By an analogous argument,
we also obtain that, for all J/,

(7.8) . akd=--I and ak,=O, /jJ+,
ji

where each k is a scalar in I(i) such that

bkiZ akij Xj

For each J, let k be any element of I(i). Since J {1,. , n}, (7.7) and (7.8) imply
that the n x n matrix [ak,]i, is not irreducible--a contradiction of Assumption
F(c).

We may now invoke Lemmas 2.1, 2.4 and Proposition 2.1 to establish that the
partially asynchronous iteration

x := (1- 3,)x + "gh(x)

(with 0< 2’ < 1) converges to a fixed point of h. Unfortunately, such a fixed point is
not necessarily the least element of X. We have, however, the following characterization
of such fixed points.

LEMMA 7.4. IfX has a least element 7, then, for anyfixed point x* of h, there exists
a nonnegative scalar A such that x* rl + (A," ., A).
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Proof Since x* is a fixed point of h, x* X. Hence x*>- r/. We then repeat the
proof of Lemma 7.3, with J-= {1,..,, n} and, xi=7 .for all i. This yields that, for
every it.{1,...., n}, there exists.some kic. I(i) such that x*-,<-Y,la,l(x-).
Since x*-/=> 0, Assumption F(c) and (7.1) imply that the x*-Ti’S are equal. El

Lemma 7.4 states that, given a fixed point x* of h, we can compute the least
element of X by a simple line search along the direction (-1,...,-1) (the stepsize
A is the largest for which x*-(A,... ,A) is in X). An example of X for which the
corresponding h has multiple fixed points is

X {(x, xz) x-x>-O, x-O.5x:>-_ -1, -x + x2_-> 0}.

Here hl(x)=max{x2,0.5x2-1}, h2(x)--x and both (-1,-1) and (-2,-2) are fixed
points of h (the least element of X is (-2,-2)).

Let us remark that if the inequalities in Assumption F(b) are strict, then the
mapping h is a contraction mapping (the .same argument as in Lemma 7.2) and
convergence under total asynchronism is obtained. We also remark that, if in the
statement of Assumption F(c) we replace "For any" by the weaker "For some," then
Lemmas 7.1 and 7.2 still hold, but Lemmas 7.3 and 7.4 do not. In fact, it can be shown
that X* is not necessarily convex in this case.

8. Simulation for network flow problems. In this section we study and compare,
using simulation, the performance of synchronous and partially asynchronous
algorithms for the network flow problem of 4. We measure the following: (a) the
effects of the stepsize y (cf. Lemma 2.1), the problem size n, and the asynchrony
measure B on the performance of partially asynchronous algorithms, (b) the efficiency
of different partially asynchronous algorithms relative to each other and also relative
to the corresponding synchronous algorithms.

In our study, we consider a special case of the network flow problem (4.1)-(4.2)
where each cost function a0(. is a quadratic on [0, +c], i.e.,

(8.1) a0(f0) c’If +/3’uf’ if f --> 0’
I. +oe otherwise,..

where a0 is a given positive scalar and/3 is a given scalar. This special case has many
practical applications and has been studied extensively [6], [9], [12], [21], [31]. In
what follows, we will denote by h :,qt"-,qt the function given by (4.3), (4.5)-(4.6),
and (8.1). All of the algorithms involved in our study are based on h.

8.1. Test problem generation. In our test, each ai is randomly generated from the
interval [1, 5] and each /i is randomly generated from the set {1, 2,..., 100). The
number of arcs is ten times the number of nodes and the average node supply is 1000,
i.e., Isll +.. + Is, 1000n. Half of the nodes are supply nodes and half of the nodes
are demand nodes (we say a node is a supply (demand) node if si > 0 (s < 0)). The
problems are generated using the linear cost network generator NETGEN [18],
modified to generate quadratic cost coefficients as well.

8.2. The main partially asynchronous algorithm. The main focus of our study is
the partially asynchronous algorithm described in 4. This Mgorithm, called PASYN,
generates a sequence {x(t)} using the partially asynchronous iteration (1.1) under
Assumption A, where the algorithmic mapping f is given by

(8.2) f(x) (1 y)x + yh(x).
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In our simulation, the communication delays t-’ij(t) are independently generated
from a uniform distribution on the set {0, 1,. ., B- 1} and, for simplicity, we assume
that ffi {1, 2,... } for all i. (This models a situation where the computation delay
is negligible compared to the communication delay.) The components of x(1-B),
x(2-B),..., x(0) are independently generated from a uniform distribution over the
interval [0, 10] (this is to reflect a lack of coordination among processors) and the
algorithm terminates at time if max,,t_s,...,, IIx()-x(’)ll <--0.001.

600
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Problem Size (n)

FIG. 8.1(a). Termination time for PASYN (7 0.1), for different values of B and n.
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FIG. 8.1(b). Termination time for PASYN (7=0.5), for different values of B and n.
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FIG. 8.1(c). Termination time for PASYN (7=0.9),for different values of B and n.

The termination time of PASYN, for different values of 3’, B, and n, is shown in
Figs. 8.1(a)-(c). In general, the rate of convergence of PASYN is the fastest for y near
1 and for B small, corroborating our intuition. The termination time grows quite slowly
with the size of the problem n but quite fast with decreasing /. For y near 1, the
termination time grows roughly linearly with B (but not when y is near 0).

8.3. An alternative partially asynchronous algorithm. Consider the function
fo:, ,, whose ith component is given by

h,(x) ifil,
(8.3) f (x)

t xl otherwise.

It is shown in [5] that the algorithm x :=f(x) converges under the total asynchronism
assumption. Hence it is of interest to compare this algorithm with that described in
8.2 (namely PASYN) under the same assumption of partial asynchronism. The

partially asynchronous version of the algorithm x :=f(x), called TASYN, is identical
to PASYN except that the function f in (8.2) is replaced by fo. (Note that TASYN
has the advantage that it uses a unity stepsize.)

The termination time of TASYN, for different values of B and n, is shown in Fig.
8.2. A comparison with Figs. 8.1(a)-(c) shows that TASYN is considerably slower than
PASYN. The speed of TASYN is improved if f in (8.2) is replaced by fo only after a
certain amount of time has elapsed, but the improvement is still not sufficient for it
to compete with PASYN.

8.4. Two synchronous algorithms. In this subsection we consider two types of
synchronous algorithms based on h" the Jacobi algorithm and the Gauss-Seidel
algorithm. In particular, the Gauss-Seidel algorithm has been shown to be efficient
for practical computation (see [6], [9], [21], [31]). Hence, by comparing the asyn-
chronous algorithms with these algorithms, we can better measure the practical
efficiency of the former.
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FIG. 8.2. Termination time for TASYN, for different values of B and n.

The Jacobi algorithm, called SYNJB, is a parallel algorithm that generates a
sequence {x(t)} according to

x(t + 1) (1 y)x(t) + yh(x(t)),

where y (0, 1). The initial estimates x(0),... ,x,(0) are independently generated
from a uniform distribution over the interval [0, 10], and the algorithm terminates at
time if [Ix(t)- x(t- 1)11--< 0.001. (SYNJB can be seen to be a special case of PASYNB
where B 1 and hence {x(t)} converges to a fixed point of h.)

Consider any positive integer b and any function fl:{1,..., n}-{1, , b} such
that hi(x) does not depend on xj if/3(i) =/3(j). We associate with b and/3 a Gauss-
Seidel algorithm that generates a sequence {x(t)} according to

xi(t+l)=
hi(x(t)) ift/3(i)-a(modb),
xi(t) otherwise.

In our simulation, the initial estimates Xl(O),""" xn(O are independently generated
from a uniform distribution over the interval [0, 10] and the algorithm terminates at
time if

max _-<0.001.
,’{t-h,...,t}

(Convergence of {x(t)} to a fixed point of h follows from Proposition 2.4 in [6]. Note
that, similar to TASYN, this algorithm has the advantage of using a unity stepsize.)
We consider both a serial and a parallel version of this algorithm (this is done by
choosing b and/3 appropriately). SYNGS1 is the serial version which chooses b n
and/3(i) for all i. SYNGS2 is the parallel version which uses a coloring heuristic
to find, for each problem, a choice of b and/3 for which b is small.

The termination time for SYNJB, SYNGS1 and SYNGS2, for different values of
n, are shown in Figs. 8.3(a)-(b). In Fig. 8.3(a), the choice of b obtained by the coloring
heuristic in SYNGS2 is also shown (in parentheses). In general, SYNJB is considerably
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faster than either of the two Gauss-Seidel algorithms SYNGS1 and SYNG2 (however
in SYNJB all processors must compute at all times). From Fig. 8.3(b) we see that, as
n increases and the problems become more sparse, SYNGS2 (owing to its high
parallelism) becomes much faster than the serial algorithm SYNGS1. (Notice that the
time for SYNGS1 is approximated by the time for SYNGS2 multiplied by n/b, as
expected.) Comparing Fig. 8.3(a) with Fig. 8.1(c), we see that SYNJB is approximately

300
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0 200 400 600 800 1000 1200

SYNJB (7 =-9)
SYNGS2

Problem Size (n)

FIG. 8.3(a). Comparing the termination timefor the two synchronous, parallel algorithms SYNJB (3/= 0.9)
and SYNGS2, for different values of n.
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FIG. 8.3(b). Comparing the termination time for the serial algorithm SYNGS1 andfor the synchronous,
parallel algorithm SYNGS2, for different values of n.
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3/2 times faster than PASYN and that PASYN is faster than SYNGS2, unless PASYN
suffers long delays.

8.5. Simulation of synchronous algorithms in the face of communication delays. In
this subsection we consider the execution of the synchronous iterations of 8.4 in an
asynchronous computing environment, that is, in an environment where communication
delays are variable and unpredictable. The mathematical description of the algorithms
in this subsection is identical to that of the algorithms considered in the preceding
subsection; for this reason, the number of iterations until termination is also the same.
On the other hand, each processor must wait until it receives the updates of the other
processors before it can proceed to the next iteration. For this reason, the actual time
until termination is different from the number of iterations. In our simulation, the
delays are randomly generated but their statistics are the same as in our simulation
of asynchronous algorithms in 8.2 and 8.3 (uniformly distributed over the set
{0, 1, , B- 1 }, where B denotes the maximum delay). This will allow us to determine
whether asynchronous methods are preferable in the face of communication delays.

More precisely, consider any synchronous algorithm and let T denote the number
of iterations at which this algorithm terminates. With each {1,..., T} and each

{1,..., n}, we associate a positive integer o-i(t) to represent the "time" at which
the update of the ith component at iteration is performed in the corresponding
asynchronous execution. (Here we distinguish between "iteration" for the synchronous
algorithm and "time" for the asynchronous execution.) Then {O’i(t)} is recursively
defined by the following formula:

ri(t)=max {%(t- 1) + (communication delay from proc. j

to proc. at time o-(t-1))},
where the maximization is taken over all j such that the jth component influences the
ith component at iteration t. The termination time of the asynchronous algorithm is
then taken to be

max {ri( T)}.

The partially asynchronous algorithms that simulate SYNJB, SYNGS1 and
SYNGS2 are called, respectively, PASYNJB, PASYNGS1 and PASYNGS2. The termi-
nation times for these algorithms are shown in Figs. 8.4-8.6 (they are obtained from
the termination times shown in Figs. 8.3(a)-(b) using the procedure described above).
Comparing these figures with Figs. 8.1(a)-(c), we see that PASYNJB is roughly 3/4
as fast as PASYN (when both use the same stepsize 3/=0.9) while the other two
algorithms PASYNGS1 and PASYNGS2 are considerably slower than PASYN (even
when PASYN uses the most conservative stepsize 3/=0.1).

To summarize, we can conclude that PASYN is the fastest algorithm for partially
asynchronous computation and that its synchronous counterpart SYNJB is the fastest
for synchronous parallel computation. We remark that similar behavior was observed
in other network flow problems that were generated. Furthermore, the asynchronous
algorithm PASYN seems to be preferable to its synchronous counterpart SYNJB in
the face of delays. In practice, the assumption that the delays are independent and
identically distributed might be violated. For example, queueing delays are usually
dependent; also, the distance between a pair of processors who need to communicate
could be variable, in which case the delays are not identically distributed. On the other
hand, such aspects cannot be simulated convincingly without having a particular
parallel computing system in mind.
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FIG. 8.4. Termination time for PASYNJB (7 0.9), for different values of B and n.
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FIG. 8.5. Termination time for PASYNGS1, for different values of B and n.

9. Conclusion and extensions. In this paper we have presented a general
framework, based on nonexpansive mappings, for partially asynchronous computation.
The key to this framework is a new class of functions that are nonexpansive with
respect to the maximum norm. We showed that any algorithm whose algorithmic
mapping belongs to this class converges under the partial asynchronism assumption
with an arbitrarily large bound on the delays. While some of the asynchronous
algorithms thus obtained are known, others are quite new. Numerical experimentation
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FIG. 8.6. Termination time for PASYNGS2, for different values of B and n.

with network flow problems suggests that, for partially asynchronous computation, the
new algorithms may be substantially faster than those obtained from synchronous
algorithms.
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ON THE EXISTENCE OF LINEAR OPTIMAL CONTROL WITH
OUTPUT FEEDBACK*

GUOXIANG GU?

Abstract. A necessary and sufficient condition is established for the existence of an output feedback
u =-Ky that is LQ optimal with respect to some nonsingular quadratic cost, a fact that entails robustness
in the closed-loop systems. It is shown that if the system (with equal number of inputs and outputs) is strict
minimum phase and has nonsingular high-frequency gain, then there exists a linear static output feedback
that minimizes a Certain quadratic cost functional. The minimization of H norm of the closed-loop system
with output feedback is also discussed.

Key words, optimal control, output feedback, minimum phase systems, high,frequency gain, positive
real functions
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1. Introduction. Consider the linear system

(1.1) g Ax + Bu, y Cx

where x [n is the state, u [m is the control, and y E p is the measured output with
p m. Without loss of generality, it is assumed that the input matrix B has full column
rank and the realization {A, B, C} is both controllable and observable (this can be
replaced by stabilizability and detectability). The main purpose of this paper is to
investigate the existence of an output feedback control law u =-Ky, K PP, which
not only stabilizes the closed-loop system, but also minimizes a quadratic cost functional

io(1.2) J(u)= xTQx+uTRudt,

for some positive-definite R EPP and nonnegative Q En". An important reason to
study such an optimal output feedback regulator problem is due to the robustness
consideration. It has been shown by Kalman [5] for single-input systems that if a
linear state feedback control law u =-Fx minimizes (1.2) for some Q and R, then the
system admits an infinite gain margin and a sixty-degree phase margin. An extension
of this result to multi-input systems is the Kalman-Anderson inequality [1]. This
optimality property can tolerate some system uncertainties such as parameter variations,
etc. Therefore recovering this robustness property in absence of states measurement
has received great attention [2], [6].

In this paper, a necessary and sufficient condition will be established for the
existence of optimal feedback control. The extension of this result to H control via
a linear, static output feedback will be studied in terms of H sub-optimal control.
An example will be given for illustration.

2. Existence of optimal output feedback control. Let the linear system be given as
in (1.1) and the matrices Q and R be defined as in (1.2). Suppose { Q, A} is observable.
It is well known that the state feedback law u =.-Fx is optimal (which minimizes
(1.2)) if and only if

(2.1) F=R-BTp,

* Received by the editors February 21, 1989; accepted for publication (in revised form) July 12, 1989.
? Department of Electrical Engineering, Wright State University, Dayton, Ohio 45435.
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where P>0 is the unique stabilizing solution of the following algebraic Riccati
equation’

(2.2) ATp + PA PBR-1BTp + Q O.

If an output feedback control law u =-Ky is used, then (2.1) is reduced to

(2.3) F=KC=R-1BTp.

The next result is obvious.
LEMMA 2.4. Let the open-loop system be defined as in (1.1). There exists a p x p

real matrix K such that u =-Ky minimizes a certain quadratic cost functional J(u) in

(1.2), if and only if the closed-loop system is internally stabilized and the equations (2.2)
and (2.3) are satisfied for some n x n matrix P > O, p x p matrix R > O, and n x n matrix
Q >= 0 with { Q, A} observable.

Clearly, the condition in the above result is not satisfactory. The real objective
should be an equivalent condition imposed on realization {A, B, C} instead of others.
The following notion is important.

DEFINITION 2.5. A square transfer function matrix T(s)- C(sI-A)-IB is called
positive real if all the eigenvalues of A are on the open left half plane and

(2.6) rr(--jto)+ r(jw) >-O

The transfer function matrix T(s) is called strictly positive real if all the eigenvalues
of A are on the open left half plane and

(2.7) TT(--jto + r(jw > O

The next result characterizes linear quadratic optimal control in terms of positive
realness of the closed-loop system [1].

LZMMA 2.8. A state feedback law u -Fx minimizes J(u) in (1.2) for some R > O,
and Q >= 0 with {Q, A} observable, if and only if the system transfer function matrix
F(sI-A + BF)-B is positive real That is, there exists a positive-definite matrix P such
that 1]

(2.9) (A BF)rP + P(A BF) and F B rP,
with nonpositive and {-dp, A} observable. If (2.9) is true, then u Fx minimizes the
cost functional (1.2) for Q -dp and R Ip/ 2.

Clearly, the existence of optimal output feedback is equivalent to the existence
of the matrix K such that the transfer function KC(sI A / BKC)-B is positive real.
In light of the above lemma, the following result is obtained.

THEOREM 2.10. Let the system be defined as in (1.1), which is absent oftransmission
zeros on an imaginary axis. There exists a matrix K PP such that u =-Ky minimizes
J( u) in (1.2), for some Q >-_ O, and R > O with {Q, A} observable, ifand only if det CB)
O, and the open-loop transfer function C(sI-A)-B is minimum phase.

Proof (Sufficiency.) Without loss of generality, we assume that the input matrix
BT= lip 0], because det (CB) O. (Otherwise, it is always possible to find a similarity
transform to make it true.) With the conditions given, we prove that there exists a
positive-definite matrix S, a nonsingular matrix Y’, and a scalar p > 0, such that

(2.11) (i) S(A pBY{C) 7- + (A pBY{C)S < 0, and

(ii) CS X-’B T,
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for which the output feedback gain K pYL It is noted that with y/.-1 defined in (ii),
Y’-I is nonsingular. Clearly, if (2.11) is true, then the transfer function YfC(sI-A+
pBY(C)-B is strictly positive real, and hence u =-pYfy=-Ky is optimal for some
R >0, and Q>0, which implies {Q, A} observable (see Lemma 2.8 with 5 P-,
F p[C, and Q -). Define

(2.12) := S(A-pBYfC)T+(A-pByfC)S= It:i),, ,21
k

where is partitioned in a way that @11ERPxP" Clearly, being negative definite is
equivalent to

(2.13)

Let

(I)ll < 0, (I)22 < 0, (I)11 (i) 12(I) ’21 (I)21 < 0,

S [ sl S12]
LS21 S22J’

which has the same partition as matrix . Then from (ii) of (2.11), we obtain

(2.14) C1S + C2S21 y{-1 and CS2+ C2522 0,

where C [C C2] with C Epxp nonsingular (recall that det (CB)# 0). By substitu-
tion of $12 =-C-;C2522, we have

(I)22 (A22 AaC? C2)$22 + $22(A22 A2,C-1 C2)T(2.15)

where the matrix

A= [A,, A,21
A21 A22J

is partitioned in a similar form as . It is noted that the minimum phase condition
implies the stability of A22-A2C-1C2, because the matrix

(2.16) -A21 sI-A22 0 0 I 0 * $I-A22+A21C-lC2 0

-C -Ca 0 0 0 i -C1 0 0

has full rank for all Re s _-> 0, if the system is minimum phase. Therefore, there does
exist an $22> 0, such that (I)22 in (2.15) is negative definite. In fact, (2.15) is simply a
Lyapunov equation. Hence, by the minimum phase condition, we can take (I)22 as an
arbitrary negative-definite matrix that will result in a positive-definite solution $22.
Clearly, if $22 is available, we can then obtain Sl1($21--SI by

(2.17)

and Sll by the inequality

(2.18)

which ensures us that

Sll 512,1S=
S2 S=.l

is positive definite and symmetric. By (2.14), we may solve Y( by

(2.19) Y= C,S,, + C2S2)-’,
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which is .guaranteed to exist if S is positive definite. We now need to prove that with
the matrix Y( and S obtained from (2.15), (2.17)-(2.19), there exists a p > 0, such that
the matrix defined in (2.12) is negative definite. Indeed, wehave (derived from (2.12))

(2.20) ,, A,S,, + S,,A’(, + S:AT2+ A,2Sz- 2pip,

which is negative definite if p > 0 is sufficiently large. The submatrix (I)22 is certainly
negative definite, which was chosen to solve $22> 0 in (2.15). It is noted that 12 is
given by (also derived from (2.12))

(2.21) d,z A,,S,z’k- a12Szz W Sl,a2T w S,2A2,
which is independent of p. Therefore, if we choose p > 0 sufficiently large, (2.13) will
be satisfied. Furthermore, the value of p can be computed by

(2.22) p > 1/20"max((I)l 1- (I) 12(I0 -21 (I)21 nt- 2pI),

with O’ma the maximum singular value. It is noted that the right-hand side above does
not involve p by inspection of (2.15), (2.20), and (2.21). Hence, in light of Lemma 2.8,
the quadratic cost functional J(u) is minimized with output feedback gain K
for Q =- and R Ip/2p.

Necessity. Suppose that the minimum phase condition isviolated; then (2.15) can

never have a solution $2 > 0, such that (I)22 0, by the Lyapunov Theorem with the
assumption that the open-loop system (2.1) is absent of transmission zeros on an
imaginary axis. The condition det (CB) 0 is also necessary, because if det (CB) O,
then the matrix Y{CB is singular, which contradicts the positive realness condition (see
(2.9) with F KC) by noting that the input matrix B has full column rank.

The matrix CB is often called high-frequency gain. It should be emphasized that
the above proof also provides a synthesis procedure (equations (2.15)-(2.22)) for the
design of linear quadratic optimal regulator with linear, static output feedback com-
pensator. Based on Theorem 2.10, we also obtain Corollary 2.23.

COROLLARY 2.23. Let the open-loop system be defined as in (1.1), which is absent
oftransmission zeros on an imaginary axis. Suppose that the minimumphase or nonsingular
high-frequency gain condition is violated; then there does not exist a dynamic output
feedback compensator K (s) such that the closed-loop system transfer function matrix
K (s) C (sI A + BK (s) C)-1B is positive real.

Proof Let the dynamic output feedback compensator be K (s) J + H(sI F)- G.
Then the augmented open-loop system can be represented as

(2.24) []=[AGC FO][zXJ+[oB]u’ fi=[JC H][zX].
Clearly, the unstable transmission zeros ofthe system {A, B, C} are also the transmission
zeros of the augmented system (2.24), and det ([JCH][g])=det (JCB) because the
open-loop system is a series connection of {A, B, C} and {F, G, H, J}. Therefore, there
does not exist a feedback law u =-K such that the closed-loop system is positive
real in light of Theorem 2.10. V1

The above result tells us why the LTR (loop transfer recovery [2], [5]) technique
does not work for nonminimum phase systems. In light of Theorem 2.10 and Corollary
2.23, the optimality property (infinite gain margin, sixty-degree phase margin for
single-input systems or Kalman-Anderson inequality for multi-input systems) can
never be recovered for nonminimum phase systems. It should be clarified that the
optimality property for single-input systems is mainly determined by infinite gain
margin, because if the system has infinite gain margin, the Nyquist plot of the loop



OPTIMALITY WITH OUTPUT FEEDBACK 715

gain transfer function will eventually be outside of unit disc centered at -1 +j0 in
complex plane by increasing the feedback gain. Clearly, the above results also apply
to nonsquare systems. This is because if the open-loop system is nonsquare, we may
always find a static (or dynamic) compensator to square down the system while keeping
the minimum phase property [9]. The details are omitted here.

It is noted that the presence of transmission zeros on an imaginary axis for system
(1.1) does create a dilemma. It is possible that even if system (1.1) has transmission
zeros on an imaginary axis, there exists an output feedback control u =-Ky that
minimizes J(u) in (1.2) for some R >0 and Q->_0 with {Q, A} observable as illustrated
below.

Consider system (1.1) with realization

(2.25) A= B= C=[1 0],

which has a transmission zero at the origin. If the output feedback law u =-Ky, with
K 10, is used, the quadratic cost functional J(u) in (1.2) is minimized for R =, and

0 Indeed, the algebraic Riccati equation (2.2) yields a positive-definite

[5 00] suchthatKC=R_,BrPissatisfied.solution P=
0 1

However, the fact illustrated in the above example is not true in general. Next
consider a linear system with the following realization:

which also has a transmission zero at the origin. It ,can be easily verified that this
system cannot even be stabilized by linear static output feedback control, and hence.
it does not admit an LQ optimal output feedback.

3. Application to the Hoo optimal control. In this section, we consider a linear
system described by the state equation

(3.1) :( t) Ax( t) + Bu( t) + Dw( t), z(t) Ex( t), y Cx( t),

where x(t) En is the state, w(t) Es is the disturbance input, u(t) 6 E" is the control
input, y(t) EP is the measured output, and z Et is the controlled output. It is assumed
that the number of control inputs rn is the same as the number of measured outputs p.

The standard H optimization problem is concerned with constructing a dynamic
feedback compensator u G(s)y to minimize the H norm of the transfer function
from w to z (e.g., see [4]). A special case when the full state can be measured (i.e.,
C I) is considered by Petersen [7]. The following notion is adopted here.

DEFINITION 3.2. Let the constant y > 0 be given. The system (.3.1) is said to be
stabilizable with disturbance attenuation y if there exists a state feedback matrix
F E"n such that the following conditions, are satisfied:

(1) The matrix A- BF is a stability matrix. That is, all the eigenvalues of A- BF
lie in the open left half plane.

(2) The transfer function matrix

(3.3) T(s)= E(sI-a+ BF)-D

satisfies the bound T(-jw)T(jw)<-y2I, for all to. That is, the H norm of T(s)
is less than or equal to ’11TII -< -
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When the states are not available for feedback, the dynamic output feedback
compensator G(s) may be used. Define

(3.4) 3’* := inf (11 LII: G(s) is proper},
where T,.(s)= E(sI- BG(s)C)-D is the transfer function for a closed-loop system.
The task of H optimization is to synthesize a stabilizing dynamic output feedback
compensator G(s), which achieves 3’* in (3.4). A recent development in H control
is that for any 3’> 3’*, there exists a feedback compensator G(s), which achieves
disturbance attenuation 3’, i.e., IILII-< % The remarkable feature of this result is [4]
that the feedback compensator G(s) can be obtained by solving two algebraic Riccati
equations and G(s) has the same McMillan degree as the open-loop system. Here, we
will consider H optimization via linear, static output feedback u =-Ky, K Rpp.
Using the same technique as in 2, we obtain the following result.

THEOREM 3.5. Suppose that the realization {A, B, C} is both stabilizable and detect-
able, and assume that the transfer function C(sI-A)-B is strict minimum phase,
det (CB)# O, and D Bf for some f # O. Then for any 3" > O, there exists a matrix
g RPP such that the closed-loop system is stabilized with attenuation 3", i.e., L II <-- %

Proof. It has been shown in [7] that if the following algebraic Riccati equation:

(3.6) ATp + PA -1-- PBBTp + 1-- PDDTp + 1-- E TE + eQ=O,

has a positive-definite solution P for some positive-definite matrix Q and scalar e > 0,
then the state feedback control

1
(3.7) u BTpx =-Fx,

2e

stabilizes the closed-loop system with disturbance attenuation 3". If we consider the
output feedback law u =-(1/2e)?Tfy, then (3.7) reduces to

(3.8) ---1 B Tp 1 ?{C KC.
2e 2e

Without loss of generality, we assume that B r lip 0]. Partition C C1 C2], CI PP

is nonsingular by condition det (CB)# O. Define

[Sll S121 [AI A12](3.9) S:= P-= ST2 SEzJ
and partition A=

[Az A22
with S, A pxp. NOW, multiplying (3.6) by S= P- from both left and right, we
obtain

(3.10) SAT +AS_ B(@_.T) BT + I SETES+eSQS O,

which is equivalent to the matrix

(3.11) cI)= SAT+AS-B(@ fOr)BT +--1SETES<O"
Therefore, with the conditions given, we need to find a positive-definite matrix S and
a nonsingular matrix Y" and a scalar e > 0 such that (3.8) and (3.11) are both satisfied.
Clearly, (3.8) is equivalent to

(3.12) (i) C1S11 . C2S21 {-1 and
(ii) CS2/C2S22-=0.
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Partition

ql . and E=[E E]

with 1 ERPP and E ERtp. Then we obtain

(3.13)

dp,, S,,A + A[,S,, + S,A+ A,2S2,-( It’8
1

--[Sll Sl2]ETE[Sll S12]T

(3.14) (I)22 S22(A22- A2, C-’ C2) T q_ (A2- A21C-’ C2) S22 q_l S221 T_,S22

with/ E2 EC- C2, and

1
(3.15) ,2 S,,A + A,,S12 q- S,2A+ A,2S22 q-- IS,, S,2]E TE[S2, S22] T,

,y

Equations (3.13)-(3.15) are derived in a similar way as in 2. By the strict minimum-
phase condition, and by noting that 22 < 0 can be chosen arbitrarily, (3.14) does have
a positive-definite solution $22. Following the same procedure as in 2, S,2 S2r
-C-(C2S2 is obtained according to (3.12) and S is chosen to be such that S >
S2SdS(, which ensures the positive definiteness of S. With So so determined, we
can make in (3.13) negative definite provided that e > 0 is sufficiently small. Finally,
by noting that 2 and 22 in (3.14), (3.15) do not involve e, we can thus choose an
e >0 such that -@222 <0, which guarantees that the matrix is negative
definite. Therefore, by taking P S-l, and K Yf/2e, where Y{ is solved from (3.12),
the transfer function To(s) E(sI- A + BKC)-D for a closed-loop system does satisfy
IILII(R)_-<%

It should be clarified that the result presented in Theorem 3.5 is a direct con-
sequence of Theorem 2.10. However, the conditions imposed on system (3.1) may not
be necessary for the existence of Hoo optimal control with linear, static output feedback
because of the additional constraint D Bf/. This constraint is not needed if a dynamic
output feedback compensator is used. It has been shown by Petersen and Hollot [8]
that as long as the transfer function C(sI-A)-D is minimum phase, matrices C, D
are of full rank, {A, D} stabilizable, { C, A} detectable, and there exists an nth order
dynamic output feedback compensator G(s) such that system (3.1) is stabilized with
the same disturbance attenuation 2’ as achievable by full state feedback. It is not known
at present if the result in [8] is also true for linear, static output feedback compensators.

4. An example. Let the linear system be given as in (1.1) with realization

0 0 0 0 1 0 4 -2

(4.1) A=
0 0 0 0

B=
0 1 cT --3 2

2 0 1 2 0 0 3 --1

0 2 2 0 0 0 2

where p m 2. Clearly, det (CB) O. Considering that B7"= lip 0] 7, we find that
the matrix (with the same partition as in 2)

[1 21] [20 0][ 4-3]-1[ 3 02] [-2-4](4.2) A2-AC-C=
2 2 -2 2 -1 0 -7
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is stable. Hence, the system {A, B, C} is minimum phase. We may directly solve matrices

S and Y as in (2.11)following the equations (2.14)-(2.19). $22=L9"875 -1 J is
obtained by solving the Lyapunov equation

-1 2.250

-"--[ ] -1 c2)T(4.3) 022
31 5 0

C2)$22+$22(A22 A2C
0 31.5

=(Azz-A21C1

[-11"81 -5"250] is obtained by (2.17)"S2=
-5.875 -8.000

S 1012+ S12S-2.T12 [43.47 32.81] >0[_32.81 47.88

andY{ [0.100 0.150] are also obtained from (2.18) (2.19). From (2.20) and (2.21)
0.100 0.200

we have that

(4.4) O,,=-2pi2 and O,2=[64"63 36.75]143.75 76.00

are obtained from (2.21). Next, we use the following inequality to determine p in (2.22):

(4.5) p

Inequality (4.5) is satisfied if p > 198.6. Hence, by taking p 200, the final required

[ 30].WithP=S-1 Ygandpobtainedabove,output feedback gain is K p?7{
20

we find that
20 40

(4.6) (a pBY{C) rp + P(A pBY{C) < 0 and Y{C B rp,
are satisfied, which verifies the optimality of the output feedback u -Ky with respect
to the cost functional J(u) in (1.2) for 0 -O and R I2/400.

5. Conclusion. We have studied an optimal linear quadratic regulator problem
with static output feedback. A necessary and sufficient condition is established for the
existence of optimal output feedback control with respect to the cost functional (1.2)
under the assumption that the system (1.1) does not have transmission zeros on an
imaginary axis. The presence of transmision zeros on an imaginary axis does bring
some difficulties in studying the existence of optimal output feedback. However, it is
conjectured that as long as system (1.1) is stabilizable and detectable, and is void of
transmission zeros on the open right half plane (minimum phase condition), there
exists a dynamic output feedback compensator such that the optimality property for
the loop transfer function can be recovered. We use the following example to conclude
our paper.

Example 5.1. Consider plant P(s)= C(sI-A)-B with realization {A, B, C} as
in (2.26). It has been shown earlier that such a system cannot even be stabilized by
constant output feedback. If we use dynamic output feedback compensator K(s)=
p(s+ 1)/(s-2), then the loop transfer function L(s)= K(s)P(s)= H(sI-F)-IG has
a minimal realization

(5.2) F= G=. H=p[1 01,
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which is exactly the same as the realization (2.25) except for parameter p. Hence, if
we choose/9 10, the optimality property (infinite gain margin and sixty-degree phase
margin) can be achieved as shown in 2.

Acknowledgments. The author thanks the anonymous reviewers for their helpful
comments.
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Abstract. One of the main uses of generalized gradients is obtaining tight optimality conditions for
optimal control problems. In this paper it is shown that the B-gradients satisfy the formula stating that the
generalized gradients of an integral functional are contained in the "integral" of the generalized gradients.
This formula is then applied to derive Euler-Lagrange equations and optimality conditions for a differential
inclusion problem. All of these conditions can be stated in simple forms.

Key words, optimal control, Euler-Lagrange equations, differential inclusions, B-gradients, generalized
gradients
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1. Introduction. The most difficult and interesting area of application for general-
ized gradients is optimal control. The reason for the difficulties is that formulas for
the generalized gradients of integral functionals are not easily derived. The other side
of this is the possibility of elegant optimality conditions that subsume many classical
results.

It has been clearly demonstrated by Ward and Merkovsky [11], [12] that any
notion of directional derivative meeting fairly minimal conditions yields very general
optimality conditions. Unfortunately, this type of general optimality condition usually
does not apply directly to optimal control problems.

A very good example of this comes from the following basic proposition of Clarke.
Here d(C, x) is the distance from X to the set C.

PROPOSITION 1.1 [3, Prop. 2.4.3]. Let X be a Banach space, C a closed subset of
X, andf a Lipschitz function from X to . If x is the minimum off relative to C, then,
for some k > O,

f(x) + kd C, x)

has its global minimum at x.
From this lemma, if OAg(X) denotes the set of generalized gradients related to a

given tangent cone, and the A-gradients have a decent calculus, we can derive the
optimality condition:

0 0Af(X) d- NA( C, X).

Here NA(C, x) is the polar of the A-tangent cone to C at x.
This is a simple and useful optimality condition. It is, however, useless in optimal

control without results relating the generalized gradients of an integral functional to
the integral of generalized gradients. The major success in this area is the generalized
gradient definition of Clarke. Applying the above optimality condition in a variety of
ways, Clarke derives elegant optimality conditions for optimal control problems (see
Chapters 3, 4, and 5 of [3]).

The main objective of this paper is to show that we can obtain "nice" optimality
conditions for optimal control problems using generalized gradient sets that are smaller
than those of Clarke. This can eliminate spurious solutions from consideration. Here
the B-gradients are the set of generalized gradients used (see [4], [6], [7], [9], and 10]).

* Received by the editors March 13, 1989; accepted for publication (in revised form) August 7, 1989.

" Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, Michigan 49008.
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The remainder of this paper is divided into four sections: the properties of the
B-gradients are discussed in 2; a formula for the B-gradient of integral functionals
is derived in 3; an application of the results in 3 to the Euler-Lagrange equations
is given in 4; and 5 demonstrates the use of B-gradients for a differential inclusion
problem.

2. Preliminaries. When defining the B-gradients, the main objective was to find
a convex set of generalized gradients that is smaller than Clarke’s gradients while
maintaining the utility of Clarke’s gradients [ 1 ]-[3]. The B-gradients were defined in
[9] and [4] through a tangent cone that is a modification of the cone of [7]. It should
be noted that these two tangent cones are identical in finite-dimensional spaces and
share some properties. Even so, there are differences. The major difference is in the
variety of characterizations of the B-tangent cone that are not available for the Penot
tangent cone.

The B-gradients are defined in a manner similar to the Clarke gradients and have
a similar number of different characterizations [9], [4]..Here, both of these are defined
in terms of directional derivatives.

Throughout the rest of this section E will be a Banach space.
DEFINITION 2.1. Let f be a lower semicontinuous (1.s.c.) function from a Banach

space E to . The Clarke derivative [8], [3] of f at x in the direction h is

f(x; h) =sup lim sup inf
f(x’+ th’)-f(x’)"

e>0 t0 h’B(h,e)
X’-

The B-derivative [9] of f at x in the direction h is

fB(x; h)= sup {a,/3},
where

sup lim sup inf
A>0 x’-x, x’x h’B(h,e)

f(’. +...h xi,,-; x sh’).,f(x’).
allx’-xll,

and

/3 lim inf
tO+, y’y

f(x+ty’)-f(x)

Here Itx’- xllf IIx’- xll + If(x)--f(x’)l.
In the above,/3 is the lower Dini derivative,fr (x; h). When dealing with Lipschitz

functions the above definitions can be simplified.
THEOREM 2.2 [8], [9]. Iff E is Lipschitz, and x and h are in E, then

f(x’+th)-f(x’)f(x; h) =f(x; h) lim sup

and

fB(x; h) sup {a,/3}
where

f(x’ + h Ilx’-xllh)--f(x’)
sup lim sup
>o x,x llx’-xll

and

fl lim inf
f(x + ty’) f(x)

tO+, y’-y
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In the above theorem the lower Dini derivative can be replaced withthe upper
Dini derivative,

fk(x; h) lim sup
f(x + ty’)-f(x).

t-O+, y’ y

This definition shows the relationship between the two derivatives. The,B-derivative
is less than the Clarke derivative because of the restriction on the "t" values.

In this work,we will need an alternate definition offn(x; h). This variant is used
,to prove several results. Under the hypothesis, that f is Lipschitz,

fn(x; h) sup lim sup inf f(x’/th)-,f(x’).
x>o t-,o t(o,;llx’-xll]

X-

Using these definitions we define the corresponding generalized gradients.
DEFINITION 2.3. Let f be as above. The Clarke generalized gradients (CGG),

f(x), to f at x are the set of x* E* such that

fZ(x; h) >= (x*, h) forall h E.

The B-gradients, Oof(x), to f at x are the set of x* E* such that

fn(x; h) >= (x*, h) for all h E.

The above observation on the relationship between the directional derivatives
yields the following lemma relating these generalized gradients.

LEMMA 2.4 [9]. Letf: E - be lower semicontinuous and x a point wheref is finite.
Then

Of(x)=Of(x).

In extending the results of Clarke, the main gain is in the tightness of the results.
One simple way to show this is through the corollaries in later sections based on the
following result.

THEOREM 2.5. Iff is strictly differentiable [3, Prop. 2.2.1] at x then

Of(x)={Vf(x)}.

Iff is Frechet differentiable at x, then

O,f(x)={Vf(x)}.

Proof The first halfof the proof is Proposition 2.2.1 of [3]. The second statement
is an exercise in comparing the definitions of Of(x) and the Frechet derivative.

A simple function demonstrating this difference on .t is

sin(I/x) ifx0,
g(x)=

0 if x=0.

Here g is ditterentiable at zero. Thus 0ng(0)= {0}, but 0f(0)= [-1, 1].
Using these definitions we can prove a variety of calculus results for these

generalized gradients. All of the results in this section are stated for the B-gradients,
but the same results hold for CGG. The first result is a simple sum formula.

THEOREM 2.6 [9]. Let f:X-> be lower semicontinuous with f(g) finite and let
g:X -> be Lipschitz. Then

Os(f+ g)(2) Of(2) + Og(g).
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This is equivalent to

(f+g)B(g. h)<fB(2" h)+gB(2; h)
The next result gives us another way to calculate the B-gradients of a sum of

functions in a special case. This is very important in proving results in optimal control.
THEOREM 2.7. For two Banach spaces X and Y let f" X, and g" Yo,ql be

Lipschitz functions. If F" X x Y-, is given by F(x, z) f(x)+ g(z), then

OnF(x, z) OBf(x) OBg(z).

Proof. Assume thatf and g have Lipschitz constant L, (x, z) (0, 0), and fix A > 0.
We will show that if to >fB(x; h) and 7 > gB(z; k), then F((x, z); (h, k))

We only need to consider the a part ofthe definition of F((x, z); (h, k)) (see Definition
2.1 above) since this result is known for lower Dini derivatives. Thus we assume that
all (v, w) under consideration are not (0, 0).

Our goal is accomplished by demonstrating that there are neighborhoods N of x
and M of z such that if (v, w) N M, then

(2.1)
F((v, w)+Al[(v w)l[v" (h,k))-f(v, w)

<=to+n.A II(v, w)ll
If h or k is zero, its component drops from (2.1) and can be ignored in the rest

of the proof.
The case of (v, w)---(0, 0) followsfrom the calculus of the directional derivative

corresponding to the contingent cone. Thus we assume that (v, w)# (0, 0),
Fix r> 0, to’ < to and r/’ < r/ such that

( l +)(to’ +’q’) + L’r(,,h,, + ,,k[,) < to + .
There are neighborhoods N B(0, r) of zero in X .and M B(0, r) of zero in Y such
that for all v’ 2N and w’ 2M,

f(v’ + ’11 v’ll h) -f(v’)

and

f(w’ + 7"llw’llh f(w’)

For both v and w there are two cases to be considered: when the component is
nonzero and when the component is zero. Assume v 0. Then [Iv <= II(v, W)[IF and
there is a sequence v Vo, v,. ., v,, such that

(2.2) ,, / Vi h, 0, 1, 2, , m 1,

(2.3) IIv-vll-ll(v, w)llllhtl < ’[l(v, w)llllhll,
and

(2.4)
f(v+,)-f(v,)

llhl[ =f(vi+,rllvllh)-f(v,) < to,,

This implies that

to, >
f( v -f(v)

h
Ilvm-Vll

f(v+;tH(v, w)llFh)-f(v)+ Lrll(v, w)lJllhll

i=0, 1,2,... ,m-1.
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and hence

(2.5) f(v+AIl(v’ w)l]Fh)-f(v) (< 1+ to’+Lrllh

If v 0, because for some 3/arbitrarily close to zero

f(Th)-f(O)

there is a sequence satisfying (2.2) for i= 1,2,..., m-l, (2.3), and (2.4) for i=
0, 1,. , m 1 where v yh. This implies that (2.5.) also holds if v 0.

The same argument applied to the Y component yields

g(w+A II(v, w)ll:k)-g(w)
All(v,

and finally

F((v, w)/AIl(v, w)ll. (h,k))-f(v, w)
< (1 + r)(to’+ /’)+ L(llh + Ilkll)

<to+r/. I"1

To translate between set constraints and generalized gradients, a result relating
the B-gradients of the distance function from a set and the B-normal cone is required.

DEFINITION 2.8. Let C be a closed subset of a Banach space E. The B-tangent
cone, TB(C, x), to C at x is the set of all y in E such that

Ve>0, A>0 =lNr(x) Vx’eC\x,

c 63 {x’/ A IIx’-xllB(y, )}

and for all h > 0 and e > 0,

Cf"l{x’+(O,A]B(y, e)} # 0.

The B-normal cone, NB(C, x) to C at x is the set of x* E* such that

(x*, y) <= O
for all y Ts( C, x).

The next result is used in restating optimality conditions.
THEOREM 2.9. If C is a closed subset ofX and x C, then

u xa.d(c, x)= N(C, x).
A>=O

3. B-gradients and integral functionals. The result in this section gives the relation-
ship between the B-gradients of an integral functional and the integral ofthe B-gradients
of the function being integrated.

We will assume that T, ,/x) is a positive real measure space with/x (T) < and
that Y is a separable Banach space. Let X be a closed subspace of LP(T, ") for some
p [0, ]. Let f, :.qt" .qt be a given family of functions such that for each y .qt" the
function T--> f, (y) is measurable, and that

F(x)= f f(x(t))tx(dt)
T

is defined and finite at x.
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The following hypothesis is also assumed.
HYPOTHESIS 3.1. There is a function k in Lq(T, ) such that, for all T,

If,(y) -f,(y2)l < k(t)llYl-Y211

for all y,y2.". Here 1/p+l/q=l (q=oo ifp=l and q=l ifp=oo).
The main result on the B-gradients of integral functionals is as follows.
THEOREM 3.2. Under the above hypotheses, F is Lipschitz on bounded subsets ofX,

and

OF(x) f oft(x(t))ix(dt).
T

This is interpreted as follows. If @ OaF(x), as a function of x, then @(t), as a
function of t, is in L(T, ") and

,( t) of(x)

and, if v Lp T, n),

Let

-a.e.

(, v)= f (@(t), v(t))ix(dt).
T

Proof. This result was proven for the case of p in [9].
The proof that F is Lipschitz is contained in [3, 2.7].
We assume that g is zero. For each h X we will show that

FZ(O; h)<= f f, (O, h(t))ix(dt).
T

M F’(0; h)

max {sup lim sup I ft(x(t)+AIIxllh(t))-ft(x(t))
o o llxll

ix(at), Fk(x; h)}.
From the definition of Fn(O, h), either for every e >0 there are A >0 and a

sequence Xk’’ 0 such that

f ft(xk(t) + A Ilxkllh(t)) --ft(xk(t))
(3.1) M < lim-.sup j x iix
or Fk(0; h) M.

Using this result for the upper Dini derivative, the second case follows easily:

M Fk(0; h)

<_- f f,(0; h(t))(dt)
dT

-<_ f f,(0; h(t))(dt).
T

In the first case we modify the difference quotients in the integral (1) as follows.
There is a constant a such that for any x LP[O, 1], if J {t: x(t)> llxll), then
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2 j L(t)tx(dt)< e. For each k replace the difference quotient by

)+Allxk[Ih(t))--f(xk(t))
if xk(t)<__ Ol[Ixkll

gk(t) A Ilxkll
-L(t) if xk(t) > a Ilxkll.

It is clear.that for each k this is a measurable function bounded in. norm by L(t) for
each t. Then, applying Fatou’s Lemma,

M 2e --<limk_oosup Ir gk( t)lx(dt)

<-- Ir limk_,sup gk(t)lx(dt).

We only need to show that 8t lim SUpk- gk(t)--<--ft(O; h(t)) for all t. Fix and let
{ki} be a subsequence of the k’s such that limk,_. gk(t)= 8, and Ixk’(t)l/llx"’ll converges
to some b. If b is zero, then a simple argument shows that

8, _<--ftk(0; h(t)) --<fff(0; h(t)).

If b is not zero then, for some Zo,

ft (X k’ (t) + AoIXk’ (t)lh(t)) -f(xk(t))

<=f(O;h(t)).
Thus

M -< 2e + I f’n(0; h(t))tx(dt).
T

We therefore conclude that

FB(0; h)_-< | ft(0; h(t))tx(dt).
T

Since 0FB(0; .) OF(O) and 0f,(0; h(t)) 0nft(0), Theorem 1 [5, p. 13] and
Theorem 1 [5, p. 20] yield the desired result.

At this point it is appropriate to note that the above result also holds for the
generalized gradients defined through the tangent cone of Michel and Penot [6], [7].
This follows from the fact that the B-tangent cone and the Penot tangent cone are the
same in ,n but the B-tangent cone is always contained in the Penot cone [4], [9].

COROLLARY 3.3. Let Off(x) denote the set of subgradients associated with the
tangent cone of Michel and Penot. Then, iff satisfies the hypotheses of this section,

OpF(x) c I Opf(x(t))tx(dt)= I Of(x(t))tx(dt).
T T

This result shows that in optimal control sharper results cannot be obtained using
the tangent cone of Michel and Penot instead of the B-tangent cone.

4. The Euler-Lagrange equations. We consider the following optimal control
problem where the constraint does. not depend on the state. Here x:[a, b].t with
a and b finite and U(t) is a measurable multifunction from [a, b] to ,l with closed
values. It is also assumed that f(t, x) is Lipschitz with the same Lipschitz constant L
for each and f(t, x) is measurable for each absolutely continuous x(t).
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The objective is to minimize

(P,) f( t, x) at

subject to

) U(t), x(a Xo, x(b) x

Our basic result is the following.
THEOREM 4.1. If X is a solution of (P) then there is an absolutely continuous curve

p a, b -" such that for all a, b ],

and

p(t) NB( U(t), "(t))

iO( t) oBf( t, x( t)).

Proof. We assume that x(t)= O. By Proposition 1.1 if S is the set of feasible arcs,
a nonempty closed set, then the functional

’f( t, x) dt + (x, S)L’d

has its unconstrained minimum at x over the set of absolutely continuous arcs. Here
L’>- L(b- a). Over these arcs we have the inequality

d(x, S) <-_ d(2, U(t)) dt + d(x(a), xo)+ d(x(b), x).

Thus x is the unconstrained minimum of

(4.1) F(x)= [f( t, x) + Ld (2, U(t))] dt+L(d(x(a),xo)+d(x(b),x))

over the set of all absolutely continuous arcs.
Taking the subgradient of F as a function on the set

X {(v, w, a,.fl)eL[a, b]xL[a, b] x" x,qt""

c eN with v( t) c + w(s) ds

and applying Theorem 2.7, we get

(0, O, O, O) OF

o [f(t,x(t))+’a((t), g(t))]a

x L’oa(x(a), Xo) x L’o.d(x(b), x)

o[f(t, x(t))+ ’a((t), U(t))] at

x L’OBd(x(a), Xo) x L’Osd(x(b), xl).
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The conditions that O L’OBd(x(a),xo) and O L’oBd(x(b),x) are simply the
conditions that x(a)- Xo and x(b)= x. The equation

(0, 0) [OBf(t,x(t))+OBL’d(i(t), U(t))] dt

implies that there are (p, q) L[a, b] x L[a, b] such that q p,
p(t)OBL’d(, U(t))c N(U(t),(t)), /x-a.e.,

and

q(t) Osf( t, x(t)), /z- a.e. U

It is interesting to compare this with classical results. In the classical results it is

where g, is continuously differentiable at x(t) for each with nonzero derivative, then
there exists an absolutely continuous p such that for some lo( t)

for each t, and let

p(t)=lo(t)Vgt(x(t)) and p(t)=Vxf(t,x(t)).

A simple example shows that the number of functions satisfying these optimality
conditions can be reduced in comparison with those given using the Clarke gradients.

Example 4.3. In the above problem let U:[0, 1]2 be the cardioid given by

U(t)= x2+ (x2+1/2)2<_-1/4
x2 + x<= l

ifx, x2>_-- 0,
if x -->_ 0, x2 --<-- 0,
if x _<-- 0,

f(t, (x,, x2))
f2x2
--X2

if 6 [0, 1/2],
if (1/2, 1].

The endpoint constraints are x(O)= x(1)= (0, 0). The subgradients of f are

(0, -2)
Of(t, (x,, x2))=Otf(t, (x,, x2))=

(0, 1)
if (0,1/2),
if 6 (1/2, 1).

The only pair of functions that satisfy the conditions of Theorem 4.1 are

p(t) {(0,-2t)(0, t--)
if s [0, 1/2],
if (1/2, 1],

and

(0, -t) if t [0,1/2],
x(t)=

(0, t-l) ift(1/2,1].
Thus x is the optimal arc.

If the conditions are written in terms of the Clarke gradients and normal cone,
the function x(t) (0, 0) also satisfies the optimality conditions. This is due to the fact
that Nt<,)(0, 0)= 0 x ,qt. The same p function works for this x under these conditions.

U(t) {x: g,(x) <- 0},

assumed that f is "smooth" in the x variable. Here we only need assume that f is
"differentiable" to get the equality of the classical results.

COROLLARY 4.2. Let x be a solution to (P). Iff( t, x) is differentiable, in the Frdchet
sense, at x(t) for each t, and U(t) is given by
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It should be noted that this example is typical of situations where the B-gradients
are an improvement over the Clarke gradients.

5. Differential inclusions. The basic differential inclusion problem studied here is
minimizing a function f(b) subject to

(P) (t)F(t,x), t[a,b], x(a)Co.

Here x(t), C is a closed set in ", and F(t,x) is a multifunction on [a, b]x
with values in ".

Because of the obvious comparison with Clarke’s [3] results, we use a similar
setting. The following are the usual definitions for choosing appropriate multifunctions.

DEFINITION 5.1. A multifunction F :’--> is measurable, if for every open set
C of ", the set

{x ,m: F(x) f3 C (R)}

is Lebesgue measurable.
DVINITION 5.2. A multifunction F:[a, b] x R" 2:" is measurably Lipschitz if
(a) For each x in ", the multifunction t--> F(t, x) is measurable on [a, b].
(b) There is an integrable function k(t) on [a, b] such that for each in [a, b],

the multifunction x --> F(t, x) is nonempty and Lipschitz of rank k(t).
For the rest of this section the interval [a, b] will remain fixed and [Ix[[ will denote

the infinity norm:

][xl[ max {Ix(t)l: a _-< -< b}.

The main result is the following.
THEOREM 5.3. Assume that the following hypotheses hold:
(i) F is measurably Lipschitz, integrably bounded and closed on [ a, b] x ", and
(ii) f is Lipschitz of rank Ky.
If x is an optimal solution of (P2), then there exist an absolutely continuous arc p

and constants K1 and K2 such that

[6, p] OK_p( t, x, ) a.e.

p(a)OaKdco(X(a)) and p(b)Onf(x(b))

where p is as defined below.
The proof of this result takes up most of the remainder of this section.
To apply Proposition 1.1 a concept of distance from an arc x to the set of feasible

arcs is required. The idea used here is based on the function p: x"x"[0, ]
given by

p(t, x, v) inf {Iv YI: Y F( t, x)}.

This distance relates to the distances in the coordinates as follows.
PROPOSITION 5.4 [3, Prop. 3.1.5]. If F is measurably Lipschitz, then
(a) For each x and v in ", the function t--> p( t, x, v) is measurable.
(b) For any (t, xa) and (t, x2) in x,", and for any v and v2 in ", we have

[0(t, x, va) p( t, xz, vz)J <- tc( t)lx, xzl / I z].
A curve x is called a trajectory for F if

.(t) F(t, x(t)) a.e.
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Associate a distance pF(X)for an arc x to be

pF(X) ff p(t, x(t), 2(t)) dt.

The following theorem allows us to find a trajectory for F near a given arc x.
THEOREM 5.5 [3, Thm. 3.1.6]. If x is an arc and pF(X)(e/K, then there is a

trajectory y for F with y(a)=x(a), Ix(t)-y(t)l<e for all t6[a, b] and

Ilx yll <- ]2(t)-y(t)l dt <= Kp(x).

Here K exp {jb k( t) dt},.
LEPTA 5.6. Let x be an optimal trajectory for the differential inclusion problem.

Then, for some K and K2,

oh(y) =f(y(b))-f(x(b))+ Kdco(y(a))+ K 0(, Y, fi) de

(5.1)
=>0

for all trajectories y.
Proof Suppose this is not true. Then there is an arc y with th(y)< 0.
Let c Co be such that dco(y(a)) ly(a)-c[ and define w by w(t) y(t)+ c-y(a).

By Proposition 5.4

O(,w,)d<-

From Theorem 5.5, there is an arc z for F such that z(a)= w(a)= c and

li- dt<-K p(t, w, ) dt.

Combining the above gives

IIz-yll--< IIz- wll / Ilw-yll

<----

<-_ K dco(Y(a)) In (K)+ 0(, Y, fi) de + dco(Y(a)).

th(z) _-< 4(y) + Kz Ilz-yll

(5.2) <- oh(y)+ KK p(t, y, ) dt + Kz(K In (K)+ 1)dco(y(a))

<0.

This contradicts the optimality of x with K K(K In (K)+ 1) and K2 KzK, and
completes the proof of the lemma.

To complete the proof ofTheorem 5.3, we calculate the ’B-gradients ofthe functions
f(y(b))-f(x(b)), Kldco(y(a)) and K2b p( t, y, f) dt.

Thus
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If v is an element of the B-gradient of f(y(b))-f(x(b)) at x, then there is a
OoBf(x(b)) such that

v(y)=(a,y(b)).

This follows from the chain rule result in [10].
Similarly, if vOBKdco(X(a)), as a function of x, there is a d/zOuKldco(X(a)),

as a function of a, such that

v(y)=(2,y(a)).

In a manner similar to that used in the previous section, an element v in
oK . p( t, y, y,) dt takes on the form

v(y) [(q, y>+ <s, y)] dt

for some functions q and s ,with

(q, s) OnK2p(t, y, fi) a.e.

Combining these last three expressions with equation (5.1) shows that, for some
and 02 in Onf(x(b)) and OtKdco(X(a)) and a selection (q, s) of OBK2p(t, x, 2),

b

0 (g,, y(a))+(O2, y(b))+ [(q, y)+ (s, 3))] dt.

By the standard variational argument,

s(t) O+ qdz,

If p(t) 0 + I’a q dr, then p satisfies

and s(b) q2.

[D, P] OnKzp(t, x, 2) a.e.

p(a) OnKldco(X(a))

Notes. (1) The condition that

and p(b)osf(x(b)).

[lJ, P] e OnK2p( t, x, 2)

translates into a well-known type of condition if F(t, x) does not depend on x. Under
this assumption, the condition implies the existence of an absolutely continuous
function p(t) such that

p(t)NB(F(t),2(t)) a.e.

(2) The method used for stating the conclusions in Theorem 5.3 when using Clarke
gradients involves the assumption that F is convex valued and the "true Hamiltonian,"

H(x, p)= sup {p" y- p(x, y)}.
y

Unfortunately, the current proofs relating the conditions in Theorem 5.3 to this
Hamiltonian involve the semicontinuity properties of the Clarke gradients.
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EXACT CONTROLLABILITY OF THE ONE-DIMENSIONAL WAVE
EQUATION WITH LOCALLY DISTRIBUTED CONTROL*

LOP FAT HO?

Abstract. The one-dimensional wave equation with variable wave speed and locally distributed control
is considered. It is shown that the adjoint system is observable using a multiplier method with a multiplier
being the solution of an ordinary differential equation. It is also shown that a sufficient condition for exact
controllability is that a related minimization problem always has an optimal solution. Since the objective
function for this minimization problem would be coercive if the adjoint system is observable this establishes
the exact controllability of the original system.

Key words, wave equation, exact controllability, locally distributed control, adjoint system

AMS(MOS) subject classification. 93B05

1. Introduction. In.this paper we consider the following control problem associated
with the one-dimensional wave equation"

z(x, t)=-- o’(x) +u(x, t) O<=x<--_l, t>O,p(x)
at ox

oz
(1) z(x, O) --- (x, O) O,

z(O,t)--z(l,t)’-O,

with the additional assumption that

O<- x<<- l,

t>0,

(2) u(x, t) 0 for x [x, x2]

where 0 =< x < x2 =</. We assume that o- and p are C and positive. Denote

E1 H[0, l] x L2[0, 1], U L2([0, l] x [0, T]),

and

E LZ[0, 1] x H-’[0, l], U2 LZ(0, T; H-l[0,/]).
It has been shown in [3] that u Ui implies that (z, Oz/Ot) C(O, T; Ei) for any T> 0,
i= 1,2.

The main result of this paper is the following theorem.
THEOREM 1. Let x x_ [0, 1], Xl < x2, befixed. Thenfor 1, 2, there exists T* > 0

such that given any pair (b, 1) Ei, there exists u Ui, u vanishing outside [x, x] x
[0, T], such that the solution of (1) satisfies

Oz(x, T)
z(x, T) 4(x, T) and =thl(x,T), 0=<x_-<l.

Ot

(The equalities are to be interpreted in the sense of distributions.)
It is known that the controllability of a control system is related to the observability

of its adjoint system 1 ]. Thus the controllability problem can be reduced to an inequality
for the adjoint system (see [4]). For the wave equation with control in the Dirichlet
boundary condition, such an inequality was proved using a multiplier method in [2].
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In 2, we will state an observability result. Three observation operators are claimed
to be boundedly invertible. In 3, we prove the easiest part, the bounded invertibility
of the first operator. We also prove that the remaining operators are injective. The
proof for the bounded invertibility is based on a multiplier technique. The multiplier
we use is the solution of an ordinary differential equation with parameters that depend
on the functions p, r, and the interval [xl, x2]. In 4, we prove the more difficult parts,
the bounded invertibility of the remaining two operators. We need to further apply
the multiplier method and use a uniqueness and compactness argument. Finally, in

5, we prove Theorem 1, the controllability result from Theorem 2, the observability
result. The method of proof is new. It is based on an observation that a sufficient
condition for the control problem to have a solution is that a related minimization
problem has an optimal solution. This relationship between a control problem and a
minimization problem holds for many systems, in particular, for any system for which
the method in [4] can be applied.

2. Observability. It is well known that controllability results follow from observa-
bility of the adjoint system 1 ]. In a rather general context, we can say that observability
implies exact controllability to some space. (See the Hilbert Uniqueness Method
(HUM) in [4].) However, it may be difficult, in some cases, to characterize this space
in a concrete manner.

Associated with the system (1), we will consider its adjoint system

02y O ( r(x) OY )p- (X, t) 0- X (X, t) O<=x<=l, t>0,

(3) y(O,t)=y(1, t)=O, t>0,

y(x, O)= Oo(X),
Oy

(x, 0) qto H[0, l], t L2[0, l].

Let T1, T2, T3>0 and 0-<_xx2 be given. We will look at three different
observation operators"

(i) ," H[0, ,l] x L[0, l] L2([x,, x2] x [0, T]),
IX ,X2] [0, T

(ii) Y(2" H[0, 1] x L2[0, l] - L2([x,, x2] [0, T2]),

Oy
q,,)

[x ,x2][0,T2]

(iii) W3" H[0, l] x L2[0, l]- L2([x, ,,x2] x [0, T3]),

Oy
q,,)

[Xl*,X2] [0, T3]

THEOREM 2. There exist T, T2, T3>0 such that the operators 1, W2, W3 are
boundedly invertible.

Actually, we will find, for 1, 2, 3, T* > 0 such that T/> T/* implies that Wi is
boundedly invertible, 1, 2, 3.
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Stated in a more precise way, Theorem 1 claims that there exist constants
K1, K2, K3 > 0 such that for all solutions y of (3), the following inequalities hold:

(4) p \-,/ +o" xx dxdtK1Eo,

(5)
2

p dx dt

dx dt K3Eo,(6)
2

where

(7) eo= o (x,O) + (x,O) ax.

By Poincar6’s inequality, we know that the norm

off is equivalent with the H norm off So inequalities (4), (5), and (6) together are
indeed equivalent to Theorem 2.

Clearly, both (5) and (6) are stronger than (4). When the wave speed c is a
constant, the first inequality (4) is not difficult to prove because in that case, we can
solve y explicitly in terms of the initial functions 0o and 4q. For T sufficiently large,
we can then go back and solve qo and ql in terms of the values of y on [x, x2] x [0, T1].
However, when is not a constant, there are no explicit formulas for y, and the proof
of this inequality is more difficult.

3. Bounded invertibility of the operator I and weak observability results. We start
with the easier result, namely, the bounded invertibility of l. In fact, we will prove
the inequality

1 I0F Ixgl (OY 2

(OY)
2

(8) - p \--/ + cr - dx dt >--_ K T- T* )+Eo

where K and T* are positive constants.
Proofof (8). Let g be any real,value continuous and piecewise C function defined

on [0,/] such that g(O)=g(l)=O. On multiplying the equality p(oZy/ot2)
O/Ox(cr(Oy/Ox)) =0 on both sides by (Oy/Ox) and integrating, we obtain

(9) - g P -x \-/
+-- dx + dx

cr Ox \ Ox/ -’ gP
Ox Ot

 xgO +-7- cr dx +m gpm dx.
O.t Ox Ot

For , [0, 1], let ga be the continuous and piecewise.. C solution of the differential
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equation

ga, gx 1_
P

g: (0)=0.

on [Xl, x2],

on [0, l]\[xl, x2],

For A 0, we clearly have go<= 0 on [0, 1]. Hence go(l)<= O. For A 1, gl >= 0 on [0, 1]
and g > 0 on [x, x2]. So g(l)>0. But gx(l) depends continuously on A. So there
exists A [0, 1) such that g (l) 0.

On (x,, x2),

d
dx

(gxP g’xP+ gxP < AP

and

dx 0- 0-2 0-

On [0,/]\[x,, x2],

dx(gp)<=(A-1)p and
0-

Hence by (9), we obtain

Ix’ ( (OY)
2 (0y)2) I ( (OY :z

o<= A p dx+ (X-l)

0 fr oy oy
+ gap dx.

Ot Jo Ox Ot

Therefore,

f
2 (Oy)2(10) P \/ xxX2

Note that for any t,

Here,

+0-

f/ (0..)
2

(OxY)
2

0 L OyOy
dx >-_ (1- h p +0- dx gp-- dx.

ot ox ot

Oy Oy
gAP dx

Ox Ot

ML (OY) 2

(OY)
2

-MEo (by conservation of energy).

M=max {gx(X)(p(X)/0-(X)) 1/2". O<=X<=

Hence, integrating (10) from =0 to T, we have

fotfx’ (OY) 2

(OY)
2

P \-/ +0- -x dx dt

(1 h p + dx dt 2MEo

((1 A) T- 2M)Eo (by conservation of energy).
So (8) holds with K 1-h and T=2M/(1-A). U
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Remark. When c(x)=(tr(x)/p(x)) /2 is constant, it is not hard to see that 1-
A(x2-x)/l and M=max {(x-x)x, (x2-x)(l-x2)}/(cl). Hence

2
T* max {x, l- x2}

C

2
=-x distance from the set [x, x2] to the boundary points {0, I}.

C

In this case, we have a simple physical interpretation for T*. Since waves travel with
speed c on the string, T* is the largest length of any period of time during which a
signal can stay entirely outside the interval [x, x2].

Also, in this case (with c=constant), K=(x-x)/l. So inequality (10) is
equivalent to

dx dt >-_ T--maXc {x l- x2 Eo.

Letting x2-*’ x, we see that the inequality

llor (Ot)
2 (Oy) 2

1( 2 )(11) - p + r \x/ dt >= T-- max {xl l- Eo

holds, giving us another observability result. In fact, we can show that the above
inequality holds even for variable c, with, of course, different constants.

However, we can easily give counterexamples (for some x) such that neither of
the inequalities

(12)
2 P (x, t) dt >-_ K2Eo

nor

ifof )2(13) - o" (x, t) dt >= K3Eo

holds for any T> 0, no matter how large. Actually, we can show that these inequalities
cannot hold for any x[0, l]. The validity of (12) and (13) is related to pointwise
control problems (see [4]).

Next, we will establish two weak observability results. These results prepare the
way for the stronger inequalities (5), (6), which we will prove in the next section.

PrtOPOSlTION 3. Let T* be such that (8) holds. Then for T2 > T* the operator 2
is one to one.

Proof. We first note that in the proof of (8), the boundary conditions y(0, t)=
y(l, t)= 0 are only used to guarantee that energy is conserved. Since energy is also
conserved for any boundary condition y(0, t) a, y(l, t) =/3, a,/3 being constants, the
same inequality (8) holds for solutions of the wave equation satisfying these boundary
conditions.

Let us now suppose that for some pair of initial functions (Oo, O), we have
2((0o, 1))=0. This means that the solution y of (3) satisfies

0__y= 0 on [x,, x2] [0, T2],
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where T2 > T*. It follows that O/Ox(r(Oy/Ox)) p(OZy/Ot2) 0 on [Xl, x_] x [0, T2].
Hence y(x, t)= el(t)+ c2(t)p(x) there, where p’(x) 1/r(x). Because Oy/Ot=O, el, c2
must be constants. Then defining

yl(X, t) y(x, t) el- c2p(x),

we see that Yl is also a solution of the wave equation with boundary conditions

yl(O, t) -Cl Yl( l, t) --c c2p( l).

So by the remark we have just made, (8) holds for y Yl. Hence- P
\ ot / +’\-x/ dxdt

>= K T2- T* )+ - P Ot

Because the left-hand side vanishes, we must have

Oyl(x, O) Oyl(x, O)
0

Ot Ox

+r dx.
Ox

on [0, l].

Hence

Oy(x, O) Oyl(x, O)
thl(x) 0 on [0, 1]

ot Ot

and

Oy(x, O) Oyl(x, O) c2 c2
ox ox (x) (x)"

So Oo(X)= y(x, O)=-c2p(x)+ c3, c3 a constant. But y(0, 0)=y(1, 0)=0. This implies
that c2 c3 0. Hence 00(x) 0 on [0, l]. So we have (00, qq) (0, 0). It follows that

2 is one to one. [3

PROPOSITION 4. There exists T*3 such that g(3 is one to one whenever T3 >-- T*3.
Proof Let Y(3((6o, 6l))=0. Then the solution y of (3) satisfies

0---Y=0 on[xl,x2]x[0, T3].
Ox

Hence

Therefore

Ot2 p OX

y(x, t) Cl(X)t + C2(X) on [xl, x2] x [0, T3].

Because Oy/Ox 0 on Ix1, x2] x [0, T3], it follows that cl, c2 are constants. By (8), we
then have

1 ion; f, (0)2 (0_.xy)
2

K T3 T* )+Eo<=- p + r dx dt

(14)
m-- r3(x2 X1)C21
2

where m sup {p(x): 0 <_- x <_- l}. On the other hand, applying PoincarCs inequality and
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using conservation of energy again, we have

lfo’ \-/(0Ya (0Y)2xx+,,

>-_-m dx
2

(15)

----m (Clt-Fc2.)2(x2-x1)
2

for 0_-<t=< T3, where ml =min{lo’(x)]: x[0,/]}. Eliminating Eo from (14) and (15),
we obtain (we may assume T3 > T*)

()2 mT3cl(1/+ 2)2<
kin1( T3- T*

for all 0-<_ _-< T3. Note that

minc2 o_-__t-<r3max (clt+ c2)2= ()2.
So

<--
kml( T3- T*I )"

Hence

(16) c T3 T T T3 <-0.

Let T*3 1/2(T* +/T*12+(16ml-/kmTr2)). Then T3* > T3 implies

()2 4m
(17) T T* T km

> O.

From (16) and (17), we see that we must have c =0. SO oy/ot=O on [x, x2] [0, T].
Since T3 > T*, by the previous proposition, qo q 0. Hence we have proved that
3 is one to one. [3

4. Bounded invertibility of act’2 and g3. We will now prove the following more
difficult inequalities:

lforf’2 (0)
2

(18)
2

p dx dt KeEo,

lIoTfxl (0)
2

(19)
2

dx dt KEo.

We note that the lehand side of (8) is the total energy of y on [x, x]x[0, T],
whereas that of (18) and (19) are, respectively, the total kinetic energy and the total
potential energy of y on [Xl, x] x [0, T]. So if we are able to show that the difference
between the total kinetic energy and the total potential energy on [x, x] x [0, T] is
"small" in an appropriate sense, then (18)and (19) will follow from (8). This is, in
fact, true when x 0 and x and is what is known as equipartition of energy:

,;o io p - dxdt KEo,
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where K is a constant independent of y and T. Unfortunately, we are not able to prove
such an inequality when 0 and are replaced, respectively, by arbitrary xl and x2.
However, we will borrow some ideas from the method of proof of the equipartition
of energy. The first step of our proof is the following lemma.

LEMMA 5. There exist constants KI and K2 such that for any Xo [0, 1 ], any T> O,
and any solution y of (3), we have

l for (Oy(x’ t)) 2

(Oy(xo, t))
2

+ tr(Xo) dt <-_ (K1T+ K2)Eo.(20)
2

p(Xo)
Ot Ox

(21)

Proof. We multiply the equation

POt2 -x tr =0

on both sides by x(Oy/Ox). Integrating from x 0 to x Xo, rearranging, and integrating
by parts, we obtain

+ (Xo)
2

p(Xo)
Ot Ox

(22)
2Io otlo oxo,

1 d oy d o Oy Oy- Tx xo +Tx
oy

dx + xo dx.

Similarly, multiplying (20) by (l-x)Oy/Ox, integrating from X-Xo to x-l, and
rearranging, we obtain

(23)
-2 (l-xo) p(Xo)

Oy(xo, t) 2

+ tr(Xo)
Ot Ox

l fx d( (oy] 2

d(_)(trOY]-X x p \"/
+"x Ox/

Ioo Oy Oy+-- x)p dx.
ot ox Ot

Hence, combining (22) and (23), we have

+(Xo)
2

p(Xo)
Ot Ox

ljph(t)2 (x)2 fo’+of2 Ot

(24)
oy oy

dx
Ox Ot

where

h(x)

f(x)
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and

Let

and

x on [0, Xo],
r(x)

l- x on[xo, l].

M1 max {max {h(x),f(x)}: O<=x < l}

M=max O<_x<=l wherec(x)=\p(x)]
Then by integrating (24) from 0 to T, we obtain

2
p + dx dt + 2M2Eo

This proves (20) with K M/21 and K2 2M2/1.
Next, we give an estimate for the difference between the kinetic energy and the

potential energy, as we do when proving the equipaaition of energy. We show that
the integral of the difference is less than a small term involving the total energy and
other terms involving the integral of y2 (not involving the derivatives of y).

LEMMA 6. Let y be a solution of (3) and let

(25) O= p - dx.

en we have for any e > O,

( rx -x’ Io I IDINM coth 2S: ,Y(x’t):dxdt
1

y(x, 0): + y(x, T) ax(26) +2e ,

+ Kr+2Tcoth 2e: ] Eo

where Kr and M are constants independent of e. Kr may depend on

Proofi Multiplying the equation

=o

by y and integrating, we have

o= y axat

forfc2rOY
2 (OY2

fxc: Oy t=Tfor Oy X=X’
P X/ -X/ dx dt + py dx y dt

t=O
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Hence D 12 + I2 where

and

Oy
11 py-- dx

r .oy
dt12 ry

Ox

Let e > 0. For any t, we have

’2 0y-x

where

Hence

(27)

t=T

t=0

Also,

X1

--+ ep dx<=--2- e

<-- M1 y2 dx + eEo

M, sup {Ip(x)’/21" 0-<_ x <- 1}.

II < Ml (2eE+l lxc2

2e
y(x, 0) + y(x, T)2 dx

1 flt( (Oy(x /,))2 (y(x2(28) I2<-- M2 e o’(x,)
\ Ox’ +or(x2)

\ ’1
+- (y(x,, t) + y(x2, t)2) dt

where M2 sup {(x)/2: 0x/}. The first term on the right-hand side can be esti-
mated using Lemma 5. For the second term, we note that for any e > 0,

(29) y(x, t)z+ y(x2, t)2 N coth
2e

y(x,t)2+ e
k

dx.

The above inequality follows from a special case of the Trace Theorem. The explicit
constants can be obtained by the calculus of variations. Hence

’ ) (x t)y(x, + y dt
o

)N coth
2e 2 ] y(x, dx dt + e rM3o

where M3 max {(x)-/2:0 N x N r}.
It follows from (28), Lemma 5, and the above inequality that

h N M2 z K T+K+ 2TM3 coth o
(30)

+ coth
\ 2e2 ] -- y(x, /)2 dx dt

Combining (27) and (30), we obtain the desired inequality.
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We are now ready to prove (5) and (6). Recall that we have already proved

(8) p \-/ + r xx dx dt >= K(T- r)+Eo.

It follows that we have

(31) p

and

dx dt >- K( T- T* )+Eo-JDI

(O x)(32) tr dx dt >- K T T* +Eo DI

where D is as defined in (25). Let T> T*. Let e > 0 be sufficiently small so that

Me KT + 2T coth
2e 2

<- K T TI*).

It follows from Lemma 6 that

IDI<-K(T-T*)Eo+Cl y(x,O)2+y(x, T)2dx+c2 y(x,t)2dxdt,

where c=M/2e and c2=M/E coth((x2-x)/2e2). Hence (31) and (32) imply,
respectively, that

f0T Ix2 (0)
2 IX2p dx dt + c y(x, O) + y(x, T)2 dx

(33)

fo ;x+c2 y(x,t dxdteK(T-T)Eo
and

tr dx dt + c y(x, 0)2 + y(x, T) dx

(,34)

+c2 y(x, dxdt>=-K(T- T*)Eo.

We introduce the operator. , H[0, 1] x [0, t] ([Xl, x] x [x,, x]) x ([x,, x] x [0, T])

on the space of initial states by

(4, 0)=(Y(’, 0), x/ Y( ", t), v/ Y)

We claim that is compact. Let 1:E1 L2[xl, x2], 2:E1 --> L2[x, x2], and 3 E -->

L2([Xl, x2] x [0, T]) be defined, respectively, by

3(d, ) y.
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It suffices to show that i, 1, 2, 3, are compact. Denote the imbedding from H[0, 1]
into L2[0, l] by . Then .. is compact. Because 1 where is the projection
mapping (th, b) to b, is compact. Let 6e be the mapping carrying (y(., 0),
Oy(., O)/x) to (y(., T), Oy(., T)/Ox). By conservation of energy, 6e is an isomorphism
from E1 onto itself. Because .2"o,t5/9, -2 is compact. Let :E-+
H([0,/]x[0, T]) be defined by qa(b, b) =y. By conservation of energy and Poin-
car6’s inequality, cg is continuous. Let ,, be the embedding from H’([0, l] x[0, T])
into L2([0, l] x [0, T]). Then is compact. Because 3 =,, d, 3 is compact. Hence

is indeed compact, inequalities (33) and (34) imply, respectively, the following
inequalities’

(35)

and

(36)

K
Mill (d, ,)11+ (, )11->--( T- T)II(d, O)ll

K
M=II3(, )11=+ (,, 0)11=-(T T*)II(4,, ,)11 =,

where

M max (l(x)l: x <-_ x <_- x) > 0,

M2 max {l(x)l: x <_- x_-<x> 0

and we have used the equivalent norm

I1(, 0)11 I’ /11= dx

for the space H[0, l] x L2[0, l]. We then invoke the following result of functional
analysis. We include its proof for completeness.

THEOREM 7. Let X, Y, and Z be Hilbert spaces, and let A X--> Y, K X Z be
bounded linear operators. Suppose A is injective, K is compact, and there exists a constant
rn > 0 such that

(37) Ilmxll 2 + IIKxll 2 >- mllxll 2 for all x X.

Then A is boundedly invertible. In other words, there exists a constant m > 0 such that

for all x X.
Proof. If A is not boundedly invertible, then we can find a sequence {x,}, IIx. 1

for all n, such that

lim Ilax. 0,

Without loss of generality, we may assume that xn converges weakly to some X.
Now IIAxll , being a convex function in x, is weakly lower semicontinuous. Hence

A: = lim inf Axn 2 0.

Because A is injective, this implies g 0. Since K is compact, we then have

lim Kx, Kg O.
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Putting x x, in (37), we have

Ilax.ll=/llgx.ll )-> mllx.II =-- m for all n.

Letting n o, we conclude that 0 >= m, which is a contradiction. Hence A is boundedly
invertible.

Now we let T2* T*. By Proposition 3, 2 is injective if T> T2*. Since (35) holds,
by Theorem 7 we conclude that 2 is boundedly invertible. This proves (5). Finally,
we let T3* be such that the conclusion of Proposition 4 holds so that 3 would be
injective. Note that we actually have T3* > T*. Hence for T> T3*, (36) holds and hence
)3 is, by Theorem 7, boundedly invertible. This completes the proof of inequalities
(5) and (6).

5. From observability to controllability, in this section, we will prove the controlla-
bility results from the observability results. The duality relation between controllability
and observability for distributed parameter systems was first noted by Dolecki and
Russell [1]. Lions [4] developed it into the Hilbert Uniqueness Method (HUM). As
we will see, the bounded invertibility of 2 and 3 gives us, respectively, the two exact
controllability results in Theorem 1 with different regularity assumptions on the control
function u.

The method of our proof is new. It is based on a relationship between a control
problem and a corresponding minimization problem associated with its adjoint system.

Let us consider the following control system.
PROBLEM (I).

tr +u, t>O, O<--x<-l,POt Ox

z(x, o)
(38) z(x, 0) 0, O<=x<-l,

Ot

z(O,t)=z(l,t)=O, t>O.

Given (b,qbl)H[O,l]L[O,l], find uL([xl,x][O, T]) such that z(x, T)=
b(x), (Oz(x, T)/Ot)= dp(x), O<=x <- I.

The following minimization problem is related to the above problem.
PROBLEM (I’). Minimize

Jl(0, 01) = p dx dt Od/ ck + o’-x --x dX

where

02y O(cr O<--<.x<--l, t>O,POt OX

Oy(x, T)
(39) y(x, T)= bo(X), d/l(x), O<=x<= l,

Ot

y(O, t)=y(ce, t)=O, O<_t<_T.

(O, O 1) H[0, l] x L2[0, l] E
THEOREM 8. Ifproblem (I’) has an optimal solution (d/, d/), then u--pOy/Ot on

[Xl, x2] x [0, T] solves problem (I).
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Proof If (qo, i]/1) is an optimal solution ofproblem (I’), then for any pair
El, we have

(40)

O= lim
1
(jl(to e,qo 1 A- e/’)- Jl(t, tl))

e-,0 E

IoI IoO___wO__Ydxdt_ Prd+ dx dxP ot ot

where w satisfies

P Ot2 --OX t>0,

(41) w(x, r)= n(x), ow(x, r)
ot

n’(x), 0 <= x <-_ l,

w(O,t)=w({,t):O,

On the other hand,

0 [’t OzOw OzOw
jOt o Ot Ot Ox Ox

p\ot2--+----
oz o2w] ( 02z ow
Ot -0-] +or

OtOx OX

r +u+
ot ot ot ox

O<=t<_T.

02z Ow Oz 02w)+
\

+- dx
Ox 0 tOx

rm+cr-- +udx
Ox Ot Ot Ot

Ow
udx

Ot

dx"f 2 Oy Ow
P ot ot

Integrating from 0 to T, we have

Oz(x, T)
o(x) o----i n’(x)+,(x)

oy ow
dx.

ot Ot

Oz(x, T) drt(x)
Ox dx

Oz 02wox Ox/ dx

(42)

From (40) and (42), we have

" p(x)
o

Oz(x, T)
Ot n (x) + o-(x)

Oz(x, T) dq(x)
Ox dx

Ow Oy
dx dt prl

ot ot

(43)
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Because (r/, r/1) can be arbitrary, it follows that

z(x, )= 6(x), oz(x, ______2) ’(x).
ot

Note that a sufficient condition for problem (I’) to have a solution for any pair
(b, bl) is that the quadratic part of J1 satisfies

(44) - p at >- KII(O, 0’)11

because in that case, J1 would be convex and coercive for any (q, ql). But inequality
(44) follows from Theorem 2 (for T> T2*). This completes the proof of the first part
of Theorem 1 (i= 1 case).

The proof of the second part (i= 2 case) is similar. We consider the following
two problems.

PROBLEM (II). Given (o, q 1) E E2-- L2[0, 1] x H-t[0, 1], find u E U2
L2(0, T; H-l[0,/]); u vanishes outside [x, x2] x [0, T] such that the solution z of (38)
satisfies

TO z x,
z(x, T) 4(x), ---------=" 4,1(x) for x [0, l].

Ot

PROBLEM (II’). Minimize

lforfx2 (x)2 fo oJ2(o, I1) o" dxdt+ pt’dp dx-(qb’, p6 )- to.t]x

where y satisfies (39) and (6o, 6)e H[0,/]x L2[0, l].
THEOREM 9. If problem (I!’) has an optimal solution (o, ), then defining u

L2(0, T; H-l[0,/]) by

;o o,o
(45) (u, v) dt dx dt

Ox Ox

for all v Le(O, T; H[0,/]), u solves problem (II).
Proof If (, ff) is an optimal solution of problem (II’), then similar to the proof

of Theorem 8, we have

fOFfx20yOW fo(46) 0= dxdt+ pn dx-(b
OX OX

where w satisfies (41). Consider the function

pw pz dx
-[o,]x[o,q

where z satisfies (38) with u defined by (45). Then

F’( t) k, OW oz

(u, pw).
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(We may first assume that r/ and r/ are sufficiently smooth and hence w is also
sufficiently smooth so that all the expressions appearing in the above equality make
sense. Then by approximating (r/, r/l) by smooth functions and taking the limit, we
have F’(t)= (u, pw for any (r/, r/1) El.) Integrating from t=0 to T and noting
that F(0)--0, we have

(47)
F(T) (u, pw) dx

Iorlx2oyOwOx Ox
dx dt (by (45)).

Combining (46) and (47), we have

on pzl,= ’ dx <’, on on’ dx.
t=T

Since r/, 7 can be arbitrary, this proves that

Zlt=T dp and

Again, Theorem 2 implies that J2 is coercive for any (,bo, bl) E2 when T> T3*. So
problem (II’) always has an optimal solution, hence by Theorem 9, problem (lI) always
has a solution. This proves the second part of Theorem 1 (i= 2 case).

6. Concluding remarks. We have proved the exact controllability of the one-
dimensional wave equation with locally distributed control. We have introduced a
method for choosing the "right multiplier" for a problem as a solution of an ordinary
differential equation with parameters that depend on the parameters of the system.
Second, we have given a proof for the part in which observability implies controllability
through the introduction of a minimization problem related to the control problem.
For many control problems, we can find similarly related minimization problems. For
readers familiar with the examples of the systems in [4], it should not be a difficult
exercise to write the corresponding minimization for each such problem.
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A SURVEY OF VIABILITY THEORY*
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Abstract. Some theorems of viability theory which are relevant to nonlinear control problems with state
constraints and state-dependent control constraints are motivated and surveyed. They all deal with viable
solutions to nonlinear control problems, i.e., solutions satisfying at each instant given state constraints of
a general and diverse nature.

Some classical results on controlled invariance of smooth nonlinear systems are adopted to the
nonsmooth case, including inequality constraints bearing on the state and state-dependent constraints on
the controls,

For instance, existence of a viability kernel of a closed set (corresponding to the largest controlled
invariant manifold) is provided under general conditions, even when the zero-dynamics algorithm does not
converge.

The concepts of slow and heavy viable solutions are introduced, providing concrete ways of regulating
viable solutions, by closed-loop feedbacks and closed-loop dynamical feedbacks.

Viability theorems also allow the extension of Lyapunov’s second method to nonsmooth observation
functions and the construction of"best" Lyapunov functions. As an application, "fuzzy differential inclusion"
is presented.

Proofs and complements can be found in [Viability Theory, to appear, 1991]. They rely on properties
of differential inclusion (see Differential Inclusions, Springer-Verlag, Berlin, New York, 1984]) and set-valued
analysis, (see [Set-Valued Analysis, Birkhiuser, Basel, 1990]).

Key words, viability, invariance, controlled invariance, set-valued maps, regulation map, differential
inclusion, fuzzy differential inclusion, Lyapunov stability, asymptotic stability, tracking, contingent cone,
contingent derivative of a set-valued map, epicontingent derivative of a function
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54C60, 54C65, 58C06, 58C07, 58C30, 93C15, 93C30

Introduction. Viability theory offers mathematical metaphors of evolution of
macrosystems arising in biology, economics, cognitive sciences, games, and similar
areas.

The mathematical machinery built during the last decade to study the evolution
of such systems appears to be as relevant and useful for solving some problems arising
in nonlinear systems theory as differential geometry.2 This is the reason for this survey
to appear in this journal.

* Received by the editors April 10, 1989; accepted for publication (in revised form) September 26, 1989.
t Centre de Recherches de Math6matiques de la D6cision, Universite de Paris-Dauphine, F-75775 Paris

cx (16), France and International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria.
Existence of viability kernels (and thus, "zero-dynamics") in the general case, explicit construction

offeedbacks and dynamical feedbacks, best Lyapunov functions, asymptotic observability, tracking problems,
decentralization, decomposition properties, are problems that can be solved by the tools provided by viability
theory with at least the same success than those of differential geometry.

Tangent spaces to manifolds being replaced by contingent cones to any subsets, vector fields by
differential inclusions on a viability domain, local existence by global existence, zero dynamics by viability
kernels, Lie brackets by Frankowska’s second order variations (see [62], although set-valued analysis
techniques applied to controllability, observability and optimal control are not surveyed here). Viability
theory and set-valued analysis offer new tools to control scientists.
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Before presenting the main theorems constituting viability theory in the framework
of control systems (which was no part of the motivations of viability theory until
recently), we briefly explain the origins and purposes of viability theory.

Two main, common features of such macrosystems hold our attention:
their lack ofdeterminism, i.e., the possibility at each moment of several evolutions

which depend upon the state, or even the history of the evolution of the state of the
system up to this moment (les jeux ne sont jamais fairs).

This lack of determinism covers many different aspects: it may be due to "uncer-
tainty’’3 to "disturbances" and "perturbations" ofvarious kinds, otto errors in modeling
due to the impossibility of a comprehensive description of the dynamics of the system.

In several instances, the dynamics of the system are related to certain "controls,"
which, in turn, are restricted by state-dependent constraints (closed loop systems).

the presence of viability constraints that the state of the system must obey at
each time.

In a nutshell, the main purpose of viability theory is to explain possible viable
evolutions of a system, determined by given nondeterministic dynamics and state con-
straints, to reveal the concealed feedbacks which allow the system to be regulated and
provide selection mechanisms for implementing them.

Contrary to optimal control theory, viability theory does not require a single
decision-maker (or actor, or player) to "guide" the system by optimizing an intertem-
poral optimality criterion.4 Furthermore, the choice (even conditional) of the controls
is not made once and for all at some initial time, but they can be changed at each
moment to take into account possible modifications of the environment of the system,
allowing therefore for adaptation to viability constraints.

Finally, by not appealing to intertemporal criterion, viability theory does not require
any knowledge of the future (even of a stochastic nature). This is of particular
importance when experimentation6 is not possible or when the phenomenon under
study is not periodic. For example, in biological evolution as well as in economics
and other such macrosystems, the dynamics of the system disappear and cannot be
recreated. Hence, forecasting or prediction of the future are not the issues addressed
by viability theory.

However, the conclusions of the viability theorems allow us to reduce the choice
of possible evolutions, or to single out impossible future events, or to provide explana-
tion of some behaviors which do not fit any reasonable optimality criterion.

Indeed, an interesting consequence of this lack of dependency on the future is
that viability theory replaces the familiar paradigm of selection procedures of available
evolutions via intertemporal optimization criteria7 that depend on the future. It does so

No a priori knowledge of an underlying probability law on the state of events is made. Fuzzy viability
provides models where the available velocities can be ranked through a membership cost function to take
into account that some velocities are more likely to be chosen than others.

The choice of which is open to question even in static models, even when multicriteria or several
decision makers are involved in the model.

Many macrosystems do involve myopic behavior; while they cannot take into account the future, they
are constrained by the past.

Experimentation, by assuming that the evolution of the state of the system starting from a given initial
state for a same period of time will be the same whatever the initial time, allows one to translate the time
interval back and forth, and, thus, to "know" the future evolution of the system.

Which can be traced back to Sumerian mythology which is at the origin of Genesis: one Decision-Maker,
deciding what is good and bad and choosing the best (fortunately, on an intertemporal basis, thus wisely
postponing to eternity the verification of optimality), knowing the future, and having taken the optimal
decisions, well, during one week...
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by using selection procedures of viable evolutions obeying, at each moment, state
constraints which depend upon the present or the past. (This does not exclude anticipa-
tions, which are extrapolations of past evolutions, constraining in the last analysis the
evolution of the system to be a function of its history).

Nonetheless, selection through viability constraints may not be discriminating
enough. Starting from any state at any instant, several viable solutions may be imple-
mented by the system, including equilibria, which are stationary evolutions.

Thus further selection mechanisms need to be devised and/or discovered. We
advocate here a third feature to which a selection procedure must comply:

Inertia Principle: which states that "the controls are kept constant as long as
viability of the system is not at stake."

Indeed, as long as the state of the system lies in the interior of the constraint set
(the set of states satisfying viability constraints), any regularity control will work.
Therefore, the system can maintain the control inherited from the past. This happens
if the system obeys the inertia principle. Since the state of the system may evolve while
the control remains constant, it may reach the viability boundary with an "outward"
velocity. This event corresponds to a period of crisis: To resolve the crisis, the system
must find another regulatory control such that the new associated velocity forces the
solution back inside the constraint set.

Naturally, there are several procedures for selecting a viable control when viability
is at stake. For instance, the selection at each instant of the controls providing viable
evolutions with minimal velocity is an example that obeys this inertia principle. They
are called "heavy" viable evolutions9 in the sense of heavy trends in economics.

Heavy viable evolutions can be viewed as providing mathematical metaphors
for the concept of punctuated equilibrium introduced in paleontology by Elredge and
Gould.

On the mathematical side, viability theory contributed to vigorous renewed interest
in the field of "differential inclusions," as well as an engine for the development of a
differential calculus of set-valued maps. Indeed, as it often occurs in mathematics,
these techniques can be relevant to control theory of nonlinear systems: the viability
property has been studied independently in control theory under the name of controlled
invariance in the framework of the geometric approach linear and smooth nonlinear
systems, and the concept of viability kernel is closely related to the concept of zero-
dynamics studied by Byrnes and Isidori [27]-[30] and Krener [77].

The mathematical tools designed to answer the above questions can replace the
standard geometrical tools and bypass many regularity requirements required on the
constraint sets, which need only to be closed (or on the Lyapunov functions, which
can be taken only lower semicontinuous).

We proceed in this introduction with a description of what we think are the most
convincing results.

It may be observed that the state of the system becomes increasingly robust the further it is from the
boundary of the constraint set. Therefore, after some time has elapsed, only the parts of the trajectories
furthest away from the viability boundary will remain. This fact may explain the apparent discontinuities

("missing links") and hierarchical organization arising from evolution in certain systems.
When the controls are the velocities, heavy solutions are the ones with minimal acceleration, i.e.,

maximal inertia.
lo One can say that by now the main results of functional analysis have their counterpart in what can

be called Set-Valued Analysis. Only the results needed in this book will be presented. An exposition of
Set-Valued Analysis can be found in the monograph [8] by J.-P. Aubin and H. Frankowska.
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Consider the evolution of a control system with (multivalued) feedbacks:

i) x’(t) =f(x(t), u(t))
ii) u( t) U(x( t))

where the state x(.) ranges over a finite-dimensional vector-space X and the control
u(.) over the finite-dimensional vector-space Z. The set-valued map U:XZ may
be called an "a priori feedback." It describes the dependence of admissible controls
on the actual state of the system. Such dependence arises quite often in many problems,
and appears as soon as state constraints have to be satisfied, as the Viability Theorem
will show later.

A solution to this system is a function x(t) satisfying this system for some
control u (t).

State constraints (here also called viability constraints) are described in the last
analysis by a closed subset K of the state space: The state of the system must remain
in K; outside of K, the state of the system is no longer viable.

A subset K enjoys the viability property (for the control system described by f
and U) if for every initial state Xo K, there exists at least one solution to the system
starting at Xo which is viable in the sense that

Vt[0, T], x(t)K.

For linear control systems, this property has been introduced under the name of
"controlled invariance" in [11], [90], [120]. See also [117]-[119] for instance. This
property has then been extended to nonlinear systems in [26]-[30], [70], [75], [74],
[116].

The first task is to characterize the subsets having this property, without solving
the system and checking the existence of viable solutions for each initial state.

We cannot be content with constraint sets that are smooth manifolds, because
inequality constraints would thereby be ruled out. We shall choose from among the
many ways of "implementing" the concept of "tangency" for any subset K the one
suggested by Bouligand fifty years ago: a direction v is contingent to K at x K if it
is a limit of a sequence of directions vn such that x + hnvn belongs to K for some
sequence hn - 0+. The collection of such directions, which are in some sense "inward,"
constitutes a closed cone TK(x), called the contingent cone 11 to K at x.

We then associate with the dynamical system (described by f and U) and with
the state constraints (described by K) the (set-valued) regulation map RK. It maps any
state x to the subset R(x) consisting of controls u U(x) which are viable in the
sense that u U(x) and f(x, u) is contingent to K at x.

if, for every z K, there exists at least one viable control u R (x), we then say
that K is a viability domain of the control system with dynamics described by both f
and U.

The Viability Theorem we mentioned earlier holds true for a rather large class of
systems: beyond some weak technical conditions, the only severe restriction is that,
for each state x, the set of velocities f(x, u) when u ranges over U(x) is convex. This
includes control systems which are affine with respect to the control. From now on,
we assume that the systems under investigation satisfy these assumptions.

The basic viability theorem states that for such systems, a closed subset K enjoys
the viability property if and only if K is a viability domain.

11 Replacing the linear structure underlying the use of tangent spaces by the contingent cone is at the
root of Set-Valued Analysis.
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Interesting subsets such as equilibrium points, trajectories of periodic solutions
and the limit sets of solutions are examples of closed viability domains. Actually,
equilibrium points , which are solutions to

f(), ) 0 where U())

are the smallest viability domains, the ones reduced to a single point, since, being
stationary states, their velocities f(, ) are equal to zero.

There exists a basic and curious link between viability theory and general equili-
brium theory: every compact convex viability domain contains an equilibrium point. This
statement is a version of the Brouwer Fixed Point Theorem, the cornerstone of nonlinear
analysis, which finds here a particularly relevant formulation (viability implies
stationarity).

When a closed subset K is not a viability domain, we can state that there exists
a largest closed viability domain contained in K. This domain will be denoted Viab (K)
and called the viability kernel12 of K. It may be empty.

Contrary to the case of smooth systems and linear constraints, the existence of
the viability kernel (largest controlled invariant manifold) is not obtained through the
zero-dynamics algorithm, a generalization by Byrnes and Isidori [27]-[30] of the
Basile-Marro and Silverman algorithms devised in the linear case. We shall provide
a simple counterexample which shows that this algorithm does not converge to a

viability kernel when inequality constraints are involved.
The Viability Theorem also provides a regulation law for regulating the system in

order to maintain the viability of a solution: When K is a viability domain, the viable
solutions x(t) are regulated by viable "open loop controls" u(t) through the regulation
law:

for almost all t, u(t) R:(x(t)).

The multivaluedness of the regulation map is an indicator of the "robustness" of
the system: The larger the set Rt(x(t)), the larger the set of disturbances which do
not destroy the viability of the system!

Observe that solutions to a control system are solutions to the differential inclusion
x’(t)F(x(t)) where, for each state x,F(x):=f(x, U(x)) is the subset of feasible
velocities. Conversely, a differential inclusion is an example of a control system in
which the controls are the velocities (f(x, u)= u and U(x)= F(x)).

Observe also that whenever feasible controls obey state-dependent constraints, it
can no longer be regarded as a family of differential equations parametrized by an
open loop control u(.), but as a differential inclusion.

As far as servomechanisms are concerned, the question arises of how to build
mechanisms for selecting a closed loop control (x) in Ri((x) for each state x. Such a
single-valued map t(. allows the system to automatically associate with any state
x(t) the control (x(t)) which produces a viable solution through the differential
equation

x’(t) -f(x(t), (x(t)))

An interesting example of closed loop control is provided by slow solutions. These
are the solutions regulated by the controls u(x) R(x) with minimal norm. Despite
the fact that u( is not necessarily continuous, we shall prove that the above differential

12 This concept of viability kernel happens to be a quite efficient mathematical tool.
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equation still has solutions. For instance, when the controls are the velocities of the
system, viable solutions with velocities of minimal norm are implemented by such a
selection procedure. This is why they are called slow solutions.

Such selection procedures by closed loop controls answer many engineering control
problems, but are not adequate for another type of system arising in economics and
biology which motivated viability theory, where we are looking for selection procedures
which obey the inertia principle: Keep the controls constants as long as the viability is
not at stake.

We can reformulate it by saying that if the derivative of a viable open loop control
u(. is equal to 0, this control is the one which is chosen and implemented.

This raises several questions. The first one concerns controls which are smooth
(at least, differentiable almost everywhere). This issue may even be relevant for
engineering problems, where the lack of continuity of controls u(t):= (x(t)) can be
damaging.

The second one deals with the problem of differentiating the regulation law.
The third is to find selections (called dynamical closed loops) of the derivative of

the regulation map, with which we obtain a system of differential equations which
govern the smooth viable evolution of both the state and the control.

We see at once that this program requires a concept of derivative of a set-valued
map and a chain rule formula in order to differentiate the regulation law.

Viability Domain K

crisis

second
punctuated

X\K

equilibrium
phae

ris

Trajectory of Heavy Viable Solution

DANGER

cnntrtl
second punctuated.............. equmvrlum phae

:risis # crisis

Puntuatat Eol’tm o] the Ctmtrob. Starting from with the constant control uo, the
solution evolves in K until at time t, (first pnditd tm’urn p/rose) the velocity

f(z(t),u(t) is outward. Then cr/#/ happens during which controls also evolve
slowly possible) to maintain viability, until time where the velocities f(z(t),u())

contingent to K during the #evond launduatd ,m’m

FIG. 1. Heavy viable solutions.
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The idea behind the construction of a differential calculus of set-valued maps is
simple and goes back to the very origins of differential calculus, when Pierre de Fermat13

introduced, in the first half of the seventeenth century, the concept of a tangent
to the graph of a function: the tangent space to the graph of a function f at a point
(x,y) of its graph is the line of slope f’(x), i.e., the graph of the linear function
u--f’(x)u.

Consider now a set-valued map F: X Y, which is characterized by its graph (the
subset of pairs (x, y) such that y belongs to F(x)): The contingent cone to the graph
offat the point (x, y) ofits graph is the graph ofthe contingent derivative ofthe set-valued
map F at a point (x, y). The contingent derivative is a set-valued map from X to Y
denoted by DF(x, y). Contingent derivatives keep enough properties of the derivatives
of smooth functions to be quite efficient. They enjoy a rich calculus, and they enable
such basic theorems of analysis as the inverse function theorem to be extended to the
set-valued case.

The chain rule is an example of a property which is still true in this framework"
Assume that we start from a "smooth state," producing a viable solution x(t) and a
viable control u(t) which are both differentiable (almost everywhere). Then we can
"differentiate" the regulation law and obtain a "first order regulation law":

foralmostall t, u’(t) DR(x(t), u(t))(x’(t)).

Heavy viable solutions are then the ones which are regulated by the controls whose
velocities have minimal norm in the set

DR(x(t), u(t))(f(x(t), u(t))).

For instance, when the control is the velocity of the system, we choose in this way
viable solutions with acceleration of minimal norm, i.e., accelerations with maximum
inertia. This is why these solutions are called heavy solutions. This point of view leads
to the introduction of viability niches N(u) associated with controls u. These are
(possibly empty) subsets consisting of states x such that the zero velocity belongs to
DR:(x, u)(f(x, u)). In such a viability niche N(u), the state can evolve while being
regulated by the stationary control u.

Although we shall present viability theory in the framework of control systems
with state constraints and state-dependent control constraints for the readers of SIAM,
we recall that these problems were also motivated in the first place by systems arising
in "soft sciences" such as economics and biology.

In economics, when we can replace the fundamental Walrasian model4 of resource
allocations by a decentralized dynamical model in which the role of the controls is

13 Fermat was one of the most important innovators in the history of mathematics. Newton himself
recognized explicitly that he got the hint of the differential calculus from Fermat’s method of building
tangents devised half a century earlier. Fermat was also the one who discovered that the derivative of a

(polynomial) function vanishes when it reaches an extremum. (This is Fermat’s Rule, which remains the
main strategy for obtaining necessary conditions of optimality, from mathematical programming to calculus
of variations to optimal control.) Fermat also was the first to discover the "principle of least time" in optics,
the prototype of the variational principles governing so many physical and mechanical laws. He shared
independently with Descartes the invention of analytic geometry and with Pascal the creation of the
mathematical theory of probability. He was on top of that a poet, a linguist, a lawyer and, if it has to be
recalled, the author of the Fermat Theorem.

14 Most static models of mathematical economics are based in the last analysis on general equilibrium
theory. They can be reformulated in a dynamical framework by changing slightly the underlying dynamical
system. (Walrasian "tStonnement," which does not produce viable solutions, except when they reach an

equilibrium.)
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played by the prices5 (as well as coalitions of consumers, interest rates, and so forth),
and the regulation law can be interpreted as the behavior of Adam Smith’s invisible
hand choosing the prices as a function of the allocations. It is possible that among
these viable prices, the market (or even a planning bureau) would have a tendency to
choose heavy solutions.

In the case of cooperative games, coalitions of players may play the role of
controls" each coalition acts on the environment by changing it through a dynamical
system. Here, a coalition is described by the players’s rate of participation, positive
or negative, according to their cooperative or anticooperative behavior. The regulation
law provides in this case an explanation of the evolution of coalitions and alliances.

In the noncooperative framework, viability constraints describe power relations
among players, each player associating with each state a subset in which the other
players are confined to choosing their own states. Strategies take the role of controls,
and we often observe that the inertia principle is operative. The choice of viable
strategies (or of their velocities) can be made, at each instant and in a myopic way,
by standard game theoretical mechanisms, in such a way to comply with the inertia
principle.

In sociology, a society can be interpreted in this framework as a set of individuals
subject to viability constraints which maintain an organization needed for their survival.
Laws and other cultural codes are then devised for providing each individual with
psychological and economical means of survival as well as guidelines for avoiding
conflicts. These cultural codes play the role of controls. The regulation law may
represent the evolution of cultural codes for maintaining society’s viability, the evol-
ution of which obeys the inertia principle. This may account for the small number of
them and the robustness of religions, ideologies, and scientific paradigms, and explain
the phenomena of massive conversions to new cultural codes.

In cognitive sciences, the state describes the sensory-motor couple of the cognitive
system, while the control translates into what could be called a conceptual control
(which is the synaptic matrix in neural networks). The state and control are related
by a pattern recognition mechanism which recognizes the (variations of) the perception
of the action of the automaton on the environment. The regulation law provides a
learning process that goes beyond simple stimulus-response processes: it associates
with each sensory-motor state a subset of (learned) conceptual controls. It seems that
in this case again, the inertia principle is at work.

Outline of the survey. We concentrate our survey on the basic viability theorems
in the framework of differential inclusions ( 1) and of the regulation of control systems
in 2.

We chose to give an example of applications of viability techniques to issues
related to the asymptotic behavior of solutions to differential inclusions, such as
solutions increasing along a preorder, comparison of solutions, tracking problems and
asymptotic stability. We devote in particular a short section to differential inclusions
the right-hand side of which are "fuzzy sets," assigning to each admissible velocity a
membership cost.

We were forced by lack of space to leave aside other important issues such as
time-dependent viability constraints (viability tubes) and their potential use in solving

15 And other fiduciary goods for which the scarcity constraint can be transgressed. Unlike physical
goods, they are limited only by measures dictated by the trust (or, rather, the tolerance) of the agents. Any
disequilibrium that cannot exist in physical goods can then be transferred to the fiduciary goods.
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the target problems, functional viability, where the viability constraints depend upon
the history of the solution, extension of the viability theorem to parabolic partial
differential inclusions and distributed systems, etc.

Viability can be used in differential games as we do in control problems in the
second section of this survey, opening many interesting problems (see [9]).

The connections with problems arising in economics, biology, and cognitive
sciences are naturally more metaphorical, but interesting enough to motivate many
problems of viability theory.

I. Viability theorems for differential inclusions. In all this paper, X, Y, Z denote
finite-dimensional vector-spaces, except an explicit mention to the contrary.

1.1. The viability property. Let us describe the (nondeterministic) dynamics of the
system by a set-valued map F from the state space X to itself. We consider initial
value problems (or Cauchy problems) associated to differential inclusion

for almost all . [0, T], x’(t) F(x(t))

satisfying the initial condition x(0)= Xo. We have first to agree on what we shall call
a solution to such a differential inclusion.

In the case of differential equations, there is no ambiguity since the derivative
x’(. of a solution x(. to a differential equation x’(t) =f(t, x(t)) inherits the properties
of the map f and of the function x(.). This is no longer the case with differential
inclusions. Hence, we shall look for solutions among absolutely continuous functions.

DErIYITION 1.1 (viability and invariance properties). Let K be a subset of
Dom (F). A function x(. from [0, T] to X is called viable if for all [0, T], x(t) K.
We shall say that K enjoys the local viability property or controlled invariance (for the
set-valued map F) if for any initial state Xo in K, there exist T > 0 and a viable solution
on [0, T] to differential inclusion (1) starting at Xo. It enjoys the global viability property
(or, simply, the viability property) if we can take T .

The subset K is said to be invariant or conditionally invariant under F if for any
initial state Xo of K, all solutions to differential inclusion (1) (defined on the domain
of F) are viable in K.

Remark. We should emphasize that the concept of viability depends only on the
behavior of F on K whereas invariance depends upon the behavior ofF on the domain
Dom F) outside of K.

1.2. Set-valued maps. We unfortunately need to recall some definitions about
set-valued maps which may be known by many readers, who should then skip this
subsection.

DEIIYITIOY 1.2. If X and Y are metric spaces, a set-valued map F from X to
Y is characterized by its graph Graph (F), subset of the product space X x Y defined
by

Graph (F):= {(x, y) X x Y ly F(x)}.

We shall say that F(x) is the image or the value of F at x. A set-valued map is said
to be nontrivial if its graph is not empty, i.e., if there exists at least an element x X
such that F(x) is not empty.

We say that it is strict if all its images F(x) are not empty. The domain of F is
the subset Dom (F) of elements x X such.that F(x) is not empty. The image Im (F)
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of F is the union of the images (or values) F(x) when x ranges over X. The inverse
F-1 of F is the set-valued map from Y to X defined by

x F-(y) if and only if y F(x).
If K is a subset of X, we denote by Fir its restriction to K, defined by

F(x) if x e K
fg if xC_K.

The ball of radius r around K is denoted by Bx or B when there is no ambiguity;
we set Bx(K, r)= K + rBx.

DEFINITION 1.3. A set-valued map F:X Y is called upper semicontinuous at
x Dom (F) if and only if

Ve >0, =:i n > OlVy e Bx(x, n), F(y) Bv(F(x), e)

It is said to be upper semicontinuous on X if and only if it is upper semicontinuous at
any point of Dom (F).

We shall say that a set-valued map F:X-- Y is lower semicontinuous at x
Dom (F) if and only if for all y F(x) and for all sequence of elements xn converging
to x, there exists a sequence of elements yn F(x,) converging to y. It is said to be
lower semicontinuous on X if it is lower semicontinuous at every point x Dom (F).

We shall say that a set-valued map is continuous at x if it is both upper semicon-
tinuous and lower semicontinuous, and that it is continuous if and only if it is continuous
at every point of Dom (F).

We shall say that F is closed if and only if its graph is closed.
Unfortunately, there exist set-valued maps which enjoy one property without

satisfying the other. However, the graph of an upper semicontinuous set-valued map
F:X Y with closed values is closed. The converse is true if we assume that Y is

compact.
Example. Parametrized Set-Valued Maps. Let us consider three metric spaces X,

Y, and Z, a set-valued map U:X--*Z and a single-valued map f: Graph (U) Y. We
associate with these data the set-valued map F:X Y defined by

Vx X, F(x) := {f(x, u)}, t(x).

Let us assume that f is continuous from Graph (U) to Y.
If U is lower semicontinuous, so is F.

--If U is upper semicontinuous with compact values, so is F.

1.3. Contingent cones. We provide the definition of the contingent cone with which
we shall characterize the viability property. We denote for that purpose by d/ (y) the
distance of y to K, defined by dl(y):= infz/ Ily-zll.

DEFINITION 1.4. Let K be a nonempty subset of X and x belong to K. The
contingent cone to K at x is the set

TK(X) { v X lim inf
dK(x + hv) }h-O+ h

0

We shall say that a subset K of X is sleek at x K if the set-valued map

K x’--* T: (x’) is lower semicontinuous at x.

We shall say that it is sleek if and only if it is sleek at every point of K.
We see easily that for all x Int (K), TK(x) X (the converse is true when K is

sleek at x) and that when K is a differential manifold, the contingent cone Tl(X)
coincides with the tangent space to K at x.
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TABLE
Properties of contingent cones.

(1) > If K L, then T: (x) Tc(x)
(2) [:> IfKiCX, (i=l,...,n),then

Tur=,:,(x)= U il()T,(x), where I(x):= {ilx K,}
(3) IfKicX,(i=l,...,n),then

TII’,’=,Ki(Xl, ,Xn)C Hi=I TKi(Xi)
(4) Ifgel(x, Y),ifKcX and Mc Y, then

g’(x)(T(x))c Tg()(x) and Tg-l()(x) g’(x)-T(g(x))
(5) If Lc X and M y are closed sleek subsets and fe (X, Y) is a continuously differentiable

map such that the transversality condition f’(x)Tc(x)-T(x)= Y holds true, then

TLnf-’(M)(X)= Tc(x)f’(x)-’T(f(x))

THEOREM 1.5 (tangent cones of sleek subsets). If a closed subset K is sleek at
x K, then the contingent cone is convex.

Any closed convex subset is sleek and its contingent cone TI (x) coincides with the
tangent cone of convex analysis, which is the closed cone spanned by K- x.

We summarize in Table 1 the properties of the contingent cones to subsetg.

DEFINITION 1.6 (viability domain). Let F:XX be a nontrivia116 set-valued
map. We shall say that a subset K c Dom (F) is a viability domain of F if and only if

Vx K, F(x) fl Tic (x) (g

and that it is an invariance domain if and only if

Vx K, F(x) T: (x).

Since the contingent cone to a singleton is obviously reduced to O, we observe
that a singleton {} is a viability domain if and only if : is an equilibrium of F, i.e.,
a stationary solution to the inclusion O F(ff). In other words, the equilibria of a
set-valued map provide the first examples of viability domains, actually, the minimal
viability domains.

Remark. If K is a viability domain of a set-valued map F, the subset

D:= f’l (TIc(X)-F(x))
xGK

is the subset of disturbances of the system which do not destroy the fact that K remains
a viability domain, because K remains a viability domain of any set-valued map
x--->F(x)+d(x) where x-->d(x) maps K into D.

1.4. Statements of the viability theorems. Viability theorems hold true for the class
of nontrivial upper semicontinuous set-valued maps with nonempty compact convex
images (see Definition 1.3). We observe that the only truly restrictive condition is the
convexity of the images of these set-valued maps, since the continuity requirements
are minimal: 7

16 See Definition 1.3 below.
17 But we cannot dispense with it, as the following counter example shows. Let us consider X := R, K :=

[-1, +1] and the set-valued map F:KR defined by F(x) := -1 if x>0, F(0) := {-1, +1} and F(x) := +1
if x <0. Obviously, no solution to the differential inclusion x’(t) F(x(t)) can start from 0, since 0 is not
an equilibrium of this set-valued map!
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THEOREM 1.7 (Local Viability Theorem). Let us consider a nontrivial upper semicon-
tinuous set-valued map F:XX with compact convex images and a closed subset
K Dom F.

Then K is a viability domain if and only if it enjoys the viability property. Actually,
for any initial state Xo K, there exist a positive T and a viable solution on [0, T] to

differential inclusion (1) such that either T=oe or T<oe and
When F =-f is single-valued, this theorem has been proved by Nagumo in 1942

and rediscovered fourteen times since. TM The above set-valued version has been proved
by Haddad in 1981 (see [64]).

Further adequate informationma priori estimates on the growth of F--allow us
to exclude the case when lim sup,_ -_llx(t)ll ee. This is the case for instance when F
is bounded on K, and, in particular, when K is bounded. More generally, we can take
T=eo when F enjoys linear growth: for any x K, supFx)IIVlI<--C(IIXlI+ 1).

We shall call Peano maps the nontrivial upper semicontinuous set-valued maps
with nonempty compact convex images and with linear growth, or equivalently, the
nontrivial closed set-valued maps with convex values and linear growth.

THEOREM 1.8 (Viability Theorem). Let us consider a Peano map Ffrom X to X
and a closed subset K Dom F. If K is a viability domain, then for any initial state

Xo K, there exists a viable solution on [0, ] to differential inclusion (1).
Let us now consider a sequence of closed viability domains of a set-valued map

F and the following stability property: Is the upper limit19 of these closed viability
domains still a closed viability domain?

THEOREM 1.9 (stability of viability domains). Let us consider a Peano map F: X
X. Then the upper limit of a sequence of closed viability domains of F is also a closed
viability domain of F.

Invariance property is characterized by invariant spaces in the case of Lipschitz
maps (with nonconvex values).

THEOREM 1.10. Let us assume that F is Lipschitz on the interior of its domain and
has compact values. Then a closed K Dom F) is invariant by F if and only ifK is an
invariance domain.

Actually, the proof of the viability theorem yields local results. For that purpose,
we need to introduce the "Dubovitsky-Miliutin tangent cone" Di(x) to K, which is
defined by

VDl(X) ifandonlyif::le>0, ta>0 suchthatx+]O,a](v+eB)K

because the complement of the contingent cone Tu(x) to K at xOK is the
"Dubovitsky-Miliutin cone" D:(x) to the closure K of the complement of K.

PROPOSiTiON 1.11. Let us consider a nontrivial upper semicontinuous set-valued
map F X--X with compact convex imag,es. Let K c Dom F) be closed with nonempty
interior and Xo OK. Then each of the following conditions implies the next one:

(i) F(xo) c D: (Xo)
(ii) for any solution starting, from Xo, ZlT>OI/t]O, T], x(t)Int(K)

18 This does not imply that it is true, but stresses the lack of communication. "Everybody wants to
teach, nobody wants to learn," Abel once complained bitterly.

9 When K,, is a sequence of subsets of a metric space X, we say that

li_.SooUp K, := {y Yllif d(y, K,) 0}

is its upper limit. It is the closed subset of cluster points of sequences of elements of K.
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(iii) :l a sequence xn 6OK converging to Xo such that F(xn)c D<(x,).
As a consequence, we obtain the following theorem.
THEOREM 1.12 (Strict Invariance Theorem). Let us consider a nontrivial upper

semicontinuous set-valued map F X---.> X with compact convex images and assume that
the interior K is not empty. If

OK, F(x) DI((X)

then, for any initial state Xo in the boundary OK of K, for any solution to differential
inclusion (1) starting from Xo, there exists T > 0 such that it remains in the interior ofK
on ]0, T].

We denote by 5(x0) orby F(Xo) the (possibly empty) set ofsolutions to differential
inclusion (1) and we call the set-valued map 5 defined by Dom (F)vx->SY(x) the
solution map of F (or of differential inclusion (1)).

THEOREM 1.13 (continuity of the solution map). Let us assume that F" X X is
a Peano map. The solution map is upper semicontinuous with compact images from its
domain to the space c(0, ; X) of continuous functions (supplied with the compact
convergence topology).

DEFINITION 1.14 (viability and invariance kernel). Let K be a subset of the
domain of a set-valued map F’X--->X. We shall say that the largest closed viability
domain contained in K (which may be empty) is the viability kernel of K and denote
it by Viab F(K) or, simply, Viab (K). The largest closed invariance domain contained
in K, which we denote by InVF (K) or Inv (K), is called the invariance kernel of K
(or, for smooth systems, the largest controlled invariant submanifold).

THEOREM 1.15. Let us consider a Peano map F X X. Let K Dom (F) be closed.
Then the viability kernel of K exists (possibly empty) and is the subset of initial states
such that at least one solution starting from them is viable in K.

Let us assume that F is Lipschitz on the interior of its domain and has compact
values. For any closed subset K Int (Dom (F)), there exists an invariance kernel
(possibly empty) ofK. It is the subset of initial states such that all solutions startingfrom
them are viable in K.

The viability kernels may inherit properties of both F and K. For instance, if the
graph of F and the subset K are convex, so is the viability kernel of K. If F is a closed
convex process (i.e., its graph is a closed convex cone) and if K is a closed convex
cone, the viability kernel is a closed convex cone.

In general, viability kernels are not necessarily connected.
Remark. The zero dynamics algorithm has been devised to obtain the viability

kernel of closed subsets defined by equality constraints, i.e., subsets of the form
K :-h-l(0) where h is a map from X to a finite dimensional vector-space Y. It is
shown to converge for linear control systems (see 11], 107]) and for smooth nonlinear
control systems (see [27]-[29]. In this framework, viability property is called controlled
invariance and the restriction of the control system to the viability kernel is called zero
dynamics).

In the general case, let us consider a closed subset K of the domain of a set-valued
map F:XX.

We start with Ko := K and we construct

K Dom (R:o) where Rco(X):= F(x) fl TK(x).

Since the viability kernel Viabe (K) is contained in K and since TL(x)c Tc(x)
whenever K c L, we infer that Viab (K) c K
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Assume that a decreasing sequence of subsets Ki satisfying Viabz (K)c Ki c
Ki_lc K has been defined up to n. We then set RKn(x): F(x)fq Tin(x), define
Kn+l := Dom (R<n) and we observe that ViabF (K)c Kn+l.

Therefore

Viabr (K)c f-) K,.
n--0

The problem is to show that equality holds true. Several requirements have to be met
to solve the problem. The first one is that the subsets K, should be closed. The second
is that the upper limit of the contingent cones TK.(x) is contained in the contingent
cone to the upper limit of the subsets K, (which, in this case, is the intersection of
the decreasing sequence of the subsets K,).

These conditions are not met for finding the viability kernel of K := [0, 1] x R for
the system F(x, v):={v}xcB since Ko={O}xR+t.J]O,I[xRt.J{1}xR_,KI=Ko and
since the viability kernel is shown in Fig. 2.

o

FIG. 2. Viability kernel of [0, 1]xR for F(x, v):= {v} cB.

The viability kernel contains for instance all the limit sets L(x) of the solutions
x(. to differential inclusion (1), defined by

L(x(. )):= f’) cl(x([T, [)).
T>0

THEOREM 1.16. Let us consider a Peano map F X X. Then the limit sets of the
solutions to differential inclusion (1) are closed viability domains.

In particular, the limits of solutions to differential inclusion (1), when they exist, are
equilibria of F and the trajectories ofperiodic solutions to the differential inclusion (1)
are also closed viability domains.

Naturally, if a subsequence x’(tn) converges to 0, then a subsequence x(t,k)
converges to an equilibrium of F. Actually, this statement can be weakened.

THEOREM 1.17. Let us assume that F is a Peano map and that K Dom (F) is

compact. If there exists a viable solution x(. such that

inf
1 Io,>o [Ix’()lld- 0

then there exists a viable equilibrium.



A SURVEY OF VIABILITY THEORY 763

When K is a compact viability domain, then the convexity of either F(K) or of
K implies the existence of a viable equilibrium.

THEOREM 1.18. Let F be a Peano map. If K cDom (F) is a compact viability
domain and if F(K) is convex, then there exists a viable equilibrium.

The following theorem holds.
THEOREM 1.19. Let F:X--X be an upper semicontinuous set-valued map with

closed convex images. IfK X is a convex compact viability domain ofF, then it contains
an equilibrium of F.2

This theorem is equivalent to the Brouwer Fixed Point Theorem,21 as well as many
other statements of nonlinear analysis, such as the Kakutani-Fan fixed point theorem
and the versatile and efficient Ky Fan Inequality. It states that if K is a compact
convex subset and if q:X x X- R is a function satisfying

(i) Vy K, x- q(x, y) is lower semicontinuous

(ii) Vx K, y- q(x, y) is concave

(iii) VyK, q(y,y)-<0

then, there exists : K, such that for all y K, q(), y)_-<0.

2. Regulation of control systems.
2.1. Viable control systems. We now translate the viability theorems into the

language of control theory. From now on, we introduce the state space X, the constraint
space Y, the control space Z and a feedback set-valued map U X---> Z associating with
any state x the (possibly empty) subset U(x) of feasible controls when the state of
the system is x. In other words, we assume that the available controls of the system are
required to obey constraints which may depend upon the state.

The dynamics of the system are further described by a (single-valued) map
f:Graph (U)-X which assigns to each state-control pair (x, u)Graph (U) the
velocity f x, u) of the state.

Hence the set F(x):= {f(x, u)}u t(x is the set of available velocities to the system
when its state is x.

We shall assume from now on that f(x, u):-c(x)+ g(x)u, where g(x) (Z, X)
are linear operators, i.e., that the system is affine with respect to the control. We also
consider the case when the viability domain K := h-l(M) is defined by more explicit
constraints through a map h from X to the constraint space Y:

The evolution of the system (U,f) is governed by the differential inclusion

(i)
(2) {(ii) for almost all t, x’(t) =f(x(t), u(t))

where u(t) U(x(t)).

When U(x)= Z for all x K and when M {0}, we recognize the traditional
control systems.

The regulation map RK is the set-valued map defined by"

,, (x):= {u U(x)lh’(x)g(x) 7",(h(x))- h’(x)c(x)}.

20 Actually, this theorem remains true for any Hausdorff locally convex topological vector-space and
in particular, weak topologies.

21 See [4, Chap. II] for a proof based on differential geometry.
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(3)

THEOREM 2.1. Let us assume that the dynamics satisfy

(i) V(x, u) Graph (U), f(x, u) =: c(x) + g(x)u
(ii) Graph (U) is closed and the images of U are convex

(iii) c" Dom (U)-> X is continuous

(iv) g: Dom (U) -> (Z, X) is continuous and bounded

(v) c and U have linear growth

and that the constraints verify

(i) M is a closed sleek subset of Y
(ii) h is a (gl-map from X to Y
(iii) Vx K :- h-(M), Y:- Im (h’(x))- TM(h(x))
(iv) Vx h-(M), :qu U(x) such that

h’(x)g(x)u TM(h(x))- h’(x)c(x).

Then K is a viability domain of the control system and the viable solutions are regulated
through the regulation law

(4) for almost all t, u(t) RK(x(t))

and the regulation map R( has compact nonempty convex values.
When U is assumed to be lower semicontinuous, an additional uniform transver-

sality condition implies that the regulation map is also lower semicontinuous.
We can also characterize viability domain through a dual formulation.
PROPOSITION 2.2. We posit the assumptions of Theorem 2.1. Then K := h-l(M) is

a viability domain if and only if
’V(x, q) Graph (NM),
.dM.(x, q):= inf, u(,,)(q, h’(x)g(x)u + h’(x)c(x))<= O.

For instance, this condition holds true when the following abstract Walras law holds true:

(i) Z=Y, U(x)cN,(x)
(ii) Vq NM(X), (q, h’(x)c(x)+ h’(x)g(x)q) <=O.

Example. Let us mention that the calculus on the contingent cones can be trans-
ferred to a calculus of regulation maps. For instance, a quite common type of viability
constraints are of the form K := L h-(M) where we assume that

(i) KaX andMc Yaresleek
(ii) h isa l-mapfromXto Y
(iii) VxK:=Lfh-I(M), Y=h’(x)T(x)-TM(h(x)).

Indeed, K is the inverse image of the product L M by the map I h from X to X Y.
This is a particular case of a more general situation when both X, Y, and Z are

product spaces. It may then be convenient to provide once and for all the explicit
formulas of the regulation map when this is the case. Let us assume namely that

(i) X:="im=lXi
(5) (ii) Y :=

(iii) g := Hk=lZk W(x) := Hk= Uk(X)
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and that

(6)

(7)

(i)
(ii)
(iii)

Vx X, gi(x) := Ek= gi Uk,

C(X) := (C(X), C,(X)), g(x) := (gl(x), g,(x))
h ((xi).Vx X, h;(x) := i=

Therefore, K is the intersection of the subsets Kj defined by"

Let us introduce the matrix B(x):= h’(x)g(x) of operators

B h’ (x)gk ( Uk, Y)
i----1

and the vector b(x):= h’(x)c(x) of components

b(x)= hf(x)c,(x).
i=1

Then the regulation map RK is defined by

(i) RK(X jm=IRKj(X where
(8) (ii) R(x) {u =(u,,... Ul) e ’k=lUk(x)

1Buk T(2" h}(x,)-b(x))}k= i=1

such that

and has compact values. If it is strict, then K is a viability domain of the system, and
thus, for any initial state Xo K, there exist one viable solution xi(" on [0, [ starting
at Xo to the system of differential equations

i, x’i(t) ci(x (t)) + E gi(x(t))uk(t)
k=l

and open loop controls regulating this viable solution x(. in the sense that the regulation
law

j, for almost all t, u(t) RKj(x(t)).
We shall say that the regulation map is decoupled if

Z=Y and Vj#k, By=0.
In this case, each partial viability domain K; is regulated by the ith component

of the control in the sense that

2.2. Closed-loop controls and slow solutions. Viable solutions to the control system
(2) are regulated by the viable controls whose evolution is governed by the regulation
law (4). Continuous single-valued selections rt of the regulation map RK are viable
closed-loop controls, since the Viability Theorem states that the differential equation

X’(t) f(x(t), rK(x(t)))
enjoys the viability property.

Indeed, by construction, K is a viability domain of the single-valued map x K -->

f(x, r:(x)).
So, we have to investigate under which assumptions there exists a continuous

selection of the regulation map" the answer is given by Michael’s Theorem" Let R be
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a lower semicontinuous set-valued map with closed convex values from a compact space
X to a Banach space Y. It does have a continuous selection (see [8, Chap. 9], for instance).

Hence, we obtain the existence of viable continuous closed-loop controls.
PROPOSVWOy 2.3. We posit the assumptions of Theorem 2.1. If R(.) is lower

semicontinuous, the control system can regulate viable solutions in K by continuous closed
loop controls.

This result is not useful in practice, since Michael’s selection theorem does not
provide constructive ways to find those continuous closed-loop controls. Therefore,
we are tempted to use explicit selections of the regulation map RK, such as the minimal
selection R defined by

(9) R(x) := {u
yRK(X)

It is continuous only when R is continuous with closed convex images. Unfortunately,
there is no hope to have, in general, continuous regulation maps R (as soon as we
have inequalities constraints). Hence this minimal selection is not necessarily con-
tinuous when the regulation map is only lower semicontinuous. But we can still prove
that by taking the minimal selection R:, the differential equation

(10) x’( t) f(x( t), R(x( t)))

does enjoy the viability property.
DEFNVVON 2.4. The solutions to the differential equation (10) are called slow

viable solutions to the control system (2).
THEOREM 2.5. We posit the assumptions of Theorem 2.1. IfR(. is lower semicon-

tinuous, then the control system has slow viable solutions.
The reason why this theorem holds true is that the minimal selection is obtained

through a "strict convex" selection procedure defined in the following way:
DEFINITION 2.6 (selection procedure). A selection procedure of a set-valued map

R X-. Y is a set-valued map SR: X Y

(i)
(ii) the graph of Se is closed

and the set-valued map S(R):x--,S(R(x)) is called the selection of R.
It is said convex-valued or simply, convex if its values are convex and strict if

moreover
’qx Dom (R), S(x) f3 R(x) {s(R(x))} is a singleton.

We can easily provide such examples of selection procedures through optimization,
thanks to the Maximum Theorem.

PRor’osTON 2.7. Let us assume that a set-valued map R X--* Y is lower semicon-
tinuous with compact values. Let V:Graph (R)--R be continuous. Then the set-valued
map S defined by:

SR(x):= {ye Yl V(x, y)<= inf V(x, y’)}
y’R(x)

is a selection procedure of R. Consequently, if the graph of R is also closed, so is the
graph of the selection S(R) equal to:

S(R(x)) {y R(x)] V(x, y) <- inf V(x, y’)}
y’cR(x)

or through game theoretical methods, as in the following proposition.
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PROPOSITION 2.8. Let us assume that a set-valued map R X Y is lower semicon-
tinuous with convex compact values. Let q: X Y Y- R satisfy

(i) q(y, y’) is lower semicontinuous

(ii) V(x, y) X Y, y’- q(x, y, y’) is concave.

(iii) V(x, y) X Y, q(x, y, y) _-< 0.

Then the map SR associated with q by the relation

SR(X):={y YI sup q(x,y,y’)<--O}
y’R(x)

is a selection procedure of R. If R is also closed, so is the selection map x- S(R(x)).
This is the fact that the minimal selection is obtained through a strict convex

selection procedure which matters. So, Theorem 2.5 can be extended to any strict
convex selection of the regulation map R/.

THEOREM 2.9. We posit the assumptions of Theorem 2.1. Let SR,, be a strict convex
selection of the regulation map R:. Then the single-valued selection s(R: defined by

Vx K, s(RK(x)) := RK(x) SRK (X)

is a viable closed loop control.
Strictness of the selection procedure is needed only to obtain single-valued closed

loop controls. Otherwise, the proof of the above theorem provides the existence of
"selected" regulation laws, associated to selections of the regulation map.

THEOREM 2.10. We posit the assumptions of Theorem 2.1. Let SRK be a convex
selection of the regulation map R. Then, for any initial state Xo K, there exist a viable
solution starting at Xo and a viable control to the control system (2) which are regulated
by the selection S(R of the regulation map RI, in the sense that

for almost all t>-O, u(t)eS(R)(x(t)):= R(x(t))S(x(t)).
2.3. Smooth solutions. There are many reasons for looking for "smooth viable

controls," which are absolutely continuous instead of being measurable. Too much
oscillation of the controls can damage them, for instance. Also, as we stated in the
introduction, we need to differentiate viable open loop controls to implement the
"inertia principle."

We can obtain smooth viable solutions by setting a bound to the growth to the
evolution of controls. For that purpose, we shall associate to this control system and
to any nonnegative continuous function u q (x, u) with linear growth22 the system of
differential inclusions

(i)
(11)

(ii)
x’(t)=f(x(t), u(t))
u’(t) (x(t), u(t))B.

We observe that any solution (x(.), u(. )) to the system of differential inclusions (11)
which is viable in Graph (U) is a smooth solution to the control system (2). This
property is a viability requirement" the state-control pair has to be viable in the graph
of U. Hence, we need to study the contingent cone to the graph of a map, which leads
us to the concept of contingent derivative of a set-valued map.

Which can be a constant c, or the function cllull, or the function (x, u)- c(llull+llxll+ 1).
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2.4. Contingent derivatives.
DEFINITION 2.11. We introduce the contingent derivative DF(x, y) of a set-valued

map F:X---> Y, defined by
(12) Graph (DF(x, y)):= TGraph(t(X, Y).
We shall say that F is sleek at (x, y) Graph (F) if and only if

(x’, y’)Graph (DF)(x’, y’) is lower semicontinuous at (x, y)

and it is sleek if it is sleek at every point of its graph.
Naturally, the contingent derivative is a closed convex process whenever F is

sleek at (x, y).
When F:=f is single-valued, we set Df(x):= Df(x,f(x)).
If f is differentiable around a point x K, then the contingent derivative of the

restriction is the restriction of the derivative to the contingent cone:

D(fli)(x) D(flK)(X,f(x))
Actually, this follows from the following useful proposition.
PROPOSITION 2.12. Let f be a differentiable operatorfrom an open subset f c X to

Y, M X---> Y be a set-valued map and L XM c y be a closed subset. Let F X--, Y
be the set-valued map defined by:

F(x):={f(x)-M(x) whenWhenXLxe!L.
Let (x, y) belong to the graph of F.

Assume that either L or M is sleek. Then its contingent derivative is equal to

DF(x, y)(u) := {(x)u DM(x’f(x) y) when u

when u TL(x).

Another familiar instance of set-valued maps is the inverse of a set-valued map
F (or even of a noninjective single-valued map). We can easily compute its contingent
derivative because a contingent derivative of the inverse of a set-valued map F is the
inverse of the contingent derivative:

D(F-)(y, x)= DF(x, y)-.
These contingent derivatives are characterized by adequate limits of difference

quotients.
PROPOSITION 2.13. Let (x, y) Graph (F) belong to the graph of a set-valued map

F X Y. Then

(13)
v belongs

i
DF(x, y)(u) ifind only if
F(x + hu’)- y

liminf d v, =0
hO+,u’u h

They enjoy chain rule formulas and the Inverse-Function Theorem can be extended
to set-valued maps, as shown in the following Theorem.

THEOREM 2.14 (Inverse Function Theorem). Let us consider a closed set-valued
map F x---> Y and a solution Xo to the inclusion F(xo) Yo. Let us assume that F is sleek
at (Xo, Yo). If DF(xo, Yo) is surjective, then Yo belongs to the interior of the image of F
and F is pseudo-Lipschitz in the sense that there exist a positive constant A and neighbor-
hoods of x and 7/" ofy such that

Yl, y2 , F-l(y,) I’1 c F-’(y)+,XIIY,-Y211vBx.
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In particular, by taking F:=fl: and F:=f, we obtain the constrained Inverse
Function Theorem, as follows.

THEOREM 2.15 (Constrained Inverse Function). Let us consider a (single-valued)
continuous map f X Y, a closed subset K c X and an element Xo of K.

We assume that f is continuously differentiable at Xo, that K is sleek at Xo and that
f’(xo)T:(Xo)= Y. Then f(xo) belongs to the interior off(K) and the set-valued map
yf-(y) fq K is pseudo-Lipschitz around (f(xo), Xo).

If K := X is the whole space and iff’(xo) is surjeetive, we infer that the set-valued
map y..,f-l(y) is pseudo-Lipschitz around (f(xo), Xo).

2.5. Regularity Theorem. We thus deduce the following Regularity Theorem.
THEOREM 2.16. Let us assume that the control system (2) satisfies

(i) Graph U) is closed
(14)

(ii) f is continuous and has linear growth.
Then for any initial state Xo Dom (U) and any initial control Uo U(xo), there exists a
smooth state-control solution (x(.), u(.)) to the control system (2) starting at (Xo, Uo)
if and only if the set-valued map U satisfies

V(x, u) Graph U), DU(x, u)(f(x, u)) fq q(x, u)B # .
The assumption of the above theorem is too strong, since it requires that it is

satisfied for all controls u of U(x) (so that we have a solution for every initial control
chosen in U(xo)). We may very well be content with the existence of a smooth solution
for only some initial control in U(xo).

So, we can relax the problem by looking for the largest closed set-valued feedback
map contained in U in which we can find the initial state-controls yielding smooth
viable solutions to the control system. This amounts to studying the viability kernels
of Graph (U) for the system of differential inclusions 11].

DEFINITION 2.17 (q-growth regulation map). Let us consider the control system
(2). We shall denote by R := R the set-valued map whose graph is the viability
kernel of Graph (U) for the system of differential inclusions (11). We shall call it the
p-growth regulation map to the control system (2). If -= 0, we shall say that Rv is
the punctuated regulation map.

We thus deduce from Theorem 1.15 the following result on the existence of smooth
viable solutions.

THEOREM 2.18. Let us assume that the control system (2) satisfies
(i) Graph(U) is closed,

(15)
(ii) f is continuous and has linear growth.

Then for any initial state Xo6 Dom (R) and any initial control Uo6 R(xo), there exists
a smooth state-control solution (x(.), u(. )) to the control system (2) starting at (Xo, Uo),
where the solution x( is regulated by a control u (.) starting at Uo through the q-regulation
law:

(16) Vt>-_O, u(t) g(x(t)).

Remark. We observe that the graph ofR is also the viability kernel of the graph
of the regulation map Rt and that the regulation maps R are increasing with q.

It will be interesting to relate the states and the controls which provide zero
velocities.

DEFINITION 2.19 (punctuated equilibrium). We associate with any control u its
viability niche N (u), which is the (possibly empty) closed subset of states x Dom (R
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such that O6DR(x, u)(f(x, u)). When q =-0, the viability niche N(u) is called the
viability cell of u. A control u is called a punctuated equilibrium if and only if its
viability cell is not empty.

We remark at once that the set-valued map u-- N(u) is the inverse of x--, R(x)
and that when ql--> q2 -> 0, we have

N(u)c N,(u)c N2(u).

The case when the growth is equal to 0 is particularly interesting, because it
determines areas where the evolution of the control is constant: The viability cell of
a control u is the viability kernel of u-l(u) for the differential equation x’(t) =f(x(t), u)
parametrized by the constant control u. Naturally, when the viability cell ofa punctuated
equilibrium is reduced to a point, this point is an equilibrium.

2.6. Heavy solutions. Let us consider a control system U, f) which has a nontrivial
q-growth regulation map R for some nonnegative function q.

PROPOSITION 2.20. The smooth viable state-control pairs (x(. ), u(. )) to the control
system (2) are also solutions to the system of differential inclusions

(i) x’(t):f(x(t), u(t))
(17)

(ii) u’(t) DR(x(t), u(t))(f(x(t), u(t))).

The question arises of whether we can construct selection procedures of the control
component of this system of differential inclusions. It is convenient for this purpose
to introduce the following definition.

DEFINITION 2.21 (dynamical closed loops). We shall say that a selection g of the
contingent derivative of the 0-regulation map R, in the direction f(x, u) defined by

(18) V(x, u)Graph (R), g(x, u) DR(x, u)(f(x, u))

is a dynamical closed loop.
The system of differential equations

(i) x’(t)= f(x(t), u(t))
(19)

(ii) u’(t)- g(x(t), u(t))

is called the associated closed loop differential system.
Therefore, a dynamical closed loop being given, we can select smooth viable

state-control pairs as solutions to systems of ordinary differential equations.
Such solutions do exist when g is continuous (and if such is the case, they will

be continuously differentiable). But they also may exist when g is no longer continuous,
as we saw when we built closed-loop controls. This is the case for instance when
g(x, u) is the element of minimal norm in DR(x, u)(f(x, u)).

In both cases, we need to assume that the right-hand side of this system is lower
semicontinuous with closed convex images.

We begin by deducing from Michael’s Theorem the existence of continuously
differentiable viable state-control solutions.

THEOREM 2.22. We posit the assumptions of Theorem 2.18. If
(i) the domains of U and R coincide

(20) (ii) the q-regulation map R is sleek

(iii) sup,,, Graph (R,)IIDR,(x u)[
then there exists a continuous dynamical closed loop. The associated closed-loop differential
system regulates continuously differentiable viable state-control solutions.
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Since we do not know constructive ways to build continuous dynamical closed
loops, we shall investigate whether some explicit dynamical closed loop provides closed
loop differential systems which do possess solutions by using selection procedures of
(x, u)’---> DRS(x, u)(f(x, u)).

The simplest example of dynamical closed loop control is the map g associating
with each state-control pair (x, u) the element of minimal norm of DR(x, u)(f(x, u)).

DEFINITION 2.23 (heavy viable solutions). We denote by g(x, u) the element of
minimal norm of DR(x, u)(f(x, u)). We shall say that the solutions to the associated
closed loop differential system

(i) x’(t) =f(x(t), u(t))
(ii) u’(t) g(x(t), u(t))

are heavy viable solutions to the control system (U, f).
THEOREM 2.24 (heavy viable solutions). Weposit the assumptions ofTheorem 2.22.

Then for any initial state-control (Xo, Uo) in Graph (R), there exists a heavy viable
solution to the control system (2).

Remark. Let (x(.), u(.)) be a heavy viable solution to the control system. We
observe that if for some t, the solution enters the viability niche N (u(q)); the control
u(t) remains equal to u(q) as long as x(t) remains in the viability niche N*(u(q)).
Since a viability niche is not necessarily a viability domain, the solution may leave it.

If for some t > 0, u(t) is a punctuated equilibrium, then u(t)= uq for all => t
and x(t) remains in the viability cell N(u(t)) for all >- ty.

The reason why this theorem holds true is that the minimal selection is obtained
through the strict selection procedure defined in (2.6), which is convex. This is this
fact that matters. So, Theorem 2.24 can be extended to any strict convex selection of
the set-valued map DR(x, u)(f(x, u)).

For simplicity, we set

G(x, u):= DR(x, y)(f(x, u)).

THEORE 2.25. We posit the assumptions ofTheorem 2.18. LetS be a strict convex
selection of the set-valued map G. Then, for any initial state (Xo, Uo) graph (U),-there
exists a viable state-control solution starting at (Xo, Uo) to the associated closed loop
differential system

(i) x’(t) =f(x(t), u(t))
(ii) u’(t) s(DR(x(t), u(t))(f(x(t), u(t)))

:= G(x( t), u( t)) [’] St3,(x( t), u( t)).

Strictness of the selection procedure of the set-valued map G is needed only to
obtain closed-loop systems of differential equations. Otherwise, the proof of the above
theorem provides the existence of solutions to closed loop systems of "smaller"
differential inclusions.

THEOREM 2.26. We posit the assumptions of Theorem 2.18. Let S, be a convex
selection of the set-valued map G. Then, for any initial state (Xo, Uo) graph (U), there
exists a viable state-control solution starting at (Xo, Uo) to the associated closed loop
system of differential inclusions

(i) x’,((t) f(x(t), u(t))
(21) (ii) u t) S(DR(x(t), u(t))f(x(t), u(t)))

:= G(x(t), u(t))S(x(t), u(t)).
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2.7. Example: One-dimensional affine system. Let us illustrate the above consider-
ations by the simplest dynamical economic model (one commodity, one consumer).
See Fig. 3.

p (o)

ab

FIG. 3. Evolution of a heavy solution.

Let K := [0, b] the subset of scarce commodities. Assume that the consumption
rate of a consumer is equal to a>0, so that, without any further restriction, its
exponential consumption will leave the viability subset [0, b]. Hence its consumption
is slowed down by a price which is used as a control. In summary, the evolution of
its consumption is governed by the control system

for almost all >_- 0, x’(t) ax(t) u(t), where u(t) >- 0

subject to the constraints for all _-> 0, x(t) [0, b].
The a priori feedback map U is defined by U(x):= R/. Hence the regulation map

is given by the formula

R:(0)={0}, R:(x)=R+ when x]0, b[ and R:(b)=[ab,+o[.

Its graph is not closed, and its closure is the graph of U, equal to [0, b] x R+.
We see at once that the viable equilibria of the system range over the equilibrium

line u--=-ax. Viability is guaranteed each time that the price u(t) is chosen in R(x(t)),
i.e., u =0 when x=0 (and thus, the system cannot leave the equilibrium because
negative prices are not allowed "to start" the system) and u >-ab when x b, so that
the price is large enough to stop or decrease consumption.
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Assume that the system obeys the inertia principle" it keeps the price constant as
long as it works. Take for instance Xo> 0 and Uo [0, axo[. Then the consumption
increases23 and when it reaches the boundary b of the interval, the system must switch
very quickly to a velocity large enough to slow down the consumption fast enough for
the solution to remain in the interval [0, b].

But there is a bound to growth of prices (and inflation rates), so that we should
set a bound24 on price velocities: [u’(t)[-< c. We shall associate with such a bound a
"last warning" to modify the price: there is a level of consumption after which it will
be impossible to slow down the consumption with a velocity smaller than or equal to
c to forbid it to increase beyond the boundary b. We thus consider the c-bounded
state-control solutions, which are the solutions to the system

(i) for almost all >= 0, x’(t) ax(t)- u(t)(22)
(ii) and -c_-< u’(t)-<_ c

which are viable in Graph (U).
We introduce the functions p and p defined on [0, c[ by

(i)
(ii)

: e-aU/cpc(u):=(c/a2)( -l+(a/c)u)u2/2c
p(u) := -cea("-ab/c/ a + ua + ca2

and the functions r and r defined on [0, b] by

(i) r(x)=u if and only ifu=p(x)
(ii) r(x)=0 ifx[0, p(0)] (p(O)=(c/aZ)(1-e+a2b/))
(iii) r(x) u if and only if u p(x) when x [p(0), b].

PROPOSITION 2.27. The c-bounded growth regulation map of system (22) is

defined by

(23) Vx [0, b], R(x)=[r(x),r(x)].
Let us build the heavy solutions. We shall investigate the cases when the initial

control Uo is below or above the equilibrium line.
Consider the case when x0>0 and the. price Uo[r(xo), axo[. Since we want to

choose the price velocity with minimal norm, we take u’(t) 025 as long as the solution
x(. to the differential equation x’= ax Uo yields a consumption x(t) < p(Uo). When
for some time tl, the consumption x(t)= p(uo), it has to be slowed down. Indeed,
otherwise (x(t + e), Uo) will be below the curve p and in this case, any solution starting
from this situation will eventually cease to be viable. Therefore, prices should increase
to slow down the consumption growth. The idea is to take the smallest velocity u’ such
that the vector (x’(t), u’) takes the state inside the graph of R: they are the velocities
u’>= x’(tl)/p(uo). By construction, it is achieved by the velocity of x( ), which is the
highest one allowed to increase prices. Therefore, by taking

x(t) := x(t) := e(’-q)(x( tl) Uo/ a ca2) -+- c( tl)/ a + Uo/ a + ca

and u(t):=Uo+C(t-t) for t[t,q+(ab-uo)/C], we get a solution which ranges
over the curve x(t)= p(u(t)). This is a heavy solution because, for the same reason
as above, the smallest velocity of the price (which is unique along this curve) is chosen.

23 It is equal to (eat(aXo Uo) + Uo/a).
24 We take q(x, u)-=. c.
25 And realize in this case the dream of economists, which, despite the teachings of history, are looking

for constant prices and commodities.
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According to the above differential equa.tion, we see that x(t) increases to b where it
arrives with velocity 0 and the price increases linearly until it arrives at the equilibrium
price ab. Since (b, ab) is an equilibrium, the heavy solution stays there: we take x(t)= b
and u(t) 0 when >- t + Uo/c. So we have built a viable solution starting from (Xo, Uo).

Consider now the case when Uoe [axo, r(xo)], where we follow the same construc-
tion of the heavy viable solution. We start by taking u’(t) --O, and thus, u(t)= Uo, as
long as the solution x(.) to the differential equation x’-ax-Uo, which decreases,
satisfies x(t)> p(Uo). Then, when X(tl)=p(Uo) for some tl, we take

x(t) x( t) := e( tl)(X( t,) Uo/ a + c/ a2) c( tl)/ a + Uo/ a c/ a2

and u(t) := Uo- c(t- tl) for [tl, tl + Uo/c] in order to avoid leaving the viability
kernel. Finally, for >- t + Uo/c, we take x(t) 0 and u(t) 0.

Remark. We observe that for any x e ]0, b[,

lim r(x)- lim r(x) ax, lim r*(x) O, and lim r(x) +0.
cO+ cO+ c(x3

In other words, the graph of R starts from the equilibrium line when c=O and
converges in some sense to the graph of U when c- +.

3. LyalmnOV and energy functions. We consider a differential inclusion (1) and a
time-dependent function w(. defined as a solution to the differential equation

(24) w’(t) -qg(w(t))

where ’R+R is a given continuous function with linear growth. This function
is used as a parameter in what follows.

Our problem is to characterize functions enjoying the #-Lyapunov property, i.e.,
nonnegative extended functions V:X-. R/ kl {+c} (such that Dom (V) Dom (F))
satisfying

(25) Vt->_0, V(x( t)) <= w( t), w(0)= V(x(O))

along at least one solution x(. to the differential inclusions (1) and (24). Since this
condition amounts to saying that the epigraph of V enjoys the viability property for
the differential inclusion

(x’(t), w’(t)) G(x(t), w(t)) where G(x, w):= F(x){-q(w)}

we can apply the Viability Theorem. This allows us to use lower semicontinuous instead
of differentiable functions among the candidates to satisfy this Lyapunov property.
We have to translate the fact that p(V) is a viability domain of G, and for that
purpose, to study the contingent cones to the epigraphs. This leads us to the concept
of contingent epiderivatives of an extended function.

3.1. Epiderivatives of real-valued functions. Let us then consider an extended
real-valued function V: X R tA {+} whose domain

Dom (V) := {x X V(x) < +}

is not empty. (Such a function is said to be proper in convex and nonsmooth analysis.
We shall rather say that it is nontrivial to avoid confusion with proper maps.) They
are characterized by their epigraphs

p(V) := {(x,) x tl V(x) -< }.

An extended function V is lower semicontinuous (respectively, convex) if and only if
its epigraph is closed (respectively, convex).
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The main examples of extended functions are the indicators OK ofsubsets K defined
by 0K(X):= 0 if x K and +0o if not. They are lower semicontinuous if and only if
the subsets are closed and convex if and only if the subsets are convex. One can regard
the sum V+ 0K as the restriction of V to K.

DEFINITION 3.1 (epiderivatives). Let V: X-RU {+0o} be a nontrivial extended
real-valued function and x belong to its domain. We shall say that the function D,(V)(x)
from X to R U {+0o} U {-0o} defined by

D,(V)(x)(u):= liminf (V(x+hu’)-V(x))/h
h-O+,u’-

is the contingent epiderivative of V at x in the direction u.
The function is said to be contingently epidifferentiable if its contingent epiderivative

is nontrivial in the sense that it never takes the value -0o and has at least one finite
value. It is said to be episleek if and only if its epigraph is sleek.

Naturally, the contingent epiderivative coincides with the directional derivative
(V’(x), u) when V is Gteaux ditterentiable.

If V is continuously differentiable around a point xe K, then the contingent
epiderivative of the restriction is the restriction of the derivative to the contingent cone:

[(V’(x), u) ifu T:(x)
Dt( VIK)(x)(u) :=

+0o if not.

We observe the following proposition.
PROPOSITION 3.2. Let V :-- R {+0o} be an extended function and x belong to its

domain. Then the contingent cone to the epigraph of V at (x, V(x)) is the epigraph of
the contingent epiderivative of V at x: pD V(x)= Tp(v) (x, V(x)). Furthermore,

{D V(x)(u), Dt V(x)(u)}c DV(x)(u)c [D V(x)(u), D+ V(x)(u)].
These subsets are equal when V is episleek.

3.2. Lyapunov functions.
DEFINITION 3.3 (Lyapunov functions). We shall say that a nonnegative contin-

gently epiditterentiable extended function V is a Lyapunov function of F associated
with a function (.):R+--R if and only if V is a solution to the "contingentz6

Hamilton-Jacobi inequalities"

(26) VxDom (V), inf DV(x)(v)+q(V(x))<-NO.
vF(x)

THEOREM 3.4. Let V be a nonnegative contingently epidifferentiable lower semicon-
tinuous extendedfunction and F X -.X be a Peano map. Then V is a Lyapunovfunction
of F associated with qb(. if and only iffor any initial state xo Dom (V), there exist
solutions x(. to (1) and w(. to (24) satisfying property (25).

Example. W-monotone set-valued maps. Let W: X- R/ (_J {+0o} be a nonnegative
extended function. We say that a set-valued map F is W-montone (with respect to )
if

(27) Vx, y, VuF(x),vF(y),DW(x-y)(v-u)+4)(W(x-y))<-_O.
We obtain, for instance, the following consequence.
COROLLARY 3.5. Let W be a nonnegative contingently epidifferentiable extended

lower semicontinuousfunction and F X Xbe a Peano map such that F is W-monotone

26 We refer to [55], [56], [61] and the references of these papers for a thorough study of contingent
Hamilton-Jacobi equations arising from optimal control and comparison with viscosity solutions introduced
by Crandall and Lions (see [41]).
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with respect to some oh. Let be an equilibrium ofF(i.e., O F()). Then, for any initial
state Xo, there exist solutions x(. and w(. satisfying

It>--O, W(x(t)-2)<= w(t).

2,In particular, for W(z):-llzll we find the usual concept of monotonicity (with
respect to b):

Vx, y, Vu F(x), v F(y), (u v, x- y)>- ch(1/2llx- yll2).

we can reformulate the Viability Theorem in the following way.
COROLLARY 3.6. Let F X--X be a Peano map. A closed subset K enjoys the

viability property if and only if its indicator i is a solution to the contingent equation

inf Dr:(x)(v)=O.

Let us also introduce attractors in the following definition.
DEITIO 3.7. We shall say that a closed subset K is an "attractor" of order

a => 0 if and only if for any xo e Dom (F), there exists at least one solution x(. to the
differential inclusion (1) such that

(28) Vt>=O, d(x(t))<=d(xo)e-’.

In the following corollary we can recognize attractors by checking whether the
distance function to K is a Lyapunov function.

COROLLARY 3.8. Assume that F is a Peano map. Then a closed subset K c Dom (F)
is an attractor ifand only if thefunction d (.) is a solution to the contingent inequalities:

VxDom (F), inf DrdK(x)(v)+adK(x)<-O.
veF(x)

Remark. With an extended nonnegative function V, we can associate affine func-
tions w- aw-b for which V is a solution to the contingent Hamilton-Jacobi
inequalities (26).

For that purpose, we consider the convex function b defined by

b(a):= sup inf DrV(x)(v)+aV(x)).
Dom(F) vF(x)

Then it is clear that V is a solution to the contingent Hamilton-Jacobi inequalities

’q’xDom (F), inf DrV(x)(v)+aV(x)-b(a)<-O.
vF(x)

Therefore, we deduce that there exists a solution to the differential inclusion satisfying

Vt>--0, V(x(t)) <- V(xo)
b(a) e_a, +
a a

A reasonable choice of a is the largest of the minimizers of a ]0, oe[- max(0, b(a)/a),
for which l/(x(t)) decreases as fast as possible to the smallest level set
(b/a)]) of V.

The functions q and U:X- R U {+oe} being given, we can construct the smallest
lower semicontinuous Lyapunov function larger than or equal to U, i.e., the smallest
nonnegative lower semicontinuous solution U to the contingent Hamilton-Jacobi
inequalities (26) larger than or equal to U. Its epigraph is the viability kernel of the
epigraph of U, as seen in the following theorem.
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THEOREM 3.9. Let us consider a Peano map F:X---X, a continuous function
q:R+ R with linear growth and a proper nonnegative extended function U such that
Dom (U)c Dom (F). Then there exists a smallest nonnegative lower semicontinuous
solution U :Dom (F)--RU {+0o} to the contingent Hamilton-Jacobi inequalities (26)
larger than or equal to U (which can be the constant +oo), which enjoys the property:

VXo 6 Dom (U), there exist solutions to (1) and (24)
satisfying Vt>-O, U(x(t)) <- U(x(t))<= w(t).

Let us single out the following consequence.
COROLLARY 3.10. We posit the assumptions of Theorem 3.9. For all a >-0, there

exists a smallest lower semicontinuous function dMa :X- R LJ {+0o} larger than or equal
to dM such that

VXo6 Dom (dMa), there exists a solution x(.) to (1) such that
d4(x( t)) <- dMo (xo)e -a’.

Therefore, we can regard the subsets Dom (d4.) as the "basins" ofexponential attraction

of M.
3.3. Asymptotic observability of lifferential inclusions. Let us consider a set-valued

map F from X := R" to X and an observation map h from X to Y := Rp. We "observe"
the evolution

Vt>_-0, y(t):=h(x(t))

of an unknown solution x(. to the differential inclusion (1).
The problem is to "simulate asymptotically" at least an unknown state x(. by a

solution z(. to a control system where the control is the observation of the state

(29) z’(t) g(z(t), y(t)).

We shall measure the asymptotic behavior of the error x(.)-z(.) through a
nonnegative lower semicontinuous extended function U X R U {+oo} and through
a function w(. from [0, +oo] to R+ by inequalities

(30) Vt_->0, U(x(t)-z(t)) <- w(t)

where w(. is a solution to differential equation (24).
DEFNTOq 3.11. Let F, h, 9 and U be given. We say that the dynamical system

F observed through h is stabilizable by g with respect to U and q if

Vx, z, inf DU(x-z)(v-g(z, h(x)))<=-q(U(x-z)).
veF(x)

THEOREM 3.12. We assume that F is a Peano map, that g, h, and q are continuous
with linear growth and that U :XR+ LJ {+c} is contingently epidifferentiable, lower
semicontinuous and episleek. If the dynamical system F observed through h is stabilizable
by g, then for any initial state Xo and Zo, there exist solutions x(. to (1), z(. to (29)
and w( to (24) starting at Xo, Zo and U(xo- Zo), respectively, and satisfying inequalities
(30).

We now have to construct stabilizing maps g in various situations.
We begin by providing a first class of examples using (U, q)-monotone maps.
PROPOSITION 3.13. Let us assume that U, p,f, and h being given, we can find a

continuous map c: Y- X such that

the map x-c(h(x))-F(x) is U, q)-monotone.
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Then for any continuous selection f of F, the single-valued map

g(z, y):=/(z) c(h(z)) + c(y)

stabilizes F through h with respect to U and q.
The problem now is to recognize whether there exist functions U and q and a

map c which makes the set-valued map coh-F to be (U, q)-monotone.
More generally, let us introduce the set-valued map H defined by

H(z,x):={v[ inf D,U(x-z)(u-v)+q(U(x-z))<=O}.
uF(x)

The general problem of stabilizing F through h amounts to finding selections g
of the set-valued map G defined by

(z, y), (z, y)-- /-/(z, x)
h(x)-y

since by construction, such selections are stabilizing f through h. When G is lower
semicontinuous with closed convex values, Michael’s Theorem guarantees the existence
of a continuous selection. Hence, in this case, we can stabilize F, at least in theory,
since Michael’s Theorem is not constructive.

3.4. Lyapunov preorders. Let us consider more generally a preorder and look
for solutions x(. of differential inclusion (1) which do not decrease in the sense that

Vt>--s>--O, x(t)>’--x(s).

For that purpose, it is useful to characterize a preorder by the set-valued map P
defined27 by

/’x, P(x):= {y]y=>x}

the graph of which is the graph of the preorder.
PROPOSI:rION 3.14. Let F be a Peano map and P be a preorder with dosed graph

whose domain is contained in the domain of F.
The following statements are equivalent:

(i) Vx Dom (P), F(x) if) Tpx)(X)
(ii) [(x, y) Graph (P), F(y) f3 DP(x, y)(0)

(31)
](iii) ’xo Dora (P), :lx(.) (Xo) such that

/t>--s>--O, x(t)--x(s).

The same type of proof yields results dealing with the comparison of solutions to
two differential inclusions, as shown in the following proposition.

PROPOSITION 3.15. Let F X "-* X and G X X be two Peano maps and a preorder
P with closed graph whose graph is contained in Dora (F)ffl Dom (G).

Then the following statements are equivalent:

(i) V(x, y) Graph (P), G(y) f-) DP(x, y)(F(x))
(32) (ii) "qXo Dom (P), ::Ix(. l(xo) and y(" (Xo) such that

Vt>--0, y(t)x(t).

27 When the preorder is defined by q functions V, the set-valued map P associates with any x the
subset P(x) := {y[V(y)- Vi(x)(i 1,..., q)}. Its graph is closed if and only if Vi are continuous on their
domains.
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3.5. Fuzzy differential inclusions. Using differential inclusions for representing
uncertainty can be criticized on the ground that it gives velocities of the system at state
x the same "likeness" to be chosen. Is there a possibility to discriminate among
velocities and to choose among the viable ones those which are somewhat better?

To answer this problem we suggest replacing the usual subset of velocities in the
right-hand side of the differential inclusion by a "fuzzy set" of velocities. Fuzzy sets
are represented by "membership functions" X taking their values in the interval [0, 1 ],
the membership functions of usual subsets being their characteristic functions, taking
their values in {0, 1}. Here, we characterize subsets by their indicators /(, taking their
values in {0, +c}, so that membership functions of "fuzzy subsets" are extended
functions V:XRU {+o}, which measure, in some sense, the cost of belonging to
the fuzzy subset.

DEFINITION 3.16. We shall regard an extended nonnegative function U:X-
R/ U {+c} as a fuzzy set. Its domain is the domain of U, i.e., the set of elements x
such that U(x) is finite.

We shall say that the fuzzy set U is closed (respectively, convex) if the extended
function U is lower semicontinuous (respectively, convex).

Hence the membership function of the empty set is the constant function equal
to +o.

DEFINITION 3.17. We shall say that a set-valued map U" X--* Y associating to
any x X a fuzzy subset U(x) of Y is a fuzzy set-valued map. Its graph is the fuzzy
subset of X x Y associated to the extended nonnegative function (x, y)- U(x, y):=
U(x)(y).

A fuzzy set-valued map U is said to be closed if and only if its graph is closed,
i.e., if its membership function is lower semicontinuous. Its values are closed (respec-
tively, convex) if and only if the fuzzy subset U(x) is closed (respectively, convex).
It has linear growth if and only if, for some positive constant c,

U(x, v)</llvll<-c(llxll/ 1).

By using indicators, we can reformulate differential inclusion (1) as

for almost all t, (())(x’(t)) < +c.

Then we are led to define "fuzzy dynamics" of a system by a fuzzy set-valued map U
associating to any x X a fuzzy set U(x) of velocities {v] U(x, v)< +o}. In this case,
we can write the associated fuzzy differential inclusion in the form

(33) for almost all t>=O, U(x(t),x’(t))<+o

or, equivalently, in the form

for almost all _-> 0, (x(t), x’(t)) Graph (U)

which is a fuzzy subset instead of a usual subset.
We shall say that a subset K Dom (U) is a viability domain ofthe fuzzy set-valued

map U if and only if

VxK, =tv T(x) suchthat U(x, v)<+oe.

When the fuzzy set-valued map U is continuous, we can select a viable solution
to the fuzzy differential inclusion (33) which is sharpest, in the sense that the cost of
its velocity’s membership is minimal:

(34) for almost all t, U(x(t), x’(t)) inf U(x(t), v).
TK(X(t))
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THEOREM 3.18. Let us consider a nontrivial fuzzy set-valued map U from a finite-
dimensional vector-space X to itself Let us assume that it is a Peano map. We assume
moreover that the restriction of the membership function U to its domain (the graph of
U) is continuous and that the viability domain K is sleek.

Then there exists a sharpest viable solution to the differential inclusion (33) (i.e.,
which satisfies condition (34)).

3.6. Tracking solutions to a differential inclusion. Let us consider a differential
inclusion (1) where F X-oX is a Peano map.

Let us introduce now an observation map H:X-o y from X to another finite-
dimensional vector-space Y.

We shall in some sense "project" the differential inclusion (1) to a differential
equation on the observation space Y described by a set-valued map G

(35) for almost all >- O, y’(t) G(y(t))

in order to "track" (or "filter") a solution (x(.)) to differential inclusion (1) in the
following sense:

VXo Dom (F) and yo H(xo), there exist

(36) solutions x(. and y(. to (1) and (35)

such that Vt >- O, y(t) H(x(t)).

This property may be called the tracking property. (System (35) is called an exosystem
by Byrnes and Isidori).

PROPOSITION 3.19. Let us consider a closed set-valued map Hfrom X to Y. Let us
assume that F X-oX and G: y-o y are nontrivial Peano maps and that the graph of
H is closed. Then tracking property (36) holds true if and only if

(37)

It follows obviously from Viability Theorem 1.8, because the above condition
amounts to saying that

i.e., that the graph of H is a viability domain of the set-valued map F G.
Example. Energy maps. The simplest dynamics are obtained when G---0: in this

case, each subset H-(y) is a viability domain, because, for any yIm (H) and
Xo H-(y), there exists a solution x(. such that x(t) H-l(yo) for all _-> 0. We shall
say that such a set-valued map H is an energy map of F.

When H--- V is a single-valued map from X to Y:= R, and when V is sleek, we
deduce that V is an energy function if and only if

Vx, ::lu F(x) such that DV(x)(u) <=0 DV(x)(u)

because in this casezs DV(x)(u)=[D, V(x)(u), D V(x)(u)].
The question arises to find such energy maps of a set-valued map F with closed

graph. We deduce from Theorem 1.15 an answer to this question.

28 When V is differentiable and F :=f is single-valued, we find the classical characterization

(V’(x) f(x)) O___V (x)f(x) O.
10X
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PROPOSITION 3.20. Let F X -- X be a Peano map. Then there exists a largest closed
energy map Ho: X Y of F, a solution to the inclusion

Vx Dom (H), Vy H(x), DH(x, y)(F(x)) 90.

The graph of rio is the viability kernel of the set-valued map (x, y)---- F(x) x {0}.
Remark. More generally, the behavior of observations of some solutions to the

differential inclusion x’ F(x) will be given by the behavior of solutions to differential
equations y’= g(y) whenever g is a smooth selection of

g(y) DH(x, y)(v).
H-l(y) F(x)

In the case when the differential equation y’= g(y) has a unique solution r(t)yo starting
from Yo, the solution x(. satisfies the condition

Vt_>-0, x(t)6H-(r(t)y(O)), x(O)eH-l(y(O)).

When g is a linear operator G ( Y, Y), it can be written

Vt=>0, x(t) H-(eO’y(O)), x(O) H-l(y(0)).

Such maps g are selections of the map GH: Y Y defined by

GH(y) f-I U DH(x, y)( v).
yH-l(x) vF(x)

This set-valued map measures, so to speak, a degree of disorder of the system, because
the larger the images of GH, the more observed dynamics g tracking an evolution of
the differential inclusion.

An adequate observation of a differential equation or inclusion is a map H,
set-valued or single-valued, which provides a "small" set-valued map G..

When H --- h is a single-valued differentiable map, then the map G, can be written

GI(y) := ffl h’(x)F(x)
h(x)=y

and a single-valued map g is a selection of GH if and only if

Vx Dom (H), 0 h’(x)F(x)-g(h(x)).

Example. Let us consider the case of descriptor systems

Ex’( t) Ax( t) + Bu( t)

which we want to observe by H (X, Y) through the linear equation

y’(t)=Gy(t)

where G ( Y, Y). We introduce the matrices (A, GH) from X to X Y and

(EH t) from X x Z to X x Y.

We observe that the system enjoys the tracking property (36) if and only if

E
Im(A, GH) clm

H
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In this case, the velocities x’(t) and the controls u(t) are supplied by the linear system

Ex’( t) Bu( t) Ax( t)
nx’( t) GHx( t)

which can be solved by linear algebraic formulas.

3.7. Decentralizing a control system. Let H" X Y be an observation map. We
consider two control systems"

(i) for almost all >= 0, x’(t) =f(x(t), u(t))
(38)

(ii) where u(t) U(x(t))

and

(i) for almost all >- 0, y’(t) g(y(t), v(t))
(39)

(ii) where v(t) V(y(t))

on the state and observation spaces, respectively, where U: X--, Zx and V: Y---> Zx
map X and Y to the control spaces Zx and Zy and where f: Graph (U)-->X and
g Graph (V) Y.

We introduce the set-valued maps RH(X, y):Z.--* Zx defined by

{u U(x) f(x, u) DH(x, y)-l(g(y, v))}
RH(X, V)y;

if v e V(y)
if v V(y).

COROLLARY 3.21. Assume that the set-valued maps U and V are Peano maps and
that the maps f and g are continuous, affine with respect to the controls and with linear
growth. The two control systems enjoy the tracking property (36) for any initial condition
(Xo, Yo) Graph (H) if and only if

V(x, y) e Graph (H), Graph (RH(X, y))

Then the system is regulated by the regulation law

for almost all t>-O, u(t)Rn(x(t),y(t); v(t)).

When H--h is single-valued and ditterentiable, and when we set f(x, u):=
c(x)+C(x)u and g(y, v):= d(y)+ D(y)v where C(x) and D(y) are linear operators,
we obtain the formula

RH(X; V):= U(x) 0 (h’(x)C(x))-(d(h(x))- h’(x)c(x)- D(h(x))v).

Example. Decentralization of a control system. We assume that the viability set of
the control system (38) is defined by constraints of the form K := LfqA-(M) where

(40)
(i)
(ii)
(iii)

KcX andMcYaresleek
A is a cOl-map from X to Y
Vx e K := Lf’) A-I(M), Y= A’(x) Tc(x)- Ta4(A(x)).

We shall "decentralize" this system by coupling it to the control system (39) defined
on the space of constraints.

We associate with these two systems decoupled viability constraints

(41)
(i) Vt->0, x(t)L
(ii) Vt>=0, A(x( t)) y( t)
(iii) Vt>--0, y(t)M.
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It is obvious that the state component x(.) of any solution (x(.), y(.)) to the
system ((38), (39)) satisfying viability constraints (41) is a solution to the initial control
system (38) viable in K.

On the other hand, viable solutions to the decentralized system (38) can be obtained
in two steps. First, y(. is a viable solution in M to the control system (39) and then,
the solution x(.) is a solution of the control system (38) satisfying the viability
constraints

(i) Vt>=O, x(t)L
(42)

[(ii) Vt>=O, A(x( t)) y( t)

which do not involve the subset M c y of constraints anymore.
We know that the regulation map of the initial system is defined by

RK(x) {u U(x) TL(x)]A’(x)f(x, u)e TM(A(x))}.

The regulation map of the projected control system (39) is defined by

RM(y)= {re Y(x)]g(y, v)e TM(y)}.

This decentralization problem is a particular case of the observation problem for
the set-valued map H defined by

H(x):=A(x) if xL and A(x)M
if not

whose contingent derivative is equal under assumptions (40) to

a’(x)u if u T.(x) and a’(x)u TM(A(x))
DH(x)(u):-

if not.

We introduce now the set-valued map RH which is equal to

RH(X; V):= {U U(x) CI T.(x)IA’(x)f(x, u) g(A(x), v)}.

We observe that

Vx K, RH(X; RM(A(x))) Ri,:(x).

The regulation map regulating solutions to the system ((38), (39)) satisfying viability
conditions (41) is equal to x...-> RH(X, RM(A(x))). Therefore, the regulation law linking
the controls to the solutions are given by: for almost all t-> 0

(i) v(t)e RM(y(t))
(ii) u(t) RH(X(t); v(t)).

The first law regulates the viable solutions to the control system (39) and the second
the solutions to the control system (38) satisfying the viability constraints (42).

The reason why we call this decentralization is because the particular case when
X := Y’, when A(x):= "i=lXi and when the control system (38) is

li= 1,..., n, x’i(t)=f(x(t), ui(t)) where ui(t)e U(x(t))

constrained by

li=l,...,n, xi(t)eLi and xi(t)eM.
i=1

This system can be decentralized first by solving the viability problem for system
(39) in the viability set M through the regulation law v(t)e RM(y(t)), and then, by
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solving the n control systems through the regulation law

(u,( t), un( t)) Rq(x,( t), xn( t); v(t)).

3.8. Decomposition property. For simplicity, we restrict ourselves here to the case
when the observation map H h := he hi is the product of two single-valued and
ditterentiable maps hl:X Y1 and h2:Y1- Y2. Can we observe the evolution of a
solution to a control problem (38) through heohl by observing it first through hi by a
control system

(i) for almost all t->0, y(t)=gl(Yl(t), Vl(t))
(43)

(ii) where vl(t) Vl(yl(t))

and then, observing this system through h2. We introduce the maps Rh, Rh,, and Rh2
defined, respectively, by

Rh(X; v)={u U(x)lh’(x)f(x u)=g(h(x), v) if v V(h(x)),
Rhl(X" /.)I)={U U(x)lh(x)f(x, u)=gl(hl(x), vl) if I)1 V(hl(x)),
Rh2(xl; v)={v, 6 V,(Xl)lh(xl)gl(x,, vl)=g(h2(Xl), I)) if v V(h_(x)),

and we see at once that

Rhl(X Rh2(hl(x); V)) ([" Rh(x; V),

Therefore, if the graph of v-o Rh,(x; Rh(hl(x); v)) is not empty, we can recover from
the evolution of a solution y(.) to the control system (39) a solution Yl(’) to the
control system (43) by the tracking law

for almost all t, vl(t) Rh:(yl(t), v(t))

and then, a solution x(. to the control system (38) by the tracking law

for almost all t, u(t) Rh(x(t), vl(t)).
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A GENERALIZED SECOND-ORDER DERIVATIVE IN
NONSMOOTH OPTIMIZATION*

R. COMINETTI AND R. CORREA?

Abstract. In this work a new notion of generalized second-order directional derivative and generalized
Hessian for nonsmooth real-valued functions is studied. The general properties of these mathematical objects
are investigated together with some calculus rules that may facilitate their practical computation.

Two applications of these derivatives in optimization theory are considered: first, to obtaining necessary
and sufficient second-order optimality conditions for problems with or without constraints; and second, to
extending the Newton method for the minimization of a c, function.

Key words, generalized second-order derivatives, nonsmooth analysis, nonsmooth optimization
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Introduction. The prominent role that nonsmooth analysis plays in connection
with optimization theory is widely recognized, especially since the latter has natural
mechanisms that generate nonsmoothness (even when starting from smooth situations):
duality theory, sensitivity and stability analysis, decomposition techniques, etc.

It is therefore natural that after the achievement of a fairly complete theory of
first-order generalized differentiability, in recent years interest turned toward the
construction of a meaningful theory of second-order generalized differentiability (see,
for instance, 1], [3], [4], [6]-[9], 11]-[15], 17]-[21], [25]-[34] and references therein)
that could be used in formulating second-order conditions for optimality and eventually
for constructing second-order minimization methods.

In this paper, which is basically an extended version of the results presented in
[13] and [11], we describe one of the possible approaches to second-order generalized
differentiability, which can be thought of as the natural second-order extension of
Clarke’s (first-order) derivatives [10].

More precisely, our starting point is the introduction of the generalized second-
order directional derivative

f(y + su + tv) f(y + su) f(y + tv) +f(y)
f(x; u, v) lim sup

y- st
s, t-- O

which turns out to be an upper semicontinuous function of x, and sublinear with
respect to each direction u and v separately. This last fact permits us to introduce the
generalized Hessian of f at x as the point-to-set map

02f(x)(u) {X* E X*: (X*, V) <--f(x; U, V), Vv E X},

which is shown to be an odd fan in Ioffe’s terminology, that is to say a sort of set-valued
linear map.

At this point we should say that the previous approach bears some strong relation
to the theories developed in [1], [19], and [22] as will be discussed in this paper. We
should also mention that this second-order directional derivative fc, recently has been
considered in [26] (see also [23]), even if its study is restricted to the finite-dimensional
case and no dual object as 02f(x) is introduced.

* Received by the editors June 15, 1987" accepted for publication (in revised form) June 5, 1989.
? Departamento de Matemfiticas, Universidad de Chile, Casilla 170-3, Correo 3, Santiago, Chile.
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The paper is organized as follows. The basic definitions and general properties
as well as a useful characterization of the generalized second-order derivatives are
exposed in 1. The topological properties of the so-defined derivatives are then studied
in 2 in connection with two notions of second-order Lipschitzian property.

Section 3 develops some calculus rules that facilitate the computation of the
generalized second-order derivatives of a function that is built up from better behaved
functions through sums, composition, and maximum.

In 4 we prove a second-order Taylor expansion involving the generalized Hessian,
and we use it to show how the convexity of a function is related to the positive
semidefiniteness of its generalized Hessian.

The last two sections are concerned with the application of the generalized
second-order derivatives in optimization theory. In 5 we use them to derive necessary
and sufficient second-order optimality conditions for constrained and unconstrained
problems; while in 6 we present some preliminary ideas concerning the generalized
Newton method for minimizing a c,1 function

x,+, X,--oZf(xt,)-’(Vf(Xk)),

and briefly explore its application to the minimization of the augmented Lagrangian
appearing in the multiplier methods for solving constrained optimization problems.

1. Generalized Hessian and second-order directional derivatives. In the sequel we
will be working with real-valued mappings defined on a real Hausdortt locally convex
topological vector space X (1.c.t.v.s.). We will denote by X* the (topological) dual
space of X and by (.,.) the canonical pairing between X and X*, the topologies in
X and X* being compatible with the duality.

We will also consider the extended real field {-c, +c} with the usual
extended operations, order, and topology familiar from convex analysis.

DEFINIaqON 1.1. The generalized second-order directional derivative of a function
f: X at x X in the direction (u, v) X X is defined by

(1) f(x; u, v) lim sup
yx
t,sO

f(y + su + tv) f(y + su) f(y + tv) +f(y)
st

and the generalized Hessian of f at x as the point-to-set mapping 02f(x) X.--X*
given by

(2) 02f(x)(u) {x* X*" (x*, v) <=f(x; u, v) for all v X}.

Remark. It is not difficult to see that, in the above upper limit, s and can be
taken strictly positive (or negative).

The following proposition gives the basic facts concerning f and 02f for an
arbitrary function f

We recall (cf. [22]) that a point-to-set map A:X--- X* is called a prefan if it has
closed and convex images, 0A(0), and A(tu)=tA(u) for all t>0 and uX. The
prefan A is said to be odd if A(-u) -A(u) for all u X, and it is called a fan if it
has nonempty images and satisfies A(u+v)c A(u)+A(v) for all u, veX, where the
bar denotes closure.

PROPOSITION 1.2. Let f: X - and x X. Then we have that
(a) Themap (u, v)-f(u; u, v) issymmetric (f(x; u, v)=f(x; v, u)) andbisub-

linear (sublinear on each variable separately).
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(b) The mapyfO(y; u, v) is upper semicontinuous (u.s.c.) at x for every (u, v)
X x X and the point-to-set map y oZf(y)(u) is closed at x for each fixed u X.

(c) f(x; u,-v) =f(x;-u, v)= (-f)(x; u, v).
(d) oaf(x) is an odd prefan.
Proof (a) The symmetry of f(x;., .), being obvious from the definition, it

suffices to show that f(x; u,. is positively homogeneous and convex. If we denote

A}(y, s, t, u, v) =f(Y + su + tv) f(y + su) f(y + tv) +f(y)
st

then the positive homogenity of f(x; u,. is a direct consequence of the equality

A(y, s, t, u, v)= X(y, s, t, u, v).

Similarly, for every v, w e X, a straightforward calculation gives

A(y, s, t, u, v + w)= A(y + tw, s, t, u, v)+ A(y, s, t, u, w),

and taking upper limits we conclude

f(x; u, v+ w)<--f(x; u, v) +f(x; u, w).

(b) Let us show that x-f(x; u, v) is upper semicontinuous (u.s.c.). indeed, for
all k >f(x; u, v) we may find an open neighborhood W of x and e > 0 such that

A}(y,s, t, u, v)<k for all ye W and

therefore, for each x’ W we have

tof(x, u, v) lim sup A}(y, s, t, u, v) < k,
y-->
s, t-O

which shows that foo(. u, v) is u.s.c, at x.
To prove the closedness of Oaf( )(u) we just observe that for arbitrary nets x - x

and x* Ozf(x u - x* we have

(x*, v)<-f(x; u, v) Vv X,

so that going to the limit we obtain

(x*, v)<=limsupf(x; u, v)<-f(x; u, v) VvX.

(c) This follows directly from the equality

A}(y, s, t, u,-v) A(y, s, t, u, v)= A_f)(y, s,-t, u, v).

(d) Clearly, 02f(x)(u) is closed and convex as an intersection of the closed half
spaces E ={x*" (x*, v)<_f(x; u, v)}. Also, OOaf(x)(O)={O} since f(x; O, .)-0.
Finally, for each # 0 and u X we have

Oaf(x)(tu) {x*" (x*, v)<=f(x; tu, v)=f(x; u, tv), v X}

{x*" (x*/t, v) <=f(x; u, v), Vv X}

=tOaf(x)(u),
which proves that oaf(x) is an odd prefan (for oddness take =-1).

Before illustrating the above notions with some examples, we present the next
two useful formulas for the computation off.



792 R. COMINETTI AND R. CORREA

PROPOSITION 1.3. Let f" X- be a continuous function that admits a directional
derivative f’(y; w) limt+o [f(Y + tw) -f(y)]/ at every point y x. Then,

(3)
f’(y + tu; v) f’(y; v)

f(x; u, v) lim sup
yx
tO

where y and are to be chosen so that f’(.; v) exists at y and y+ tu. In other terms,
f(x; u, v) is the Clarke directional derivative (see formula (6) below) off’(.; v) at x
in the direction u.

Moreover, iff’(. v) is continuous, then

(4) f(x; u, v)= lim sup D2+f(y; u, v),

where

f’(y + tu; v) f’(y; v)2D/f(y; u, v) lim inf
t0

To prove this result we need two preliminary lemmas. The first one is a mean
value theorem for the Dini directional derivatives of f

(5) D+f(y; w) lim inf
to

f(y + tw) f(y)

and the second is a useful characterization of the Clarke directional derivative of f

(6) /(x; v) lim sup
f(y + tv)-f(y),

yx
t$o

in terms of D+f A straightforward application of this characterization (see (8)) allows
us to derive (4) from (3).

LEMMA 1.4. Let f X be continuous and x, v X, t> O. Then there exists
a ]0, t[ such that

(7) f(x + tv) f(x) <- tD+f(x + av; v).

Moreover, if 0 < tl< < tr t, then a may be chosen in ]0, t[\{tl,. trY.
Proof By introducing h(s) f(x + sv) s/ t[f(x + tv)-f(x)], (7) is equivalent to

the existence of a ]0, t[ such that

h+(a) lim inf
to

h(a+t)-h(a)>=O.

Now, if toe ]0, t] is a global maximum of h and t ]0, to[, then we either have
h+(tl) >-_0, in which case we are done, or h+(t)<0 in which case h attains a local
minimum at some a ]to, tl[ and clearly h+(a)>_-0.

Concerning the second assertion, we may use (7) repeatedly to find
for i= 1,. ., r+ (here to=0, tr+ t) such that

r+l r+l

f(x + tv)-f(x)= 2 f(x + tiv)-f(x + ti-lV) <- , (ti- ti-1)O+f(x + air; v),
i=1 i=1

and by setting a equal to the ai that gives the maximal D+f(x + air; v) we conclude
r+l

f(x + tv) -f(x) <- Y (ti- ti_)D+f(x + av; v) tD+f(x + av; v),
i-l

with a ]0, t[\{t ,..., tr}. l--]



A GENERALIZED SECOND-ORDER DERIVATIVE 793

LEMMA 1.5. Let f, x, and v as above. Then

(8) f(x; v) lim sup D+f(y; v).

Moreover, the point y x may be ignored when taking this upper limit.
Proof Since D+f(y; v)=<fO(y; v) and fo(., v) is u.s.c., we have

lim sup D+f(y; v) <= lim sup D+f(y; v) _<-f(x; v).
yx yx
yx

Now, if y X and t>0 we may use Lemma 1.4 to find a ]0, t[ with y+au x
and

f(y + tu -f(y)
<-_ D+f(y + au; u).

The result follows by taking upper limits. V1

We may now proceed with the proof.
Proof of Proposition 1.3. As noted previously, (4) follows from (3) and Lemma

1.5. To prove (3), let Ay,,(t)=[f(y+su+ tv)-f(y+ tv)]/s so that we may write

lim sup
f’(y + su; v) -f’(y; v)

lim sup lim
1

y_

_
,o [x,(t) x,(o)]

sO sO

1
--< lim sup - [Ay, (t) Ay, (0)]

y-->
s,/--0

=f(x;u,v).

Conversely, if y X and s, + we may use Lemma 1.4 to find a ]0, t[ so that
with y’= y + av we have

1- [Ay,,(t) Ay,,(0)] <f’(Y’ + su, v) -f’(y’; v)
S

Moreover, if x=y+tv and/or x=y+su+tzV, then we may always take a]0, t[
different from t and/or t2 so that y’ # x and y’+ su x. We conclude by taking upper
limits that

f(x; u, v) <-lim sup
y---
s$O

f’(y + su; v) f’(y; v)

with y x and y + su x in the upper limit. [3

Next let us give some examples illustrating the notions introduced so far.
Example 1. It is easy to see that when f is linear we have f(x; u, v)=--0 and

oZf(x)(u) {0}. Similarly, whenf(x) b(x, x) with b a bilinear form, thenf(x; u, v)
b(u, v)+ b(v, u) so that when b is continuous we have oZf(x)(u) {b(., u)+ b(u,. )}.

Example 2. Let f:XN of class C2 at x; then f(x;u,v)=D2f(x)uv and
oZf(x)(u) {D2f(x)u}.

We recall that a fan A is said to be linearly generated if there exists a closed and
convex family s4 of linear operators from X to X* such that A(u) {Lu: L M}. With
the above terminology we can say that the generalized Hessian of a C2 function is
linearly generated by the singleton {DZf(x)}. It is easy to see that any single-valued
fan is linearly generated by one linear operator. It remains as an open question to
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characterize the fans that are linearly generated and, in particular, for which class of
functions the generalized Hessian enjoys this property. A partial answer will be given
in 2.

Example 3. If f: X - R is sublinear and continuous, then

f(0" u, v) {0 if V K(u),
+ otherwise,

where K(u) is the closed convex cone {v X" f’(x + u; v) <-_f’(x; v) /x X}. To show
this, observe that f’(ax; v)=f’(x; v) for all x e X, a > 0 and use formula (3). In this
case the generalized Hessian turns out to be the polar set of K(u), that is, Of(O)(u)=
{x*" (x*, v)_-<0 for all v K(u)} K(u).

An important particular case is f(x)= Ilxll where I1" is the norm of a Hilbert
space H. A direct calculation gives K(u)={-tu" t>=O} and 02f(O)(u)=
{v H: (v, u)-> 0}. In particular, for H R and [[. l" [we get[. [(0; u, v) 0 if uv <-_ o
and + otherwise. Using this we may also conclude for f(xl,’", xn)= i--1 [xi[ that

0 if uvi<=O for i= 1, , n,
f(0; t) [+ otherwise,

and of(O)(u)={v: viui >=0 for all i= 1,..., n}.
Example 4. Finally, let us show a few simple examples for X =. The first,

f(x)=1/2x[x], is a C 1’ function that is not twice differentiable at zero. We have
f(0; u, v) luv[ and Of(O)(u)= [-u, u].

The second, f(x) x/Ix[ 4 i is not even differentiable at zero but using formula (3)
it is easy to show that f(0; u, v)=-uv if uv <-_ 0 and +c otherwise. This example
shows moreover that (4) can fail if f is not continuously Gteaux differentiable.

It is known [22] that there is a one-to-one correspondence between the family of
all fans. and the set of all bisublinear functions that are lower semicontinuous (1.s.c.)
in the second variable. This correspondence is stated via the support support function
of a fan.

Namely, to every fan A" X X* we associate the bisublinear function SA" X X -->

defined by SA(U, V) sup (A(u), v). Conversely, to every bisublinear function S" X
X--> that is 1.s.c. on the second variable corresponds a unique fan A" X:: X* such
that SA S, which may be characterized by A(u) {x* X*: (x*, v) <= S(u, v) for all
v X}. This discussion motivates the following definition.

DEFINITION 1.6. A function f’X--> is called twice C-differentiable at x if
f(x; u,. (or equivalently f(x;., u)) is 1.s.c. for each u X.

In other words, f is twice C-differentiable at x if 02f(x) is a fan and its support
function is f(x;.,. ); that is,

(9) f(x; u, v) sup (02f(x)(u), v).

Note that all the examples presented so far are twice C-differentiable functions.
This property fails, for instance, with f(x) x4/3 where 02f(O)(u) is empty for all u 0.

The differential concept most naturally linked to the notion of generalized Hessian
is the one of twice strict differentiability.

DEFINITION 1.7. A function f’X--> is called twice strictly differentiable at x if
there exists a linear operator D2f(x)’X--> X* such that

(10) (Def(x)(u), v)= lim f(y+su+tv)-f(y+su)-f(y+tv)+f(y).
y--> st
S,t- O
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PROPOSITION 1.8. A function f: X R is twice strictly differentiable at x ifand only
if f is twice C-differentiable at x with oFf(x) single valued. In such a case we have
oZf(x)(u) {Daf(x)u}.

Proof The "only if" part is evident. Conversely, as pointed out in Example 2,
when oZf(x) is single valued, it is generated by a linear operator that we will denote
DZf(x). Let us prove that (10) holds.

From (9) we have

f(x; u, v)= (D2T(x)u, v)=-(D2T(x)(-u), v)= -f(x; -u, v),

so that, with A as in the proof of Proposition 1.2, we may write

lim sup A}(y, s, t, u, v) =f(x; u, v) -f(x; -u, v) lim inf A(y, s, t, u, v),
y-x y-x

s,tO s,t-O

and the result follows.

2. The twice locally Lipschitzian case. To obtain some continuity properties for
the generalized Hessian we introduce two generalizations of the locally Lipschitzian
property of a function (Lebourg [24, p. 126]).

DEFINITION 2.1. A function f: X- R is called twice locally Lipschitzian (twice 1.1.)
at x, if for each v X there exist neighborhoods V of x and U of zero such that
f(V; U, v) is bounded in . If this boundedness is uniform in v, that is, if there exist
neighborhoods V of x and U of zero such that f(V; U, U) is bounded in , then f
is said to be twice uniformly locally Lipschitzian (twice u.l.1.) at x.

The following technical lemma will be useful when studying the continuity proper-
ties of the multifunctions y - 02f(y)(u) and (y, u) - 02f(y)(u).

LEMMA 2.2. Let {pi :X -}il be a family of sublinear functions, for which there
exists a neighborhood U ofO Xsuch that {Pi( U): I} is bounded in . Then
is uniformly equicontinuous.

Proof Without loss of generality we suppose that U is balanced. Let M be the
least upper bound of t_J {pi( U): I}. If we take e > 0 and /, then for every h, k
satisfying h k eM- U we have that

pi(h)-p,(k)<-p,(h-k)<-_eM- sup I,.J {p,(U): i I} e.

By a symmetrical argument we conclude that for all i/,

Ip,(h)-p,(k)l<-_e

whenever k- h W := eM-1 U, which establishes the result.
Iff:X- is twice 1.1. at x, using the above lemma for py =f(y; u, .) and I V

where V is chosen as in Definition 2.1 we see that f is twice C-differentiable at every
point of V.

Let Y, Z be two t.v.s, and A: Y--Z a point-to-set map. We recall that A is said
to be locally compact at y Y if there exists a neighborhood V of y such that
A(V)-Uy,V A(y’) is relatively compact. A is said to be closed at y if for every
generalized sequence y - y and z - z with z A(y,) we have z A(y). Finally, if A
is locally compact and closed at y, then we say that A is upper semicontinuous at y.

PROPOSITION 2.3. Assume that f:X- is twice 1.1. at x. Then, for each u X the
following hold:

(a) y-O2f(y)(u) is locally w*-compact, and a fortiori u.s.c., at x. In particular,
02f(x)( u is w* -compact.

(b) (y, w)-,f(y; w, v) is u.s.c, at (x, u) for each v X, and the multifunction
(y, w) - 02f(y)(w) is closed at (x, u ).
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(c) If in addition, f is twice u.l.1, at x, then (y, w)-. 02f(y)(w) is locally w*-compact,
and a fortiori u.s.c., at (x, u).

Proof (a) Let u 6 X and choose neighborhoods V of x and U of zero such that
f(V; U, u) is bounded, so that {f(y; u,. )’y 6 V} is uniformly equicontinuous by
the previous lemma.

Now, if x* 02f(V)(u) then we have for some y V

_fO(y; u, -v) <- (x*, v) <-f(y; u, v) for all v X,
which proves that 02f(V)(u) is an equicontinuous family of linear functionals, and
henceforth is w*-relatively compact. The upper semicontinuity follows immediately
from Proposition 1.2(b).

(b) Let us choose arbitrary nets xs - x and us- u. The uniform equicontinuity
of {f(y; , v)’y V}, for a suitable neighborhood V of x, shows that

lim [f(xs; us, v)-f(xs; u, v)] =0,

from which we conclude, using Proposition 1.2(b), the inequality

lim supf(xs; us, v) lim supf(xs; u, v) <-f(x; u, v).

The closedness of (y, w)O2f(y)(w) at (x, u) follows immediately by a similar
argument to that given in Proposition 1.2(b).

(c) Let us consider neighborhoods V of x and U of zero such that f(V; U, U)
is bounded, so that (f(y; w,.): y6 V, we U) is uniformly equicontinuous by the
previous lemma.

For u X, let r > 0 be such that ru int (U), so that U’= U/r is a neighborhood
of u. It is easy to see that {f(y; w, )" y V, w U’} is still uniformly equicontinuous.
Now, by a similar argument to the one used in (a), we conclude the equicontinuity of
O2f(V)(U’) and henceforth its w*-relative compactness.

An important class of twice uniformly locally Lipschitzian functions is the C
that is, Gteaux differentiable functions with locally Lipschitzian gradient, that is,
verifying that, for each x X there exist a neighborhood V of x, a continuous seminorm
p and a neighborhood U of 0 such that

I(Vf(y)-Vf(z), v)l<-_p(y-z) for all v U and y,z V.

In a recent work by Milosz [26], the same kind of generalized derivatives are
considered, and it is shown that in the finite-dimensional case the finiteness off is
equivalent to f being of class c,. In a companion technical note [12], these results
are extended to the case of normed spaces by showing that twice uniform local
Lipschitzianity and c1, are equivalent properties.

Another approach to second-order generalized differentiation in the finite-
dimensional setting was proposed by Hiriart-Urruty and developed by Araya and
Gormaz [1] and Hiriart-Urruty, Strodiot, and Hien Nguyen [19]. The basic idea is to
use a theorem by Rademacher that states that a locally Lipschitzian function between
finite-dimensional spaces is differentiable Lebesgue almost everywhere, to define for
a C ’1 function f:Rn-R the generalized Hessian matrix as the compact nonempty
convex set

(11) OZHf(X)=CO {lim 72f(yk)" yg(dom (Vf)) -> x},
where co denotes convex hull. It is easily shown that

sup (O2f(x)u, v)= lim sup t-’(Vf(y + tu)- Vf(y), v),
y-->X
t-->0
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and from (3) and (9) we conclude

02f(x)(u) Of(x)u,

so that Of(x) generates the fan 02f(x). This is a partial answer to the question posed
in Example 2.

Closely related to Hiriart-Urruty’s and our approach, is the notion of upper
derivative in the sense of Ioffe [22, Def. 9.7]. In fact, for an arbitrary function F X - Y,
where X and Y are Banach spaces, Iotte defines the upper derivative of F at x as the
fan DF(x): Y*--X* whose support function is

where F.(.)=(y*, F(.)) (this makes sense when F(x;., v) is w*-lower semicon-
tinuous). Hence, if we take a ditterentiable function f: X-R, the upper derivative of
Vf:X X* will be precisely what we have called the generalized Hessian of f, which
by [22, Prop. 10.9] when X =R" andf CTM will be linearly generated by 02f(x) as
noted previously.

On the other hand, the symmetry off’(x;., implies that the generalized Hessian
OZf(x) also coincides with the C-coderivative of Vf at x [22, Def. 9.12], which is the
adjoint fan of D(f)(x) and is denoted by Dc(f)(x). Hence we have, for a
differentiable function f: X--> that is twice C-ditterentiable, that

02f(x) D(Vf)(x) Dc(Vf)(x).

This implies in turn, by [22, Prop. 10.7], that 02f(x) is linearly generated if f: X-->E
is C TM, for a general Banach space X. This result allows the definition of the (linear)
generalized Hessian as

of(x) {A" X - X*" A is linear and Au 02f(x)(u), [u X}.

Obviously enough, every result concerning oZf(x) can be restated for C ’1 functions
in terms of 02f(x).

3. Some calculus rules. To make f(x; v, u) and oZf(x)(u) computable, we now
establish some calculus rules that permit the calculation of them when the function f
is built up from "simpler" functions through sums, composition, and maximum.

DEFINITION 3.1. We say that f: X- is twice subregular at x if the limit

f(x + su + tv) f(x + su) f(x + tv) +f(x)
(12) f"(x; u, v)= lim"

s,to st
st>O

exists (eventually +) and is equal to f(x; u, v).
It is easy to verify that linear, quadratic, and strictly ditterentiab!e functions are

examples oftwice subregular functions. The same is true for the norm in a Hilbert space.
The above regularity property will be used in the following propositions to ensure

equality in the formulas we present.
PROPOSITION 3.2. Let f: X and r \{0}. Then we have for x X

(13) 02(rf)(x) rO2f(x),

where roZf(x is defined as roZf(x ]( u r[oZf(x)( u ].
Proof From Proposition 1.2(a) and (c) it follows directly that

(rf)(x; u, v)= [r[(sg(r)f)(x; u, v)=/(x; u, Irlsg(r)v) f(x; u, rv),
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so that

O2(rf)(x)(u) {x*" (x*, v)<=f(x; u, rv), Vv X}

{x*" (x*/r, v) <--f(x; u, v), Vv e X}

The next proposition deals with the generalized Hessian of a sum of two functions.
Previously, let us recall that the sum of two prefans A and B is defined as the prefan
(a + B)(u)= a(u)+ B(u).

PROPOSiTiON 3.3. Let f g X and x X; then we have

(14) (f+ g)(x; u, v) <f(x; u, v) + g(x; u, v),

and iff and g are twice C-differentiable at x we get

(15) 02(f+ g)(x) c oZf(x) + oZg(x).
Equality holds in (14) and (15) when in addition for g is twice strictly dijferentiable at

x, and also if both f and g are twice subregular at x. In the last case we also have that
f/ g is twice subregular at x.

Proof Inequality (14) is obvious from the definition of (f/ g) and the subadditiv-
ity of the upper limit. The same can be said for the equality when f or g are strictly
differentiable at x.

Now, when f and g are twice C-ditterentiable, f(x; u,.)+ g(x; u,.) is the
support functional of the closed convex set 02f(x)(u)+O2g(x)(u). Thus, the support
functional of 02(f+ g)(x) is bounded above by (f+ g)(x; u, v) and afortiori by the
support functional of 02f(x)(u)+ O2g(x)(u), so that a classical result of convex analysis
permits us to conclude (15).

The same argument can be used to derive the equality in (15) when (14) holds
with equality by noting that in this case (f+ g) is twice C-differentiable at x whenever
f and g are, and henceforth the support functional of the set O(f+ g)(x)(u) is exactly
(f+ g)(x; u," ).

It remains to verify that under the stronger assumption that f and g are twice
subregular, equality holds in (14). Indeed, in such a case we have

(f+ g)(x; u, v)<-_f(x; u, v)+ g(x; u, v)

=f"(x; u, v)+ g"(x; u, v)

=(f+ g)"(x; u, v),

but since always (f+ g)"(x; u, v)<-(f+ g)(x; u, v), the result follows. I-3

Next let us turn to the problem of calculating the generalized Hessian for the
composition of two functions f" X-oR and g" YX where Y and X are 1.c.t.v.s.
paired with Y* and X*, respectively.

PROPOSITION 3.4. Let the abovefbe ofclass C 1’1 at x g(y) andg twice continuously
differentiable at y. Then the following chain rule holds"

(16) O(f g)(y)(u)c Dg(y)*O-f(g(y))(Dg(y)u)+Vf(g(y)) D2g(y)(u),
where Dg and D2g are the first and second Gdteaux derivatives of g, and * denotes the
adjoint map of the corresponding linear operator. Equality holds in (16) ifg is open at y.

In particular, if g is the linear operator A" Y X then formula (16) becomes

(17) 02(f a)(y)(u) a*oZf(ay)(au),

with equality if A is open.
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Proof To prove (16) it is sufficient to show that the support functionals of the
sets in that formula satisfy the inequality

(fo g)(y; u, v)<-f(g(y); Dg(y)u, Dg(y)v) +(Vf(g(y)), D2g(y)(u)v),

for each v e Y. To this end, let us compute (fo g), by using characterization (3), that
is to say

1
(fo g)(y; u, v) lim sup - [(V/(g(z + tu)), Dg(z + tu)v)-(Vf(g(z)), Dg(z)v)].

zoy
toO

By adding and subtracting (Vf(g(z)), Dg(z+ tu)v), and noting that being f of
class cl’l we have

lim
1
(Vf(g(z)) Dg(z + tu)v Dg(z)v)= (Vf(g(y)), D2g(y)(u)v),

toO

we conclude

1
(fo g)(y; u, v)=lim.s.u, p(Vf(g(z+ tu))-Tf(g(z)), Dg(z+ tu)v)

toO

+(Vf(g(y)), DZg(y)(u)v).
The proposition will be proved if we show that the previous upper limit is bounded

above by (and if g is open at y, equal to) f(g(y); Dg(y)u, Dg(y)v).
To do this let us observe again that by adding and subtracting (Vf(g(z)+

tDg(y)u), Dg(z + tu)v), and since

lim
1

zoy 7 [g(z + tu) g(z) tDg(y)u] O,
toO

we conclude, by using the fact that f is C TM, that

lim
1
(Vf(g(z + tu))- V/(g(z)+ tDg(y)u), Dg(z + tu)v)= O,

zoy
toO

1
(fo g)(y; u, v)= lim sup (Vf(g(z)+ tDg(y)u)-Vf(g(z)), Dg(z + tu)v)

(18) ,0o

+(Vf(g(y)), D2g(y)(u)v).

To proceed with the proof we need the following lemma.
LEMMA 3.5. Let x.(X)-, x, t.( )-0, and w.(X)0; then

lim
1

(Vf(x. + t.u Vf(x. ), w.) 0.
t,

Proof Since f is C TM at x, let us choose p a continuous seminorm, V a neighbor-
hood of x, and U a neighborhood of zero such that

](Vf(y)-Vf(z), w)l<-_p(y-z) for all y,z V, we U.

Defining r. sup {r: rw. U}, it is easy to see that r. -+ (since w. - 0).

and then
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Then, for sufficiently large c we have

1 1- (Vf(x. + t.u)-Vf(x.), r.w.) <= - p(t.u)=p(u).

so that dividing this inequality by r. and passing to the limit we obtain the desired
conclusion.

Using this lemma we may continue our proof by noting that the term Dg(z + tu)v
in (18) can be replaced by Dg(y)u, so that

1
(fo g)(y; u, v)=limsup-(Vf(g(z)+ tDg(y)u)-Vf(g(z)), Dg(y)v)

y
tO

+(Vf(g(y)), D2g(y)(u)v).

Now, g(z)- g(y) when z--) y, so that we have

1
(fo g)(y; u, v)<-_limsup-(Vf(z+ tDg(y)u)-Vf(z), Dg(y)v)

z--)g(y)
t0

+(Vf(g(y)), D2g(y)(u)v),

with equality if g maps the neighborhoods of y into the neighborhoods of g(y).
To conclude we may just use characterization (3) to obtain

(fo g)(y; u, v)<-f(g(y); Dg(y)u, Dg(y)v)+(Vf(g(y)), DZg(y)(u)v),
with equality if g is open at y.

Other chain rules have been developed for C TM functions in finite-dimensional
spaces in the paper by Hiriart-Urruty, Strodiot, and Hien Nguyen 19]. Let us mention
that any effort made to weaken the hypothesis made on f in the previous result would
be worthy.

Another important question is to derive calculus rules for functions of the max
type. Namely, let us suppose we are given a finite family of C2 functions f X- for

I { 1, , n} and consider the mapping f: X - N given by

f(x) maxf(x).
ie2

It is well known that f is directionally differentiable with

f’(x; v)= max f[(x; v),
iI(x)

where I(x)= {i I: f(x)=f(x)}. Let us set

I(x, v)= {i I(x): f[(x, v)=f’(x, v)}.

DEFINITION 3.6. With the above notation, we will say that an index I is essential
at x if there exists a net x,--) x with I(x,)= {i}. We will denote by l*(x) the set of
essential indexes at x.

It is clear that I*(x)c l(x) and that for a local representation off at x it suffices
to consider the functions {f: i I*(x)}. Now, the computation of l*(x) may not be
an easy task, but we can mention the following practical criteria.

PROPOSITION 3.7. If I(X) is such that there exists v X with I(x, v) {i}, then
I*(x). In particular, if {Vf./(x): j I(x)} is linearly independent, or more generally,

affinely independent, then I*(x) I (x).
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Proof I(x, v)= {i} means f’(x; v)=f[(x; v)>fj(x; v) for all j I(x)\{i}. There-
fore, f(x+ tv) =f(x+ tv) >f(x+ tv) for all sufficiently small and consequently
I(x+tv)={i}.

Now, if {Vf(x): j I(x)} is affinely independent, then for each i I(x) we may
find v X such that

(Vf/(x)-Vf(x), v)= +1 Vj6 I(x)\{i},

which implies I(x, v)={i}. Since I*(x)c I(x) is always satisfied, the proof is
complete. [3

We may now prove the following easy result.
PROPOSITION 3.8. With the above notation we have for each (u, v) X x X

(19) max D2f(x)uv <-_f(x" u, v),
il*(x)

and

(o) co {D2f(x)u: I*(x)} 02f(x)(u),
so that s co {DZfi (x): I* (x)} is a set of linear selections of O2f(x).

Proof Clearly, it suffices to show (19). Now, take I*(x) and select a net x x
with l(x) {i}. Then, near x we have f--f and therefore

DZf(x)uv =f(x; u, v).

By going to the limit and using the upper semicontinuity off(. u, v) we obtain

D2f(x)uv <-f(x; u, v),

and (19) follows at once. [3

Equality in (19) is hopeless in general as we often have f(x; u, v)= oe, as the
following proposition shows.

PROPOSITION 3.9. Suppose {Vf(x)}i1(x is affinely independent, and consider the
following condition on (u, v):

H(u, v): (Vf(x)-Vf.i(x), v)(Vf(x)-V(x), u)<-O for all i,j I(x).

Then f(x; u, v)= +co whenever H(u, v) does not hold.
Proof Let us take i,j l(x), violating the inequality in H(u, v).
Since f(x;-u,-v)=f(x; u, v) we may assume (by eventually changing u to

-u and vto-v) that

(Vf(x), v)> (Vf.i(x) v) and (Vf(x), u)> (V(x), u).

Now, select h X with

(Vf(x), h)=(V(x), h)=(Vfk(x), h)+ 1 for all k I(x)\{i,j}.

Using a standard implicit function theorem we may find a path x(t) X such that
x(0)=x, x’(0)= h and verifying f(x(t))=f(x(t))>fk(x(t)) for every k I(x)\{i,j}
and t>0 small enough, that is, I(x(t))= {i,j}.

Since (Vf(x), u)> (Vf(x), u), the same holds with x replaced by x(t) provided
> 0 is small, and we may then find e, > 0 such that

I x(t)+-u ={i} and I x(t)--u ={j}

for all s ]0, e,[ and near zero.
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Take s(t)E ]0, et[ with lim,o s(t) =0 and set y(t)=x(t)-(s(t)/2)u. Then

lim f’(y(t) + s(t)u" v) lim (Vf (y(t) + s(t)u), v) (Vf (x) v),
t$O t$O

limf’(y(t); v)=lim(Vf(y(t)) v)=(Vf(x) v),
t$O t$O

and since (Vf(x), v)> <Vf(x), v) we conclude from Proposition 1.3 that

f’(y( t) + s( t)u; v) f’(y( t); v)
f(x; u, v) >= lim sup +co. [3

t,O s(t)
In view of the previous results, a natural conjecture would be that the following

characterization holds"

max D2f if H(u, holds,(x)(u)v
(C) f(x; u,

1.+ otherwise,

under the affine independence of {Vf(x)}i(x). However, we have just been able to
prove this when the f’s are linear. (Note that by an appropriate translation of the
origin this covers the affine case.)

PROPOSITION 3.10. Let (1) be a finite set ofaffinely independent linearfunctions.
Then, for f(x) maxi, li (x) we have

v)=[0 if (li-lj)(v)(l-l)(u)<=O for all i, jEI,
f(0; U, +oo otherwise.

Proof We must only prove that when (l-l)(v)(l-l)(u)<-O for all i,jl then
f(0; u, v)= 0. Now, from Example 3 we know that

v)=]0 if f’(x + u; v) <= f’(x; v) for allxX,
f(O" u, [+oo otherwise,

so we only need to prove f’(x + u; v)<=f’(x; v) for all x X, that is,

l(v)<=max{l(v)’jI(x)} for each iEI(x+u).

This is clear if I(x). Otherwise, for each j I(x) we have l(x) < l(x) and since
l,(x + u) >= l(x + u) we deduce l(u) >/(u). Consequently, l(v) <= l(v) from our hypo-
thesis, which shows in fact that

l(v)<=min{l(v)’jI(x)} for all iI(x+u),

and the proof is complete.
Example 5. Let f’"- be f(xl,’’" ,x,)=max{xl,... ,xn}. Then we have

v)=0 if(u-u)(vi-v)<-_0 for l<=i,j<-_n,
f(0; U, +ce otherwise.

Note that our conjecture (C) could be proved using this example if we had a
chain rule stronger than Proposition 3.4 (for f directionally differentiable and twice-C-
differentiable for instance).

4. Second-order Taylor expansion.
PROPOSITION 4.1. Let f" X-. be continuously Gteaux differentiable and twice

C-differentiable at every point of the segment Ix, y] c X. Then there exists Ix, y[ such
that

(21) f(y) 6f(x)+(Vf(x), y-x)+1/2<O2f()(y-x), (y- x)>,

the closure being superfluous iff is C TM in Ix, y].
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Proof Let us consider h "-, defined as

(22) h(t) =f(y+ t(x- y))+ t(Vf(y+ t(x- y)), y-x)+1/2at2-f(y),

where a has been chosen so that h(0)= h(1)=0.
From Lemma 1.4, there exists a ]0, 1[ such that h(a; s)>-0 for each s.
Letting hl(t)=t(Vf(y+t(x-y)),y-x) and =y+(x-y), we get

0 < h(a; s)= as+ s(Vf(), x-y)+ h(c; s).

Moreover, setting h x-y we may write

h(a; s)= lim sup- (Vf(y + th+ rsh)-Vf(y+ th),-h)-s(Vf(sc), h)
r

o

--< af(; s(x-y),y-x)-s(Vf(),x-y),

and we deduce that

O<-_aas+af(sc; s(x-y),y-x) for all s,
which, used for s 1 and s =-1, gives us

-f(; y x, -(y x)) <= a --<f(; y x, y x).

Hence a e(O2f()(y-x), y-x) and from (22) with t= 1 we get formula (21).
Finally, iff is C l’ at :, then ozf()(y-x) is w*-compact so that adherence in (21) is
superfluous. [q

At this time we do not know when formula (21) holds for nonsmooth functions
by replacing Vf(x) with the generalized gradient Of(x).

The above result will be used in the next section to obtain second-order necessary
and sufficient optimality conditions. Meanwhile, let us use it to study the relationship
between Of and the convexity of f.

DEFINITION 4.2. A prefan A" X::X* will be said to be positively defined (p.d.)
(respectively, weakly positively defined (w.p.d.)) if its support functional S satisfies
-S(u, -u)>= 0 (respectively, S(u, u)->_ 0) for each u X. If the above inequality is strict
for u 0, A will be said to be strictly p.d. (respectively, strictly w.p.d.).

PROPOSITION 4.3. Let f: X - be convex and twice C-differentiable; then for each
x X the generalized Hessian 02f(x) is p.d. The converse holds wheneverf is moreover
continuously Gteaux differentiable.

Proof As pointed out in the remark following Definition 1.1,

f(y + su + tv) f(y + su) f(y + tv) +f(y)
f(x; u, v) lim sup

yx st
S,l--O

so that the first part will be proved if we show that for each y X and x, + we have

f(y- su + tu)-f(y- su)-f(y+ tu)+f(y)0,

which is an easy consequence of the convexity inequalities

S
f(y) <=-f(y su) + f(y + tu),

s
f(y su + tu) <= -tf(y su) +-f(y + tu).
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For the converse, let us take x, y X and use Proposition 4.1, to obtain

f(y) -f(x) (Vf(x), y x) 1/2(oZf()(y x), y x) c +,

so that f(y)>-f(x)+(Vf(x),y-x) and f is convex since x and y were chosen
arbitrarily. V1

5. Second-order optimality conditions. Given a function f" X - we can formulate
the following optimality conditions for the unconstrained minimization problem"

(P) Minimize {f(x)" x X}.

PROPOSITION 5.1 A necessary condition for x X to be a solution ofproblem (P)
is that f(x; u, u)>-_ 0 for each u X. If the function f is twice C-differentiable at x, this
condition corresponds to the fact that oZf(x) is w.p.d.

Proof For sufficiently small we have f(x + tu)>=f(x) and henceforth

u, u) > lim sup
f(x + tu) -f(x) -f(x) +f(x tu)

>0. [3f(x
to

Example 6. The function Ix[ 3/2 has a minimum at x 0 and therefore satisfies the
above second-order optimality condition (s.o.o.c.).

On the other hand, -[xl3/ satisfies the first-order optimality condition f’(0)= 0.
Nevertheless, it fails to satisfy the above s.o.o.c, at zero and can be rejected as a
candidate for a minimum (it is, in fact, a maximum).

PROPOSITION 5.2. Assume that f..n ._>[ is C TM and x X satisfies the first-order
optimality condition Vf(x) 0. Then a sufficient conditionforx to be a strict local minimum
off is that 02f(x) is strictly p.d.

Proof By using a classical argument we see that if it is not so, we may find a
sequence x,- x such that x, x and f(x,)<-_f(x) for all n, and with no loss of
generality we may assume that for some u X

Now, using Proposition 4.1 we may conclude the existence of a sequence
]x, xn[, such that

a, 2(f(x,) f(x))/llx, -xl[ z (O=f(,)(u,),

so we have found sequences ,x, u,-u and x*,Ozf(,)(u,) such that an
(x.*, u.)-<_ 0.

By Proposition 2.3(c), we may assume (eventually extracting subsequences) that
(x,*) converges to some x* oZf(x)(u). But this would imply that (x*, u)= lim (x*, un) -<

0 and afortiori that -f(x; u,-u)<-_O contradicting the fact that oZf(x) is strictly
p.d.

Similar results can be proved for the constrained problem

(R) Minimize {fo(x)" x Q},

where Q={xX’f(x)<=O for all iI={1,..., n}} and the ffs are continuous and
Gteaux differentiable for each i= 0, 1,..., n.

First of all, let us recall [5] the definition of the cones

D(Q,x)={uX" ir>0 such that x+]O,r[uc Q}
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and

T(Q,x)={uX: (Vf(x), u)<_--0, Viii(x)},

where I(x) {i I: f(x) =0}.
Let us recall also that x Q is called a regular point for the problem (R) if

T(Q, x)= D(Q, x), and that when x is a regular point that is a minimum for problem
(R), then the Kuhn-Tucker Theorem [5, Thm. 3.4] ensures the existence of A
(A 1, ", An) +n such that

(23) VLx(x)=0 and L(x)=fo(x),

where L(x)=fo(x)+i1 if(x). Every verifying (23) is called a multiplier.
To get s.o.o.c, for problem (R) we associate to each multiplier the set

Q(a) {x Q: f(x) 0 if Ai > 0 and f(x) <-_ 0 if/i 0}.

PROPOSITION 5.3. Suppose x Q is a regular point that is a minimum for problem
(R). Thenfor each multiplier h

_
andfor each u D(Q(A ), x) we have L(x; u, u) >- O.

Proof Clearly, we have

1
L(x; u, u) >= lim sup -7 (VLh (x + tu), u).

t->0 l

Now, if u D(Q(A), x) there exists r > 0 such that for ]0, r[ we have x + tu

Q(A) and hence L(x+ tu)=fo(x+ tu). Then, being x a minimum we have for
sufficiently small

La (X + tu) =fo(X + tu) >-- fo(X) La (X),

SO that using the mean value theorem we get that for each > 0 sufficiently small there
exists t’ ]0, t[ such that

t’(VL,(x+ t’u)u)>-_O,

from which it follows easily that lim sup,_o+ 1/t(VL(x+tu), u)>=O and henceforth
L(x; u, u) >= O. H

Conversely, we can establish a sufficient s.o.o.c, in the finite-dimensional case.
Let us define the Bouligand tangent cone to Q at x e Q as

B(Q,x)={uX: =ltO, us-u such that x+tuQ}.

It is easy to verify the inclusion D(Q, x)c B(Q, x) and when Q is defined by
differentiable constraints that B(Q, x) c T(Q, x).

PROPOSITION 5.4. Letf :n _, =0, 1, , n be C TM functions. Then a sufficient
condition for a point x Q to be a strict local minimizer for problem (R) is that there
exists a multiplier h

_
such that -L(x; u,-u) > 0 for each u B(Q, x)\{0}.

Proof The proof is analogous to that of Proposition 5.2. H

6. Some ideas concerning Newton’s method. In this section we point out some
simple facts concerning the following natural extension of Newton’s method for the
minimization of a C TM function f:n --> .
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(A) Starting from an arbitrary point XoR generate the sequences (Xk)kN and
(hk)kN by
(i) hk is any solution of the inclusion OVf(Xk)+O2f(Xk)(hk),
(ii) Xk+I Xk + hk.

PROPOSITION 6.1. Let (Xk)k be the sequence generated by algorithm (A) and let
us assume that it is convergent to some x ". Then Vf(x)=0 and furthermore, for k
sufficiently large we have

(24) [IVf(Xk)]l <- I][Xk+I-
for some constant

Proof Since f is of class 1’1 at x, it is easy to see that for some e N+ and all y
sufficiently close to x we have

Ilx*ll -</llhll for all x* 02f(y)(h),
so that (24) follows at once by taking x*=--Vf(Xk) and h Xk+l--Xk.

Then, the continuity of Vf implies that Vf(x)= 0 and the proof is complete.
It is clear, from what is known about Newton’s method in the smooth case, that

at most we can expect local convergence for algorithm (A) and nothing can be said
about the cluster points of the sequence (Xk) (assuming there are any).

On the other hand, it remains as an open question to state rate ofconvergence and
local convergence results for algorithm (A). In this sense, it is interesting to investigate
the modification of algorithm (A), which consists of replacing (ii) xk+ xk + hk by
(ii)’ xk+ xk + akhk where ak is chosen by directional exact or approximate minimiz-
ation.

To conclude this section let us say a few words in connection with the solvability
of the inclusion

(25) Find h N" such that 06 Vf(x)+o2f(x)(h),
which must be solved at each iteration.

The classical assumption in Newton’s method is that the Hessian Matrix V2f(x)
off at x is nonsingular, which in our case could be stated as "There exists a nonsingular
linear selection A:[R"-N" of the generalized Hessian 02f(x) (i.e., such that A(h)
Of(x)(h) for all h ")."

Nevertheless, the multivalued character of the generalized Hessian oZf(x) and the
nice properties enjoyed by O2f(x)( ), suggest that (25) is likely to have a solution (or
even many of them).

The following result gives a sufficient condition for (25) to have at least one
solution.

PROPOSITION 6.2. Let f be of class 61,1 and suppose that for some r > 0 we have

(26) Ilvll r==>(Vf(x), v)+f(x; v, v) >- O.

Then there exists h B(O, r) such that O e Vf(x)+ 02f(x)(h).
Proof This is a consequence of Corollary 3 in [4, Chap. 6, 4].
It is easy to see that when oZf(x) is strictly w.p.d., condition (26) will be automati-

cally satisfied for all r>-_ I[Vf(x)[[/a, where

a min f(x; v, v) > O,

A final remark in connection with inclusion (25) is that it is equivalent to find
h e N" such that (Vf(x), v) +f(x; h, v) 0 for all v N", so that any solution h R"
will satisfy, in particular,

(Vf(x), h> <=f(x; h,-h),
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and, in turn, whenever 02f(x) is strictly p.d., we will have

(Vf(x),h)<O,

showing that h is a descent direction.
Example 7. An interesting case of minimization of a c1, function is provided by

the so-called multiplier methods for solving

Minimize {fo(x): x ",f(x) =<0; i= 1,. ., p},

which perform a sequence of unconstrained minimizations (with respect to x) of the
augmented Lagrangian

1
[Yi+ el(x)] 2 _y2Lc(x, Y)=fo(x) +-c i=

+

where c and y are updated from one iteration to the next according to different specific
rules.

It is easy to see that when the f’s are (.2 then Lc, and therefore Lc(., y), is of
class c,. Moreover, letting

Hi(x, Y) [Yi + cf(x)J+VZf(x) + cVf(x)Vf(x) "
we may show that the generalized Hessian of L(., y) is linearly generated by the
matrices of the form

Vfo(x)+ aiH(x,y)
i=-I

where the scalars ai must be taken equal to zero, one, or in [0, 1] following the case
in which [yi + cf(x)] is negative, positive, or zero, respectively.

The Newton iteration of algorithm (A) then takes the form

(7 x/ x fo(x + (x, c(X,
i=1

where it subsists an indetermination in the choice of the coecients when [y+
c(x)] =0.

Another way to motivate iteration (27) is by linearization of the stationarity
condition VL(x, y) 0 that can be equivalently written as

Vfo(x) + h,Vf(x) O, , [Yi + cf(x)]+
i=l

and leads to the approximation

(x=0
i=1 i=1

for determining x+ and I+ =[y + c(x+)]+.
To estimate the difference (I)+ I) we observe that when [y + c(x)] is positive

or negative, the function [y + c(. )]+ is differentiable at x and we obtain, respectively,
cV(x)(x+-x) and zero as estimates for (I+-I). Similarly, in the case [y+
c(x)] 0 we obtain the estimate (I+ I) c[V(x)(x+- x)]+.

These approximations lead to an iteration of the type of (27) with the ’s chosen
equal toone whenever [y + c(x)] > 0 or when [y + c(x)] =0butV(x)(x+-x)
0, and equal to zero in the remaining cases. This is not a practical criteria, however,
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since the point Xk+l is determined after the ai’s have been fixed. Nevertheless, this
relation shows that the most interesting values for the ai’s are the extreme ones.
A possible heuristic that might be suggested is to choose the ai’s more or less arbitrarily
(take one of a previous iteration for instance) and eventually modify a posteriori the
values of the ai’s that violate the previously established criteria.
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GENERALIZED LINEAR-QUADRATIC PROBLEMS OF DETERMINISTIC
AND STOCHASTIC OPTIMAL CONTROL IN DISCRETE TIME*
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Abstract. Two fundamental classes of problems in large-scale linear and quadratic programming are
described. Multistage problems covering a wide variety of models in dynamic programming and stochastic
programming are represented in a new way. Strong properties of duality are revealed which support the
development of iterative approximate techniques of solution in terms of saddlepoints. Optimality conditions
are derived in a form that emphasizes the possibilities of decomposition.

Key words, discrete-time optimal control, dynamic programming, stochastic programming, large-scale
linear-quadratic programming, intertemporal optimization, finite generation method
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1. Introduction. The importance of linear and quadratic programming problems
is well appreciated in finite-dimensional optimization. Such problems serve as mathe-
matical models in their own right and as subproblems solved within the context of
general numerical methods of nonlinear programming. In optimal control, only a
relatively small class of linear-quadratic problems has traditionally received much
attention, however. A much more general class has recently been explored by Rockafel-
lar [1] with the aim of opening up a wide domain for application of techniques of
large-scale linear and quadratic programming, in particular the finite generation method
of Rockafellar and Wets [2]-[4] that has been implemented in stochastic programming
[5]. Central to this purpose is the development of flexible problem formulations for
which there is a strong duality theory that represents optimal trajectories and controls
in terms of saddlepoints of a "decomposable" Lagrangian.

In the present paper a discrete-time version of the deterministic models in [1] is
investigated and corresponding results on optimality and duality are obtained. The
formulations and results are then generalized to the stochastic case. The focus on
discrete time is motivated by the computational possibilities already mentioned, so we
do not hesitate to suppose also that the probability space for our stochastic version is
discrete.

Our emphasis is on setting up a general framework for large-scale finite-
dimensional linear-quadratic programming problems that reflect the special structure
of optimal control. Besides being useful for numerical experimentation, such a
framework may stimulate new applications, for instance, in areas like operations
research and resource systems management, where inequality constraints occur that
jointly involve states and controls. Although the task of clarifying the relationship
between finite- and infinite-dimensional formulations is an important one, it is not the
object of our efforts here.

In fact our discrete-time problems are more general than typical continuous-time
problems in one respect: the dimensionality of the state and control vectors can vary
with time. This feature is important in multistage modeling, where the decision structure
in one period need not be the same as in another. The flexibility it provides allows us
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to show that a much wider class of problems is covered by our format than might at
first be imagined.

2. Generalized linear-quadratic programming. The control problems that will be
formulated are based on a concept of generalized linear-quadratic programming
explained fully in Rockafellar [1]. A problem fits this concept if it can be expressed
in the form

() minimizef(u) sup J(u, v) over all u U,

where U and V are polyhedral convex sets in k and 1, and J is a quadratic
convex-concave function on U V, namely

(2.1) J(u, v)=p. u+1/2u. Pu+q. v-1/2v. Qv-v. Du,

where P and Q are symmetric and positive semidefinite (possibly zeromwe do not
exclude "linear" when we say "quadratic," as we try to underline by sometimes using
the term "linear-quadratic"). The problem dual to () is then

() maximize g(v)= inf J(u, v) over all v V.
uU

Here f(u) could be oo and g(v) could be -oo. We regard u as a feasible solution
to () only if u U and f(u)< o; likewise, we regard v as a feasible solution to (R)
only if v e V and g(v)>-oo.

The expression of problems () and (R) is facilitated by the notation

(2.2) pv,o(r)=sup{r .v-1/2v.Qv} for ren

(2.3) pts,p(S) sup {s. u-1/2u. Pu} for s .
uU

Thus pv,( is a function on ! determined by the specification of a polyhedral convex
set Vc and a symmetric positive semidefinite matrix Qtt. It is in general
"piecewise linear-quadratic" in a sense made precise in [1], and it may take on the
value oo. There are many special cases deserving of mention, but for these too one
should consult [1]. Let it suffice to observe that when 0 V, we have pv,((r)>= 0 for
all r, pv,((0)=0. Then pv,((r) can be interpreted as an expression that "monitors
deviations of r from 0." Similarly for pt;,P.

In this notation our general problems can be written as

() minimize p. u +1/2u. Pu + Pv,o(q- Du) over u U,

() maximize q. v-1/2v. Qv-pt;,p(D*v-p) over v V

(where the "*" signals the transpose matrix). In (), therefore, we have the possibility
of linear constraints represented by the condition u U, and also an objective term
that "monitors deviations of Du from q." This may be a penalty term that is zero for
some kinds of deviations but positive for others. For example, if V /, Q 0, we have

(2.4) Pv,o(q- Du)
f0 if Du q,
oo ifDugzq,

so that the p term in () is a "sharp" representation of the constraint Du >= q. If at
the same time one has U N k/, P O, then similarly

if D*v<=p,
(2.5) pu,p(D*v -p)

if D*v p.
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In this case () and () reduce to a canonical pair of linear programming problems
in duality. See [1] for discussion of the rich possibilities that such p terms provide
more generally in mathematical modeling.

The basic facts about the relationship between () and (2) can be derived from
the standard theory of linear and quadratic programming, specifically the duality
theorem of Cottle [6] and the existence theorem of Frank and Wolfe [7].

THEOREM 2.1 (Rockafellar and Wets [3, Thm. 2]). If either () or (2) hasfinite
optimal value, or if both problems have feasible solutions, then both optimal values are

finite and equal, and both problems have optimal solutions. In this case a pair (, ) is
a saddlepoint ofJ(u, v) relative to u e U and v V if and only if is an optimal solution
to ) and is an optimal solution to ( ).

3. Deterministic control model. We now want to formulate problems in this vein
that belong to optimal control. The dynamical system we consider takes the form

x=Ax_l+Bu+b for’=l,...,T,
(3.1)

xo=Bouo+bo, where uUforr-0,1,...,T.

The vectors u.k are controls, and the vectors x[" are states (observe that
dimensions can vary with -). We write u (Uo, ul,. , u) and x (Xo, x,. , xr).
Thus x is uniquely determined by u, and the transformation u -x is affine. Note that
Uo serves as a supplementary parameter vector more than as a control vector in the
usual dynamical sense.

The sets U [k are assumed to be polyhedral convex (nonempty). The matrices
A, B and vectors b are of appropriate dimension:

A n’n’-I B nrk" b. nr,

(By taking ko 0, one could eliminate Uo from (3.1) and have Xo bo.)
Our deterministic control problem is"

minimize subject to (3.1) the expression

(det)
f(u)

=0

y p" U +- U," Pu,- C-+l X-

T

nt- E Pv..Q.(q’--Cx’-I--Dru’)+Pvr+,.QT+,(qT+I--CT+IXT)

Here V, is a polyhedral convex set (nonempty) in N -, and the matrices P and
Q, are symmetric and positive semidefinite. We have

P Nkrxkr Q, lrxlr P’r e Nk,, q, e

In this notation the elements A, and D, are defined only for -= 1,. -, T, but B,,
P,, p,, are defined for ’=0, 1,..., T and C,, c, Q, q for -= 1,..., T, T+I.

For the problem that will turn out to be dual to (det), the dynamical system goes
backward in time:

(3.2)
y=A*y++C*,v+c for ’=I,...,T,

Yr+l=C*r+lv’r++cr+, where v,V, for’=l,...,T,T+l.

The vectors v, e NI, are the dual controls, and the vectors y, N",-, are the dual states.
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We write

) (Vl," ", Dr, Dr+l) and Y (Y," ", Yr, YT+I).
The dual problem then is

(odet)

maximize subject to (3.2) the expression

g(v) q-" v,-- v," Q,v,- b,_ y,
’=1

T

2 Pu.p(B*Y+I-D*v-P)-Puo.Po(B*oYa-Po)

In this formula y is the trajectory uniquely determined from v by (3.2).
PROPOSITION 3.1. Suppose x corresponds to u by (3.1), and y to v by (3.2). Then

T T+I

(3.3) E Y+ [Bu+b] E x_ [C*v+c].
-=0 ’=1

Proof In view of the relations (3.1) the left side of (3.3) can be written as

T T

yl’Xo + y.+[x.-A.x._l]=yl xo+Y2 X+" "+YT+I XT-- X._ A* y.+I.
’r=l -r=l

Likewise from (3.2) the right side becomes
T T

xr" yr+,+ Z x,-l [y,-A*, y,+,]=y, xo+Y2" X,+" "+ yT+, XT-- E X’r--l A* y,+l.
’=1 ’=1

Thus the two sides are equal, as claimed, r-1
PROPOSITION 3.2. Let U Uo x x UT and V V x x VT+, and for u U

and v V define

(3.4)

J(u, v)=f. p" u+- u," P,u, + q," v,-- v" O,v,
=0 "r=l

T

E v," Du,-[u, v],
’=1

where u, v] denotes the common value of the expression in (3.3).
Then Uand Varepolyhedral convex sets, andJ is a quadratic convex-concavefunction.
Proof This is immediate from our assumptions and the fact that the expression

[u, v] is affine in u and v separately.
THEOREM 3.3. The deterministic optimal control problems (det) and (Rdet) are the

primal and dual problems of generalized linear-quadratic programming associated with
the U, V, and J in Proposition 3.2. In particular, the assertions of Theorem 2.1 are valid
for (det) and (Rdet).

Proof We need only show that the expressions f(u) and g(v) in (det) and (Rdet)
arise according to the pattern in the general problems () and (R) of 1. First, using
for [u, v] in (3.4) the right-hand expression in (3.3), we write

J(u, v)= Z p," u+- u" P,u. c." xr_
’=0 "r=l

(3.5) +
=1

( 1 )+ [qT+,- CT+, xT]" vT+,- DT+I" QT+,VT+,
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The maximization of this over all v V reduces to a separate maximization with respect
to each of the components v of v. Since by definition

sup {[q- C.rx.r_ Du] v-1/2v" Qv} pv.. o.(q- Cx_, Du)
,r V

8nd

sup {[q+,-C+,x]" v+,-v+," Q+,v+,}=pv+,.o+,(q+,-C+,x),
UT+I VT+I

we conclude that sup v J(u, v) is the f(u) in (at).
Next, using for [u, v] the left-hand expression in (3.3), we write

r=l r=0

(3.6) 2 [B*y+ + O*v,-p,] u,- u," P,u,

Uo- Uo. eoUo

The minimization of this over all u U reduces similarly to a separate minimization
with respect to each of the components u,. We know that

sup {[B,y,+* + Dv,-p,] u,-u,. P,u,}= O...(B,y,+* + D,v-p,)*
g

and

sup {[B*o y, -Po] Uo-1/2Uo Pou0} puo.Po(B*o y, -Po).
Uo Uo

We conclude that infuu J(u, v) is the g(v) in (det).
The proof of Theorem 3.3 reveals an important simplifying feature of our minimax

representation of (det) and (det). We state it as follows.
THEOREM 3.4. For the U, V, and J in Theorem 3.3 one has thefollowing decomposa-

bility properties for separate minimization in u or maximization in v. Here and are
elements of U and V, and and .9 the corresponding trajectories.

(a) 6 argmin,u J(u, ) if and only if
(t, Opu..p.(B*y-+ + D,* iS, p,) argmax {[ B,y,+l+D,,-p,]*- * u, -1/2u,.

for T= 1,’’’, T, and

aoe Op o,  o(SO*Y,-po) argmax {[Bo*y-po]-1/2Uo Pouo}.
Uoe Uo

(b) ff argmax v J(fi, v) if and only if
Opv.,o(q--- C)2_- DO) argmax {[q,- C,g,_- D,O,] v,-sv" Q,v}

19z V

for ’= 1,’.’, T, and

gT+I OpVT+,,OT+,(qT+I C-+ r)

argmax {[qr+-Cr+Y,].vT+-svr+. Qr+lVr+l}.
DT+ VT+

Proof The formulas in terms of "argmax" are justified by the calculations in the
proof of Theorem 3.3. The qtestion that remains is whether the "argmax" sets are
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truly the same as the indicated subgradient sets. This is answered by the observation
that in the notation (2.2) we have pv,Q 0*v,o (convex conjugate), where

ov,(v)=1/2v. Qv ifvV,
(3.7)

if v V.

Inasmuch as Ov,o is a closed proper convex function, we also have Ov,o p*v,o and

(3.8) Opv,o(r) argmax {r. v- Ov,(v)}

by the basic rules of convex analysis [8, Thm. 12.2]. When this is applied to the pairs
V, Q, and U, P, in place of V, Q, we reach our desired conclusion.

The significance of the formulas in Theorem 3.4 lies in their potential use in
iterative methods for solving (det) and (det) when the dimensions

T T+I

(3.9) k= Y k and l= Y. 1
-r=0 -r-----1

of the vectors u (Uo, u, , u-) and v (v, , vT, VT+) are large. The dimensions
may be expected to be large if T is large, as of course would happen in particular in
taking (det) and (det) to be discrete-time approximations to continuous-time control
problems such as the ones studied in [1]. In the presence of high dimensions, it may
be impossible or inexpedient to solve (bdet) and ("det) directly by reducing them to
ordinary quadratic programming problems in duality and applying a typical finitely-
terminating quadratic programming code (as would be possible in principle in a manner
explained in Rockafellar and Wets [3, 2]).

An alternative approach in that case is the exploration of methods that determine
approximate solutions to (det) and (det) by calculating a sequence of approximate
saddlepoints (a , t3) of J on U x V for , 1, 2,..., as suggested by the characteriz-
ation of optimality in Theorem 3.4. In any such method the ability to calculate

(3.10) f(a)=maxJ(, v) and argmaxJ(a, v)
V V

as well as

(3.11) g()=minJ(u,) and argminJ(u,)
uU uU

is crucial in producing primal and dual bounds that tell how far a and 3 are from
optimality and as input to possible schemes for updating (a , 3) to (a/ 5/)
Theorem 3.4 says that the calculations in (3.10) and (3.11) can feasibly be carried out
in terms of solving a collection oflow-dimensional quadratic programming subproblems
indexed by -. Moreover these subproblems can even be solved in "closed form," i.e.,
without applying a quadratic programming code, if the functions pv.o and pu, P have
sufficiently simple expressiorrs that allow the use of subgradient formulas directly.

The subgradient formulas are readily usable, for example, in the completely
decomposable case where U and V are boxes (products of closed intervals, e.g.,
orthants) and P and Q are diagonal. Indeed, if P and Q are nonsingular, the
subgradients reduce to gradients given by very elementary expressions.

THEOREM 3.5. Consider a control pair u, v, and the corresponding trajectories and
determined by (3.1) and (3.2). Define

forz=O, 1 T,=p-By+

(3.12) and

(t q C- for z l, T, T+ l.
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Let (T) and (T) for z 1,. ., T denote the primal and dual problems of generalized
linear-quadratic programming associated with

(3.13) J(UT, VT) PUT + ’-UT PTUT + FIT VT 1/2VT QTVT VT DU
on G x K, namely,

() minimize. u, +u. gu+ Pv,. o,(q, Du) over u G,

() maximizeq, v-v. Qv-pv,.p(Dv-fi) over v K,

and consider also the problems

o) minimize rio Uo +Uo Pouo over Uo G,

(QT+) maximize qT+ V+--V+ QT+,V+ over Vr+ Vr+.
en a necessary and sufficient condition for and to be optimal solutions to the control
problems (dt) and (dt), respectively, is that should be an optimal solution to the
subproblem )for 0, 1, , T, and G should be an optimal solution to the subproblem
() @r = 1,..., T, T+ 1.

Proof We know from Theorem 3.3 that a necessary and sufficient condition for
the optimality of and in (0et) and (ot) is the saddlepoint relation

a argmin J(u, if) and ff argmax J(, v).
uU vV

Furthermore, this reduces to having the argmax conditions in Theorem 3.4 hold for
g fi and . These conditions in turn are equivalent to

GargminL(u,G) for =l,. ., T,
Uz U

rio argmin {o Uo +Uo Pouo},
u0 Uo

and

G e argmax J(G, vT) for z 1, , T,

fiT+ argmax {qT+ "v+--v:+l" Q+v+}.

The latter mean that rio is optimal for (o), fir+ is optimal for (r+), and (G, G) is
a saddlepoint of J(u, v) relative to u U and v V for z 1, , T. This saddle-
point condition is equivalent by Theorem 2.1 to G and G being optimal solutions to
the primal and dual subproblems () and ().

Optimality conditions of the kind in Theorem 3.5 were developed for continuous-
time problems in Rockafellar [1]. They resemble conditions first detected in a special
setting known as "continuous linear programming" by Grinold [9].

Besides being of interest in the study of what optimality might mean in a paicular
application modeled directly in terms of (at) and (Qaet), the conditions in Theorem
3.5, like those in Theorem 3.4, have import for computations. Having arrived at a
control pair (", ) and associated trajectories (ff",y") in some iteration u of a
numerical method, one can construct a new pair (u , v) U x V by taking u to be
an optimal solution to () for =0, 1,. ., T and v an optimal solution to () for
z 1,..., T, T+ 1, where () and () are the subproblems corresponding to
and in the sense of Theorem 3.5. Then u" and v" generate new trajectories x and
y that may be compared with if" and ", and so forth. This procedure, like the one
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described after Theorem 3.4, provides another tool that might, after suitable elaboration,
be used constructively in the generation of a sequence of approximate saddle points.

4. Stochastic control model. The probability space we work with in this paper is
simply a finite set f, for reasons given in 1. The probability associated with an
element to f is 7ro -> 0; we have Yo,a zG 1. The vectors, matrices, and sets introduced
in the formulation of our deterministic problems persist notationally in the stochastic
problems, but all are now treated as (potentially) random variables. Thus, for example,
p now denotes a mapping to --p,o k, rather than necessarily just a single vector.
Likewise P is a matrix-valued mapping to-- P, and U, is a set-valued mapping
to Uo,. In line with our earlier assumptions, we suppose that P and Qor are positive
semidefinite (symmetric), and Uor and V,o are polyhedral convex (nonempty). The
expectation of a random variable such as p is

E(p} Eo{po-} := Y

The information available to the decision-making process at time z is modeled
by the specification of a (finite) field % of subsets of 12 for z 0, 1,. ., T, T+ 1. The
fields d may differ from the complete information fields ,, and no particular relation
between them is presupposed, although the case where the dr’s are increasing with r
contained in is, for instance, an important one. More will be said about this after
the statement of our primal and dual problems. We assume that

(4.1) U, V, p, P, q, 0r, and Dr are c-measurable,

but in general do not place this restriction on At, Br, Cr, br, or G. Trivially the latter
are measurable with respect to the underlying field of complete information,
comprised here of all the subsets of 12.

Because is a finite collection of subsets of 12, the notion of r-measurability
has an especially simple representation for our purposes. Let 4r denote the subcollec-
tion of dr consisting of all 3-atoms, i.e., nonempty cr-measurable sets that do not
properly include any other nonempty -measurable set. Such atoms are mutually
disjoint. A set is -measurable if and only if it is a union of r-atoms. Thus there is
a one-to-one correspondence between q3r-measurable sets in 12 and sets of q-atoms,
i.e., subsets of s4. A function is cg-measurable if and only if it is constant relative to
every CG-atom. Each -measurable function can in this way be identified uniquely
with a function on rather than on 12. We can indicate this notationally, when we
wish to, by writing p for a M to denote the common value that p has for all
to a when p is q-measurable. (Obviously f itself in this setting might be identified
with the set of atoms of some finite field of information chosen within a larger, possibly
"continuous" probability space by some kind of approximation. We do not go into
this matter here.)

Conditional expectation with respect to qr is denoted by E -. This can be viewed
in the present setting as the linear transformation that takes a random variable such
as B, and redefines it to have a constant value on each 3,-atom a Q, that value
being, of course, the "weighted average"

The stochastic dynamical systems for our primal and dual problems are taken
again to have the forms (3.1) and (3.2), but with all elements now interpreted as
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(potentially) random, and with the restriction that

(4.2) uT- is 7--measurable,

(4.3) vT- is 37--measurable.
The condition uT- UT- in (3.1) is interpreted to mean that uo7- Uo for all to f, and
similarly for vT- VT-. Our primal problem of stochastic control is

(sto)

minimize subject to (3.1) and (4.2) the function

r { 1 } T+I

f(u)==o E pT-" u+-uT-" PT-uT- 7-=12 1C7-" Xr_l}

T

+ 2 E{pv.,o.(qT-- E%{GxT--1} DT-uT-)}
7-=1

+ E{pvr+,,Or+,(qr+,- E r+’{ C7"+, xT-})}.

The corresponding dual problem is

(’sto)

maximize subject to (3.2) and (4.3) the function

g(v) E qT-" v,-- vT-" QT-G ., E{bT-" y+,}
’=1 z=l

T

2 E{pu,,p,(E%{B*YT-+I} q- D*vT--pT-)}

E{pt:o,Po(E%{B*oYl- Po})}.

Here Pv,,o, and pu,,P are "random functions" that depend dT--measurably on
to f by virtue of (4.1). The random variables

(4.4) G := EG{CxT--1} and r/7-:= EN{B*,yT-+I}
are 7--measurable too, of course, so the arguments to which Pv,,o, and pu.e, are
applied are always 7--measurable. The p terms at time z thus monitor "constraint
expressions" based solely on the information available to the decision maker at time
z. Note from the.dynamics that sco7- depends affinely on Uo,’’ ", u,o,_, whereas r/o7-
depends affinely on v,o.7-+, "’, v,o.r+.

In order to appreciate the generality of problem (Psto) it is important, especially
for readers accustomed to the traditional approach to stochastic control, to understand
the nature of the information structure that is adopted. This structure, which is typical
of the literature on stochastic programming, has sometimes been interpreted narrowly
as excluding models where the information on which decisions can be based is generated
by observations that may be influenced by previous control decisions, cf. the comments
of Bertsekas and Shreve 13, pp. 10-11 ]. Such is not actually the case when measurability
requirements are referred to a single underlying space, as we shall explain. Thus the
specification of the information field 7- as independent of Uo, Ul,’" ", uT--1, should
not be taken to mean, for instance, that in choosing uT- we are unable to respond to
complete or partial observations of the states x0, x, , x_, inasmuch as those states
are generally random variables whose distributions depend on Uo, ul," ", u,_l.

The crucial distinction is that of controls u seen directly as functions on the space
f, rather than controls represented in a feedback mode as functions of past observations
and expressible only in a secondary way, through composition, as functions on f. The
feedback mode of representation, while conceptually very appealing, can be a handicap
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in our opinion when imposed right from the beginning in the problem formulation.
We prefer to proceed at first without it and to recover feedback laws later from
optimality conditions, if desired.

Let us imagine, to make this more explicit, that at each time -= 0, 1,.-., N an
observation z mr is made before the control decision u is chosen. Of course z is
a random variable whose distribution is given by a probability measure on E roT,
which in general might depend on the controls Uo, ul," ", u_1. Let us suppose that
the only information available for the selection of u is the sequence z0, zl,’’ ", z.
In stochastic control it is common to express this requirement by taking u to be a
function of Zo, z, , z, i.e., as a function of a random argument in E,-o m, X" X

E m,. What we propose instead is to handle Zo, zl,..., z as functions defined on the
underlying probability space fl and take u to be a function on that is measurable
with respect to the r-field generated by Zo, z,..., z; it is this field that should be
identified with in our model. (We have assumed in this paper that is a finite,
discrete set, but the idea under consideration applies more generally.) This condition
is tantamount to the requirement that u be representable by composition of
(Zo, z,..., z) with some mapping into k from the probability space in "o x ’,

x E"- induced by these random variables, but it leaves the particular representation
open to later investigation.

The advantage to our approach in this setting is that the field may well be
independent of Uo, u, , u_1, even though the distribution of (Zo, z, , z) might
not. To this extent we are able to make use of properties of convexity and duality that
otherwise could be overlooked.

Before we return to the characterization of optimal controls and trajectories, let
us also note that because we allow the dimensionality of the state and control vectors
to vary over time, our model also includes classical multistage recourse problems.
Suppose that the equations (3.1) have the special form

x,= x,_+ u, for’=l,... T,
I

X0 ,b/0

where the identity matrices I and zero matrices 0 are of the appropriate dimensions.
Then

X0 U0 Xl 22 Ul etc.

2

Thus x, is the "memory" of all decisions up through time -. Assuming that ,-1 c ,,
we get x,, like u,, to be ,-measurable. Then in (sto) the term

q,-F%{C,x_}-D,u,
represents a general affine expression in uo, u,..., u,. When Ov,,o. is of the type
(2.4), we can rewrite (sto) in terms of linear constraints and a quadratic objective
involving only the control variables Uo, u, , ur. This problem, with its block angular
structure, is in the usual format for the multistage stochastic programs with recourse;
see 11] or 12], for example.

Problem (sto) revolves around the choice of the random variable u=
(Uo, u,. ., ur), which can be regarded as a function from f to No x... xN and
therefore as an element of the finite-dimensional vector space consisting of all such
functions. The dimension of this space may be very large indeed just from the size of
f and possibly T, even if ko," , kr are themselves relatively small, as might generally
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be supposed. We must therefore think of (sto) as inherently a "large-scale" problem
for which approximate methods of solution will be more appropriate than "exact" ones.

Nevertheless we would do well to keep in mind that the representation of u as a
function from f to ko ... kT tends to exaggerate the dimensionality of (sto).
The constraint that uT. be 7.-measurable means, as already noted, that uT. can be
identified uniquely with a certain function from MT. to kT. The dimension of the space
of all functions from MT. to kT is aT.kT., where

ak --[6k[ (the number of atoms in k).
Thus the "true" dimensionality of (sto), in the sense of the number of real-valued
decision variables, is

(4.5) k* aoko+ alk +" + aTkT.
By the same token, the "true" dimensionality of (sto), where the random variable
v (v, , VT, VT+) must be optimized, is

(4.6) l* all +. + aTlT / aT+lr+l.
PROPOSITION 4.1. Let

all {u (Uo, u1," ", UT) UT. is c7.-measurable with u U},
?/’= {v (v, .., VT, VT+)[ VT. is q-measurable with v V},

and define u, v) E {J u, v)}, where J u, v) is the expression in Proposition 3.2 regar-
ded now as a random variable depending on the choice of the random variables u and
v). Then and are polyhedral convex sets nonempty ), and ff is a quadratic convex-
concave function.

Proof By definition q/ is a subset of the space of all functions from f to
k X’’" XkT consisting of the functions u such that uoT. U7. for all to and r, and

Uo,7. is constant in to with respect to each 7.-atom a M. These conditions can be
represented by a finite system of linear equations and inequalities, because 12 is finite
and. UoT. is by assumption a convex polyhedron for each to and z. (Alternatively
can be viewed as a direct product of polyhedral convex sets U indexed by a

and z O, 1, , T, inasmuch as U is -measurable.) Thus is a convex polyhedron.
Similarly is a convex polyhedron. We have by definition

(u, v)= Z r(Uo, u,,..., u; v,,..., v, vo.+,)

where the J term for each to is a quadratic convex-concave function and the coefficients
7r, are nonnegative; therefore is a quadratic convex-concave function.

THEOREM 4.2. The stochastic optimal control problems (sto) and (sto) are the
primal and dual problems of generalized linear-quadratic programming associated with
the all, T’, and in Proposition 4.1. In particular, the assertions of Theorem 2.1 are valid
for (sto) and (sto).

Proof We must show that the supremum of (u, v) over all v is the function
f(u) in (sto), and the infimum of 8-(u, v) over all u q/ is g(u) in (sto). Starting
with J(u, v) in the form of (3.5) (which is obtained by using the right-hand expression
in (3.3) for [u, v]) and taking the expectation, we get by (4.1) that

7.T { U+I ) T+

J;(u, o)= E p." uT." P.uT. E{c."
=0 7"=1

+ E E [qT.- Ec3{CT.xT._l} D,uT.]" v,-- vT."

-f" E{[qT+I-- E%+’{CT+I XT}] DT+I--1/2)T+I
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To maximize this over all v 7, we must maximize separately in each of the v’s subject
to v being a -measurable function with v V. Denote the random variable q-
E%{c.x.}-D.u. temporarily by re for T= 1," , T and qT+I--E%+’{CT+lXT} by r+.
Then each re is -measurable and

(u, v)= 2 pu+ u. u {c. x_,}

+ E sup E r.v-v.Qv
=0 vrr

where is the set of all -measurable v with v, V. Since -measurable functions
can be indexed by a d in place of , as explained above, we can write

where is the probability of the atom , i.e.,

The supremum of this expression over all v, e % is

2 sup G," v,, v," O,v, 2 .Pv..,O..(

Thus the supremum of (u, v) over v is

T { 1 } T T+I

z=0 =1

which from choice of the r’s is the objective f(u) in (to). The argument that the
infimum of (u, v) over u e is g(v) in (to) follows the same lines.

TnORZM 4.3. For the , , and in eorem 4.2 one has the following decom-
posability properties for separate minimization in u or maximization in v. e notation is

used that

o q ,{Gx_,}-Da for , ,
fr+ qr+ E+’{CT+ 2T},

s: %{n2+,}+D-p for z= , T,

s5 %{B2,} P0,

where O and fi are elements of and , and and 2 are the corresponding trajectories.
(a) J e argmin, ou u, 6) if and only if

for z=O, 1,. , T and all a e .
(b) eargmaxz(, v) ff and only ff

e Opv.,v.(G) argmax {G" v,-v

for z= l, T, T+ l and all a .
Proo This combines the argument of Theorem 4.2 with the conjugacy facts noted

in the proof of Theorem 3.4.
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THEOREM 4.4. Consider c-measurable
and determined by (3.1) and (3.2). Define the c-measurable random variables

=p-E{B*9+} for 7"=0,1,...,T,
q q E{CX_} for " 1,..., T, T+ 1.

For each 1, , Tand a sg let ) and () denote theprimal and dualproblems
of generalized linear-quadratic programming associated with

J,(u, v,)=/," u+1/2u" Pu+
--v" Qv-vz. Du

on U x V, namely

(of) minimize fi. u+1/2u. Pu, + pyre,o(l Du) over u U,
() maximize (1" v-1/2v. Qv-pu,,e(D*v) over v V,
and consider also the problems

o) minimize Po Uo+-Uo Pouo over Uo Uo
for a So, and

(,,r+) maximize q,-+" u,-+--u,-+l" P,-+ over u,-+ U,-+
for a +.

Then a necessary and sufficient condition for and to be optimal solutions to the
control problems sto) and sto), respectively, is that should be an optimal solution
to the subproblern () for every a s and z O, 1,..., T, and should be an
optimal solution to the subproblem () for every a and z 1,..., T, T+ 1.

Proof The argument imitates the one for Theorem 3.5 but uses the relations in
Theorem 4.3.
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SINGULAR OPTIMAL CONTROL PROBLEMS:
ON THE NECESSARY CONDITIONS OF OPTIMALITY*

F. LAMNABHI-LAGARRIGUE AND G. STEFANI$

Abstract. The purpose of this paper is to give higher-order necessary conditions for the optimality of
a totally singular arc in the case of nonlinear systems not necessarily linear in the control variables. These
conditions, stated in Theorems 2 and 3, are all expressed in terms of the derivative of a particular function
along suitable Lie brackets involving vector fields associated with the control process. These conditions
contain most of the early results and in addition some of them are new, especially those of third order. To
prove these results two different methods are used, namely, Sussmann’s techniques arising in local controlla-
bility theory and Volterra series expansion.

Key words, singular optimal control, totally singular arcs, second- and third-order necessary conditions,
local controllability, Volterra series

Introduction. The term singular is used in optimal control problems in which the
Pontryagin maximum principle [17] does not furnish an explicit relationship between
the control and the state and costate variables (for introductory material see Bell and
Jacobson [2]). Many practical applications, namely, in rocket and air vehicle flight,
exhibit solutions that include singular arcs (see, for instance, Kelley, Kopp, and Moyer
[11] or Vinh [22]). Singular optimal control problems may also be found in heat
transfer control problems [16]. These problems have been an active research area for
two decades. Many techniques have been used (see, for instance, Agracev 1 ], Brockett
[3], Gabasov and Kirillova [6], Goh [7], Gorokhovik [8], Jacobson and Speyer [9],
Kazemi-Dehkordi [10], Kelley, Kopp, and Moyer [11], Knobloch [12], Krener [13],
Lamnabhi-Lagarrigue [14], and Wagner [23] and the bibliography therein). However,
there is a need to unify these results and to go further in the analysis, i.e., to obtain
third- and higher-order necessary conditions. There exist a few third-order conditions
for problems with terminal constraints, as in Krener’s work [13] and in a paper by
Wagner [23].

We consider here nonlinear systems not necessarily linear in the control variables,
and we do not limit ourselves to scalar controls. However, we do not consider terminal
state constraints; necessary conditions for optimality for fixed-endpoint problems are
considered, for instance, in Gorokhovik [8], Knobloch [12], and Krener [13]. We also
limit our study to totally singular arcs in the C case. The material contained in this
paper will be used in a future publication for investigating both fixed-endpoint problems
and partially singular arcs.

The purpose of this paper is to state two theorems containing second- and
third-order necessary conditions for optimality. Theorem 2 appears as the first step of
Theorem 3 (s 0). It contains necessary conditions that can be derived using only the
fact that the reference trajectory is singular. Theorem 3 allows us to consider inductively
more degenerated situations, giving a sequence of necessary conditions. Each time a
nonnegative quadratic form is zero, some other directional derivatives are zero and a
new nonnegative quadratic form is obtained.

* Received by the editors November 30, 1987; accepted for publication (in revised form) March 21,
1989. This work was completed while the first author was visiting the Department of Electrical Engineering
and the Department of Mathematics, Arizona State University at Tempe, Arizona.

? Laboratoire des Signaux et Systbmes, ESE, Plateau du Moulon, 91190 Gif-sur-Yvette, France.
: Dipartamento di Matematica e Applicasioni, Via Mezzocannone 8, 80100, Napoli, Italia.
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This work follows from two earlier papers by Lamnabhi-Lagarrigue [14], [15].
The results of the first paper are generalized here and more details are included. The
second paper and the present one constitute, in our opinion, a new setting for singular
optimal control problems, or more precisely, for higher-order optimality conditions.
It is interesting to note that the starting point of this approach is a recent result of
Sussmann studying local controllability of nonlinear systems [21]. This result is a key
tool in that it provides a suitable control variation in the proof of parts (i) and (ii) of
Theorem 2 and part (ii) of Theorem 3. This again demonstrates a similarity between
the problems of finding sufficient conditions for local controllability and of finding
necessary conditions for optimality. The remaining results of the paper are proved by
combining Volterra series expansions, special control variation, and multiple integral
identities. This combination of material has also been used recently by Stefani [18],
19] for deriving a sufficient condition for extremality and to extend part of the results

to the case in which the system or the extremal trajectory are not smooth.

1. Statement of the problem. Let us consider the control system

Xj:(t) =f(x(t), u(t)),
x(0) x

x R", where the set of admissible controls 0-// is the set of the integrable functions
u(t) that take values in some bounded open set U R" and where f: R" x R R

is a C mapping. In particular f(., v) is a C vector field for each v U. Let h R" R
be a smooth function and let t-. x(x, u, t) be the solution relative to the control u of
X.

The control problem under consideration here can be stated as follows. Let tT(t)
be a given C control, (t) U, and let T be a fixed terminal time. Find necessary
conditions such that

h(x(x, a, T))= min h(x(x, u, T));

tT(t) is called the reference control.
Adding a new coordinate to E, say Xo, and an equation o 1, it is not difficult

to see that we can choose (t) 0, [0, T] to be our reference control. We will denote
by 3’(t) the associated reference trajectory:

y(t) x(x, , t) x(x, u, t), 6 [0, T].

Moreover, we can assume that is the set of integrable functions from [0, T] to the
set {(vl, , v,,) Rm: [vii < 1}. Therefore the stated optimal control problem takes
the following form. Find necessary conditions such that

(1) h(y(T))=min h(x(x, u, T)).

If we introduce the vector field fo:R R

we can write (1) as

(1’)

fo(x)=f(x,O)

h(exp Tfo" x) min h(x(x, u, T))

where (x, t)- exp tfo" x is the local flow of the vector field fo.
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2. First-order necessary conditions. The Hamiltonian and the adjoint system associ-
ated with E are, respectively,

H(x, u, A (A,f(x, u))
and

OH Ofo(2) i(t)=-’-x (y(t),O,A(t))---A(t)--x (y(t)), A(T)=dh(y(T)).

For the problem stated in 1, the Maximum Principle 17] gives the following necessary
conditions for optimality.

THEOREM 1. If the reference control (t)=0 is minimal on [0, T], i.e., it satisfies
(1), then there exists an adjoint vector A t), solution of the adjoint equation (2) such that

OH
(y(t),0, A(t))=0 forte[O,T]
Ou

and

(3)
0U2 (3/(t), 0, ,(t))= "Ui"0U (3/(t), 0, , (t))

1NiNm,INjNm

is a nonnegative matrix for [0, T].
Condition (3) is usually called the Legendre-Clebsch condition.
Before stating the main results and then introducing some technical tools for

proving them, let us recall some known results.
Let wo: [0, T] x 11 - R be defined as follows:

wo(t, x) h(exp (r- t)fo" x) for [0, r].
In particular, note that

(4) Wo(t, y(t))= h(y(T)).

LEMMA 1. The map A: [0, T] --> (Rn)* given by A (t) OWo/OX(t, y(t)) is the solution
of the adjoint equation

fo-((t) A(t) -x (y(t)) and A(T)=dh(3/(t)).

Let g. Wo(t, x) denote (OWo/OX(t, x), g(x)) where g(x) is a vector field.
The following result can also be proved.
LEMMA 2. If g(x) is a vector field such that

g" Wo(t, 3/(t)) 0 for [0, T],
then

ado g" Wo(t, 3/(t))= 0 for [0, T] and k >-_ 1,

where ado g is recursively defined by ado g g and ado g [fo, ad.o- g].
Now let f/(x) and fj(x) be, respectively, the vector fields Of/Oui(x, 0) and

02f/Oui Ouj(x, 0). From Theorem 1 and Lemmas 1 and 2 we obtain Corollary 1.
COROLLARY 1. If the reference control (t)=0 is minimal on [0, T], then

adof/ Wo(t, y(t)) 0 for [0, T]
and the matrix

(3’) ((fj. Wo(t 3/(t))))l<_i<__m,l<_j<_m

is a nonnegative matrix for [0, T].
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Theorem 1 (or Corollary 1) is also called first-order necessary conditions. The
purpose of the following sections is to state and prove analogous results for singular
optimal control problems by deriving so-called second- and third-order necessary
conditions. As in Corollary 1 these conditions are all expressed in terms of the derivative
of the function Wo(t, .) along suitable Lie brackets involving vector fields associated
with the control process, such as, for instance, f,

3. Singular optimal control---statement of the main results. Let 3’(t) be an extremal
reference trajectory on [0, T], that is,

OH
(y(t),O,A(t))=O for t[0, T].
Ou

DEFINITION 1. The extremal reference trajectory y(t) is said to be totally singular
on [a, b] c [0, T] if and only if

OH-- y( t), O, A t)) O for [a, b]

or equivalently if

fijwo(t, 3"(t))=O for t[a,b] and i,j{1,. .,m}.

DEFINITION 2. The extremal reference trajectory 3’(t) is said to be partially singular
on [a, b] c [0, T] if and only if

\ ou-
[OH )det._---(3’(t),O,A(t)) =0 for t[a,b]

and

02H
(3’(t),O,A(t))O for t[a,b].

In the following we are concerned only with totally singular arcs and we assume
that [a, b] is the whole interval [0, T]. The reference trajectory 3’(t) will be called a
singular trajectory. Let us first introduce some notation.

For each u o//, and each p > 1,

IOT (1 )l/pIlull :- luiCt)l) p dt

Moreover, for each multi-index ’=(’1, ’2,’’’, ’,,) with ,i->0, we define the
length of , by ],1:==1 ,i, ,!:= ’1!’2!’" "’,!, v:= v 1. v2. "’’. v, for each v=
(v,. , v,) R and f(x) (or simply f) will denote the vector field

(5)
(Ou), (du)o,f(x 0).

Using this notation, note that the vector fields fo(x), f(x), and f (x) defined above
stand, respectively, for Jo,...,o(X), f(o,...,,o(X), and Jo,-...,,o,...,1,o,...(x).

To state the main results we introduce some additional notation. Let A(r) be the
nilpotent algebra of step r of polynomials in the noncommutative indeterminates
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The nilpotent Lie algebra of step r, L(r), in the same set of indeterminates can be viewed
as a subset of A(r). In the ideal 5) generated in L) by {X, I’1 1,. ., {}, we define
weights for the brackets by

o,(X.) v,

ooi(Xo) 0
if , (,,,..., %}, 1,..., m

and

ooi([Z,, Z2] .oi(Zl) -F (.oi(Z2) for Z,, Z t(r).

Finally, to(Y) := E,=, to,(Y) and YII will denote the length of Y, i.e., the number
of brackets involved in Y, Y 5(r). For each A L(r) we obtain a vector field ev A by
substituting f, for X,. If th =ev A, w(A) will indicate in which Volterra kernel the
vector field 4 appears and therefore it will be directly linked to the "order" of the
necessary condition. IIAII is the number of vector fields involved.

We can now state the main results.
THEOREM 2. Let y( t) be an extremal singular trajectory on [0, T]. If),( t) is minimal,

i.e., satisfies (1), then

(i) ad;o[f,f]wo(t y(t))=O fori, j{1,...,m}, k>-_O and t[0, T].
(ii) kadfof," Wo(t, y(t))=Ofor ]]=3, k>-O and t[0, T].
(iii) The matrix

(([adfof,]. Wo(t, T(t)))),<=j<__m,,<__j<_m
is a symmetric nonnegative matrix for [0, T].

Remark 1. Each of the relations in Theorem 2 may be interpreted in terms of the
Hamiltonian H. For instance, condition (i) for k- 0 is equivalent to

02H
(T(t), 0, A(t)) Of 02H

_---- (T(t), 0)
Ox Ouj OUg OX OU

(T(t), 0, h(t))
Ouj

(T(t), 0):0.

This condition can be found, for instance, in Gabasov and Kirillova [6, p. 144].
Similarly, condition (ii) means

d k 03H
dt Oug Ouj Ou,

(y(t), 0, h(t))=0 for i,j, 16{1,..., m}, k_->0 and t[0, T].

To our knowledge this condition is new.
Finally, condition (iii) can be shown easily to be equivalent to

0 d OH
(T(t),O,A(t))rlirljO

i,.j: 10Ui dt Ou
for r/ir/_->0 and t[0, T]. This is the well-known so-called generalized Legendre-
Clebsch condition that has been derived by several authors. For fixed-endpoint singular
optimal control problems, this condition is also derived in Knobloch [12] and Krener
13] without any assumption of normality.

Remark 2. From Lemma 2 and Definition 1 we know that if y(t) is a singular
arc, then adof. Wo(t, y(t))=0 for t[0, T] and i,j{1,..., m}. However, note that
this condition is definitely different from (i) of Theorem 2.

THEOREM 3. Let y( t) be an optimal singular trajectory and assume that there exists

s >-- I such that for [O, T] and i, j {1, m},

(6) [ado+1 f, ad;f ]. Wo(t, y(t)) 0

for k=0,... ,s-1.
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If y(t) is minimal, then
(i) [ado,f, ado] Wo(t, y(t))=Ofor t[0, T], i,j{1,...,m} and k,k2>=O

such that k + k2 O, , 2s.
(ii) ado . Wo(t, y(t)) 0 for [0, T], k >-_ 0 and b ev A with A s+) such

that w(A)= 3.
(iii) The matrix

([ad.;’ f, adofj Wo(t,

is a symmetric nonnegative matrix for [0, T].
Remark 3. Since Theorems 2 and 3 give necessary conditions, they are also valid

if the set of constraints for the control is an unbounded neighbourhood of zero in Rm.
Remark 4. Let us give some examples to demonstrate Theorem 3 more explicitly.

If

(7) [adsof,]. Wo(t, 7(t))=0 for t6[0, T], i,j{1,...,m},

i.e., condition (ii) of Theorem 2 is trivially satisfied, then (i) and (ii) of Theorem 2
hold and moreover the following conditions are also satisfied:

k.(a) [ado,f, ady ] Wo(t, y(t)) =0 for t[0, T], i,j{1,... ,m} and kl+k2<_-2.
(/3) ad..o [fj,f] Wo(t, y(t)) =0 for t[0, T], k=>0 and i,j,/{1,... ,m}.
(y) The matrix

(8) ([ad. f, adfof ]Wo(t, y(t)))l<_i<_m,l<__j<=m

is a symmetric nonnegative matrix for [0, T].
Similarly, assume now that in addition to (7) we have [adof,f]. Wo(t, y(t))=0

for [0, T] and i,j{1,..., m}, i.e., condition (8) is trivially satisfied. Then from
Theorem 3 the following conditions are satisfied"

(a’) [ado,f, adof ].wo(t,y(t))=0fort[0,T],i,j{1,...,m}andk,+k2<-4.
(/3’) ad [f, [,f]] Wo(t, /(t)) =0,

ado [fj, [fo,f]] Wo(t, y(t))=0,
ado[[fo,fj],j]" Wo(t, y(t)) O,

for t[O,T], k->Oand i,j,l{1,...,m}.
(y’) The matrix

([ad)f, ad.of ]. Wo(t, y(t))),<__i<_m,<_j<=m

is a symmetric nonnegative matrix.
Remark 5. As in Remark 1, we may interpret these conditions in terms of the

Hamiltonian H. For instance, condition (fl) can be formulated as follows"

02H 02f (y(t) 0)=
03H

Ox Ou’---- y( t)’ O, A t)) OuiOu Ox Oui Ouj
Of(y(t), O,A(t)) Ou----t (y(t), O

for all [0, T] and i, j, {1,. , m}.
Note also that part (i) of Theorem 3 is already contained in Knobloch 12, 22/23].

4. Some preliminary results. The purpose of this section is to show how it is
possible to approximate a solution of the system E by solutions of other systems that
have useful properties enabling us to prove the main results (see.also Crouch [5]).
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Note first that for each u (Pl, 2, ", Pro), X -’-) (O[u[/(Ogl) vl (Ou,,),,,)f(x, O)
f(x) is a C vector field and that for each compact nbh K c M of x, there exists a
constant p > 0 such that

Il: i=1

for each x e K and v e . We have the following standard result.
LEMMA 3. For each H>0 there exists a >0 such that if ]]U[[I then x(x, u, .)

is defined on [0, T] and llx(x, u, t)-y(t)llNHfor te[0, T].
Let us now associate to Z the following system Z"

,(t)=fo(z(t))+ f(z(t)) u(t
i= v

(0)=x,
where f(x, v) is approximated by its Taylor expansion up to order I. The next result
compares a solution of the system Z and a solution of the system Z with the same
initial condition x.

LEMMA 4. ere exist and H > 0 such that, if u , i= 1,..., l, then

IIxx, , t)-zx, , t)ll <= 11 ’+,+ fo t [0, r],

where x(x, u, t) is the solution of relative to the control u, and z(x, u, t) is the solution

of Z relative to the same control u, both systems initialized at x.
Proof We first remark that if [u[] is sufficiently small, then x(x, u,.) and

z(x, u, .) are defined on [0, T] and belong to a suitable compact neighbourhood K
of x. Moreover,

x(x, u, -(x, u, f(x(x, u, s, u(s- L(x(x, u, s u (s
=o

IL(x(x, , ))-L((x, u, s))ll -....’. ds.

But ]u(s)] (1 almost everywhere on [0, T], hence

Ilxx, , -zx, , )1 o I1.1[ ’+ + llxx, .,-zx, .,ll .
=o

The statement follows using the Gronwall inequality.
Let us now approximate the solutions of Z by the solutions of a system Z defined

on a nilpotent Lie group. To be more precise let A and L be defined as in 3, and
let G)= {exp Z =o Z/i, Z L} be the nilpotent Lie group associated with L
Each Z e L can be identified with a vector field on A) as follows"

S SZ (the product of S and Z in A)).
It is well known that the system Z defined on A

=s Xo+ E u(x
s(0=

evolves on a(rl (see [21]).
In the following lemma we state that the set of reachable points by has nonempty

interior in a(rl (see [20]).
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LEMMA 5. The Lie algebra generated by

is identical to L(r)

Proof It is sufficient to prove that

for each /z such that I/.tl 1,...,/. Assume that this is not true; then there exists a
linear form o such that

(9)

and

<to, Xo+ Y vX =0,

From this identity we obtain

to, 13X 0.
Ov Il =1

Therefore (to, X) 0, a contradiction.
We can also prove that the ideal generated by

vX, vf in L(r)

is identical to the ideal 5(r).
As we did before for each A L(r) we obtain for each SA(r) a differential

operator by substitutingf for X. Following Sussmann [21] we denote this differential
operator by ev S. evyS will denote ev S evaluated at y M. For example, for each C
function 4

evy exp tXo" 4) 2 f" ch (y).
i=0

Moreover, if x (x,..., xn) are the coordinate functions of Rn, then

evyS. x= (evyS. xl," evyS. x,).

Let S(/, u, t) denote the solution of Z relative to the control u and with initial
condition the identity of G(). Let F(S, -t) denote the solution at times -t of

$ SXo, S(O) S.
We easily obtain F(S, -t)= SF(/, -t)= So exp (-tXo).
LEMMA 6. Sussmann [21]. For sufficiently small and y K, a compact of R", there

exists H > 0 such that

[lev F(S(I, u, t),--t)" x-exp (-tfo) z(y, u, t)ll <= Htr+’.
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Then from Lemma 4 we obtain

(10) Ilev, F(S(I, u, t), -t)" x-exp (-tfo)" x(y, u, t)l] < H(tr+’+ Ilull ’+

for y y([0, T]).

Let Nr dim #(r) and let X { Y1,’’’, YNr} be a basis of #(r) whose elements
are the Xs and their brackets. Each element of G(r) is the exponential of an element
in g(r). Therefore we may write F(S(I, u, t),-t) as

(11) exp 2 p(j, u, t)
,"-, N,.

where p(j, u, t) are suitable absolutely continuous functions.
We will say that gG(r) is even if w(Y) is even for each i= 1,..., m. (The wg’s

are defined in 3.)
If Xwesetw()=and IIll=-
Using Sussmann’s arguments [21], we can state the following result that is at the

basis of the construction of most of the variations used later.
TEOREM 4. ere exist > O, , a ball Bo R ur, and a map Bo such that
(i) (0)= a e .
(ii) F(S(I, a, ),-?) S(I, a, ) exp (-?Xo)= exp =,...,u q(i, a, ) where

q( i, , ) are suitable coefficients that are zero if is not even.
(iii) If c Bo, then

F(S(I, (c), ),-) exp E q(i, a, )+ci[.
i= 1," ",N

Remark 6. Looking at Sussmann’s proof, we note that the function is continuous
with respect to each norm lip, p . However, we do not need this propey. Indeed,
we use (iii) of Theorem 4 for a fixed c 6 Bo and we need only the existence of and
the property of p(j, u, t) stated in the following lemma.

LEMMA 7. Let be any positive real number, let u:[0, ] R be a control, and let
Ue :[0, ea R defined byu(z) ebu(z/ e) where a and b are somepositiveparameters.
en if Uk denotes the kth component of u

io )(i) wuj(w) klgei( d d

ea(kl+k2+2)+2b k2uj () klui() de d

and

(ii) F(S(I, u, e"t),--Eat) =exp

=exp

, P(j, Ue, Eat)rj
j= 1,..’,N

E e’%+btp(j, U, t) Y.
j= 1,...,N

Proof The definition of u gives

io (ioTk2ebuj O’ktebuj &r dr

rk2eak2Uj(r o’klekl"uj(o’)e 2a dcrdr

-.(kl+k2+2)aq-2b ’7"k2/j (7") o’kl ,/j (0") &raT.
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To prove (ii) let us recall that S(1, u,, eat) is the solution at time of the differential
equation

In the same way, F(S, -eat) is the solution at time -t of

E aSXo, S(O) SO.

Therefore,

F(S(I,u,et),-et)

can be obtained from F(S(L u, t), -t) by substituting eaXo and e+bllx, respectively,
for X0 and X. Part (ii) then clearly follows from (11).

5. Proof of Theorems 2 and 3. Clearly, Theorem 2 is the first step of induction of
Theorem 3. However, we have enounced it separately in order to point out what can
b’e derived by using only the fact that y(t) is a totally singular arc. Indeed, in Theorem
3 more degenerated situations are considered.

To prove (i) and (ii) of Theorem 2 and (ii) of Theorem 3 we will apply the
techniques introduced by Sussmann [21] and summarized in the previous section. To
prove (iii) of Theorem 2 and (ii) and (iii) of Theorem 3 we will use the Volterra
expansion techniques applied to the approximated system E2. Let us first investigate
this approximation of Z in more detail. Recall that

1
2, (t)=fo(Z(t))+ E f(z(t))ui(t)+ E f(z(t))ui(t)u(t),

i,j=

z(0) x

From [15] we can approximate the solution z(x, u, t), or any function of it,
h(z(x, u, t)) (provided that h is a function sufficiently smooth) with a finite Volterra
series expansion

[ x)h(z(x, u, T))= w(T,x)+ E w(T, z, uj dr
j=l do

o 1 x)w,(T,r, u+2 ,=
(2)

" (r, , ,xu(,u(+ Z w0
i,j=

If the control u is different from zero only in the sho interva of time [t, + e], we
can approximate each Volterra kernel by its Taylor polynomial with respect to time
and we get

w(T, x) h[exp Tfo(x)]= h(y(T))= Wo(t, y(t)),

x 2
(- )ao" Wo(t, r(t))+ o(w(T, r, r+

0= k

x)= 2 (-t)ao" Wo(t, r(t))+o(ew (T, r, r+

o= k
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W2ij2 T, 7.2 z X 2
7. z ------- ado f ad.f Wo t, y + O e +

k, ,k2>=o k_! k,
k+k2r

As we are considering a singular extremal trajectory, the first and second sums in
the right-hand side of (12) vanish. Moreover, by means of the integral identities stated
in [4] and using Lemma 4, we obtain the following approximation formula for the
solutions of the original system Z"

h(x(x, u, T)) h( y( T))

2 i,j= k ,k2=>0
kl+k2r

adf f, ad.o2 f ]. Wo( t, y(t))

(13) U 7" tlj 7"2 dT" d7"2

+
2 i,j=, k,

k!
with (u, e)= o(er+’]lul] 2 4/ I1 11 / I1= / u

The main idea is now to use controls of the form

ado’ f" ado fj Wo( t, y( t))

Ui(7"1)Uj (7"2) dT" dT"2 + cr(u, e)

in a short interval of time [t, + e] where u is a suitable fixed control. The resulting
output function, which is a function of e, will be given by its approximation (13) with

(l/e, E O( e r+2b+3 q’- e 3b+3 -1
t- E4b+2).

The values of b and r will then be chosen appropriately so that the leading term of
the functional expansion (13) depends on a specific bracket. It is easy to prove the
following result.

LEMMA 8.

[ado’ f, adofj (--1)k[ad.fo’-kf, ad..o+ + adt Y

for each k=O, 1, 2,..., k, with

Y= (-1)’[ado’-f, ad.o+"-].
0<h<k

Now let us denote

Hlkz(t) <,k (t), [ad.-o’ f, ad..o f ]( t)>

ad.)o’ f, ado Wo( t, y(t) ).

Proof ofpart (i) of Theorem 3. The proof is by induction on kl + k2 r. For r 0,
the statement will follow by Theorem 2. Assume this is true until r-1-<_ 2s- 2. Using
Lemmas 2 and 8 and the induction hypothesis, we get for r- 2k + 1 -<_ 2s- 1 and hence
for k<-s-1

Hkij, k( t) =t=Hk+’( t) O
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and

H,k2(t)=(_l)k...Or k’r0(t)=(--1) H(t)=(-1)k’+’Hjir(t) for r=2k>-2.

Hence if i=j, H’k2(t)=0; if i#j, let us choose u’[0, 1]- R" such that

Uk O fork#i,j,

Io Io ;’(14) Uh(r) dr= rub(r) dr rruh(r) dr=0, h i, j
0

and

Uj("I’) (T--o’)rui(O") dcr dr sign Hjir(t).

Let us now define u [0, T]-* R by

tle(,l.)__IEr+2bl (E t)
otherwise,

z6[t, t+e],

If e is sufficiently small, u o. Therefore from (13) and Lemma 7(i) we get

h(x, u, To)

1 1 k 2r+6+kl+k=h(y(r))+ Y Y [adfof,,adf2]wo(t y(t))e
kl+k2<=r kl !k2! !,,12=1

’r2
(,..1). 11 d"U/2 ("]"2)"/"2k2 dT2

0

1 kl 2r+6+kl+k2+ +2 Y adf6 f’’ ady2 f/2 Wo( t, y(t)) e
2 k, r kl !k2! /1,12=1

,I(,’F2),’F22 dT2 ,2(’7"1)"F11 dT + O(E3r+7)o
0

Then the induction hypothesis and the properties (14) of u give

3r+6e 1Orh(x(x, u T))= h(y(T))+ Hq (t)
2 k,+k2<=r kl !k2!

Integrating by parts gives

r+6 ._/0r(t)

j() 2 (--1) l" dd+ O(e3r+7)
+= k k
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or

h(x(x, u, 7"))=
3r+6

Hr(t)

ttj(7") (7"-- O’)rUi(O") do’dT"+O(e3r+7).

Therefore, if Hr(t)# 0 we have obtained that

h(x(xO, Ue, T))-h(T(T))-- ME3r+6+O(E3r+7)
Orwith M <0, a contradiction. Hence Ho (t) =0.

Proofofpart (iii) of Theorems 2 and 3. Note that Theorem 2(iii) is Theorem 3(iii)
with s 0. Let us first prove the following result.

LEMMA 9. Let u’[0, 1]- R be a control and let Iui’[O, 1]- R be defined by

Iui(t) u(7") dT"

and let

Then

(15)

Igli(1) 12*+’ U,(1) O,

kl+k2=2s+l kl!k2!
7"k2tlj(7") o’k’ui(tr) &rdT"

kn,k2>=O

Proof We first note that

(--1)s+l Iol +1

(--1) kl

kn,k2O

17"k20- kl 7" O-) 2s+ l"
(2s+l)!

Therefore the left-hand side of (15) can be written as follows"

1
O.)2s+

(2s+ 1)! u; 7" (7"- u cr dcr dT"

or

(2s+ 1)!
l,lj(7")I2S+2ui(7")dT".

On the other hand,

Uj(7")I2S+2ui(7") dT"= Iuj(1)I2S+2u(1) Iuj(7")I2S+lui(7") dT"
o

Iu; (7") I2"+’ ui(7") dT".,.

(--1) s+l !S+lui(7")Is+lttj(7") dT".
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The statement is proved.
Let us now turn to the proof of (iii) of Theorem 3. Let u be as in Lemma 9. In

particular, this implies that

’ rkui(r) dr=0, k=0,’"" ,2s+ 1.
o

Let us define

0 otherwise.

"r[t, t+e],

Using the same arguments as in the proof of (i) of Theorem 3, we obtain

1
eh(x(x, u, To))= h(y(T))+-

klq-k2--2s+l
k ,k2=>0

6s+9 1
Hkij’k(t)

k !k!

IO 6s+lO).rku(r) r’u,() &rdr+O(e

Therefore

h(x(x, u, T))= h( y( T))+
6s+9

/_/02s+l
2 i,j=l kt+k2=2s+l

k

k,!k2! ’"k2 ’J (’) o’klui(o’) dcrdr+O(e6s+’)"

From Lemma 9

h(x(x, u, T))-h(T(T))=
(-1)’+1

/402s+lE6s+9 2 ij (t)
(2S+ 1)! i,j=l

jl IS+’Ui(7")IS+’ttJ(7") dr+ 0(6s+lO)
0

or

h(x(x, u, T)) h(y(T))
E
6s+9

s+l s(E Hi t)
(2s+ 1)!

fo I,+’ui(r)I,+’uj(r) dr+ O(e6.+’)

If e is sufficiently small uE , therefore with the chosen control u we must have

(16) .+1 s( i,+ /s+lgij t) ui(’r) U,(r) dr>=O.
i,j=

Lemma 8 and part (i) imply

H"+’ t4" s+l( t4.,+ s(0 (t) t) t)
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Let us now prove that the matrix

]4s+l s(Q(t) ((.. i t)))l=<=m,_j=m

is a nonnegative matrix.
If the matrix QS(t) is not positive semidefinite the set

i,j=

contains an open cone. Therefore there exists a C map p’[0, 1] R such that

n2ls(t)pi(z)p(z)<O Vz(O, 1)(17)
i,j=l

and p(0) p’)(0) p+)(O)=p(1)=p’)(1) p+)(1) =0 for i=

1,...,m.
Let us choose u p+. This control u satisfies the hypothesis of Lemma 9 and

M2 (t) I"+ s+lZ --,j Ui(7)I U2(r dr= E H+’ (t) pi(r)p2(r dr,
i,j i,j

which is negative from (17) and then contradicts (16).
Proof ofparts (i) and (ii) of eorem 2 and part (ii) of eorem 3. From Lemma

2 it is sufficient to prove the statements for k 0. Let us consider the approximating
system Err ore with 3 and r 4s + 4, s 0. Let E X and let c (0, , c, 0, , 0)
be given by Theorem 4. We have

F(S(I, (c), t), t) exp q(Z a, t) + c
j= ,...,N

Let us define (c) by

(c)()
e (c) for [0,

0 otherwise

from the definition of , II(c)ll o(4"+s). Therefore from Lemma 6 it follows that

Ilev,, r(s(, (c), ,-e3x -exp (-eo)X((), (c),

As we are considering the approximation of , if X is even and m()> 2,
then m( e 4 and e 2. Now from Lemma 7 we obtain

jN2s+2

Let us investigate for which j, q(j, , t) may be different from zero. If 2 and % 1,
then =X for some (0,..., 2, 0,..., 0). In the case where s =0, =2, and
1 < N2s+2, we give [X,,] for some/1,/{1,’’’ ,m}. Hence cannot be
ee if %> 1. Now if s 1 the ’s even with =2 and % N2s+2 can be either of
type adoX for some =(0,...,2,0,...,0), 0NkN2s+l or of type
[adxokl Nil adxo X] with k + k <= 2s. Therefore using part (i) of Theorem 3 (if s > 1)
and the fact that is a singular trajectory, we obtain

ev o(,(=0

if m 2, 2s + 2, and even.
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We get

Now let

r/E(c)(’)=
(c)(’-t) for t[t, t+et],
otherwise.

h(x(x, r&(c), T))= Wo(t, exp (-e[fo) x(y(t), (c), eT))

Wo(t, ev(t)F(S(I, (c), et-),-et-)x+ O(e4s+5)).
Finally, the equality

Yj

allows us to write

q(j, , t-) YeZ(s+’)+% O(e2s+3)

h(x(x, rt(c), T))= Wo(t, a/(t))’+’EC’(s+l)+%Ci ev Y/" Wo(t, y(t)) + O(e4+5).

Therefore, if

(18)

it follows that

b=evY and fli(s+l)+ai<4s+5

dp" Wo(t, y(t))=0 for t[0, T].

We have proven together parts (i) and (ii) of Theorem 2 and part (ii) of Theorem 3.
Indeed, assuming s 0, from (18) we obtain

i- Ogi < 5,

which gives two alternatives" either

fli a 2, which proves part (i) of Theorem 2, or

fl 3 and t 1, which proves part (ii) of Theorem 2.

Assuming now that s >- 1, then

fli 3 and a <= s + 1, which proves part (ii) of Theorem 3.

6. Final comments. In this paper for the sake of simplicity, we have considered
only totally singular arcs relative to C controls.

The same techniques can be used in an obvious way if the control is piecewise
C and only a subarc of the extremal arc is singular. If the system is affine with respect
to the control, i.e.,

9 :f0(X) at- 2 lAir(X)
i=1

all the trajectories are totally singular. In this case (ii) of Theorem 3 can be improved
as follows.

THEOREM 5. Let y(t) be a minimal trajectory. If
[ado+ f, ad;o f] Wo(t, 3/(t)) 0 for [0, T],

i,j=l,. mandk=O, s-l, s_->l,

then

ad;o bWo(t, y(t)) 0 for [0, T], k >- 0 and ch eva w(A) 3 and [JAIl--< s + 3.
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Proof The proof is quite similar to that of (ii) of Theorem 3. In this case E E
for all 1_-> 1 so that (10) becomes []eVy F(S(I, u, t),-t), x-exp (-tfo)" x(y, u, t)[[ _-<
Htr/. Let us now consider Er with r 4s + 1 and let Y and c (0,. ., ci, 0,. ., 0)
be such that

and

o(g/)--3, [[glls+3, ev Y/=

F(S(I, s(c), t),-t)=exp 2 q(j, , t)Y+ciYi
j= 1,...,N

As previously, let us now define the function s(c) by

)0otherwise.

If 2 and a 2s + 3, then

q(j, fi, e t O(e4s+2).

If is even with j > 2, then 4, a 4, and

q(j, a, et O(e4+2).

Therefore

F(S(I,(b),et-)-e)=exp [ .=2 q(J’(t’ t-)e2s-+%gJ+cie3s-3/2+%gi+o(84s+2)]Yj
j2s+2

On the other hand,

s-+a4s+
and we apply the same arguments to prove (ii) of Theorem 3.

Aeknowlegment. The kind hospitality of Professor Peter Crouch is gratefully
acknowledged.
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STOPPING RULES FOR A RANDOM OPTIMIZATION METHOD*

C. C. Y. DOREA?

Abstract. A stochastic algorithm for estimating the global minimum of a function is described and two
types of stopping rules are derived. The first is based on the estimation of the region of attraction of the
global minimum; the second is based on the existence of the asymptotic distribution of properly normalized
estimators.

Key words, random optimization, sequential methods, stopping rules
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1. Introduction. Global optimization problems have attracted a great deal of
attention from researchers in recent years. Aside from deterministic approaches,
stochastic methods have been developed. It is generally assumed that a prescribed
domain Ra, containing the global minimum point, is given in advance and the
problem is to find

(1) Yo min {f(x)} (or max {f(x)})
xc xc

where f:- R satisfies some regularity conditions and the global minimum Yo is
assumed to be finite. The simplest stochastic method, the pure random search method,
starts from a random sample of points, (1,. ,), drawn from a uniform distribution
in the domain 1) and yields a candidate solution Y, rain {f(1), ,f(:,)} with some
asymptotic probabilistic qualities. In fact, for B c , the probability that a uniform
sample of size n contains at least one point of B is equal to

(2) P(B) 1-

where m is the Lebesgue measure of R a. Thus, if Xo is such that f(xo)=Yo <f(x) for
x s Xo and the measure of the set

(3) B(e,

is positive, then a point within distance e from the global minimum point Xo will be
found with a probability approaching 1 as n increases. Also, as shown by Solis-Wets
[9], under a very general setting, only mild conditions need to be imposed on f to
obtain almost sure convergence,

P(lim Y Yo)= 1 (Y a yo).

Furthermore, an application of statistics of extreme values leads us to the existence
of limiting theorems of the type,

(4) lim P(Y, _-<yo+ a,y) 1-exp(- y)

where c > 0 is the shape parameter of the limiting distribution and a, $ 0 are the
norming constants (see de Haan [6] or Dorea [4]).

Received by the editors May 9, 1988; accepted for publication (in revised form) September 30, 1989.
i Instituto de Ciencias Exatas, Universidade de Brasflia, 70919 Brasilia-DF, Brasil and Departmento

de Estastica IMECC, Universidade Estadual de Campinas, Caixa Postale 6065, 13081 Campinas, S.P., Brasil.
This work was partially supported by Conselho Nacional de Pesquisa, Brasil.

841



842 c.c.Y. DOREA

The more refined methods, such as clustering procedures, multistart techniques,
or Bayesian methods start from a random sample of points drawn from. This sampling
phase is then followed by a local phase in which the sample is manipulated to yield
a possible solution of the problem. The algorithm will then return to the sampling
phase with information of the best points obtained, and will continue, possibly with
a recommendation for a modified sampling distribution. The procedure will continue
until some prescribed criteria of optimality are satisfied. In Devroye [3], forf satisfying
Lipschitz type conditions and for a progressive random search procedure, convergence
efficiency of the algorithm is studied through the ratio

P( Yl > Yo+ e)
bl

P(Yn>yo+e )"
It is shown that un-> c as n--> . In the clustering method studied by Boender et al.
[1] the termination criteria are based on the existence of new local minima points
satisfying certain measures associated with the clustering procedure. For the multistart
technique, Rinnooy-Kan and Timmer [7] propose a stopping rule, based on a Bayesian
estimate, of the number of local minima points and the relative size of each region of
attraction of the local minimum points. They all offer an asymptotic guarantee of
reaching the global minimum Yo.

The question of developing stopping rules that provide some explicit probabilistic
information on the quality of the proposed solution still remains to be satisfactorily
solved, even for the pure random search method.

In this note we propose stopping rules for the sequential methods described below.

ALGORITHM A. Let 1, 2," be independent and identically distributed random
vectors with a common distribution G on . Let (X1, Y1), (X2, Y2) be defined by

Step 1. X : and Y f(:).
Step k + 1. Having defined (Xk, Yk), let (Xk+I, Yk+I) be defined by,
(i) Xk+I k+ and Yk+ =f(:k+) if f(k+) <---- Yk.
(ii) Xk+I=Xk and Yk+=Yk otherwise.

Note that the uniform sampling on 12 has been replaced by sampling under a
distribution G. Our next algorithm suits the cases in which is not a "nice set" and
it is convenient to sample in a larger set 12o = D:

ALGORITHM B. Let :, :2," be independent and identically distributed random
vectors with a common distribution G on glo. Let (Xo, Yo), (X1, Y)," be defined by

Step 0. Xo U and Yo =f(U), where U is uniformly distributed over gl.

Step k+ 1. Having defined (Xk, Yk), let (Xk+, Yk+) be defined by
(i) Xk+ :k+l and Yk+I =f(k+l) if :k+lD and f(k+)< Yk.
(ii) Xk+ Xk and Yk+I Yk otherwise.

Two types of stopping rules will be studied. The first (Rules la and lb) concerns
the e-region of attraction of the global minimum Yo"
(5) A(s) {x" x l,f(x)-<yo+ e}
and the second (Rule 2) concerns the s-region of attraction of the global minimum
point Xo (see (3)).

Stopping Rule 1. For given s > 0 and 0 < fl < 1 terminate Algorithm A
l a) for n such that

(6) n>=lgfl/lg(1-p’(e))n
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lb) whenever a value of Yn is repeated for the next m steps, that is, Yn Y,+j,j
0, 1,. ., m, and m satisfies

log fl(7) m= -n,
log (1-P"(ne))

where

(8) pn(e)=sup{k’7"k>O, Y<--
and for j 1, 2, , n 1 we define

(9) +,=+,(n)=sup{k’l<-k<=rj,

=O if { k" l <=k<= 7";, Yk # Y.,}=
with 7"1(n)= n.

In 2 we will show that, if Rule l a is applied, then

(10) P(A(e)) P(IY.-yol-<- e)_-> 1-/3.

That is, the e-region of attraction A(e) of Yo has been attained with a prescribed
probability 1-/3. Alternatively, if Rule lb is applied we have,

(11) P(IY,-yol=< elY Y,+j,j=0, 1,..., m)=> 1-/3.

Note that at step we have 7"1 and Y/= g/-1 Y-r2-1 < g,
r2 gr2+l

Y.3-1 < Y-a" ", so that Rule lb could be replaced by

7"1- 7"2+ 1 _>_ log fl/log (1- 7"2 1

Our next stopping rule is based on the asymptotic distribution 1-exp(-y") of
the Yn’s properly normalized and under the assumption of the following condition.

CONDITION 1. Assume that f R with m(12) > 0 and that G is the uniform distribu-
tion on 12. Moreover,

(a) There exists a unique interior point Xo of f such that f(xo)-Yo.
(b) There exists a positive function u(t), > O, and a constant a > 0 such that for

all x > O, lim, o (v(tx)/v(t)) x/ and the following limit

R(z) lim’x+
f( tz)

,o u(t)

exists and is strictly positive and finite for all z O.
Although Condition l(b) is not easy to verify, the following example shows that

it is not too restrictive, in fact, f need not be differentiable. Let 12 =[-1, 1]2 and
f(x, y) =max (Ixl, lyl). Then Condition l(b) is satisfied by taking v(t)= t.

that
Stopping Rule 2. For given e > 0 and 0 </3 < 1, terminate Algorithm A for n such

(12) n>= m(f) log/3

It will follow from Theorem 1 (see 2) that if (12) is satisfied then,

(13) P(Ix. xol -< e) 1-/3.
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In addition, under certain assumptions, we can also conclude that

(14) P(IY -yo[ -<: e/) 1-/3.

The discussion for the situation f c Re will be carried out in 2. In this case,
(12) and (13) are, respectively, replaced by,

m(l)) log/3
(15) n > d

(16) and P((X-xo)[-e, e]d) 1--.
Finally, in 3, we present some numerical and analytical comparisons between

the rules and a discussion of how these rules can be adapted for Algorithm B.

2. Stopping rules for Algorithm A. The stopping rules la and lb are derived by
first observing that under Algorithm A we have Y. min { Y,. , Y, }. And ifZ f()
for j 1,. ., n we also have Y, min {Z,. ., Z} where the Z’s are independent
and identically distributed random variables with a common distribution given by

(17) F(x) P(Zl <- X) P(f() < x) f,:f()<=, dG(u).

Moreover, for a given e > 0

P( Y, _-< yo+ e)= 1 P( Y, > yo+ e)= 1 -(P(Z > yo+ e))

1- (1- F(yo+ e))" 1 (1-p)".

Hence, if 0 </3 < 1 and p is known, we have

(18) P(]Y-yo[<-_e)>= 1-fl
provided that n _->log/3/log (1 -p). Similarly, if a certain value Y, is repeated in the
next m steps of the algorithm, we have

P( Y, Y,+/, j 1,’’ ", m)= P(Z.+j > Yn, j 1,’’’, m).

Note that Yn has a distribution given by

H(x) P( Y, _<- x) 1 -(1 F(x)) ",
F being the common distribution ofthe independent and identically distributed random
variables Z,+,..., Z,+m. Since the random vector (Z,+,..., Z,+,) is independent
of Y, we have

P( Y,+.i Y,,,J 1,..., m)= f (1-F(x)) dH(x)

n f (1-F(x)) "+"-’ dF(x)-
n

m+n

Analogous arguments show that

P( Yn+j Y,,.i 1," ", m, Y. > yo+ e)

n (1 F(II)) re+n-1 dE(u)=
n

(1 _p:)m+n
o+ m+ n

Hence, if m >= (log/3/log (1 -p))- n we have

(19) P([Y,-yol<-elY,, Y.+/,j=0, 1,’. m)= l-(1-p)"+m>= l-,8.
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Since p is unknown, our stopping rule makes use Of the quantity pn(e)/n defined
by (8). The reason for such replacement can be understood from the following derivation
of an estimator of p. Let (Z(,n), Z(z,n),""", Zn,n) denote the ordered sample (order
statistics) of (Z1," ", Z,). That is, Z,n min {Z,. ., Zn}; Zz,n) denote the second
lowest value of the sample; and Zn,n max {Z, , Zn}. For e > 0 define

(20) sup {k" Z(k,n <-yo+ e}.

Since Z,..., Zn are independent and identically distributed random variables and
P(Z1 =<yo+ e)=p we have yn(e) binomially distributed with parameters n and p. If

p > 0, it follows from the strong law of large numbers that y,(e)/n p.. Since Yo
is unknown and the Z(k,n’s are not recorded by our algorithm, we approximate Yo by
Y, and Z(,, by Yk. That is, we approximate y,(e) by pn(e). The following proposition
justifies the proposed rules.

PROPOSITION 1. Let e > 0 and 0 < < 1. Assume that for all e > 0 we have p
P(f(x)<-yo+e)>O and P(f(x)<=yo)=O. Then for e small we have

(21) lim lim P(P"(ne) -<p+,) 1

(22) lim lim P(6,(e) >= 6(e + q)) 1
rt$O

and

(23) lim lim P(I Y. yol--< e, 6. (e) ->_ g(e + 7)) 1,
/$0

where

log/3 log/3
6,(e) and (y)=

lg( 1-pn(e))n lg(1-Pv)

Proof First note that p F(yo+ e) with F defined by (17). The right continuity
of the distribution F gives lim,$op+,=p. Moreover, since p>0 for e >0 and
F(yo) 0, we have p strictly increasing on e for e sufficiently small.

Now let e > 0 and r/> 0. We may assume that p+,> p+,, for 0< < ft. Let
r/z > 0 such that p+, => p+,, + T]2. It follows that

> p On(e) < pe+.Ol_+"

From the definitions of pn(e) and yn(e), we have
and we can write

--Pc+hi < 7, Y,, --<yo+ "q).
Since (y,(e + q)/n) p+,, and Y, yo we have (21) by taking the proper limits.
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From the definitions of 6n(e) and 6(e+rl), we have (22) and (23) by using (21)
and the fact that Y. yo. 13

For stopping rule 2, it is assumed that Condition 1 holds. In this case we have
from Dorea [5] that there exist norming constants a,$0 such that, for y > 0

(24) lim P( Yn --< Yo + a,y) 1 exp (-y" ).

For R(z) defined by Condition 1 we have R(z)=zl/R(1) for z>0 and R(z)=
Izll/R(-1) for z <0. Moreover, we may choose v(t) so that for

(25) k, (- 1
and k i

we have

(26) kl+k2=l and a,=u().
A stopping rule derived from (24) requires the estimation of a and the norming

constants an. For the estimation of the shape parameter a see de Haan [6] or Dorea
[4]. The following theorem will provide equivalent results and avoids the estimation
of the an’s.

THEOREM 1. Under Condition 1 we have, for y > O,

-<Xn-xo -< 1-exp
n !II

and

/
(28) lim P | -" =< y

n \ an
_-< X, -Xo_-< 1

n

where kl and k2 are defined by (25).
Before proving the theorem, we will justify the use of our stopping rule 2. Assume

that n is large and n>-_-(m(12)log/3/e). Then from (27) we have

n

1- exp => 1- ft.

Moreover, by taking an =(1/n) 1/ and using (28) we have

P(-el/" <= Yn -yo <=e /") P( anel/’
an

ane l/ a)
(29) p(-an(ne)l/’<= Yn-Yo<-an(ne) ’/)

P(-ke <-Xn-xo =< k2e) >- 1-.

In Dorea [5, p. 46] we can find conditions that enable us to take an (1/n)1/
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Proofi We will borrow the following result from Dorea [5]" for y > 0 let

Bn(y)={x’f(xo+)<=yo+a.y,(xo+) f}.
Then we have

(30)

and

(31)

lim Bn(y) A(y) [- kly’, k2y

lim m(Bn (y)) y,

where D denotes the closure of the set D.
To prove (27), note that (Xn ) (f() < min {f(sl), 1 <- <_- n, sj}) and (Xn

) f-I (Xn si) b for sj. Since sl, , en are independent and identically distributed
random variables and uniformly distributed on f, we have for E [-kly, k2y]

P(n(Xn-xo) E)= P(n(Xn-xo) E, Xn s)
j=l

nP(n(l-xo) E, Xn s,) nP(n(l-xo)
E,f(,) < min {f(sc2), ,f(sc.)})

1
dx du

1
dx dr.

(re(a)) x:xI,f(x)>f(xo+r/n)}

Let z.=(f(xo+r/n)-yo/a.). We can write (1/m(O))n,y>yxo+r/.dx=
1-(m(B.(z.))/nm(O)) and P(n(X.-xo) E)=

1 [fY( m(B. (z.))) "-’ fo ( m(B.(z.))).-1 ]1 dr + dr
m(O) o nm(O) _,y nm(O)

From Condition 1 and (26) we have lim. z. R(r) where R(r)=(r/k)/ if r>0
and R(r)=(lrl/k,) ’/ if r<0.

This together with (31) gives

lim (1 re(B" (zn))) "-,,-., nm(f) (r)exp
k2nl(f)

r > 0

(=exp
klm(a)]

r<0.

Finally, an application of the bounded convergence theorem gives

limP(n(Xn-xo)E)=(k+k)(1-exp( Y ))m-2)
Then (27) follows since kl + k= 1.

The proof of (28) makes use of essentially the same types of arguments. The fact
that

p(,Ynan-Yo y,- kly<=n(Xn _Xo)<= ky)
1 fk2Ya ( 1--

m(Bn (zn))) n-1

I dr
m(f) d_k,y nm(f) :f(x+r/n)<--Y+a"Y}

together with (27) and (30) gives the desired results (I" indicator function).
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Remarks. (a) If Xo is a right-endpoint, then we require Condition 1 (b) to be
satisfied for z < 0 and we have k2 0. A left-endpoint is similarly treated. The following
example illustrates the roles played by c, kl, and k2. Let Xo (0, 1)--12 and f(x)-
3(x- Xo)1/2 for x > Xo and f(x)- 4(Ix- Xol)1/2 for x < Xo. Then Condition 1 is satisfied
with a 2 and u(t)= v. It is also satisfied with u(t)= 12/6v/. In this case we have
kl 9/25 and k2- 16/25, with kl + k2 1.

(b) If Condition 1 is satisfied with gig Ra we shall interpret Xo+tZ=
(Xo(1) + tz(1),..., xo(d)+ tz(d)) and z (0,..., 0). In this case for

B(y)= z:f Xo+ ay

we have

lim Be. y Ae (y)

and

lim m(Ba(y))=m(Ae(1))yd.

We can choose the function u(t) so that m(Ad(1)) 1 and (27) and (28) of Theorem 1
become

and

lim P(nl/a(Xn-xo)Aa(y’/)) 1-exp(-yd

lim P( Yn Yo <-- ayln ’/d(X --Xo) Aa (y)) 1.

Note that Ad(e 1/a) is a neighborhood of zero and m(Ad(el/c)) e d. Assuming that
Ad(el/)c[-e, e]a we can write

P((Xn -Xo) 6 [-e, e]d) e P(nl/d(x -Xo) n’/aAd (e’/)) 1 -exp m)/"
The stopping rule 2 then becomes: terminate for n such that,

m(a) log
d

3. Concluding remarks. Both stopping rules l a and lb require the evaluation of
the lower bound

logfl
log(1-p(e)/n)

The advantage of rule lb relies on the fact that if at step n we evaluate 6n(e) then it
is enough to verify whether the m repetitions of Yn satisfy rule lb. Clearly, if m satisfies
rule lb then we are at step n + m of the algorithm and n + m satisfies rule l a.

A comparison between rules 1 and 2 can only take place if there exists a unique
minimum point Xo for which the global minimum Yo is attained. Moreover the shape
parameter a of the limiting distribution used for rule 2 needs to be estimated a priori.
In fact, from Proposition 1, we have,

P([Y,-yol<=e)<l-fl if n>=6(e),
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and from Theorem 1 and (29) we have for large n

P(lY,,-Yol -<_ e) 1-exp
\m(a)

Hence,

P(lY-yol e) 1-3
m() log/3

if n=>- *(e).

Some modest numerical simulations were performed to compare the proposed rules.
For the uniform distribution on f =[0, 1],f(x)= x and with several values of e and
/3, our numerical results show that:

/3" 0.025 0.05 0.10

e" 0.01 (1001,242,369) (985,201,299) (985,150,230)
0.02 (985,160,184) (132,132,150) (132,132,115)
0.05 (985,160,--) (117,115,m) (117,98,--)
0.10 (117,117,m) (97,95,m) (97,--,u)

where triple on the table represents the stopping step when rule l a, lb, or 2 is applied
(with 8*(e) used in place (12)). The unfilled values were those stopping steps for
which the algorithm did not provide a corresponding value for Yn within e of the
global minimum Y0. Similar results were obtained for f(x)= x or 4- (in this case we
have c---1/2 or 2, respectively). For c = the performance of rule 2 was considerably
worse than for c 1. And for c --2 it was considerably better.

We will now discuss how these rules can be adapted for Algorithm B. Let
ro=0 and o’s=inf{k; k>rs_l,:kf} for j_>--l. Then, for Sk=(,k and Rk=f(Sk),
we have S1,S2,".i.i.d. with distribution Gs(x)=(1/P(12)),.,,,,<_,,dG and
R,R2,’.. i.i.d, with distribution Fn(x)= 1/P(12).,y,)<=x dG (see Dorea [4]).
Hence, all the previous results can be applied to the subsequence Y,, Y.. . The
stopping rules then become: terminate at step o-, where n satisfies (6), with p.... (e) in
place of p,(e); or terminate when a value of Y,, has been repeated until the step rn/m

where rn satisfies (7) with po-.(e) in place of p,,(e).
Now, we can adapt the Algorithm B taking into account the role of the o-k’s by

introducing the random variable Zo, Z1,. as follows"

step 0. Let Zo 0.
step k+ 1. Let Zk+ Z + 1 if :k+l 12 and Zk+ Z, otherwise. The stopping

rules then can be rephrased as"

(la) Terminate the algorithm at step n if

log/3

log (1 P(Z))"
(lb) Terminate the algorithm if for some m and n we have,

log/3

log (1
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(2) Terminate the algorithm at step n if

m() log/
Z.>__-

Acknowledgment. We are grateful to C. R. Gongalves for the help in the numerical
simulations.
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ON THE EXISTENCE OF OPTIMAL CONTROLS*

U. G. HAUSSMANN AND J. P. LEPELTIER;

Abstract. The optimal control problem where the state is governed by an It6 stochastic differential
equation (possibly just an ordinary differential equation) is formulated in martingale terms. Under a coercivity
condition (which is weaker than compactness of the control set), a convexity condition, and mild continuity
hypotheses on the data, it is shown by the direct method that optimal controls exist. Hard and soft constraints
are allowed. In the absence of soft constraints it is shown that there exists an optimal control that is a
function only of the present time and state, i.e., the synthesis problem has a solution. The main tool here
is Krylov’s Markovian Selection Theorem.

Key words, existence theory, controlled diffusion, martingale problem, relaxed controls, Markovian
selection, synthesis problem

AMS(MOS) subject classifications. 49A60, 49A10, 93B50, 93E20

1. Introduction. There are two general approaches available to establish the
existence of optimal controls; either the sufficient conditions of the Hamilton-Jacobi
theory are guaranteed, or it is shown that a minimizing sequence of controls is compact
(the direct method). This situation prevails not only in the deterministic case but also
in the stochastic case where the state satisfies an It equation (which may be an ordinary
differential equation). In the stochastic control literature early examples of the first
approach are the articles by Davis [5] and Bismut [3], and of the direct method articles
by Benes [1] and Kushner [15]. All of the work in the literature with the exception of
the recent work of Loewen [16] requires the control set to be compact. In [16] this
compactness condition is weakened to a coercivity condition--a result well known in
the deterministic theory (cf. the book by Fleming and Rishel [10]). Our first result is
very similar to Loewen’s, but we require a bit less regularity, we allow the diffusion
coefficient to depend on the control, we allow hard constraints (i.e., state constraints
that must be met almost surely) as well as soft constraints (i.e., constraints that must
be met in the mean), and we allow the terminal time to be not merely a fixed time but
rather a first exit time or even a stopping time chosen by the controller (optimal
stopping). Moreover, the method of proof is quite different from Loewen’s; in fact, it
hinges on the introduction of relaxed controls, an approach used previously in the
stochastic setting by Fleming and Nisio [9] and others (cf. E1 Karoui, Huu Nguyen,
and Jeanblanc-Picqu6 [8] for further references). A brief survey of the use of relaxed
controls is given by Borkar [4].

Recently, Haussmann [11] and E1 Karoui, Huu Nguyen, and Jeanblanc-Picqu6
[8] have shown that if the data is bounded and the control set is compact, then in the
absence of constraints an optimal control can be found that is a function only of the
present time and state, i.e., the synthesis problem can be solved. Our second result is
an extension of this result to the case of unbounded data with noncompact control
set. The main tool used is Krylov’s Markovian Selection Theorem, which enables us
to apply an abstract version of dynamic programming. In fact, given our first result
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(the existence theorem) the proof is similar in spirit to the one given for the bounded-
compact case, but new technical difficulties do arise.

We should mention that similar results were obtained by E1 Karoui [7] under the
severe restriction (among others) that the diffusion coefficient be nonsingular. Our
method is quite different, but in 5 we have borrowed the idea that the "mixed"
control problem can be solved by first solving an optimal stopping problem and then
a control problem where the stopping time is not controlled.

We state the problem precisely and make some observations in 2. In 3 we
reformulate it as a martingale problem and we introduce relaxed controls and canonic
relaxed controls that are called control rules. We do this at some length for the benefit
of the uninitiated reader since the level of complexity is nontrivial" we are dealing
with measures defined on sets of measures. In addition we show that under our
hypotheses existence of an optimal control in any of these forms guarantees existence
of an optimal control in any other form. Then in 4 we prove the existence of an

optimal control rule, and in 4.10 we interpret this result in the deterministic case for
the reader who wishes to avoid probability theory. In 5 we establish that the synthesis
problem has a solution and briefly mention an example. The Appendix contains some
technical lemmas.

2. The control problem. To formulate the control problems we require some
notation, which we collect here.

+ [0, ) and + [0, ]. Similarly, +, m+ are the m-dimensional analogues
of +, +. = [-c, ]. If D + , then/3 is the closure of D and

/30o {(oo, x) [+ ’" there exist xn -> x, tn ---> oo, tn, x) D},

D=DUD0o.

C(N+; R+) is the space of continuous functions from R+ into RJ with the
topology of uniform convergence on compact intervals. It will be abbreviated to C.

Cb(RJ) is the set of bounded continuous functions from Ra into R.
C(Na) is the set of functions in Cb(N’) that have two bounded continuous

derivatives.
C(N) is the set of functions in Cb([a) that are infinitely ditterentiable and

have compact support.
is the set of symmetric d d matrices, ff,a will denote its Borel o--algebra.

If A is a metric space, then a/will denote its Borel r-algebra.
If X is a random variable on (f, , P), then the expectation of X is denoted

by P(X).
Forxin C(N+;Re)

[[x[I, sup {]x.,.[" 0_--< s --< t}.

Fora andbinN, a^b=min{a,b}.
If A is a separable metric space, then M/(A) (respectively, M(A)) denotes

the bounded nonnegative Radon (respectively, probability) measures on (A, s) with
the topology of weak convergence. Both M/(A) and M(A) are separable metric
spaces, and are complete if A is (cf. [6, III, 60]). Furthermore, comp (M(A)) denotes
the metric space of nonempty compact subsets of M(A) under the Hausdortt metric.

If R" S-+ comp (A), i.e., R is a multifunction from S into A, both of which are
metric spaces, then meas (R) is the set of measurable selections of R, i.e., y is in
meas (R) if y’S--> A is Borel measurable and y(s) lies in R(s) for each s. If R is
measurable, then meas (R) is not empty (cf. [19, Thm. 12.1.10]).
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2.1. The data. We are given the following data.
U, a closed subset of the Euclidean space (in fact, a closed, o--compact subset

of a Banach space would do, as would a Polish space if p 0; cf. below).
D, a subset of + x Nd, open in the relative topology of + x Nd.
(a, b)" D x U Na x Re measurable such that

(x, u)->(a(t,x, u), b(t,x, u))

is continuous for each t, and such that there exist nonnegative constants k,/3, 7, ’, P
with 0 =</3 <= 2, , _-< p, 7/3 <- p, where/3 max { 1,/3 }, for which

(2.1)
[a(t, x, u)l <-

we call p the exponent of coercivity (cf. (3.5)).
f" Dx U->+m/ measurable, such that each component off is lower semicon-

tinuous in (x, u) for each t.
g" D-> N" continuous, constant on D/,

h" E3- +/", such that each component of h is lower semicontinuous, constant
on D.

(A , A ), an element of [m .
We observe that in the deterministic case (cf. [10, Chap. III]), we may take

p= y= l, /3 ,=0, and in Loewen’s case [16] p>-2, y= 1, fl-<2 (although he also
requires that fl <p and that a be independent of u, i.e., , 0).

DEFINITION 2.2. Given an initial condition (s, x) in D we say that a (strict) control
is a term

where

(C)

(C)

(C3)

(2.2)

(C4)

(, , P) is a probability space with filtration {,}.

{u,} is a U-valued, {0%} progressively measurable process such that for each
T>=s

P lu, p dt <

exit time of (t,X,) from D, i.e., p(w)=where p is the first
inf{t => s t, X,(w)) C: D}.

{X,} is an a-valued right continuous, almost surely (a.s.) continuous, pro-
gressively measurable process such that for some pair (cr(t,x, u), {w,},.),
{X,} satisfies

X, x + b( O, Xo, Uo dO + o(0, Xo, Uo dwo, s <= <= p ^ S, a.s.

where or(t, x, u) is a (d x d’)-dimensional matrix with r(t, x, u)r(t, x, u)’=
a(t,x, u) (’ denotes transpose) and where {w,},__>. is a standard Brownian
motion on (f, o, P, {0%}).

S is a stopping time, i.e., a measurable function f-*+ such that

{w" S(w)<: t}e *t, S>:s a.s.
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We write //sx for the set of all such controls. For a in Rsx, { u,} is called the control
process, {X} the state process, and S the stopping time. if, specifies the history of the
world up to time t. We write o%,x for the history of {X,} to time t, i.e., ,x c , is the
r-algebra generated by the family of random variables {Xo" s <= 0 <= t}. Let us define
Xt on E+ by setting X X for 0_<-- s.

Let y p ^ S and X,* X,^y. Note that y is a stopping time. The following lemma
shows that the integrals in (2.2) make sense, and gives a bound on the moment of
order fi of [IX*[I,, which among other things implies that the stochastic integral in
(2.2) is a martingale. Let/=p min {y-l, 2v-l}.

LEMMA 2.3. For a in Rx the integrals in (2.2) are well defined and for q in [/3,/3]
there exists a constant kq depending only on q such that

(2.3) P(llX*[[qt)<-kq exp(kq(t-s)q) l+]x[q-l-(t-x)q+e (luol p) dO

Proof The first statement follows from (2.3) with q =/3. To establish (2.3) we define

ru inf { >- s" Ix, >= N} ^ y
and set X Xt^,N. Then from (2.2)

X x + b O, X o Uo) dO + o-(0, X o, Uo) dwo

since now t_he integrals are well defined according to (C2) and (2.1). Now for suitable
constants kq and kq the Burkholder-Davis-Gundy inequality gives

P(llxllT)<-,q [xlq+(t--s)q-lp

(2.4)
P[(I.’^Yla(O,Xo,Uo)[ dO)q

f
<= k’q i lxl q + 1 +(t-s)q -[-[( t-- s)q-lnt" 1]

P(llx II) dO+ P

We have used the fact that for any random variable y

P([y["/) _-< 1 + P([y[)

if q/2<= 1. Now (2.3) follows for XN by applying Gronwall’s inequality to (2.4). Since
x II,- IIx*ll, ^ N then (2.3) follows by the Monotone Convergence Theorem. 3

Note that if u 3/= 0 (for example, U compact) then/5 + and (2.3) holds for
q---/3. Moreover, if a and b are bounded, then (2.3) holds without the term involving
u and without the exponential factor.

Let us now define the cost and constraints. For a in x we set

(2.5)

y

F(a, w) f( t, X,, u,) dt + h(y, Xy),

G(a, w)= g(y, Xy)
and we denote the components of F by Fi, i=0, 1,..., rn, and those of G by Gi,

1, 2, , n. Note that f dt is well defined, possibly +, since f => 0. g(y, Xy) and
h (y, Xy) are also well defined even if y + because we assume g and h to be constant
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on D. The usual case of discounting would imply that this constant value is zero.
We say that a in //sx is feasible if

J(s, a):= P(Fo(a, )) <

J(s, or):= P(Fi(a, )) < A i, i=l,2,...,m,

J(s, a):= P(G,(a, ))= A 2
i, i= 1,2,. ., n.

We write {x for the set of feasible controls in , this set may be empty (it certainly
is if Z < 0 for some i, j). Let us also set J (J, j2).

The strict control problem can now be stated precisely:

(2.6) inf{J(s, a)" a Y}.
The problem that concerns us is the existence of a minimizing control. We are only
concerned with the (random) time interval s <- t<=y(w) so we can redefine X, and u,
arbitrarily for > y(w) (cf. 4). We have already set X, x on 0_< < s; now let u U
be a fixed but arbitrary element and set u,(w)= u on 0_-< < s.

Remark 2.4. Here we add a few observations concerning the form of the problem.
First, concerning the constraints, the conditions hi ->- 0,f _-> 0 can be relaxed to hi(t, x) =>
-M > -, f(t, x, u) _>- -f(t) where f/=> 0 and integrable on [0, ). Now set

h,(t, x) h,(t, x) + M + f(O) dO,

fi(t,x, u)=f(t, x, u)+ fi(t),

k t "3
I- M + (t) dt.

Then hi => 0, f => 0 and these two functions have the same measurability and semicon-
tinuity as hi, f. Moreover, jli=> Ai if and only if

5 := P f dt + i(P ^ S, X(p ^ S)) <= i.

Allowingfo and ho to assume the value+permits us to introduce hard constraints,
i.e., constraints that must hold almost surely as opposed to the soft constraints J(s, a) <=, J(s, ,)i, i, i> 0..Indeed if fo(t, x, u)= +o for (t, x) in A c D, A open, and if
ho(t, x)=+ for (t, x) in B f3 D, B open, then a is feasible only if (y, Xy) is almost
surely not in B and for each < y, X, is almost surely not in A,, the t-section of A.

We have chosen to give the exposition for the case when the data depend on the
state X only through its present value X,. In fact, the results of this paper excluding
5 go through if the data are allowed to depend on the past of X. The main change

is to replace Ixl in (2.1) by Ilxll, for x in C(+; d).
Remark 2.5. We are allowing a great deal of latitude in the notion of control; in

particular, since (f, , P) and {w,} are not specified a priori, then {X,} is a weak
solution of (2.2).

Leaving (r, {w,}) ambiguous in the definition of a in s is quite appropriate. In
fact, {w,} is usually not observed; we only know that it is a Brownian motion, so it
makes good sense to leave it unspecified. Moreover, as is well known, a, and not o’,
is intrinsic to the process {X,}, so we have taken it as the given.

Nevertheless we would like to formulate the problem without reference to the
ambiguous (r, {w,}). This we can do by reformulating the problem in terms of the
solution of a martingale problem (cf. Proposition 3.1). Beyond this we would also like
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to restrict (fl, , {,}) to something physically realizable. In Corollary 3.9 we show
that if S is an {,x} stopping time then we may restrict fl to be the canonic space
C(+; d) (the trajectories of X.) so that we are using the natural controls (in the
terminology of Krylov [14]), i.e., control processes of the form

with

v. R+ x c(R+; R") - u,
and v progressively measurable. This means that , ,x. However we prefer to let
fl be the canonic space of trajectories (X., u., S) (after introducing relaxed controls).
That this is permissible is established in Theorem 3.13. The law of (X., u., S) is called
a control rule.

Remark 2.6. Let us consider two special cases. The first is the typical deterministic
problem. If

find u and S to minimize

such that

dX, b( t, X,, u,) dt, Xo x,

fo(t, X,, u,) dt + ho(S, Xs)

We incorporate the equality constraints into ho by redefining ho(s, x) +c on the
complement of

{(S, X)" i(S, X)-- 1 2
i, i=l,...,n}.

This problem now has the form discussed with a 0, D =+d m 0, n =0 (i.e.,
gi--0).

However, we are allowing the controls to be randomized. Note that if u is
deterministic we may take as a singleton {w}, and P then is a unit mass on {w}. Then

(2.7) fo dt + ho P fo dt + ho

and hence u generates a feasible control with the same cost. Conversely, suppose that
c in -x is optimal. We may then ask whether it generates a deterministic pair (, )
which solves the original deterministic problem where the cost is not taken in the
average sense. Certainly, if

’o :=/3 fo dt+ ho

then/3{o" ofo dr+ hoN Io} 0, so there exists mo such that

()fo(t, a,(Wo)) dt + 2(o)(Wo) &o.,(o), ho((Wo),

On the other hand, if (S, u) with corresponding X is feasible for the deterministic
problem then by (2.7) and the optimality of c its cost is at least ,o, and hence no
smaller than the cost associated with (S, .):= (S(ooo), .(COo)). But this also means that
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the cost associated with (S, ti) can be no smaller than Ao, and hence equals Ao. Thus
under d almost all sample paths must have cost Ao, since Ao is the mean cost and
no paths can have smaller cost. Hence/5_ a.s. ((o), a.(w)) is optimal for the original
deterministic problem and the minimal cost is Ao.

Next let us turn to the optimal stopping problem. If D + x Na and the data are
independent of u, then we have an optimal stopping problem. To fix the process X
we require b and cr to be Lipschitz in x so that we have unique strong solutions of
(2.1). Of course we admit randomized stopping times S in Definition 2.2 but we will
see in 5 that we may take the optimal S to be an 0%,x stopping time (hence not
randomized).

Let us finally remark that in our control problem, if ho +co on D then S is never
active so y =p and the controller cannot choose when to stop.

3. The martingale model. We begin by removing the ambiguous term (o-, {w,})
from the model and then we introduce canonic controls. For b in C(a) we define

Lch(t,x, u): a (t,x, .)DXixi(X)+2 bi(t,x, U)xi(X
ij

where {a i} are the entries of a, {b i} are the components of b, chxi=Oc/Oxi and

4,;., 0 4, / 0x 0x.
PROPOSITION 3.1. a is in ll.,., if and only if it satisfies (C1), (C2), (Ca), and the

following"

(C;) {X,} is an [d-valued right-continuous, almost surely continuous, progressive
process on (f, 0%, {0%,}) such thatfor any ch in Cb(Nd), M*, (dp, a) is a (P, {0%,})
martingale for >- s, where m*, (ch, a) M,^y(dp, a) and

M,(b, a):= 4)(3,)- L4(O, Xo, Uo) dO.

Proof This is the result of Ikeda and Watanabe [12, Prop. 2.1, Chap. IV] (cf. also
19, Thm. 4.5.2]). If a is degenerate, we must enlarge in going from (C) to (C3). [-I

From now on we will use (C), (C2), (C), (C4) to define %. Let us next introduce
the relaxed controls in this settingmwe will need them to define the control rules later.
Note that Ml(U) is a Polish space since U is one (cf. the notation at the beginning
of 2). If 4’ is a measurable function mapping U--> with

then we can extend 4) to

by

Ib(u)[ =< k(1

{/M,(U)" f
(IZ) f ch(u)tz(du) := (b,

u

DEFINITION 3.2. Given an initial condition (s, x) in D, we say that c is a relaxed
control, i.e., c in %, if

(a, , P, {,}, {xt}, {,}, s)
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where (, , P, {,)) satisfy (C1), where S satisfies (C4), where {,) is a progressively
measurable Ml(U)-valued process such that for each T in Is, )

P I,1 p dt <

and where {X,} is a right-continuous, almost surely continuous progressively measur-
able Re-valued process such that P{Xs x} 1 and for any in C(Ne) M(, ) is
a (P, {,}) maingale for ts, where M(, )= M,(, ) and

M,(b, a):= (X,)- L(O, Xo, o) dO.

Note that according to our notation

,=
u

and that ,() is progressively measurable if for each t<, (0,)[o.,](0)o() is

+ x , (U) measurable.
We observe that the analogue of Proposition 3.1 holds true, i.e., on some extension

of (fl, , P) there exists a pair (, {w,}) such that (t,x, )(t,x, )’= a(t, x, ) and
{w,} is a standard Wiener process such that

(3.) x, x + b(o, Xo, o) o + (0, xo, o) o a.s.

It is possible to relate (t, x, ) to a square root of a(t, x, u) as follows. If #(t, x, u)
is any square root of a(t, x, u), then one choice of is (t, x, ) (#(t, x, ), s(t, x, ))
where s satisfies

s(,x, s(t,x, ’=a(,x,-(, x, (, x, ’(cf. [8, Thm. 2.5]).
It follows from (2.1) that

la(, x, ) k(1 + Ix +),
(3.

Now, as in Lemma 2.3, we obtain Lemma 3.3 from (3.1).
LMMA 3.3. For q in [, ] there exists a constant kq such that for any

e[llX*llg] exp (k(-x)) l +lxlq+(-x)q+ P

If is in ,x, then we define G as in (2.5) and

F(, ) := f(t,,u),(du)d+h(y,X).
u

Now J{(s, ) are defined as previously. We can now define the feasible relaxed controls
as those in , for which

l(s, )<,
, i=l,2,...,m,

J(s, )= i= 1 , n.
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The relaxed control problem corresponding to the initial condition (s, x) is

(3.3) inf {J(s, )"

Remark 3.4. It is clear that we can imbed o?/{x in 0; indeed if c is in 0//, with
corresponding control process {uT}, we can set tx,(du)= 67(du), where 67(. is a unit
point mass at u7 in U. Hence the inf in (3.3) will be no greater than that in (2.6). The
converse, and hence equality, follows under suitable regularity hypotheses (cf. [8, Thm.
4.11]).

Rather than extend this result to the noncompact case we show that under a
convexity hypothesis and a coercivity hypothesis each feasible relaxed control (i.e.,
each element of 0,) corresponds to a feasible strict control (i.e., an element of -)
that has a cost no larger than the cost associated with the original relaxed control, and
hence the strict problem (2.6) and the relaxed problem (3.3) are equivalent, i.e., a
solution of the relaxed problem (3.3) gives rise to a solution of (2.6). Then we will
show that (3.3) does indeed have a solution.

For each (t, x) in D we define a set in bd xd x ?l++m by

K(t, x)= {(a(t, x, u), b(t, x, u), z)" u U, z6+", zi>=f(t, x, u), i=0, 1,..., m}

and then we assume that

(3.4) For almost all and all x such that (t, x) is in D, K (t, x) is convex.

Observe that in K(t, x) we only consider u such that all f are finite.
We will also require that K (t, x) be closed, but this is implied by our hypotheses

and the following coercivity condition"

(3.5) There exists in {0, 1,. ., m} and f in C(U; +) such that for all (t, x, u)
inDxU

fl(t,x,u)>-f(u), lim
lul--,
uaU

This condition implies that there exists a sequence v,,-0 such that if lu]> m then
lu] p <- u,,f(u). Of course if U is compact, then (3.5) holds trivially.

PROPOSITION 3.5. Assume (3.5). Then K t, x) is closed.
Proof If (a, b, z) is in K(t, x) then there is a point u in U and v in l+m+ such

that z f(t, x, u) + v. Assume that (dropping the (t, x))

(a(un), b(un),f(un)+v,)(a, b,z).

Since f(u,,) and v, are in ++" then both sequences must be bounded. Hence a
subsequence v, Vo. Moreover, the sequence {u,} is bounded. Indeed, according to
(3.5), if ]u,] oo then f(u,,)oo, i.e., ft(t, x, u,)- oo, contradicting the boundedness of
{f(u,)}. Hence for a further subsequence u,.. Uo and Uo is in U since U is closed.
The continuity of a(.) and b(.) imply that a=a(uo), b=b(uo). From the lower
semicontinuity off we obtain zi >=f(uo)+(Vo) so z =f(uo) + v where v z-f(uo) >-
(Vo)i_->0. Thus (a,b,z) is in K(t,x).

We can now show that subject to (3.4), (3.5), any feasible relaxed control gives
rise to a feasible (strict) control without increasing the cost.

THEOREM 3.6. Assume (3.4) and (3.5). If is in then there exists a control
process { ut } such that

:= (, ,/’, {,}, {x,}, {u,}, s)
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is in and

(3.6)
’(s, )_-<Ji Ji(s,), i=0,1,2," .,n,

Ji(s, a) J(s, g), i= 1, 2,’’’, m.

Proof Given c in Y
{fl, , P, {}, {X,}, {,}, S)

we define c by

c( t, co)= (a, b,f)( t, Xt(to), It(to))

[ (a, b,f)(t, X,(w), u)tx,(to, du).
u

Since K(t, x) is closed and convex it follows that c(t, to) is in K(t, X,(to)) for almost
all (t, to); moreover, c is progressively measurable. Now Theorem A.9 in the Appendix
implies that there are progressively measurable processes {u,}, { v,}, U, and ++-valued,
respectively, such that for almost all (t, w)

c(t, w)= (a, b,f)(t, X,(w), u,(w))+ (0, 0,

We define a =(, , P, {,}, {X,}, {u,}, S). Then L(t, X,, ,)= L(t, X,, u,) except
on a (t, w) null set. Hence for in C(a) and all s,

M,(, )= (6, a) a.s.

Now according to Proposition 3.1, a is in provided for any T <

P lu, dt <.

But by (3.5) there exist constants m and such that for any (t, x) in D and any u
in U with [u[ m

lul ff(u) (t,x,

Thus

for all (t, x, u). Hence

since

lul p -<max {m p, lmfl(t X, U)}

P Jut[ p dt <-_ Tm p + vmP f(t, Xt, Ut) dt

<- Tmp + VmJ(s, c)

f(t, X,, tx,)=f(t, X,, u,)+(vt)t

>=f(t,X,,u,).

But c is feasible so Jt(s, c)<, and hence a is in .,. The feasibility of a follows
from (3.6), which in turn follows from

f(t, Xt, txt) =f(t, Xt, ut) + v,)i fi( t, X,, u,),

so we are done. l-]

Hence under the conditions (3.4), (3.5) we know that the strict problem (2.6) and
the relaxed problem (3.3) have the same infimum, and if minimizing controls exist for
one problem then they exist for the other.
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Observe that if the equality constraint j2 were to contain an integral term, then
we would require the integrand to have the same convexity and regularity as b (rather
than f) to make Theorem 3.6 hold. Hence we prefer to change integral constraints of
this form to terminal constraints by the addition of another component to the state X,
recalling that a need not be nonsingular.

We can now turn to the problem of choosing a "canonic" f. The following
technical result is useful. Let {x,s} be the filtration generated by (X., ]s=.).

LEMMA 3.7. If a is in ., and if { ,} is a filtration such that x.s , ,, then
there exists a process {,} such that

:= (, , P, { ,},{X,}, {,}, S)

is in and

(3.7) J(s,d)=J(s,a).

Proof Let , be a progressive version of P(, ],). Such , exists because if {&n}
is a countable dense subset of C(U), then there exists a version , of P(, [,) such
that (,, ) is progressive where is an element of the countable set

Co := Ai {1}
i=l

and A consists of all /-fold products of elements of {b"}_. Let H be the vector
space of all elements b of C(U) such that (,, b) is progressive. It contains the
constant functions and is closed under uniform limits as well as under monotone
pointwise limits. By the monotone class theorem [6, Thm. 21, Chap. I] H C(U),
so is progressive.

Observe that

U

U

T y

P I,1 p tit.

Since ,sm , then X is measurable and for b in C(d)

P b(XLh)- o<yLb(O, Xo, rio)

e (x+,- o<. (O.Xo. e(o(U1% o,

e (x+- o<.(o. Xo. o o ,

P{b(X*) ,}

(x,*).

It follows that c is in %,.

o<Z O, go,/o) do l, 1
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The same kind of conditioning argument can be used to establish (3.7). [3

The first choice of a canonic 12 would be to take 12 C C(R+; Rd), the space
of X-trajectories. This leads to the natural controls.

DEFINITION 3.8. Ce in Rx is a natural control, i.e., a ,N’, if f= C, = c,
x,(,o) =,o(t),

P{to( t) x, O <= <- s} l,

and S is a wide sense stopping time. We observe that a natural control is specified by
the triple (P, {u,}, S)" a probability measure on C (the distribution of {X,}), a natural
control process (i.e., a progressive function: / C U), and a random variable S->_ s

that is a stopping time relative to {
COROLLARY 3.9. Assume (3.4) and (3.5). If t is in Y such that is a {ox}

stopping time, then there exists a natural control a such that

J (s, J (s,

Proof .With % o%,x we apply Lemma 3.7 and Theorem 3.6 to

to obtain

a (fi, {x,),

in o//Y Let P be the law of X on C. A standard result implies that there exists a
measurable, {ct+} adapted function b such that

fi,(to) 49(t, X(to)) a.e.a.s.

Now Lemma A.1 ensures the existence of a natural control process u(t,x)
"equivalent" to 4, hence ti. Similarly, if Y, __<,, then there exists a { c,/} adapted
process tp, on (C, cg, p) and a null set N in - such that for to N, Y (to) q,, (X(to))
almost everywhere (a.e.). If ,(x)=lim_.o+ esssup,<r<,+ qr(X), then for toN,
,(X(to)) Yt(to) for all and is indistinguis,hable from a {%+} progressive process

(c.f. [6, IV 37, IV 38]. If S(x)=inf{t>-_s ,(x)= 1}, then S is a {cOt+} stopping
time and S X , almost surely. The result follows. [3

We note that if g 0 and h 0, then S only figures in the problem as an upper
limit of integration and we can move it into the integrand as, for example,

f(t, X,, u,) dt "{t<s}f/(t, X,, ut) at.

Hence in the definition of a control we can replace S by a progressive decreasing
process whose values lie in {0, 1} almost everywhere, almost surely. In this way we
avoid going to wide sense stopping times for natural controls.

Let x denote the set of feasible natural controls with initial condition (s, x).
Then 3Cx 0//, 0.r.. If S T fixed, s <= T <= +oo (e.g., ho( t, x) +oo for T) then
the above result implies that subject to (3.4), (3.5)

inf{J(s, c): c e} inf{J(s, ce)" c

inf{J(s, c)" c e x}.

An approach along these lines was taken by Haussmann [ll]mfor the natural
controls the process {u,} was replaced by a progressive selection of the multifunction
(t, to) K(t, to(t)). As the method is analogous to the one used in the deterministic
theory we expect and find the same technical difficulties in verifying the closure
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property. Many of these difficulties can be circumvented by a slightly different method
introduced by E1 Karoui, Huu Nguyen, and Jeanblanc-Picqu6 [8]. It is the one that
we will use here.

Rather than work with natural controls we choose as the canonic 12 the space of
trajectories of ({X,}, {/[.6t} {’{S_<,}}).

3.10. The space V. Let V be the set of measurable functions 7"E+- M(U). We
will be working with M(V) so we want to put a metric topology on V, and we want
it to be such that for all 0-< s < < c and for all b in C(U)

Is I
if r/" r/. Fortunately, we can achieve this, and we can do it in either of two equivalent
ways. Let us define , in M/(U) by

(3.8) t(" rlo(" dO.

Then is in C(R+; M/(U)), a Polish space. If we set i(r/)= then i(V) is a closed
subset of C([+; M/(U)) by a result of Sion ([18, Thm. 5.1, III]) because the weak
topology on MI(U) is a weak * topology (cf. [19, Thm. 1.1.2]). Hence V under the
topology induced by is a Polish space. Since i(V) is an equicontinuous family, then
it follows from Ascoli’s Theorem that a set A in V is sequentially compact if for each

rto dO" rt A c M+( U)

is sequentially compact, i.e., if for any 6 > 0 there exists a compact set K in U such
that for all r/ A

o
ro(K) dO> t- &

Alternatively if r is in V, then the set function defined on + x 0 by

(3.a’ (a x I dt

is an element of M+(N+ x U). The stable topology on M/(N+ x U) is the weakest
topology, which renders continuous the mappings

l-f f d(t,u)(dt, du)
U

for all bounded, real-valued, measurable b that are continuous in u and that satisfy
5(t, u)-0 if t> T, for some constant T,. Jacod and M6min [13] have shown that
M/(+x U) with the stable topology is a separable metric space and they have
characterized the sequentially compact sets. If i(/)- /, then i(V) is a closed subset
of M+(i/x U) (stable topology) because + U is Polish so that we can always
disintegrate. If we now put the topology induced by on V, then it is clear that we
obtain exactly the same topology as introduced above (cf. (3.8) and (3.8’)). The criterion
for sequential compactness given above can now also be derived from Theorem 2.8
of [13].
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The canonic filtration on V is { Ft} where T’, is generated by sets of the form

rl" rlo dO B

with s =<_ and B a Borel set in MI(U).
Recall that we had extended ut to + by setting ut u for < s for some fixed

u U. If 6 is the point mass at u, i.e., is the Dirac measure at u, then/x, can be
defined for 0 < s as , o.

3.11. The space Z. S assumes its values in N+, which is a compact metric space
with metric

d(x, x’) Ir(x)- r(x’)[, r(x) x/(1 + x).

We can identify + with a space of functions by noting that if A + and

(t) ,,
then lies in Z, the set of all distribution functions of Dirac point measures on
We denote the map ( A by A(. ). It maps Z into N+. The topology inherited by Z
from N+ via the map A(. is that of convergence at all points of continuity and at
We could also add that it is the topology of weak convergence of the corresponding
(point) probability measures. In any case, Z is a compact metric space with canonic
filtration , [(0); 0 N t].

In R+ the corresponding -algebra is

(+). [[0, 0]; 0 t],

i.e., sets of the form B or B U (t, @] where B is a Borel subset of [0, t].
We say that in is a canonic relaxed control if

a=CxxZ, =, ,=,x,xN,,

x.() (t)...()= .(t). s()= ()

with m (, , ) and if

P{m(t) (x, o, 0), 0 N < s} 1.

It follows that a canonic relaxed control is completely specified by the probability P
on C x V x Z, i.e., by the distribution of ({X,}, {,}, {s,}). We formalize this by
making an equivalent definition first proposed by E1 Karoui, Huu Nguyen, and
Jeanblanc-Picqu [8].
Dvvo 3.12. Given the initial condition (s, x) in D, P is a control rule, i.e.,

P is in R(s,x), if P is a probability measure on (Cx VxZ, x xN), such that

(3.9) P ]u[(t; du) dt < forallT<,
u

(3.10) M$ := M,4 is a (P, , x , x Y,) martingale on ts for $ in C(Nd)
where

M,4, 4,((t))- f’ Lch( O, ( 0), rl( 0)) dO,

(3.11) P{o)(t) (x, 6, 0); 0 --< < s} 1.
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Here y p(sc) ^ A(r), p() is the first exit time after s of (t, (t)) from D and A(r) is
the time when st(t) jumps from zero to one.

Observe now that given P in R(s, x) and setting
we have a canonic relaxed control (f, 2, P, {2,}, {(t)}, {7(t)}, A(r)) in sx. We define

I y

Fi(s, to)= f(O, (0), rl(O)) dO+ hi(y, (y)),

G(o) g (y, :(y)),
and for P R(s, x), J(s, P) PFi(s, to) and, similarly, Ji(s, P) P(i(to). Now
RJ(s, x), the set of feasible rules, is defined in the obvious way.

The final result of this section shows that in the control problem we may restrict
attention to control rules. Clearly, RJ(s, x)

THEOREM 3.13. If t is in x, then there exists in RY(s, x) such that J(s, a)=
J(s,P).

Proof. In Lemma 3.7 take f ffx,,s. Then

z,-n(z, 1%)-, a.s.

so (f, if, P, {o,x’u’s}, {X,}, {/x,}, S) is in 0x. The result follows if we take the image
under

(X,/, l{s.})" f - C x V x Z.

Remark 3.14. We point out that a canonic relaxed control is not a natural control,
that is, there may still be some randomization that is not X-measurable since in most
cases ffx,,.s x. However we can say that

inf{J(s, c)" c -[.} inf {J(s, P)" Pc Rr(s,x)}.
Moreover, if the infimum is attained in any one of 0, R.f(s,x), , then it is
attained in the other two also. If S is an {ffx} stopping time (e.g., ho(t, x)=+ for

T), then we can add W{ to the above list.

4. Existence of optimal controls. We will now show that if

R’(s, x) argmin {J(s, P)" P RS(s, x)},

then R’(s, x) is not empty provided certain hypotheses are met (notably (3.5)). Accord-
ing to the previous section, this implies that there exists an optimal relaxed control,
and if (3.4) also holds, then there exists an optimal (strict) control. The argument is
straightforward" a lower semicontinuous (1.s.c.) function attains its infimum on a
nonempty compact set. The first step is to show that P J(s, P) is lower semicontinuous
and P J2(s, P) is continuous at least under some reasonable hypotheses. We write
/), for the t-section of/3. Let E R(s, x) be such that JJ(s, P) <= A for all P E, some, < c (l is given in (3.5)).

LEMMA 4.1. Assume that
(i) p() is continuous as a mapping into +, P-a.s. for all P E,
(ii) lim,_ sup,o, Ig(t, x)[ <,
(iii) [g( t, x)l <- k(1 /lxl), 0-<_ <p.

Then P - J(s, P) is continuous on E, 1, 2, , n.

Proof The continuity of g and (i) imply that G is almost surely continuous.
Moreover, for sufficiently large, i.e., > T, g(t, x) is bounded (cf. (ii)), hence by (iii)
and Lemma 3.3,

P{IGI P/"} --</,(1 + P{ sell })</?
where k2 depends on T, :(s)- x and A but is the same for all P in E.
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It follows that

and hence for all

lim sup P{I G[]]{II> N} 0,
Noo Pc E

lim sup IP(G, ^ N) P( G,)I O.
N P E

Now let P. -) P. The continuity of G implies that

lim P.( Gi ^ N)= P( G, ^ N)

so by the above and monotone convergence

liE P.(Gi) liE lim P.(Gi ^ N) liE P(G, ^ N) P(G,).
N N

Thus J(s,. is continuous.
Remark 4.2. Let us discuss briefly the continuity of p. If D [0, T)xRd with

0 < T-< o then p T, and hence it is continuous. More generally if D [0, T) x O with
0 < T-<_ and O has smooth boundary 00, we assume that 00 is the union of three
sets Fo, F1, F2. With (x):= dist (x, 00) we assume that Fo has a neighbourhood No
such that on [0, T) x (No f’l O) x U

a(t, x, u):= Y. aij( t, x, u)Oi(x)Oj(x O,
j

1
fl(t, x, u):=E bi(t,x, u)oi6(x)+- aij(t,x, u)oioj(x)>-O,

ij

where Oi := O/Oxi. Then P{sC(p) Fo} 0, i.e., (t, so(t)) does not exit D through [0, T) x Fo,
P-a.s. for any rule P. In fact, if so(t)6 No then

-fl(t, so,, r/,)-->0 P-a.s.
dt

so that 8 cannot decrease to zero, i.e., :(t) cannot approach Fo in finite time.
We also assume that for some e > 0 F1 has an e-neighbourhood N1 such that on

[0, T) (N, f’] O) x U

a(t, x, u) =O, fl(t, x, u) <---,

for some , > 0. Now

i.e., if t’=> t, then

t’- <__ u-[t(t) 8(t,)].

If sc - sc and p := p() </9 := p(:), then p p since p(. is 1.s.c. If p > p, then for
n suciently large (p) N, so () decreases as increases, i.e., "(t) N for

p. Moreover,

Hence p is continuous at such that (p) F.
Finally, we assume that F2 has neighbourhood N2 such that on [0, T)x

(N O) x U,

a(t,x,u)>=,>O.
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Using a Girsanov transformation and a time change, we can map 6[so(t)] into a
Brownian motion W under a measure Q equivalent to P. Now p is the continuous
image of the first exit time of ’vr from R+, and hence is Q-a.s. (and thus P-a.s.)
continuous at if :(p) 1-"2. Since all cases are now covered, p is continuous.

We obtain a somewhat better result using more complicated arguments in Theorem
A12 of the Appendix.

Remark 4.3. There are two cases where it is readily seen that to hi(y, (y)) is
l.s.c. P-a.s. If p is continuous P-a.s., then hi(y, (y)) is 1.s.c. since hi is. Alternatively,
if D [0, T) O with O open, then p is 1.s.c. If hi(t, x)=/(t) for x in the boundary
of O with h left-continuous and nondecreasing, then h(p) is 1.s.c. Since also hi is l.s.c.
and y is continuous on DU {T} x O, then hi(y, (y)) is 1.s.c.

LZMMA 4.4. Assume that to - hi(y, (y)) is 1.s.c. P-a.s. for all P E and all i. Then
l(s, P) is l.s.c, on E for all i.P- Ji

Proof. Let us first show that F is 1.s.c. Assume (:, /’, r) - (:, /o, ro). Note that
the function y(:, sr) p(:) ^ A(r) is 1.s.c. since p and A are. Define y" y(:. r’). For
z in (0, 0o) define

yO if y<00,
Z

z otherwise.

Fix N < 00 and write

For y < 00

and for any /> 0

f(t, u)=f(t, ’], u) ^ N,

if Y"<=t<-Y’otherwise,

7(du) dt.

fi(t, ’, rl’) ^ Ndt >= qb"(t)f(t, u)

Q"{(t, u): ]ch"(t)f"N(t, u)]> }_< (yO_y,)+.

Since y is 1.s.c., lim inf, y" >= y, so

lim (y y, + 0.

By Lemma A.2(iii),

lim, I ch"(t)fN(t’ u) dQ" =0,

SO

lim inf f t, ’ rl ’ at >- o.

If yo= +00 then y
_

00 since y is 1.s.c. so

lim inf f t, , r) dt O.
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Hence we always have

lim inf f(t, , r) dt >- lim inf f(t, :, r) dt
n

lim inf f(t, , ) Ndt

izl(4.1) li inf f dQ

-lim sup (f
tl@ U U

e -lim sup (f-f)- dO + f dQ
U U

where the last inequality follows because Q Q in the stable topology and f(t,
is 1.s.c. Note that Dellacherie and Meyer [6, Thm. 55, Chap. III] show that

lim inf Q4 Q

if Q Q is the topology of weak convergence and if 0, 1.s.c., whence the same
result follows for stable convergence (if (,. is 1.s.c.) by Fatou’s Lemma.

From Lemma A.3(i) with (t, x, u)=(t, x, u) N, we conclude that

lim (f-f)-dQ =0,
U

so from (4.1) and monotone convergence we conclude that

(4.2) lim inf (, , ) dt (t, ,, ,) dr.

Recalling that h is 1.s.c. then (4.2) implies the same for
then z r and we simply take the limit as in (4.2).

Hence is 1.s.c. P-a.s., 0. Then there exists a P-null set N and bounded
functions such that is continuous on aN andF on N, m0. Now
if P P then by monotone convergence

P(F lim P(m lim lim P. m N lim lim inf P (F) lim inf P (F)

so that J is l.s..
Let us now find a suitable ompat set on hihJan attain its inf. Unfortunatel$

R(s, x) is not ompatthe diult lies n the fat that n (3.9) we haw T 7 rather
thn T and n (3.10) we have M& rather than &. The folloin technical devie
will allow us to owrome this problem. Let us adjoin {u} to U where u is an isolated
point, for example, if U is in then U{u
in +. We dfine

(,x,,)=0, (,x, )=0, (x, )=+ ()=0.
From now on we assume tha such u is in U. This does not aet K(t, x) sne this
set ontans onl u such that <. Lt be the point mass at u. Observe that for

an (feasible) ontrol in - u is not in the support of , for t except possibl
on a null set. On the oher hand if
redfine ,=, t>7, then we have replaed X b X=X and b but
() =J().
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In terms of control rules, given P in R(s, x) we replace it by Po in R(s, x) where
Po P on 2y, i.e., on the events that happen prior to time y, and

Po x * x

on 2 y, the events that happen after time y(to). Here 6e(y(o is the Dirac measure at
the constant function x(t)= (y(to)) in C(R+; Rd) and 6y(o is the Dirac measure at
,=>y(o in Z. The techniques of Stroock and Varadhan [19, 6.1] (cf. 5.6 of the
present paper) allow us to conclude that Po is well defined. Now Po satisfies the

(3.9’) Po In(t)l dt <c VT<

(3.10’) Mtb is a (Po, Qt) martingale for s,

Po{to" to(t)= (x, 6, 0), 0 _-< t=< s} 1,
(3.11’)

Po{to" (:(t), q(t))=((y(to)), 6"), t> y(to)}= 1.

Since F(s, to) and Gi(to) are 2y measurable, J(P)= J(Po). Let us define ioP= Po and

Ro(s, x) ioR(s, x)

={PoMp(C VZ)" (3.9’), (3.10’), (3.11’)hold}

and let RCoo(S, x)= ioRS(s, x). We conclude that

(4.3) inf{Jo(S, P)" Pc gf(s, x)}=inf {J(s, P)" Pc Ro(S, X)}.

We will then find a subset E of R(s, x) such that

inf {J(s, P)" P c go(S, x)} inf {J(s, P)" P c E}

and such that its closure / is compact and contained in RS(s, x). It follows that if
J(s,.) is 1.s.c. on /, then all the above infima are equal and are attained in /, and
hence in R(s, x) and even in RCo(s, x).

In the case where U is compact, the above construction is unnecessary (note U
compact implies that we may take p y u 0). We can extend a, b to + d U
so that (2.1) still holds. In (C) letus now assume that Mt(th, a) is a (P, {,}) martingale
for t_-> s. Note that now (2.2) holds for all t---s and (2.3) holds with X* replaced by
X. The rules corresponding to this modification are"

R(s,x)={PcM(C VZ)" (3.10’), (3.11) hold}.

Of course since p 0 then (3.9) and (3.9’) are trivial and

Ro(s, x) R(s, x) R(s, x).

Let us define

R’o(S, x) argmin {J(s, P)" P c Ro(S, x)} ioR’(s, x).

With as in (3.5) let E be a subset of Ro(s, x) such that for some < cc

sup {J(s, P)" P c E} <- .
PROPOSITION 4.5. Assume (3.5). Then E is tight.
Proof The result will follow from Theorem A.8 once we have established (A2)

and (A4). From (3.5) it follows that for any /> 0 there exists m such that ’m N /. Now

following:
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for all t. We set q,(r/)=f(r/,). Then from (3.5), (3.11’), and Lemma 3.3 for any T < co
and sufficiently large M (cf. the Appendix for the definition of Ew)

P{ZCM}<=P{IIII>----M}+P [rio dO>M +P f(rlo) dO>=M

<--P{[IIIr>--MI+P 17o dO+TKf>M +P f(rlo) dO+TK2>-_M

<K(T)__ (](s, P) +lxl + )M
<-_ g z)( +lxl+ )/M

for some constant K(T). Here , max {] ul, u*l and : max {](u), f(u*)} f(u).
The last expression tends to zero uniformly in Pc E as Moe. Hence (A2) is
established.

In the Case where p 0 we take 0 in the above and dispense wth qt. Then

P{Z}<-_P{IIII.>=M}+P T rlo(lu[>M) dO>=l

--< P{llll ->- M}+ P Y(u)%(du) dO >--
lul>m}

-< g (Z.){( / Ixl)/M + J(s, P)/k4}
where

ka4 inf{f(u)" lul> M)-
as M-o, so again (A2) holds.

If U is compact and P Re(s, x), then

P T rlo([UI>M) dO>=I =0

for M sufficiently large, and we do not require a bound involving J(s, P), i.e., we do
not have to fix P on RY to obtain compactness. This explains why we can admit Rc
rather than Ro in this case.

To establish (A4) take 4 in C(). For any P in E, ts {()-

’ L(O, o, o) dO} isa (P, ,)maingale, hence so is {()-’ L(O, o, o) dO}
(of. the Appendix for the definition of ). It follows that for s and suitable A6
defined below (writing for )

P [L(O, o, o)+ e6(1 + 1o1)3

0

since by (3.2) for 0 N

(tl xxll + x il)k(1 + M + Iol)
m(1 +lol
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if/ max {1,/3} and A6 (11  . 11 + IIbl[)k(1 + M). Clearly, if q(x)= b(x- a) then

A A. The same conclusion holds for < s trivially for any A6 0. Hence (A4)
holds and the result follows.

For A (0, ) define

E(A) {P R(s, x)" Y(s, P) A}
so that Y(s, P) < h i, 0, 1,. , m for P E (h). Note the inclusion of the case 0.
By the above result E(A) is precompact (take h h with as in (3.5)). We wish to
show that its closure (h) lies in R(s, x).

PROPOSITION 4.6. Assume (3.5) and that J is 1.s.c. on (h) i=0, 1,..., m, and

J is continuous on (h) j= 1,2,..., n. en (h) c {PRf(s,x) J(s, P) h}.
Proo Let {P,} be a sequence in E(A) such that P, P weakly. We wish to show

that P R(s,x) so we must verify that P satisfies (3.9), (3.10), (3.11), and

(4.4) J(s, P) i i"

In fact, (4.4) follows trivially from the same propeies for P and from the continuity
properties of J, J. Let

A={o" o(t)=(x,,O),Ot<s}.
It is a closed set, hence P(A) limsup P(A) 1, so (3.11) holds. Note that we cannot
show that (3.11’) holds (unless p is continuous); that is why E(A) is not closed. Next
consider (3.9) for p > 0 since it is trivial if p 0. Fix T and N and define

&N(n) ([U N)Pnt(du) dt.
u

Since u (lul N)p is in Cb(U), then N() is continuous as a function on E If
m > 1 (cf. the proof of Proposition 4.5 for ), then (3.5) implies that

(4.5)
mPT+A.

Since &N is in Cb(U), then by passing to the limit as n in (4.5) we obtain

and now by monotone convergence as N

(4.6) P In, dt < mpT+ uA.

Hence P satisfies (3.9’) and then also (3.9).
Now we address (3.10). Fix s T<. With & in C(d) we write

2mMt&=M+Mt

MIm= (,)- L(O, o, U)o(du) dO,

Mm= g&( o, o, U)o(du) dO.
ulm

Then M is bounded on (eft (2.1)), and for a sequence mk , it is P-a.s. continuous
in w. This last point follows from the second part of Lemma A.3 with

6( 0, x, u)= L6(0, x, u)
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and with mk chosen so that mk- ct3 and

P rlo([ul ink) dO O.

It follows that for any bounded continuous function H’12 , and any k,

limP,,(M"H)=P(M,"H)

and similarly for replaced by T.
Now consider MZtm. If m > K then there is a constant g6 such that

(4.7) IM,I--< ,70(lul >= m) dO / u,,, fl( O, o, no) dO P,.a.s.

with ,,0 as mc (cf. (3.5), (3.11’)). Since {P,} is tight (since E(A) is), given y>0
there exists a compact set Kv in V such that for all P, and P, P, (Kv) >= 1 3’. Moreover,
Kv compact means that for some mv

 o(lul- mr) < r(T- s)dO

for all r/ in K. Hence

N(r-s)

if m m, and the same is true with P replaced by P and/or replaced by T.
Hence if H is an element of Cb() that is , measurable, then

p{(Mr-)H}l<lp{(MTM
r -Mr )H}-P,{(M-M)H}I

(4.9)
+ +

since M& is a P, maingale. From (4.7), (4.8) and

P dO NI (cf.(4.4))

it follows that the last two terms on the right side of (4.9) converge to zero uniformly
in n as m m through the sequence {m}. Now for each m the first term on the right
converges to zero as n m by the weak convergence of P P. Hence M, is a (P, ,)
martingale, i.e., (3.10’) holds and so does (3.10).

Observe that we have shown that

()c {p e R(s, x)" (3.9’), (3.10’), (3.11) hold}.

If U is compact and

e

then the above proof shows that (I) is closed. In the proof that P satisfies (3.10’)
we simply set MI M,,M 0. We can even take m and conclude that R(s, x)
is compact if U is.
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THEOREM 4.7. Assume (3.5) and that j2 is continuous, j1 is 1.s.c. on/(A) for all
A [0, c). IfRf(s, x) is not empty then R’(s, x) is not empty, i.e., there exists an optimal
rule.

Proof. If/3 is some element of R(s, x), then we set

= (s, ) <.Ao

Now/(h) is a nonempty, compact subset of RY(s, x) and by (4.3) and the definition
of(

inf {J(s, P)" P RY(s, x)}=inf {J(s, P)" P /(h)}.

is 1.s.c.The result now follows since Jo
COROLLARY 4.8. Assume (3.4), (3.5), and the same continuity on J as in Theorem

4.7. If fx is not empty, then there exists an optimal control that can be taken to be strict.
This corollary follows directly from Theorem 4.7 and Remark 3.14.
Remark 4.9. We may ask whether there are any feasible controls, i.e., # .

In the presence of constraints this is a difficult question where notions of controllability
come into play; however if we assume that there are no constraints, i.e., m- n 0,
then the question of feasibility reduces to (i) the existence of a control that (ii) has
finite cost. But (i) holds if for some ff in U, a(.,., t) and b(.,., t) are bounded (cf.
Stroock and Yaradhan 19, Thm. 6.1.6]) or if a(t,., t) and b(t,., t) are locally Lipschitz
continuous (cf. M4tivier 17, Thm. 34.7]). As for (ii), i.e., whether the cost corresponding
to the control process u, t is finite, this is implied by any one of (in addition to the
standing assumptions)

(a) ho(t,x)<--K, fo(t,x,)<=Ke-’, t<, 6>0;
() ho(t,x)<-K, fo(t,X,)<=Ke-’(l+lxlq), K<C, 6>0, q>--O, (a,b) bounded;
(y) fo(t,X,)<--_K(l+lXlq),K<c, q>--O, ho(t,X)<--_K if t=< T, ho(t,x)=+if t> T

for some T fixed.

4.10. The deterministic case. Let us now display some implications of our result
in the deterministic case. We are given the following:

U, a closed, o--compact subset of a Banach space;
B, a closed subset of / Rd"

A, a measurable subset of R+ x Edx U such that for each t, A,, the t-section
of A, is closed;

b, a measurable function: A Ed, continuous in (x, u) for each such that for
some p = 0

Ib(t, x, u)l _-< k(1 + Ix[ +

f, a measurable function" A +, 1.s.c. in (x, u) for each t, such that there exists
a function f in C( U; /) such that for all (t, x, u) in A

f(t, x, u)>=f(u), lim
f(u)

I1o lul
uU

h, a function B R+, 1.s.c.;
b and f are such that for each (t, x) t_J ,t {b(t, x, u)} [f(t, x, u), ) is convex;
(s,x), a point in [+xd such that ({(s, x)} U)f’IA#.

We write AC(I;d) for the set of absolutely continuous functions Id. We can
now define a "control."
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A triple a (X, u, S) is a control, i.e., a //,x, if S [s, ], X AC([s, S]; d),
U LPoc([s, S]; U) and for all [s, S]

X( t) x + b( O, X( O), u(0)) dO.

The control a is admissible if aql,x, t, X( t), u( t)) A a.e. t, (S,X(S))B.
We consider three cases"

(I) Bc [0, MIxed for some M<

J(s, a):= f(O, X(O), u(O)) dO+ h(S, X(S));

(II) B={}Xd, h=O

J(s, a):= f(O, X(O), u(O)) dO;

(III) B + xd and
(a) h bounded

J(s, a):= f(O, X(O), u(O)) dO+ e-(s-’h(S, X(S)),

or
(b) lim,_, infx h(t, x)

J(s, ):=IIfI(O’X(O)’ u(O)) dO+h(S,X(S)) if S<oe,

+oe if S

We say that a is a feasible control, i.e., a e, if c e 9/,, a is admissible and
J(s, ) < oo. The control problem is

inf{J(s, a)" a e q/Y}.

Observe that in case (I) the controller runs the process until the time S, chosen
byhim, but the form of the target set implies that S -<_ M. If in this case A + xd X U
and B { T} x d, i.e., there are no state constraints, then 0//y provided there exist

U such that

(4.10) b(.,., t) is bounded, or

(4.11) b(t,., ) is Lipschitz continuous and f(.,., t) Loc(+ x d; ).

In case (II) the controller must run the process for all time. Here again if
A [+ x Rax U, i.e., there are no state constraints, then //x if there exists t U
such that either (4.10) holds and for some K < oo, q < oo, 3 > 0,

f(t, x, ) _--< K e-’(1 + Ixlq),

or (4.11) holds and

f( t, x, ) <= e-‘.
In case (III) the controller runs the process until the time S of his choice. In case

(a) he may choose S +oo, i.e., never stop, and then the penalty for stopping is zero.
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in case (b) he will never choose S +oo. In either case 0-// because any a with
S s gives a feasible control.

THEOREM 4.11. In cases (I)-(III), if allf then there exists an optimal control.
Proof. This follows from Remark 2.6 and Corollary 4.8 if we define fo and ho

appropriately. For a set A define XA(Y) by

0 if y A,
XA(Y)

+O otherwise.

Then XA is 1.S.C. if A is closed. We set D + xd SO /3 {C} X d. Extend f(.,., u)
and h(.,.) to D by setting them equal to zero where they are not already defined.
Then define

and in cases (I) and (II)

fo(t,x, u)=f(t,x, tl)q-XA(t,X hi)

ho( t, x) h( t, x) + Xt( t, x).

Observe that in case (I) ho- +oo on D and in case (II) ho-0 on Do. In case (III) set

fexp [-t(t s)]h(t, x) case (a),
ho(t, x) i h(t, x) case (b), < o,

I.+c case (b), t= +o.

Then ho 0 on Doo in case (a) and ho + in case (b). Moreover, fo(t, .,. is 1.s.c. on
ax U and ho(’,’) is 1.s.c. on/. [3

Remark 4.12. Sometimes it is convenient to assume D to be only measurable
rather than open. Then p is, in general, not a stopping time, but we can still obtain
our result. Given any measure P on c let (P be the completion of c under P and .let

P

i.e., is the universal completion of c. Let ,P be the or-algebra generated by c, and
the null sets of coP and let

Note that , may be larger than the universal completion of % In any case {,} is
a filtration and

Moreover, if B and P(B)= 0 for allP then B ,, and given any P and A ,
there exists Ap c, and Np P such that A ApANp, P(Np)= 0, where A denotes
symmetric difference. If we set

n

then p is a {J2,} stopping time and we can work with {J2,} to establish the existence of
an optimal rule.

Let us add that we can refer all processes back to J2,. For example, if {u,} is
progressive, hence {J2,} progressive ({J2,} is the augmented filtration), then by Lemma
A1 there exists an (J2,) progressive process {u,*} such that u*(to)= u,(to) a.e.--dtdP.
Furthermore, if S is an {J,} stopping time, then ].->s} is {,}.optional. By Lemma 7
of [6, Appendix 1] it is indistinguishable from an {J2,/} optional process, i.e., there
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exists a wide sense {J2,} stopping time S* [i.e., {S* < t} J2,] such that S $* a.s. Thus
by relaxing our definition of a control slightly, in particular, by replacin.g "stopping
time" by "wide sense stopping time" in (Ca), we still have each rule (on J2) generating
a relaxed control (on

5. Optimal feedback controls. Recall that if a is a natural control, then it is
specified by a measure P on C(E+; a), by a progressively measurable function

.au./ c(/, )- u,
and by a function S" C(+ td) such that {S =< t} % for all (cf. Definition 3.8).

DEFNVrON 5.1. The natural control a Wsx is a Markov control if the correspond-
ing control process u satisfies

u(t, so) V(t, (t))

for some Borel measurable function V" D U, and S is the first exit time after s of
(t, :(t)) from D’, some measurable subset of D.

In deterministic control theory the Markov controls are called feedback controls.
Observe that if a is Markov then X. is a Markov process since it satisfies

(5.1) dX,=b(t,X,, V(t,X,)) dt+al/2(t,X,, V(t,X,))

for some Brownian motion {w,} and some square root of a. This explains the term
"Markov control."

Our aim in this section is to show that if there is an optimal control, i.e., if
R’(s, x) f for all (s, x) in D, then for any (s, x) D there exists an optimal control
that is a Markov control with the same function V and set D’ for all (s, x), i.e., there
exists an optimal control law. The method of proof is an abstract version of dynamic
programming due to Krylov. Since it is a form of dynamic programming, it cannot
accommodate soft constraints and so we assume

i=0, i=l,2,...,m, (orrn=0),

Gi- A 2i=0, i=l,2,...,n, (orn=0).

Since there are no constraints we write F for Fo and, similarly, f, h, J for fo, ho, Jo.
Let us also simplify the hard constraints: we assume that f(t, x, u) < if and only if
(x, u) A U(t) where A and U(t) are closed and U(t) U for all t. Hence iff(t, .,.
is 1.s.c. on Ax U(t), then it is 1.s.c. on Edx U. Let us also assume that ufq, U(t).

0 0 0If this last set is empty we can replace u by u, and by , (Dirac measure at u,)
with u U(t) and u. Lo(E+, U). The results of the previous section as well as those
of this section can easily be extended to this case.

It follows that if (s, x) D and xA then for all feasible controls P{X, cA,
t->_ s} 1. For (s, x) D but x A either J + and the problem has no solution, or
S s and J= h(s, x) so the problem has a unique solution: S= s (and the control
process u is irrelevant) and X =x provided h(s,x)<. Hence the only case of
importance is the one where x A. We write

DA {(S, X) e D: x e A}.

It is actually possible to allow constraints of the form x(t) A(t) if A(t) is closed,
the graph of A(.) is measurable and A(t)c A(t’) if t_-> t’, but we will not consider
this extension.

Krylov’s Markovian Selection Theorem was used by Stroock and Varadhan [19,
12.2] to show that if existence (but not uniqueness) obtains in the martingale problem
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corresponding to a differential operator of diffusion type, then it is always possible to
choose a Markov solution. It was then used by Haussmann [11] and by E1 Karoui,
Huu Nguyen, and Jeanblanc-Picqu6 [8] to show that there exist optimal controls if
the data are bounded and the control set is compact.

Let us now define a compact subset/(s, x) of RS(s, x) such that (s, x)/(s, x)
is measurable and

inf {J(s, P)" P R(s, x)} inf {J(s, V)" P /(s, x)}.
We assume

(5.2) There exists a locally bounded, upper semicontinuous function h defined on

DA such that for each (s, x) DA
(i) (s,x):={PRo(s,x)" J(s,P)<=h(s,x)},
(ii) p(" is continuous P-a.s. for all P Rr(s, x).

We can extend R and/ to /A by setting

R(s, x) R(s, x) {6x 6" .}
for (s, x) OD f’I DA.

If U is compact, then we can dispense with the continuity of p in (5.2). We simply
define/(s, x) R{(s, x) for all (s, x) [+ xRa and assume that it is nonempty. Recall
that R{(s, x) is compact if U is. In future proofs we will not mention this case unless
the proof is different from the one given.

Now assume

(5.3) (s, x, P) J(s, P) is lower semicontinuous for (s, x) Da and P R(s, x).

We discuss (5.2) and (5.3) in Remark 5.3 and Lemma 5.4.
PROPOSITION 5.2. Assume (3.5), (5.2), and (5.3). Then for (s, x) in Da the sets

R(s, x) are nonvoid, compact and the map (s, x) R(s, x) is a measurable map of DA
into comp (M(C V x Z)).

Proof By (5.2),/(s, x) . Observe that/(s, x) E(h(s, x)) of Proposition 4.6,
hence Propositions 4.5 and 4.6 imply that E(,(s,x)) is compact. Since E(h(s,x))=
ioff(h(s, x)) and io is continuous (since p is), then/(s, x) is compact.

To establish measurability we use a result of Stroock and Varadhan [19, Lemma
12.1.8], We must show that if (s,, x,)- (s, x), P, /(s,, x,), then {P,} has a limit point
in/(s, x). We will show that {P,} is tight by showing that (A2) and (A4) hold with
a ,, {(s,X,)}. But, if p > 0

P,(Z)<_-P,{llscllr> M}+P, Irl,I p dt>-M +P, ](rl, dt>-_M

(cf. the Appendix and the proof of Proposition 4.5), and the last expression goes to
zero as M oo, uniformly in n. The proof in the case p 0 is similar. The proof that
(A4) holds is identical to the one given in Proposition 4.5.

Hence there exists P in MI(C x V x Z) such that (for a subsequence) P, - P. We
will now show that it’ is in R(s, x); the proof is similar to that given in Proposition
4.6 so we only indicate where it must be modified. To establish (3.11’) set

n" {w (:, rl,)’ll(.)-xll._,/,,<=l/m, r/(t) 8 a.e.,(t)=O,O<=t<=s-1/m}.

Then B" is closed, B’+t B’, and

f3 B B := {to" to(t) (x, 6, 0), 0 < s}.
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Since (s,, x,) (s, x) and Pn satisfies (3.11’),

P(B")_-> lim sup Pn(Bm)= 1.

Since B decreases to B, P(B) 1. Moreover, if

B := {(:(t), ri(t))= (:(y), t*)" t>y},

then / = {/ LJ Do} if Do is the iscontinuity set of p. Thus if p is P-a.s. continuous,
then P(/) P(B) >_-lim sup P,(B) 1. Hence P satisfies (3.11’) ifp is P-a.s. continuous,
and (3.11) otherwise. Recall the overbar denotes closure.

The proof of (3.9’) is unchanged from that given in Proposition 4.6 with A replaced
by sup, A(s,, x). For (3.10’) again the proof is unchanged; the only awkward point
arises when s < s,. Here we observe that

6(r)- 6(.)- Lob(O, o, rio) dO 6()- 6()- Lob dO Lch dO.

The term inside braces is a P, martingale (since C :.,, P,-a.s.) and

Lob(O, o, rio) dO Lqb( O, x,, Uo) dO P,-a.s.

The last integral tends to zero as n oo. We conclude that P is in Ro(s, x).
Finally, (5.2) and (5.3) imply

J s, P) <- lim inf J s,, P,

=< lim inf A (s,, xn

,(s, x)

so that P is in R(s, x). This completes the proof. [3
Remark 5.3. Assumption (5.2)(i) holds for the cases mentioned in Remark 4.9

for any q < oo. Recall that the P-a.s. continuity of p was discussed in Remark 4.2.
The following lemma gives a sufficient condition for (5.3).
LEMMA 5.4. For each (s, x) in DA assume that
(i) to F(s, to) is 1.s.c. P-a.s. for P R(s, x),
(ii) There exist t>0 and a function X(t), integrable on [s,s+t), such that

f( t, x’, u) X( t) for s <- < s+ t, ]x x’ < t, x’ A.
Then (5.3) holds. Note that the lower semicontinuity ofF is discussed in Remark 4.3 and
Lemma 4.4.

Proof. Assume that (s,,x,P)(s,x,P) with (s,xn)DA and P(s,x). It
suffices to consider two cases" s,$s or s,$s. In the latter case (ii) implies that

Pn f( t, t, *It) dt P f( t, x, u) at

<= x(t) dt

if n is so large that s-s < and Ix.- x] < t% Hence

(5.4) lim sup Pn[F(s, to)-F(sn, to)] lim sup P f(t, ,, ri,) dt<=O.

In the case where sn’[s, (5.4) also holds since f=>0.
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But now since to F(s, to) is 1.s.c. P-a.s., we have

PF(s, to <- lim inf PnF( s, to)

<=liminfPnF(s,, to) +lim sup P[F(s, to)-F(s,, to)]

so the result follows from (5.4). [3

Let us now define the value function" for (s, x) in Da

v(s, x):= inf {J(s, P)" P R(s, x)}.

As we will assume (5.2), we have

v(s, x) inf {J(s, P) P R(s, x)},
(5.5)

R’o(S, x)= {P R(s, x)" J(s, P) v(s, x)}.

Let us define

D {(s, x) e DA v(s, x) < h(s, x)},

hence v(s, x) h(s, x) for (s, x) e DA\D’A.
Since J(x, P)= h(s, x) if the controller stops immediately, and hence v(s, x)<-

h(s, x), it follows that for (s, x) DA\D’A the controller can do no better than to stop
immediately. The next result states that there is an optimal control that stops immedi-
ately if and only if (s, x) DA\D’A, and that such controls can be gotten as a measurable
selector of R;.

If P R(s, x), then P(. r(s)) exists as a regular conditional probability distribution
(r.c.p.d.); we denote it by Pc(,) and we write

P(.)=P(.l(s)=z), z=0, 1.

Note that if P R(s, x), then Pc) Ro(S, x) P-a.s. Indeed P is a convex combination
of Po and P so (3.11’) holds for Pc) P-a.s. since it holds for P. The same is true for
(3.9’) and the feasibility condition J(s, P)< oo since only linear functionals of P are
involved. Finally, if 0 > t-> s and is an s2, measurable bounded function, then

P{’(s) z}Pz([Mo4) M,])= P{llc(.)=z}[ Mo4) -/V/b]}
=0

so that (3.10’) holds P- a.s.
LEMMA 5.5. Assume (3.5), (5.2), and (5.3). Then V’DA-N+ is measurable and

there exists a measurable selector H of R’o, i.e., H emeas (R), such that for (s, x) DA
(5.6) H(s, x){r(s) 0} llo;,(s, x).

Proof According to Stroock and Varadhan [19, Lemma 12.1.7], the mapping
K --> inf {J(s, P)" P K} is measurable for K e comp (Ml(C x V x Z)). The measur-
ability of v now follows from Proposition 5.2.

From Lemma 12.1.7 of [19], Proposition 5.2, and (5.5), it also follows that
(s,x)--> R(s,x) is measurable, hence Theorem 12.1.10 of [19] implies that there is a
measurable selector Q of R;.

Let us set

Qz(.)=Q(.l(s)=z), z=0, 1,

the r.c.p.d, of Q given st(s)= z. Then

Q Q{sr(s)= IIQ, + O{’(s)= 0}Oo.
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Observe that J(s, Q)= h(s, x) so

v(s,x)<-_h(s,x).

Moreover, if (s, x) D (so v(s, x) < h(s, x)) then

v(s, x) J(s, Q) Q{sr(s)= 1}h(s, x)+ Q{’(s)= OIJ(s, Qo)

and hence J(s, Qo)< h(s, x). Now the optimality of Q implies that Q{sr(s)= 1} =0 and
v(s, x) J(s, Qo). Conversely, if (s, x) D (so v(s, x) h(s, x)) then

h(s, x) Q{sr(s) 1}h(s, x) + Q{sr(s) O}J(s, Qo),

so either Q{sr(s) 0} 0 or J(s, Qo) h(s, x). In the latter case the controller may not
stop immediately, i.e., he continues without accumulating any further cost, but then
it is also optimal to stop immediately! Hence if we define

H(s, x) IlDA(S, x)Q(s, x) + ]]I)A\D(S, X)Ql(S X),

then H is a measurable selector of R(s, x) that satisfies (5.6)--note that the map
(s, x) Q(s, x) is measurable by Lemma A.10. The result now follows, rq

5.6. Notation. The Markovian Selection Theorem requires a certain structure that
we now present. We follow Stroock and Varadhan [19, 12.2]. Recall that {2,} is the
canonic Borel filtration on 12 C x V x Z. Since 12 is a Polish space and since each 2,
is countably generated, regular conditional probability distributions (r.p.c.d.) given 2t
exist for any P in MI(O) (cf. [19] for the definition). If P is in M(12) and r is a finite
stopping time we denote a r.c.p.d, of P given s2, by P,. It exists since 2, is countably
generated. Note that we cannot replace {2} by the usual augmented filtration {2,}
since 2, is not countably generated.

For a finite stopping time r we say that Q is a r-transition probability (or r-t.p.)
if Qo is in M(f) for each to and

(i) to Q,o(A) is 2 measurable for A in 2,
(ii) Q,o{(s, , st)" (sc(-(to)), ’(-(to)))= (sc(-(to)), ’(-(to)))} 1

for each to (:, , ’) in f.
For each to fixed with r(to)< c we define 2( to be the tr-algebra generated by

’, rl’, ’) 612 ’, *, ri’o dO B, ’, O
(,o)

for any t_-r(to), and B Borel sets in Na and MI(U), respectively. These are the
events that take place after the fixed time r(w). Given a finite stopping time , a r-t.p.
Qo and to’e iI, then according to Lemma A.11 for any to such that

(,(r(,o)), ((,o)))= (’((,o)), C’((,o)))
there exists a unique measure 6o,,/r/Q,o Ml(f) such that

(5.7)
6o,,/ ./ Qo{ ts( t) to’( t), <-_ r(to)} 1,

6,o] r/ Q,o() Qo,(), oq "(’.

Note that when we write a3(t) to’(t), tNr(to), we mean (so(t), r(t))= (’(t)), "(t) for
all t=< r(to) and /(t)= r/’(t) for almost all t-< (to). In case to’ =to we write

/r/Q Q;;

moreover, if to’ (sc(r(to)), 6, sr._>_,())) then we write

6,o,/rlQ,
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In addition, the proof of Theorem 6.1.2 of 19], shows that given P in M(f) and
a --t.p. Qo there exists a unique element P/-/Q in M(f) such that

(i) PrQ(/) P(fi,) for
(5.8)

(ii) Q is a r.c.p.d, of P/r/Q given 2.

From (5.7) it follows that on s2 (o), t Q,o Q is a r.c.p.d, of PrQ given 2. On
the other hand, if Po is a r.c.p.d, of P given s2, then Q,o := P is a --t.p. and PrQ P,
Qo Po Q, on 2 (not just on

Recall that

F(t, to) f
y(’)

f(O, (0), rl(O)) dO+ h(y(to), (y(to))).

In this definition y is the first time after at which (0, (0)) leaves D or " jumps
to 1, i.e., y(t, to) := inf{0 >_- t:(O, (0)): D or ’(0) 1}. From now on this dependence
of y on is important so we write y(t, to). If we do not wish to emphasize to we write
y(t) for y(t, to). Observe now that

y(-(w),to’)
to’ F(r(to), to’)= f(t, ’(’), rl t)) dt+ h(y(to’), (y(to’)))

is 2"( measurable so

=Q,oF(’(to),’)(5.9) QoF(’(to), QoF(r(to),

The same is true if we replace F by I T^y"r(o) [?l’]t[ p dt with T>= r(to).
If P Rt(s, x), ’ [s, y(s)] is a finite stopping time and H is as in Lemma 5.5,

then by (5.6) for (s, x) DA
(5.10) H(s,x)=ID,(s,x)H(s,x, O)+]OA\OA(s,x)H(s,x, 1)

where H(s,x, z):= Hz(s,x) is the r.c.p.d, of H(s,x) given ’(s)= z. Now set Qo
H(’(w), sc(r(to)), (’(to))). Then Qo is a r-t.p. (cf. Lemma A.10) and Q,o O,. We
write P/r/H for P/r/Q. From (5.6) and (5.10) we have

J(r, H(r, (r)))= ]DA(r, (r))J(’, H(r, (’), st(r)))

+’jA\Djt(I’ ("))J(/’ H(’, so(r), ’(r)))

J(r, H(’, ((r), ’(’))) P-a.s.

and now from (5.9)

(5.11) PJ(-, H(r, :(’))) J(-, P/r/H).

The next two results are central to the argument that follows. They fail when soft
constraints are present---for this reason we assumed that there are none. The first result
states that a feasible control remains a feasible control for problems starting at a later
time from a point reached at that time. The second result says (more or less) that if
we take a feasible control and at some later time switch to a control that is optimal
from then on, then this concatenated object is still a feasible control.

LEMMA 5.7 (closure under conditioning). If 1:’ RS(s, x) and if- [s, y(s)] is a

finite stopping time, then there exists a null set N in 2 such that Rr(r(to), :(’(to)))
for oC_ N.

Po 6,o,/r/P where w (,/,’), w ((-(to)),60Proof By definition = ’=
].=o,)}), and P is a r.c.p.d, of P given s2,, so P,o satisfies (3.11). Moreover, as in the
proof of Theorem 6.1.3 of [19], P, inherits the martingale property from P for to not
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in some S2-null set No, and as in the proof of Theorem 6.2.1 of [19], P,o inherits the
martingale property from P,. Hence (3.10) holds for/,. Next

Po [r/I p dt= (.(o)>_TTlu[ p +(()<T) ()lul +P Il dt

[Ty(r())since P dt is measurable if T> r(). But for any k>O

PP2 Inl dt P In] p dt <

so for not in an -null set N, k 1, 2,...

P; Inldt<

and hence b2 is in R(r(), (r())) if Uo N. A similar argument with
F(r(z), replacing r ]l p dt produces a null set so that P* is feasible for
N=NN.
LMA 5.8 (closure under concatenation). Assume (5.2). If P RY(s, x), if H is

as in Lemma 5.5 and if r Is, y(s)] is a finite stopping time, then

P/r/HRe(s,x).

Proo Write P for P/r/H. Bff (5.8)(i) it follows that P inherits the propey (3.11)
from P. Moreover, (3.10) for P follows from Theorem 1.2.10 of [19]. Finally, if
Q H((), (r()), C(r())), then

"fY(S) lp (0l’y(s) )P I dt=P y= [[Pdt

+ P ry(s>,Q; [nl p dt <.
dO

Indeed if z< T Ay(s) then y(s)=y(z()) and for T> z() and m suciently large

QL I,I p dt= Inl p dt+Da(r, (r))H(r, e(r), O) In dt
d 0 d 0 d r()

[nl p dt + DA(Z, (z))n(z, (z), o)
ao

TAy(s)

x fdt+[T-r()]m p

In[ dt+ mv(,(). (,())) +Tm
d0

P) + Tm p a.s.
d0

I,1 dt + mJ(s, P) + rmp

where the second inequality holds because for (r,(r))eD, H(r,(r),0)=
H(r, (r))e R(r, (r)). The third inequality follows from Lemma 5.7. Hence

0FAY(S) [ TAy(s)

P Inl dt P , ds + mJ(S. P) +Tm <.
dO
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Similarly, we can show that

J(s,/) P f(t,(t),rt(t))dt+llo\(z,(’))h(z,(,))+l,(z,(r))v(’,(r))

<= J(s, P) < c

since P
We observe that if in Lemma 5.7, P eRYo(S,X) or R{(s,x) then file

RoY(Z(w), sc(r(w))) or R{(r(w), sc(r(w))) as the case may be. Moreover, in Lemma 5.8,
P/zH e Ro(S, x) since H e RYo(S, x).

Let us now establish the dynamic programming result. For any function b set

Ft(s, qb)= f(O, so(O), rl(O) dO+ qb(t, (t)),

r,*(s, )= r,^()(s, 6).

PROPOSITION 5.9. Assume (3.5), (5.2), and (5.3). Then

(5.12) (a) If z e [s, y(s)] is a finite stopping time, then

v(s, x) inf {VF,*(s, v)" P e R(s, x)};

(b) For any P e R(s, x), F.*(s, v) is a (P, 2) submartingale;
(c) P eR’(s,x) if and only /f F.*(s,v) is a (P,2t) martingale and

(y(s), (y(s))) ! V’ P-a.s.
Proof. For any P e RY(s, x) let tx(dt, dx’) be the distribution of (z, so(r)) under P.

Note that/x has support in DA. With H as in Lemma 5.5, we have

Pv(r, :(r)) [ v(t, x’)lz(dt, dx’)
t

[ J(t, H(t, x’))z(dt, dx’)
1

PJ(-, n(z,

=J(r,P/z/H),

where we have used (5.11). The above and Lemma 5.8 imply

Pr,(s, v)= P f(o, (0), ix(o)) do+J(z, P/z/H)

(5.13) -J(s,P/z/H)
>_- inf {J(s, Q) Q e gY(s, x)}

=v(s,x).

On the other hand, by Lemma 5.7 and (5.9)

Pv(r, so(z))<= PJ(r, [) PJ(z, P2) J(r, P),

so from (5.13) and the definition of F

v(s,x)<=Pr,(s,v)

<--_ P I,( f( ( t), rl( t)) dt + J(’r, P)

=J(s,P).
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Property (5.12)(a) follows by taking inf over P RJ(s, x) in the last string ofinequalities.
To show that F.*(s, v) is a submartingale, it suffices to take < y(s) and to observe

that

P{F,*+(s, v)-F,*(s, v)l,) P{F,*+(t, V)l2t}--V(t (t))

Prt+h(t, V) V( t, (t))

since F*,+h(t,v) is a ’- measurable. Recall that t<y(s) implies that y(t)=y(s). By
Lemma 5.7, LRY(t,(t)) P-a.s. so by (5.13) with s=t and r=(t+h)^y

t ,Po,F,+h(t, v) > (t, (t)) P-a.s.

hence F* is a submartingale.
If F* is a martingale and (y, (y)) D, i.e., v(y, (y))= h(y, (y)), then

v(s, x) PF(s, V) Pr*()(s, v) J(s, P).

Thus P R’(s, x).
Conversely, if P R’(s, x) then by (a) with r y(s) ^

v(s,x)<-_er,(s,v)

<= P f(O, (0), rl(O) dO+ PJ(%

=J(s,P)

=v(s,x)

where (5.9) and Lemma 5.7 were used to obtain the second inequality. Hence F.*(s, v)
is a submartingale with constant mean, hence a martingale.

Moreover by (b) and the optimality of P

PFy(s)(s, v)>= PF.,(s, v)= v(s, x)= PFy(s)(s, h)

so that Pv(y, (y)) >- Ph(y, (y)). Since v(.,. )_<- h(.,. then v(y, (y)) h(y, (y))
P-a.s.

Remark 5.10. The above proposition allows us to eliminate S (or r) from further
consideration. Indeed if we set

D’ := {(s, x) D" v(s, x) < h(s, x)},

then D D’f-I (N+ x A). We call the reduced problem the control problem with D
replaced by D’. Let us write v’ for the corresponding value function. Assume that
P R’(s, x). Let p’ be the first exist time of (t, (t)) from D’ (we assume D’ is open;
cf. below). Then Proposition 5.9(c) implies that

v(s,x)=P f(t,(t),rl(t))dt+h(o’^A,(O’^A))

Hence if P’= P/p’/H, i.e., P’ is P except that the stopping time S is replaced by
S’= S ^ p’, then v(s, x) >= J(s, P’) ->_ v’(s, x). But any feasible control for the reduced
problem is feasible for the original, so v(s,x)= v’(s,x) and P’ is optimal for the
reduced problem, Conversely, if the law of the canonic relaxed control (X,,/x,, S’) is
optimal for the reduced problem, then that of (X,,/x,, S’ ^ p’) is optimal for the original
by Proposition 5.9(c).
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Finally, we show that if P is optimal for the reduced problem then p{A(’) < p’} O.
Assume P{A(sr) < p’} > O. Since v <-_ h with strict inequality on D’,

v’(s,x)=j(s,P)

P 11/,<o, fdt + h(A, (A)) + 11,=o, fdt + h(o (,o

> P fdt + v(A ^ O’, (A ^
_->v’(s,x)

by Proposition 5.9(a). This contradiction implies /(r)= p,() P-a.s. if P is optimal.
Consequently, we can work on

f’:= C x V

and simply delete all reference to S and " in the previous discussion. Let us write

R"(s, x) {P’ e Ml(12’)" P’(A) P(A x Z), P e R’o(S, x)}.

By the above if P’ e R"(s, x) then it is optimal for the reduced problem; furthermore if

S’(:, /):= inf{t >-s; (t, so(t)) D’}

and if P is the induced distribution of (:, /, ].=>s,)) on 12 C x V x Z, then P is an
optimal rule for the original problem. Moerover, if P’ is Markovian, i.e.,

’o(t) u,(t,(t)) P’-a.s.

for some Borel function u*" D’ U, then the above equality also holds P-a.s., and

A(’) S’(sc, r/) P’-a.s.
Since S’ is the first exit time from D’, then P is Markovian. Hence it suffices to prove
the existence of Markovian optimal controls for the reduced problem.

However the theory of this section requires the set D (in the reduced problem,
i.e., D’ in the original) to be open in order that a r.c.p.d. P exist, where r ^ y.
Since h is 1.s.c., D’ is open provided v is u.s.c. This will be the case if

(a) (s, x, P)-> J(s, P) is continuous,
(5.14)

(b) (s, x)--> Rf(s, x) is 1.s.c.

In fact in (a) we only require the mapping to be u.s.c., but now (5.3) implies that it
is continuous. Recall that a multifunction x--’, A(x) is 1.s.c. if for any aoe A(xo) and
any sequence x,--> Xo there exists a, e A(x,) such that an--> ao. Conditions such that
(5.14)(b) holds are given by E1 Karoui, Huu Nguyen, and Jeanblanc-Picqu6 [8, Thm.
5.11(b)] (note that in [8] v is a sup, not an inf). From now on we will simply assume
(5.14) in the case where D’ D. Of course if in the original problem stopping is not
allowed, i.e., y =p P-a.s. for all P, e.g., h + on D, then D’= D and we do not
require (5.14).

We now present a more general version of Proposition 5.9 in the case 12 f’ C x V
(i.e., the reduced case). Assume that D’ is open and

r" D --> comp (Ml(f’))
is a multifunction such that for all P r(s, x)

P{sC(t)=x: t<s}=l,

P{sC(t) e A’ s -< _---- p’(s)} 1
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where p’(s) is the first exit time after s of (t, :(t)) from D’. For/3>0 andf C+(D’),
the set of nonnegative functions in Cb(D’) with compact support, and for (s, x) DA,
P r(s, x), define

j(s, P)= P e-3tf(t, (t)) dt,

Then j is l.s.c, on

(s, x) inf {j(s, P): P e r(s, x)},
r’(s, x) arg min {j(s, P): P r(s, x)}.

{(s, x, P)" (s, x) e DA, P r(s, x)}
and t? 0 on OD’. As before we can define r-transition probabilities Q and measures
(; and P/r/Q. Note that if Hemeas (r) then H(r(oo),(r(o)))) is a r-t.p, and by
(5.9) for r such that s<-_r<=p’(s) we have

Pj(r, H(r, (r))) =j(r, P/r/H),

i.e., the analogue of (5.11) holds. In the case U compact we replace/3 by + d and
p’ by in the above definition of j. Let us now define

Is’’,(s, 4) e-tf(O,(O))dO+4)(t,(t)),f’*,(s,&)=[’,^o,(s, 4)).

We show now that the dynamic programming result (5.12) follows if we assume
a variant of the conclusions of Lemmas 5.7 and 5.8 (cf. (5.15)(b), (5.15)(c) below).
Then we show using this result that if r satisfies (5.15) then so does r’. Note that we
do not require the continuity of p’!

PROPOSiTiON 5.11. Assume

(a) r" D-, comp (MI(’’)) is measurable;

(5.15) (b) If r is a finite stopping time such that s <-_ r <-_ p’(s) and if P r(s, x), then
there exists a P-null set N e 2’ such thatfor

(c) if r is a finite stopping time such that s<-r<-p’(s) and if Per(s,x),
H e meas (r), then. P/r/H r(s, x).

Then (5.12) holds with v replaced by , y by p’, F by [’, F* by [’* and Rf by r.

Proof. From (5.15)(a) and Lemma 12.1.7 of[19] it follows that (s, x) (s, x) and
(s, x) r’(s, x) are measurable, hence by Theorem 12.1.10 of [19] there exists a
measurable selector H of r’ (hence of r). Now the proof goes as in Proposition 5.9
with (5.15)(c) replacing Lemma 5.8 and (5.15)(b) replacing Lemma 5.7. Of course
h=O.

COROLLARY 5.12. Assume that r satisfies (5.15). Then r’ satisfies (5.15).
Proof. Since r(s, x) , compact and j is 1.s.c., then r’(s, x) f, compact. The

measurability of r’ was established in the proof of Proposition 5.11. Hence r’ satisfies
(5.15)(a).

Take P r’o(S, x) and tr a finite stopping time, r _<-or. Then (5.15)(b) and (5.12)(a)
imply that for to N

(5 16) (r(to) :(r(to))) -<

Since P.*(s, v) is a martingale (cf. (5.12)(c)), then

Pr((), )= Pr(s, v)

m(s,
P(r, (r)).
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This equality implies equality in (5.16) and hence PoF. (z(w), v) is constant.
Assumptions (5.15)(b) and (5.12)(b) now imply that ’.*(z(w), ) is a PS,-martingale,
hence by (5 12)(c), P,, r’o(Z(w), :(z(w)))), i.e., (5.15)(b) holds for r’.

Finally, with Pc r(s,x), s<=z<-_p’(s) and Hmeas (r’), (5.12)(c) implies

=(P/r/H)F(s,

PJ(r, H(’, (’)))

=J(s,P/r/H).

Hence P
Next we show that R" (or R, i.e., R’ for the reduced problem) satisfies (5.15).
PROPOSITION 5.13. Assume (3.5), (5.2), and (5.3). Then R" satisfies (5.15).
Proof Since R(s, x) and is compact, by (5.3) and (5.5) R’o(S, x) is nonempty

and compact. The measurability of R is established in the proof of Lemma 5.5. But
R"(s, x) 7r(R(s, x)) where rP(A):= P(A Z) so 7r is continuous and hence R"
satisfies (5.15)(a).

We can also show that R satisfies (5.15)(b) and (5.15)(c). The proof is the same
as that of Corollary 5.12 (for r’) but using Lemma 5.7 in place of (5.15)(b) (for Ro).

+p,Now for P’ R"(s, x) set r P where

dP( :, r/, ’) := 6,()(d) dP’(, rl

and 6,e) is the Dirac measure at .-->o’() := "(" ). From our earlier discussion it follows
that

+r R"(s, x)- R(s, x),

+p, p,.

For P R"(s, x), let Q 7r+P. By (5.15)(b) for R, for 0=< r=< p’ there exists a Q-null
set N e 2, such that for w t N

Since z-<_ p’= A(’) Q-a.s. then

and it follows that if

0; e R(’(w), :(’(w))).

P,,)(A) := Q(,n,,)(A x Z),

then Po, 7rQ,,,)is a r.c.p.d, of P given 2’. Hence for (:, rt, ") N

Pea,n) e R r(:), :(’(:))).

Moreover, (:, r/, ")e N implies that for some P’-null set N’ e 2’,

fN 6,(dsr) 0 if w’ N’,

i.e., (w’, ") N if w’ N’. Now (5.15)(b) for R" follows.
Finally, consider (5.15)(c). If H e meas (R"), then 7r+H e meas (R) since

r+H(s,x)(a)=H(s,x)({(, V): (:, r, "(:)) e a}).
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Now for Q 7r+P, h 7r+H and s <= <= p’ we have

Q/-/ h R’o(S, x)

by (5.15)(c) for R, and hence

rr+P// 7r+H R’o(S, x)
so the result follows on application of 7r to this last statement.

We note that for the case U compact we omit p’, i.e., we set p’= +, in the above
and replace Ro by Re.

Continuing to consider the problem with 12 C x V (i.e., the control runs until
time p) we now obtain the following proposition.

PROPOSITION 5.14. Assume (3.5), (5.2), (5.3), and (5.14). There exists a family of
rules P*x such that (s, x) P*x is measurable, P*, is in R"(s, x), and {Px %,} is a strong
Markov process on Oa’ where P] %, is the marginal on C restricted to

Proof This is almost identical to that of Theorem 12.2.3 of [19]. The idea is to
define a sequence of minimization problems: take {fin} dense in (0, c), {f,,} dense in
C+(D’), and relabel { (fin, f, }n,m { (/3,, fi)}=1. Define inductively

Rl+l(S, X) arg min P e-,’f(t, s(t)) dt

with R(s, x) R"(s, x). Then Rt(s, x) is a decreasing sequence and for each l, Rt(s, x)
is compact, nonvoid, and Rl satisfies (5.15). The proof is by induction; the case 1
is given by Proposition 5.13 and the induction step by Corollary 5.12.

If we set

R(s, x) f-I Rt(s, x) c R"(s, x),

then R(s,x) is nonvoid, compact, and R satisfies (5.15). Moreover, all elements
R(s, x) have the same marginals on p,. Indeed if Psi, and Qs are in R(s, x), then
for any n, m

Psx e-t,,tf,,,( t, ( t)) dt

Qsx e-o%(,( d

=min /5 e-,,’f(t,(t)) dr" 15eR(s,x)

(if (n, m) correspond to 1+ 1). Since (ft,} is dense in (0, c) and since the Laplace
transform is unique, then

P,{[],<,’) + ],<-_p’)]fm( t, CS( t))} Qx{[1],<o, + ]]t<=o,)]f,( t, ,( t))}.
If we set

P’sx P/P’/ 8(,’) x 8"),

0’ O/p’/(a,,, x a*),
then

Pf(t, (t)) PsxP’,{f,(t, :(t)) go,}
[Px{[’t<p,} +’fl{t<__p,}]f,.( t, :(t))}
+ Px{[1],>=.,l + ]t>o’l]f,,,(P’, :(p’))}]/2

=Q’f.(t,(t))
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by the above since f., 0 on OD’. It follows that

P’f( t, ( t)) O’f( t, ( t))

for all bounded, measurable f, all (s, x) e D so that (5.15)(b) allows us to extend this
equality to finite products of such functions. Hence the finite-dimensional distributions
of (sc, P’) and (s, Q’) are equal and thus P Q on %, x {;, V}.

Finally, if P* is in meas (R(s, x)) then (5.15)(b) and the uniqu.eness of the
marginals on v, imply that for any stopping time ’, s <- z < p’(s), and A measurable
with respect to {so(0) z(to)=< O<=p’(s)}

(P*)() Po,o() P-a.s.
Since this is the strong Markov property we are done. V1

Note that for the case U compact, we take fm C(/ x d). The conclusion of
the proposition is the same if we replace p’ by +c.

The final step is to construct a feedback control u* that generates P*. El Karoui,
Huu Nguyen, and Jeanblanc-Picqu6 [8] appeal to a general theory of Markov processes
to do this, but we prefer a more straightforward approach. From (3.10) it follows that
for t>s=

b(t, (t), r/(t))=lim o-P*{(t+o)-(t)ltz,} a.e.,
o$o

=lim O-P(,((t+O)-(t)) P* dt-a.s.,
o$o

a(t, (t), r/(t))=lim O-P(,{((t+O)-(t))((t+O)-(t))’} Px dt-a.s.
o$o

Hence if we define on D the Borel measurable functions

b*(t, y) limn_. nP (’(’ +-ln)-Y)’
(5.17)

a*(t,y)=!irnnP{(,(t+) y)(,(t+) )’}y

where the functions are defined arbitrarily off their convergence sets, then for t-> s

(a*(t, (t)), b*(t, (t)))=(a(t, (t), 7(t)), b(t, (t), r/(t))) PX dt-a.s.

and a*, b* are independent of the initial condition (s, x)D since/(t, y) is defined
without reference to (s, x).

Similarly, since F(v) is a Po*x martingale then

f(t, so(t), r/(t)) lim O-PX{v((t + 0), (t + O))-v(t, :(t))}
o$o

(5.18) lim O-P(,{v(( + 0), ( + 0))- v( t, ( t))}
o$o

if we define

=f*(t, (t)) P* dt-a.s.

f*(t, y)= n-lim nP{v(t+ 1,n sc(t +-ln))-v(t,y)}.
THEOREM 5.15. Assume (3.4), (3.5), (5.2), (5.3), and (5.14). Then there exists an

optimal control in Markov form.
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Note that if the controller cannot stop the process, then (5.14) is not required (cf.
Remark 5.10).

Proof. Let us abbreviate (a*, b*,f*)= c*. From the above it follows that c* is
Borel measurable and if we set

N := {( t, X)" c*(t, X) K t, X)}

then N is a Borel set. Now by modifying c* on N we obtain a Borel function 6 such
that 6(t, X) K (t, X) for all (t, 2’) D. Define

No:= {(t, to) t>-O,(t,(t))N}.

Then for any (s,x), No has P*xdt measure zero and for (t, to)No, 6(t,(t))=
c*(t, (t)) (cf. (5.17), (5.18)). From Theorem A.9 applied to with y (t, X) it follows
that there exists a Borel function u* such that for (s, x) D), and b C2b(d)

Lb(t, (t), rl(t))= Lqb(t, (t), u*(t, :(t))) P*x dt-a.e.,
(5.19)

f(t, (t), q(t))>-f(t, (t), u*(t, :(t))) P*x dt-a.e.

on No. Since Px is an optimal rule it follows that u* is an optimal control process
that is feedback or Markovian. Recall that S p’ (cf. Remark 5.10).

Remark 5.16. The following may illuminate the above construction. We write L
for the generator when we use c, L*, when we use c*, L-, when we use 6, and L(u*),
when we use

c(t,X, u*)=(a(t,X, u*), b(t,X, u*),f(t,X, u*)).

Then L* is constructed without reference to (s, x) as are N and No, and hence 6 and
u*, i.e., the same control u* can be used for all initial conditions (s, x). Moreover,

L(u*) L always

L* except on No
L by (5.17), (5.18).

Since No is a Ps* dt null set, then (5.19) holds for any P, in R(s, x) (cf. the
proof of Proposition 5.14 for R(s, x)). Hence u* is optimal for any initial condition
(s, x) in D. Moreover it is also optimal for an initial distribution. Indeed if/x(.) is
the probability that Xo is in with {0} x , c Dk, then

J(O, P)= f J(O, Px)tx(dx)

where pO is a r.c.p.d, of P given Xo x. If Rf are the feasible rules with (3.11) replaced
by P{s(0) }-/x(), then it follows from (5.6) that

inf{J(0, P)" P RY}=inf{I J(0, Q(x))txdx" Q meas (/(0,.))}
I v(O, x)(dx)

gives the optimal value v(0, x) for all x, then it will minimize J(0, it’)and since u
over Rr
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Finally, we add that if (3.4) fails, then c*(t, y) lies in c(t, y, M(U)) almost surely
so that we can select a relaxed Markov control/z*(t, y) such that off Ns

e*(t) (t, *(t)) P* dt-a.e.

Remark 5.17. In the deterministic case, i.e., a 0 Theorem 5.15 says that there
exists a Borel measurable function u*(t, x) such that the marginal on C of the optimal
rule Po*, has support f (call it E*.) contained in the set of solutions of

dX
(5.20) d--- t) b( t, X( t), u*( t, X( t))) a.e., X(0) x.

No claim is made about uniqueness of such solutions, but Z* is nonempty and all
elements in Z* give rise to the same (minimal) cost. There may of course be solutions
of (5.20) that give a larger cost (and do not lie in *). Hence the conclusion of Theorem
5.15 in the deterministic case is that there exists an optimal pair (X*(.), u*( .,. )).

Example 5.18. Consider the linear regulator, i.e.,

b( t, x, u) a( t)x + B( t)u, a( t, x, u) o( t)o( t)’,

f( t, x, u) x’M( t)x + u’N( t)u, h( t, x) x’Ex,

and D=(0, T)xNa, u=Nm. Then p=T. Assume that A, B, M, N are bounded,
measurable, M(t) _-> 0, N(t) ->_ a/, c > 0, E ->_ 0. Then (3.4) holds as does (3.5) with
p<2. Note 3’=1, /3 ,=0, so /=p.. It is readily seen that (x, to)F(s,x,u), i.e.,
P Jo(s, P) is continuous. Since u=0 is feasible then by Theorem 4.7 an optimal
control exists. Furthermore, (5.2) is also satisfied with ,(s, x)= K(1 +Ix[2) since u =0
is in aft(s, x). Moreover, (5.3) holds according to Lemma 5.4 with u=0. Hence there
exists an optimal control in Markov form--this is the well-known control u*(t, x)=
K(t)x that can be found by dynamic programming.

However if we now take a(t, x, u)= tr(t, x, u)o-(t, x, u)’ with

Io’(t, x, u) <_-- k(1 + Ixl q / lulq), q < 1,

and tr Lipschitz in x, then again an optimal Markovian control exists if the convexity
hypothesis (3.4) holds. Now/3 , 2q < 2. The case

o-(t,x, u)=Cx+Du+E,

which is not covered by this result because 3,/3 2 > p, is treated by Wonham [20].
It is worth pointing out that if p T and if there exists a constant control process

u giving rise to a process X(t) such that (X, u) satisfies the hard constraints (if any),
and such that h( t, x) +f( t, x, u) <= k( l + lx] q) for some q<, then (5.2) holds with
A(s, x)= K(1 /lxl) as does (5.3) (cf. Lemma 5.4).

Appendix. We will prove some technical lemmas. Let (f, 0%, P, {0%,}) be an arbitrary
probability space with filtration and let (f, 0%, P, {0%,}) denote its usual augmentation
so that it is complete with complete, right-continuous filtration, and P is the extension
of Pto 0%.

LEMMA A.1. Let R be a measurable, adapted process on (f, 0%, P, {0%t}) such that
for all T < c

P IR,Idt<.

Then there exists a predictable process S on (f, 0%, P, { 0%t}) such that R S except on a

t, to) set of measure zero.
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Proof Let R be a progressively measurable modification of R--it exists since
(S, t) satisfy the usual hypotheses. Hence for each

and so for all T < 0o

Io PlR, dt

by Fubini’s Theorem. It follows that there exists a progressive process/ indistinguish-
able from/ (i.e.,/5{sup,o [/, -/,1 0} 1) such that for all to and all T < c

Define

R’, lim sup h -1 o dO.
h$O t-h

But ,-h o dO is continuous and adapted, hence pre.dictable, hence so is R’,. Since
/.(to) is locally integrable for each to, then R’t(to)= Rt(to) for not in some null set
N depending on to, i.e., at all that are points of approximate continuity of R.(to).
Thus R’ is a predictable process on (II, if, P, {,}) such that R and R’ differ only on
a (t, to) null set. According to a result of Dellacherie and Meyer [6, Lemma 7, Appendix
1], there exists a process S, indistinguishable from R’, which is predictable on
(12, , P, {St}). This is the required process.

We point out that if R is a.s. continuous, measurable and adapted, then R’= R,
and so R and S are indistinguishable hence $ is continuous almost surely. Thus if R
is a Brownian motion on (fl, , P, {S,}), then S is one on (fl, , P, {,}).

The following results are established by Jacod and M6min [13, Prop. 2.11, Thm.
2.16, Cor. 2.18], and will be used below. We define dQ r/t(du) dt and dQ, r/(du) dt.

LZMMA A.2. Assume Q,--> Q in the stable topology.
(i) If A c [0, T] U is measurable and each t.section of A is closed, then

lim supn_. Q,(A) =< Q(A).
(ii) Ifqb is a bounded measurablefunction defined on [0, T] Usuch thatfor almost

all the discontinuity set of qb( t, has r/t measure zero, then limn b dQ, b dQ.
(iii) If n is a sequence of uniformly bounded measurable functions defined on

[0, T]x Usuchthatlimn Qn{(t, u)" ]@.(t, u)[> y}=Oforally>O, then lim, @,dQ,=O.
The next result is used in 4.
LEMMA A.3. Assume that (n, r/,)..> (, r/) in C V and that qb is a bounded,

measurable g.valuedfunction defined on [0, T] xd X Usuch that ( t, .,. is 1.s.c. Then

(i) lim for [(t, ’, r/’)-(t, set, r/t)]- dt=O

where for any function dp, dp(y)-:= -[b(y) ^ 0].
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(ii) If (t, .,’ is uniformly continuous on Ra x {lu[ < m} and if ,,({lul- m}) 0

for almost all [0, T], then

lim (t, s7, u)q’/(du) dr= (t, t, u)qt(du) dr.
’- ul<m ul<m

Proof. Set 6(t, x, u) (t, x, u) (t, :,, u) and for , > 0

A" {(t, U) [0, T]x U: inf (t,y, u) =<-7}.
ly-,ll/m

The 1.s.c. of ,(t, .,. implies that each t-section of A is closed. Moreover Am+l c A
and f3,, A" since b(t,., u) is 1.s.c. Now by Lemma A.2(i) we have

lim lim sup Q(A’) -<_lim Q(A") =0.

Define

B. {(t, u): @(t, sc, u)-> y}

{(t, u): (t, 7, u)<-y}.

Then B, c A for n sufficiently large since :n s Hence

lim sup Qn (Bn) 0.

Now Lemma A.2(iii) implies

I0li @(t, , r/)- d/= li p(t, , u)- dQ =0
u

and (i) is established.
Since @(t, :7, U)]lul<m40 uniformly in u for each in case (ii), then by the

bounded convergence theorem

lim (t, ’, u)rl’(du) dt=O
ul<m

and hence

Now the result follows from Lemma A.2(ii). This completes the proof.
Let us next establish the tightness criterion for a set of probability measures on

C x Vx Z used in Proposition 4.5. The result is analogous to one given by Stroock
and Varadhan [19, 1.4], and our proof borrows heavily from theirs.

Writing 12 C x V x Z, we let E be a subset of M(f). For/x in M(U) recall the
notation

f(t, 7, u)*l’(du) at= lim (t, ,, u) dQn.

Let us set

A( T, 6, a ( ( C. O<s=tTSUp

A(T, a, a) A(T, 6, a)x VxZ.

I/zl p-- f Il’(du).
U
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LEMMA A.4. E is tight iffor some p > 0 and all T < o, a > 0

(Io(A1) M--)cx)lim limo pEinf P ( T, 6, a) (11 < M) IV, dt < M 1,

or (ifp=O)

(AI’) lim lim inf P (T, , (1111) r ,({lul> M}) dtN 1 1.
Mo 60 PE 0

Proof Fix y > 0 and let a 1/n, T n. Choose M., . such that

inf P n,, (INM) I,1dM >-2-,
P

which is possible by (A1) if p > 0. Let

A=A(n, 6,) {][,]. M.},

B . I,1 de M

K=AxBxZ, K= K,

A= A, B= B.
n=l n=l

Then P(K)> 1- for all P in E. Moreover, by Ascoli’s Theorem, A is precompact
(i.e., its closure is compact). Recall also that Z is compact.

Since K c A x B x Z it remains only to show that B, a subset of V, is precom-
pact. But for < we may set

(.= 0(. 0

and now for / in By

({u6U:[uI>N})N-e| [u] pdl
du

g- Ilo(d) dO
u

N-p In01 p dO

N-PM.
if n t. Hence {’ By} is tight and consequently B, is precompact according to
the characterization of this property given in 3.

Ifp 0, we replace ,P by MT,({u > M}) in the proof. Only minor modifications
are required in the last step.

Let A be a bounded subset of D and suppose

E R(s, x).
(s,x)eA
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We will massage (A1) into a more useful form for such E. Let q’R+ x V- R+ be some
progressively measurable function such that for any y > 0 there exists a finite constant

kv for which

for all r/ V, => 0. For such q and for fixed a, T, M define

Io’cry(w) inf t_-> 0" max I:1, Irol dO, qo dO >-_ M

’, ,^, o(,O) =0,

where - + if
_
+ or if I- ,1</4 for all _.> Note that (m) is

strictly increasing to + with n, and if r() < then (m) N (). Now define

N(m) =min {n" r+(m) > r }=min{n" +(m) > T}

() =min {(m)-’-l(m)" 1N n N N()},

In case of (Al’) we take q,=0 and k= 1, and we replace I;Inol  0 by
Mt o o({lul > M}) dO in the definition of and what follows.

LMMA A.5. is tight iffor all T <, > 0 and some q(. as above

(A2) lim sup P{} 0

and for any M < oo

(A3) lim sup P{6,o(a)-< 6) 0.
,5,1,0 Pc E

Proofi For w in EM, , t for _--< T. As is readily seen (cf. 19, Lemma 1.4.1]),
for to inEM

sup

t--r<,5(a)

hence (A1) is implied by

or by

sup
O<__r<=t<= T

r

lq,lP dt <= M,

lim lim inf P{(6,o(a)> 6)ZM} 1
M ,550 P E

lim lim sup P{(8o(a)_-<8)f"lEM}+ lim sup P(E)=O.
M-co ,5,1,0 Pc E M->oo Pc E

The result follows. [3

We now make a hypothesis on E, which implies (A3).

(A4) For any M<ee and any b in C2b(Rd) such that b(x)->0, there exists a
constant A+ >-0, which may also depend on M, such that

th(?) + A+ (1 /lnol dO
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is a nonnegative (P, &) submartingale for every P E. Moreover, if q is a translate
of , then we may take A+ A,.

LEMMA A.6. Assume (A4). Then there exists a constant K depending on M such
that for any n, % 6, P E

P{r+,- 6[&,} g[6(1 + kr)+
P almost surely on { r, < }.

Proo Choose in C(d) such that (0) 1, (x)= 0 for lxl a/4,O @(x) 1.
Let Q, be a r.c.p.d, of P given R, and define (n.b. w’= (’, V’, ’))

(x-.) if r,(’) <,’(x)
1 otherwise.

It follows from (A4) (cf. [19, p. 37]) that there exists a P-null set F . such that for
to’ not in F (and writing tr for trM)

6o,(:,) + A+ (1 +1olp) dO

is a nonnegative (Q,o,, ,) submartingale for => rn(to’). Hence for to’ not in F

Qo,, 6’( M Ip,/,^.o’/) + A6 (1 + Io dO

(,o’1^1

_<-- l+A6 (1 +1ol p) dO

or indeed

:,,/,^,,,o,)+))} <= A6 8 / Qo, ITIO] p dO

Butifz,(w’)<thenr,+r,+onlyifr,+andl ’ M(.+, (r.(’) + )) 1,
so that the left side of (A5) is greater than Q,{r,+-r, 8}. Moreover, under the
integral on the right 0 , hence the integral is bounded by $k + TM. The result
follows with

LZMMA A7. Assume (A4). en (A3) holds.
Prooy

k

--5_ Z P{r,-r,-,<=8}+P{N>k}
i=l

kK[t(1 + kv)+ TM]+ P{N> k}

by Lemma A.6. Since we can take ,$0 we need only show that

(A6) lim sup P{N> k} = 0.
k-m PE

But by Lemma A.6

P{ e-(’+’-’} ,} <= P{ r,+ ri <= r ,} + e-rp{ ’,+ r, >

<=e +(1-e-)P{r,+-ri<=r],}
<=e-’+(1-e-r)[r(l+k,)+TM] Pa.s.

:=A<I
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for suitable y and r > 0. Now Lemma 1.4.5 of [19] implies that

P{N>- k} eTt k,
which guarantees (A6). [3

Combining Lemmas A.4 and A.6 gives Theorem A.8.
THEOREM A.8. Let E be a subset of (,,x)A R(s, x) that satisfies (A2) and (A4).

Then E is tight.
We turn now to proving a measurable selection theorem that was used in Theorems

3.6 and 5.15. U remains as before a closed subset of a Euclidean space. Let (Y, , P)
be a measure space (R+ f with the progressively measurable o’-algebra in Theorem
3.6 and DA with the Borel o’-algebra in Theorem 5.15) and for some natural numbers
k, m let

C y_Rk, C2" Y’->R, qb" Yx U-k, d/" Yx U-’+
be given measurable functions with u 4,(Y, u) continuous and u--> tPi(y, u) 1.s.c. for
each y and each in {1, 2,..., m). Define

K(y)={(c(y, u), Z)kX"" Zi>-->_Oi(y U), U6 U}.

THEOREM A.9. If cl(y), c2(y)) lies in K (y) for each y, then there exists a measurable
function u" Y--> U such that

c’(y)= q(y, u(y)),

c(y) >- c,(y, u(y)),

Proof Define

i--1,. .,m.

A(y) {u U: c’(y) c(y, u), c2(y) >= (y, u)}
where a => b means a >- bi for all if a, b R’. We must show that A has a measurable
selector. Let UN {u U" lul -< N} and let

AN(y) {u UN cl(y)= b(y, u), c2(y) >= (y, u)}.

Then UN is compact, and for each y, AN(y) increases to A(y). Moreover, the hypothesis
of the theorem implies that A(y)# f so if

BN {y" AN(y) # .}, N 1, 2,’’’,

then the BN are measurable sets increasing to Y.
Suppose AN restricted to BN has a measurable selector uu, N 1. With Bo ,

define

u(y)= E uu(Y)]nN\tN-,(Y)"
N=I

Then u is a measurable selector of A(. and hence without loss of generality we may
take U compact.

We apply a result of Dynkin and Yushkevich [21, pp. 57-58], according to which
A admits a measurable selection if

(a) A(y) is nonempty and compact for each y,
(b) there exists a sequence of open sets

Ql(y) = Q2(y) =...= A(y)

such that

(i) For any n, z the set {y: z Q"(y)} is measurable,
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(ii) Every sequence {z"} with z" Q"(y), has a limit point in A(y).
As noted above A(y) is a nonempty subset of the compact set U so (a) holds if A(y)
is closed. But if z,- Zo with z, in A(y), then by continuity of b and 1.s.c. of qi

4(Y, Zo) lim 4(Y, z,) el(y),

qi(y, Zo) --< lim inf d/(y, z,) <- c2(y), 1, 2,.., m,

so that Zo A(y), i.e., (a) holds.
Since q is measurable and 1.s.c. in u, there exist R+-valued, measurable functions

q’, continuous in U, such that q’ increases to Oi pointwise (of. [21, p. 51]). Define

Q"(y) {u U: Icl(y) b(y, u)[ < 1/n, c(y) > d/’(y, u) 1/n, 1,..., m}.

This gives a decreasing sequence of open sets containing A(y). Moreover, the measura-
bility of

{y: z Q"(y)}

follows from that of c 1, 2, b, and 0". Finally, if z" Q"(y) then by compactness of
U there exists a subsequence (again denoted by {z"}) converging to z in U. We want
to show that z A(y). From the continuity of b and 7 it follows that

1[el(y) b(y, z)l lim It’(y) (y, z")l <- lim 0,
/’/

But q increases with m so for n > m

--<-O(y,z")--<(y)

and hence O’f (y, z) <- c(y). Finally,

i(y, z) lim 7’(Y, z) <-_ c(y)

and hence z A(y), i.e., (b) holds. The result follows. [3

LEMMA A.10. Assume that Q’D M1(1) is measurable and let Q’(s,x) be a
r.c.p.d, of Q(s, x) given (s) 1. Then Q’ is measurable.

Proof Let K be any closed set in 12. It suffices to show that (s, x) Q’(s, x)(K)
is measurable (cf. [2]) Appendix III. Let {Trk} be a sequence of partitions of / such
that diam (7rk)- 0 and 7r

k+ is a refinement of zr k. If zrk= {s}, then

Q(s, x)(K f3 {st(s) 1} Q(s, x)(K {A(’) _-< s})

lim Y ]s__<s[ Q(s, x)(K fq {sk, <--_ A(’)})
k

and hence

Q(s, x)(K f] k{s.+_-< a(’)})]

(s, x) Q(s, x)(K {st(s) 1}) Q(s, x)({’(s) 1})Q’(s, x)(K)

is measurable since Q is. Moreover, (s,x) Q(s,x)({(s)= 1}) is also measurable,
hence so is Q’(s, x) (K).
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LEMMA A.11. Let s >-_ 0 and suppose that P is a probability measure on (f, 2s). if
to 12 and

P{to" (:(s), st(s))= (:’(s), sr’(s))} 1,

then there exists a unique probability measure ,,/s/P on (fl, 2) such that

(o,/s/P){to" to(t)= to’(t), t<=s} 1,

(,,/s/P)(A)=P(A) ifAe2 s.
Proof. The proof goes much like that of Lemma 6.1.1 of [19] so we only sketch

it. If I is a subinterval of [0, oo), write V(I) for the measurable functions I --> M(U)
with topology induced by iv where

i/(r/)(.) f r/(0) doe C(R+; MI(U))
In[O,-]

(cf. 3.10). Similarly, write Z(I) for the set of right-continuous nondecreasing func-
tions: I--> {0, 1} with topology induced by A where

AI(’) inf{t I" ’(t)

(cf. 3.11). Now define

f C([s, oo); d) X its,o V([S, oO)) X Z([S, o0)):=

by

@(to)(t)= :(t), r/(0) dO, (t) t>=s,

and define

Yo C([O, s]; d) X /to, s] V([O, s]) x Z([O, s]),

X= Yox Y,
X {(Cl, 02, cg3, ill, f12, f13) X" Cgl(S ill(S), cg3(s fl3(s)},

xI)’(Ol, 02, 03, ill, f12, fl3)(t) {(al(t), ce2(t), tx3(t)), t<=s,
(ill(t), a2(s) + fiE(t), fl3(t)), => S.

The proof is now identical to that of Lemma 6.1.1 of [19], i.e., if o, is the point
mass on Yo at o3 where t3(t)=’(t), 0 <- t<-_s, if/3 t’, x P o-1 on ," then/3(X) 1
and/5 I.t -1 is the desired measure 8o,/s P. [3

Let us finally consider the continuity of p following an idea of Lions and Menaldi
[22]. We assume that OD # (otherwise p +oo), and we define

DN {(t, X) D: I(t, x)l < S}.

We say that D has the local uniform exterior sphere property if

tN, t OD fq DN there exist ru, :’ D

such that

{Y" [Y ’1 <- rN } V {}.

Hence DN has the uniform exterior sphere property for every N>0. Note that
(:) := (:’-)/rN defines a unit outward normal at sc.
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Let a (f, , P, {if,}, {X,}, {txt}, S) be a relaxed control. Since we are only inter-
ested in the continuity of p on {p S} we assume p <= S. For notational convenience
we will consider the autonomous case (this can always be arranged since cr may be

u for that from/3u fornonsingular). Let ’x stand for the first exit time from D and
the process X defined below with X(0)= x. Note that D denotes the closure of D.

TI-IZOREM A.12. Assume
(i) D has the local uniform exterior sphere property.
(ii) For all N, there exists u(x)" Du MI( U) such that

dX, (X,, g(x,)) at + (X,, (X,)) dw,, Xo= x

has, for each x if)n, a Markov solution on 0 <-_ t<-r. Write u(x) for b(x, u(x))
and similarly for 6u (x).

(iii) flu and b-N are uniformly continuous in a neighbourhood of OOu OOD (each
N) and are bounded on

(iv) OD Fo 1.3 F, 1.3 F2 where

e{XseFo}=O

and for all N there exists

and for all x F2 (3 Du

tr aN(X)--2rSa(X)" bs(X) <=

(x) a(x)(x) >- .
Then p is continuous.

Proof. We will first show that if (0) F1U F2, I(0)l--< N, then leaves u
immediately. For (F D F) D, x D define a function

W(x, ) := exp (-kr)-exp (-klx- ’l2)
with k > 0 to be chosen later and ’, r defined by the external sphere property. This
property implies W(x, ) 0 with equality if and only if x . Then x W(x, ) is in
C() and 1 W(x, ). Write

w(., )11 sup {W(x, )+lWx(x, )l+l wx(x, )1}.
N

Moreover, given e > 0 there exists a’> 0 such that if Ix e then W(x, y) a’.
We now claim that given N we can choose k<, a">O, e>O, such that

W(x, ) -a" if Ix- [ < e where is the generator of . Observe first that

W(x, )=ke-klx-e’?[tr dN(x)+Z(x--’)" N(X)--2k(x--’)" N(X)(X-- ’)].

If F then

W(x, ) k e-kl-e’l:[tr dN(X) + 2(X ’)" U(X)]

ke-kl-’l[tr aN(#)+2(-- ’) 6N()+O(1)]
k e-x-e’[-a + o(1)]

ke-k-q(_aN/2
1 k(rN+e)z-- ke-2aN

for e sufficiently small.
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If s e 1"2 then

W(x, )<=ke-klx-e’12[-2k(-’). as(sC)(s- so’) +2ko(1) +
<= k e-klx-e’12[-kr2Nas + Ks]
<= k e-klx-e’12(--ON/2)

if e is sufficiently small and k sufficiently large. The result follows.
We can now conclude that with k chosen as in the claim, there exists c > 0 such

that

For Ix- :[ < e this follows from the claim, and for Ix- :1->_ e, a’ given by this e (cf.
above)

 w(x, cW(x, <- o<11 w<,,

if c is sufficiently large.
Now consider X with X(O)= :. Then

d( W(.(t), :) e-’) [W(K(t), :) cW(.(t), :)] e-’ dt + O(1) dw,,

d

dt
EW(.(t), :) e-"<=-a"

so that

0----< EW(2(’s), ) e-C’N<=--o"(1-Ee-’’)/c,
i.e., E e-CN >= 1 and hence rs 0 almost surely.

Let us finally consider the process {X,} corresponding to the relaxed control a.
Fix N and let ps denote the first exit time of X from Ds. On the set {p ps < o0}
we have Xp F1U F2 c 0D and we can consider the process X with X(0) Xp. Define

IXt, <--_ p,
Xt ’.if[t-o, > o

NIf 4s is the first exit time of 2 from/s and rx(o that of J, then on {0 =0
~N N N Nr =P +rx()=P a.s.

N

where the last equality follows from our previous labours. Since ?s is u.s.c, and pN
is 1.s.c. then p is almost surely continuous on {p pN < 0}. But {pN._p < O}{p < 0}
since for w {p < o} if N> IX(p)l then pS= P. Hence p is almost surely continuous
on {p < oo} and we are done. [3
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GRADED APPROXIMATIONS AND CONTROLLABILITY
ALONG A TRAJECTORY*

ROSA MARIA BIANCHINI AND GIANNA STEFANI

Abstract. Graded approximations of an affine control system are defined and their properties are
investigated. In particular, it is proved that the local controllability along a reference trajectory of an

approximating system implies the local controllability along the corresponding reference trajectory of the
original system.

Using graded approximations, sufficient conditions of local controllability along a reference trajectory
that generalize some known results are given.

Key words, affine control systems, graded structure, graded approximations, local controllability
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Introduction. In this paper we give sufficient conditions for a reference trajectory
t-- (t) of a control system to be in the interior of the reachable set at each time t. If
this is the case, we say that the control system is locally controllable along . This
property is related to optimal control problems by the fact that an optimal trajectory
usually belongs to the boundary of the reachable sets. Therefore necessary conditions
for to be optimal can be derived from sufficient conditions of local controllability.
Moreover, the study from a variational point ofview ofthe local controllability property
may provide tools for obtaining high-order variations and hence high-order maximum
principles. In this context it seems more interesting to also consider the cases in which
the reachable sets have empty interiors, but it makes sense to define a "relative interior."

If (t) belongs to this relative interior at each time, we say that the control system
is weakly locally controllable along . Note that this weaker property allows us to
reduce the study of local controllability along a trajectory relative to a C control
map to the study of local controllability of a new system along a trajectory relative to
a constant control. In fact, this can be done adding one dimension to the state space,
but the reachable sets of this new system always have empty interiors. In a forthcoming
paper, the authors will show how the results on weak local controllability can be used
to obtain high-order variations for a suitable high-order maximum principle. Some of
these results have been announced at the 8th International Symposium on the Mathe-
matics of Networks and Systems, held in Phoenix in June 1987 [23].

If is stationary, i.e., :(t) :o, the property under consideration reduces to small
time local controllability at :o. This last property is related to the minimum time
problem and to the global controllability property. We will study the local controllability
property in the framework of the geometric theory in line with the philosophy that the
local geometric properties of a control system must be described by the "relations at
the initial point" between the vector fields belonging to the Lie algebra associated to
the system itself. This point of view has provided several important results on
this topic (see, for example, [24], [18], [6], etc. for the stationary case, and [1], [10],
[11], [28], etc. for the general case). Most of the results point out some elements of
the Lie algebra associated with the system as "possible obstructions" and give condi-
tions to neutralize them. Nevertheless in our opinion the local controllability property
is not yet completely understood.

* Received by the editors November 16, 1988; accepted for publication (in revised form) June 29, 1989.
t Istituto di Matematica U. Dini, Viale Morgagni 67/a, 50134 Firenze, Italy.
Dipartimento di Matematica e Applicazioni, Via Mezzocannone 8, 80134 Napoli, Italy.
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To get a deeper analysis of the property, we consider a class of very simple systems
for which it is easy to understand the reason only some particular brackets can be
obstructions. By this we mean that if these brackets vanish at the initial point then the
system is locally controllable along the reference trajectory.

We study separately a class of perturbations that do not destroy the property.
Note that most of the known sufficient conditions guarantee that the property is
preserved under suitable perturbations of the system, but it is not clear in general in
what sense the property may be considered "stable" [3], [17]. For example, the small
time local controllability of the system obtained by taking a Taylor approximation of
the vector fields does not guarantee the local controllability of the original system (see
Example 3.1.).

Finally, we will look for conditions under which a system can be considered an
admissible perturbation of a "simple" one for which the obstructions vanish.

The perturbations under which the local controllability property is stable are
defined in the framework of graded structures. Graded approximations of vector fields
and control systems have been considered by several authors (see, for example, [4],
[7], [9], 14], 19]-[21], etc.). It is the opinion ofthe authors that the graded approxima-
tions of control systems are interesting in themselves and that they can also be usefully
applied in other control problems. This point ofview allows us to unify and to generalize
several results on local controllability in the stationary and the nonstationary case both
with bounded and unbounded controls.

The plan of the paper is the following. In 1 we revisit some known results about
local controllability for the class of analytic nilpotent systems from the point of view
described above. We define the obstructions and state our main result (Theorem 1.1)
on weak local controllability along a reference trajectory. Finally, we give some
examples and comparisons with known results.

In 2 we recall some definitions and properties from the theory of the graded
structures and we prove the main approximation result (Theorem 2.2). Theorem 2.2
is crucial in the proof of the main result and it will be used to give a variational version
of Theorem 1.1 in a forthcoming paper. It is the opinion of the authors that the
approximation result is interesting by itself. In fact, it can be thought of as a sort of
generalization of the linearization principle for the stationary case (see Corollary 2.3).
Note that in Theorem 2.2 there are no assumptions on the constraint set ; hence it
can be used to test the local controllability property also in the case of one-sided
controls.

In 3 the graded approximation induced by a filtration of a Lie algebra is studied.
In particular, we prove that the Lie algebra associated with the graded approximating
system is nilpotent. In 4 we prove Theorem 1.1. In the Appendix we recall some
properties of the analytic systems. We also prove a result (Lemma A) that is probably
known but that the authors did not find in the literature in an appropriate version.

Let us remark that the results in 2 and 3 are similar to the ones stated by Stefani
in [21]. The main difference is due to the fact that the trajectory may be not stationary.

1. Notation and statement of the main result. In the sequel we will use the following
notation:

M is a C, finite-dimensional, paracompact, connected manifold.
(M) is the algebra of C real functions on M.
OF(M) is the Lie algebra of C vector fields on M.
Iff F(M), (t, :) --> exp tf. : denotes the local flow off and adr: OF(M)- OF(M),

g->ad/g If, g] denotes the Lie derivation in OF(M) with respect to f
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@(M) is the noncommutative algebra of the C differential operators on (M).
If S, T @(M) and a (M), S. T denotes the composition between S and T

and S.a the function obtained applying S to a.
It is known that each f V(M) may be considered as an element of @(M). If

x=(xl, ...,xn) is a chart at a point o, we will write f in coordinates as f=
[i:lfi(o/Oxi), SO that if a (M),f" Og--"i=lfi(oa/Oxi).

If F is a subset of V(M), Lie F will denote the Lie subalgebra of V(M) generated
by F, and @(F) will denote the subalgebra of @(M) generated by F.

Let h" M - M be a diffeomorphism; h." TM -> TM is the tangent map of h.
Let be a given subset of ’ such that 0 l’l and span ". To each family

f (fo,fl,’’" ,f,) of C vector fields on M, we associate the affine control process
(Es, ll) on M, where the state x satisfies the equation

i=1

and the control u belongs to the class -/t of piecewise constant maps from R into ft.
Let M; we denote by sf(t, , u) the value at time of the solution of (Ef)

relative to the control u, starting at and we denote by Rf(s, t) the reachable set from
: at time

Rf(:, t): {sf(t, :, u)" u E 0/}.

It is well known [27] that if the f’s are analytic and complete, Rf(s, t) is contained in
a maximal integral manifold of the distribution

f= Lie {adof" k_->0, i= 1,..., m}

and its interior with respect to this manifold is nonempty.
For the general case, let F {fo + Ei---1 6if/" (.D ’}, The local flows of the vector

fields in F generate a pseudogroup

GF {exp tlg exp tkgk" ti , gi F}.

It is known that Nf(s) {b()" th Gv} is a C immersed, connected submanifold of
M [26]. For each / Nf(), let us consider the subset of Nf(:)

Nr(/) {th(/): chGl, i:lti--0]
In [12] it is claimed that N(r/) is the maximal integral manifold of the distribution

A {g.th g-l_ h.x h -1, g, h GF, oh, X F}

through r/. This is not completely true because, if the vector fields of F are not complete,
N(r/) may be disconnected even in the analytic case (an example can be found in [2]).

In any case the proofs in [12] show that Nr(r/) can be endowed by a structure
of immersed, possibly disconnected, submanifold of Nr(), whose tangent space is
given at any point by the distribution A. This implies that the connected components
of Nr(r/) are maximal integral manifolds of Af. Moreover, the codimension of Nf(r/)
in Nf() is either zero or one.

The Lie subalgebra 9f is always contained in Af and the two distributions coincide
if the dimension of f is constant on Nr(:). We recall that in the analytic case this
last condition is always fulfilled [27]. Let T-> 0 be such that Rr(s, T) is not empty and
choose a point r/ Rr(, T). N(r/) does not depend on the choice of r/ in Rr(:, T).
We set Nf(, T)= N(r/). By construction Rr(, T)c Nr(, T).
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DEFINITION 1.1. The relative interior of Rf(sc, t), intre Rf(:, t), is the set of interior
points with respect to Nr(:, t).

Let t --= 0 be the reference control and let us suppose that the flow exp tfo o
:(t) is defined on the compact interval J [0, T].

We want to give conditions for (Er, f) being locally controllable or weakly locally
controllable along the reference trajectory .

Let us start by defining these properties.
DEFINITION 1.2. (El, f) is locally controllable along the trajectory if and only

if for each (0, T]

,-:(t) int Rf(o, t).

Remark 1.1. If is stationary, local controllability along : reduces to small time
local controllability at the point sCo.

DEFINITION 1.3. (Ef, f) is weakly locally controllable along the trajectory if and
only if for each (0, T]

(1.1) (t) inte Rr(:o, t).

Remark 1.2. (El, f/) is locally controllable along if and only if (f, f) is weakly
locally controllable along and dim N(:o)= dim M.

Remark 1.3. The standard properties of the flow imply that is weakly locally
controllable if and only if for each r > 0 there is < r such that (1.1) holds.

It is known [15] that, in the analytic case, for any r> 0 there is < - and a
trajectory 3,’[0, t]- M relative to a piecewise constant control such that y(t)
intr Rf(:o, t). It is clear that it is possible to prove the local controllability property
if a method for bringing y(t) back to the reference trajectory is provided, that is, if a
positive integer L and another trajectory /x "[0, (L-1)t]- M can be found so that
/x(0) y(t) and/x((L- 1)t)= (Lt).

The following lemma due to Sussmann [24], explains which kind of conditions
we may expect to be sufficient for "bringing 3/(t) back to the reference trajectory."

LEMMA 1.1. Let f= {fo,""" ,f,} be a family of analytic complete vector fields
such that Lie f is a nilpotent Lie algebra. There is an integer K such that for each
piecewise constant control u defined on [0, T] with values in a hypercube Hv
{(tOl,. tom) ’" Itoil--<p <+o, i= 1,’ m}, there are:

(a) L<=K and a piecewise constant control defined on [0, (L-1)T] with values
in the same hypercube H,.

(b) An element X ofS that is a linear combination of brackets A Sff containing
fo an odd number of times and each fl," ,f,, an even number of times such that

sf((L-1)T, sf(T, u, ), a)=exp(LTfo+X) .
Moreover, X may be chosen symmetric with respect to the elements of any subset
{fi,, ", fi} of {fl," ", f,}, i.e., X may be chosen as afixed element ofthe automorphisms
of gt generated by txi’fi--f, i,j {i,,. ., i}G {1,. , m}.

Proof. The proof is based on the Campbell-Hausdorff formula and on the sym-
metries of the control set Ho. It is essentially given by the proof of Proposition 5.1 in
[24], where the finite group of pseudoautomorphisms of Lie f is generated by

A’f/-f, 1,..., m, /zi’f/-->f, i,j {i,,..., i}

and the so-called "time reversal" automorphism. See [24, 7]. [3

For the stationary case, the above lemma points out as a set of candidates to be
"obstruction to small time local controllability" the subspace f spanned by the
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brackets that contain fo an odd number of times and each f,... ,f,, an even number
of times. In other words, if Lie f is nilpotent and for each X , X(:o)=0, then
(Er, Ho) is small time locally controllable at

Moreover, it is known that

exp(-LTfo)’exp(LTfo+X)" =exp,. : with ,Lie(fo,X).

Therefore in the nonstationary case we are lead to look for the obstructions in
f* 5 f’l Lie (fo,

Lemma 1.1 suggests also that the set of "obstructions" could be restricted by
selecting a subset of {1,. ., m}. We will do this selection by defining a "weight" on
Lie f and we will give conditions on this new set of obstructions so that a C system
can be considered as an "admissible perturbation" of a nilpotent analytic system for
which the obstructions are zero. The meaning ofadmissible perturbation will be clarified
in 2.

To make the above ideas more precise we need some notation. Let Lie X be the
free Lie algebra on generated by the noncommutative indeterminates X=
{Xo,’", X,}. We will denote the ideal of LieX generated by X,..., X, by
that is,

5= Lie {adkxo X" k->_0, i= 1," ., m}.

Substituting X by f in any element X Lie X, we obtain a vector field that will be
denoted by X. For any subset A of Lie X, At will denote the subset of Lie f given by
At= {Xr: X A}. By means of a set (lo,. , l,) of integers we define a weight on
Lie X that will induce a weight on Lie f.

Let A be a bracket in 5e. We denote the "length" of A with respect to X (i.e., the
number of times that Xg appears in A) by [AIg. If, for example, A=[[Xo, X],
IX2, [X, Xo]]], then IAIo- 2, IAI 2, IAI= 1, IAI, 0 for all i> 2.

The weight of A is defined by

IIAII,- Y, t, lAl,, II0ll,-" 0
i=0

and the subspace of 6er of the elements of weight not greater than is given by

V span {At" A 6e, IIAII, =< i).

An element X 5e is called l-homogeneous if it is a linear combination of brackets
with the same weight, which will be called the weight of X.

Following Sussmann we say that an l-homogeneous element X 6e is l-neutralized
for (Er) at o if Xf is a linear combination at :o of brackets with less weight. In other
words, X is l-neutralized if there is an i< I1 11, such that Xf(:o) V(:o).

Example 1.1. If lo l l, 1, IIAII is the length of the bracket A, that is,
the number of indeterminates contained in A. V is the linear span of the brackets
containing at most vector fields. X 5e is l-neutralized for (r) at :o if X is a linear
combination at o of brackets with less length.

Example 1.2. If 1o 0, l 1,, 1, [[A]I is the number of X1,’’ ", X,, con-
tained in A. V is the linear span of brackets that contain at most controlled vector
fields. These subspaces are the subspaces S introduced by Hermes [11]. X 5e is
l-neutralized for (Xr) at :o if Xr is a linear combination at sCo of brackets containing
less controlled fields than Xr.

Example 1.3. If 1o 1, 1 1,, 0, [[A[[! is the number of Xo contained in A.
V is the linear span of brackets that contain fo at most times. X ow is l-neutralized
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for (E0 at o if Xf is a linear combination at o of brackets containing a lower number
offo.

To define our candidates to be obstructions we set

span {A 9: ]AIo is odd, IAl is even, 1,. , m},
{X " X is symmetric w.r.t, those X’s, i 0, that have the same weight}.

In other words the elements of are the fixed elements of the automorphisms of
generated by/z0" X-X, for all i,j such that l =/i, j 0.

For example ifm=3, lo 0,1 l 1 13 3 thenadx, Xo+adcXoandad:x Xo
belong to , but adx, X0 does not.

Note that if l l then

s {X " X is symmetric w.r.t. X1," , Xm}
and if l l, i,j 1,..., m then =.

Finally, we take as obstructions the set

l* Lie (Xo, ) V) 9.
In particular, if ll lm then

* s* Lie (Xo, s) 9

and if 1 #/j, i,j= 1,..., m then

* * Lie (Xo, Y3) f3 5.

Remark 1.4. In [13] it.is proved that there are elements in that are not
obstructions to small time local controllability. It is an open question which are the
real obstructions to small time local controllability.

DEFINITION 1.4. A set lo, , lm) of integers will be called a set ofadmissible
weights for 12 if and only if for each w =(tOl,..-, t0m) fl and each e6(0, 1)

(ell--/00) , e Im--lOOOm) ’,

Remark 1.5. If tl is the hypercube H, {(to, , tom) ’" [OOi[ <= p < +00,
1, ", m}, then is a set of admissible weights for Hp if and only if lo min { lo, , l }.
For such a control set, both weights of Examples 1.1 and 1.2 are admissible but that
of Example 1.3 is not.

The weight defined in Example 1.1 is admissible for any tl; the one defined in
Example 1.3 is admissible if and only if tl is a cone. Note that any set of integers is
admissible for tl ’. Negative weights will be considered in Theorem 2.2.

Below we state the main result on local controllability along a reference trajectory.
The assumptions are of two kinds. The first one is a rank condition, and the second
one allows us to prove that the obstructions of the approximating nilpotent system
defined in 3 vanish at so.

THEOREM 1.1. Let f be the hypercube Hp {(Wl," , to,,) [r. itOi <__ P,
1," "’, m}, possibly p +, i.e., Ho m. If

(a) the dimension of the manifold NT(o) is equal to the dimension of gr(o),
(b) there exists a set of admissible nonnegative weights such that each l-

homogeneous element X belonging to the obstruction space * is l-neutralized at o, i.e.,

VX * there is i< Ilxll, such that Xf(so)6 Vi(o)
then (Y.t, ) is weakly locally controllable along .

COROLLARY 1.1. If dim gt(so)=dimM and (b) holds, then (,,2) is locally
controllable along .

Taking into account Examples 1.1 and 1.3, the following results can be easily
derived.
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COROLLARY 1.2 (Hermes [11], Sussmann [24]). Let dim 5er(:o)=dim M and let
be a neighbourhood of 0 ’. If each Xr 5gr that contains each controlled vector field

an even number of times is a linear combination at o of brackets with a less number of
controlled vector fields, then (, ) is locally controllable along .

Proof Since each element of * contains each controlled vector field an even
number of times, each obstruction is neutralized by means of the weights /o-0,
11 l=1.

COROLLARY 1.3. Ifthe dimension of Lie (fl, ",f,) at o is equal to the dimension
of M, then (f,) is locally controllable along .

Proof. If lo 1 and 11 l 0 then each obstruction has weight at least one
so that it is l-neutralized because it is a linear combination at :o of brackets of weight
zero.

Example 1.4. Let M=I3, :o= (0, 0, 0), D={w: Iwl<_-l}, and

0 0 0 2 0
ofo

Ox
fl=--+x--+(x3y+y

Ox Oy Oz

The significant Lie brackets are:

=O+ 3x2y 0
[fo, f]

Oy 0--’

ad}, fo -(2x + 6xy 2y) Oz’

0
ad}ofl:6xy--,

Oz

0
[fo, ad}, fo] -(6x- + 6y) Oz’

ad}o ad}, fo 12xz’ 0
[adrofl, adofl] 6X-z, 2_[adFo fl ad}, fo] -(2-6x) Oz"

3 and the brackets in N* that have a weightTherefore, if we choose 1o 2, 11 3, VI13
less than or equal to 13 are adj ad},Fo, i=0, 1,2, and [adyof, ad}ofl ]. They are zero
at o, so that they are neutralized. Therefore Theorem 1.1 implies that (t, 0, 0)6
int Rf(:o, t) for each t. Note that for this system Theorem 1.1 does not apply with
1=(0, 1). In fact, ado ad,fo=-12(O/Oz), so that $2(o) is not contained in Sl(:o) and
the obstruction ado adj2., fo is not l-neutralized.

Remark 1.6. Some authors, for example, Petrov [18] and Goncalves [8], give a
more restrictive definition of local controllability at :o. Namely, they also require that
the restriction of the system to each neighbourhood of o is locally controllable. An
analogous definition of local controllability along a reference trajectory can be given.
Conditions (a) and (b) of Theorem 1.1 are conditions on the germs of the vector fields
fo,"" ,f,, at o, so that they guarantee that each restriction of (f, Ho) to any
neighbourhood of :o is locally controllable along the reference trajectory. Note that
the hypotheses of the theorem guarantee that for each neighbourhood V of ([0, T]),
the restriction of the system to V is locally controllable along

In [24] Sussmann states very general sufficient conditions of small time local
controllability that generalize many of those known before, but an example in [1]
shows that they are no longer sufficient in the nonstationary case. To compare Theorem
1.1 with the results in [24], let us recall the main result stated there.

Let fo(o)= 0, if there is a set of admissible nonnegative weights such that
(i) Lie (fo,""" ,f,,) has full rank at o,
(ii) each element in N is l-neutralized at :o,

then (;, Ho) is small time locally controllable at :o.
The example in [1] shows that the l-neutralization of the elements of Y3 is not

sufficient to get-local controllability in the nonstationary case. But the following lemma,
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whose proof can be found in [23], shows that if each element of s is l-neutralized
at each point of the reference trajectory, then the same holds for each element of !*.

LEMMA 1.2. If dim i is constant along the trajectory and each element of s
is l-neutralized at each point of the reference trajectory, then the same holds for each
element in *.

As a consequence we get that if is stationary, then the elements of * are
l-neutralized at sCo if and only if the ones of are l-neutralized. Therefore Theorem
1.1 includes the result of Sussmann quoted before, and proves that small time local
controllability can be viewed as a particular case of local controllability along a
reference trajectory.

Let us end this section with an application of the Theorem 1.1 to the case of
unbounded controls.

COROLLARY 1.4. Let W span {X" X O, IXIo 1, j=l [Xlj i}. If
(a) 0r(:o) is spanned by the brackets which contain fo at most once,
(b) s(sCo) 1Wk(O)C W2k_(o)+Lie(f,’’’ ,f,)(s%),

then (Er, ’) is weakly locally controllable along the trajectory .
Proof Set Yo Lie {f,. ",fr,} and Y span {Xr" X Lie X, Ixlo 1. Let

X(:o),""", X[(:o) be a basis for Y(:o) + Yo(:o) and let

h=max{ [X’lj’i=l,’",r}.
j=0

If 1= (h, 1,..., 1) then Y(:o)+ Yo(:o) owr(:o) V2h_(o), Yo(:o)_ V,(:o), and
each A* Yds* is such that [tAll,---h+2. Therefore if A* and IAIo--1, then
A s and condition (b) implies that A is l-neutralized. Otherwise IAIo_>-2 so that
IIAII, > 2h > 2h- 1.

In [8] a sufficient condition of local controllability for a system with unbounded
controls is given. They can be compared in the following way. For the scalar input
case Corollary 1.4 is a stronger result. Namely, condition (b) is replaced by W2k W2k_
For the multi-input case the results are different and none of them is a consequence
of the other as the following examples show.

Example 1.5. Let M R3, :o (0, 0, 0), 2 R2, and

Yo(:o) + W3(o) 3 and Wz(:o) Yo(:o), so that (E0 satisfies the hypotheses of Corol-
lary 1.4, but it does not satisfy the hypotheses in [8].

Note that the above system is not small time locally controllable if f is bounded
because, in this case, p(t) is positive for small t.

Example 1.6. Let M 4, 7o(0, 0, 0, 0), 2, and-- Ul, )) U2,
(;t)

x2y2+ X5, 1 x2y2+
(Er) satisfies the hypotheses in [8], but satisfies neither the hypotheses of Corollary
1.4 nor those of Theorem 1.1. In fact, the obstruction ad} ad}, fo +ad} ad}fo is equal
to 2/5! ad fo+ 2/5! adfo so that it cannot be neutralized by any set of nonnegative
weights.

2. Graded approximating systems. Let x (x 1, , x") be a chart on a neighbour-
hood U of sCo M such that x(sCo)= 0 and x(U) is a ball centred at zero. Let w
(w, w") be a set of positive integers; by means of the couple (x, w) we will give
a graded structure to U that will be called a local graded structure at :o and will be
denoted by (x, U, w).
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A graded structure will be named trivial if w w"= 1.
The subalgebra of :(U) generated by the coordinate functions x 1, , x" will

be called the algebra of polynomials (induced by the chart).
A vector field f will be called polynomial iff. q

i=l,...,n.
In [9] a graded structure on " is defined and its properties are stated. We refer

to it for the details. Here we define a graded structure on U slightly modifying the
definitions of [9]. Namely, we give a graded structure to " and we transfer it to U
by means of the chart x.

The graded structure is given by the "dilations," i.e., maps 6 on U with values
in U defined by

xio6=ew’x, i=l,...,n, e

If le[> 1 the dilation 6 will be defined in a suitable neighbourhood of :o contained
in U, but nevertheless we will write 6" U- U understanding "locally defined."

A polynomial q is called homogeneous of weight a if q 6 e q. The set of
polynomials ofweight a will be denoted by (a) and we get a gradation )a=>o (a)
of the algebra of polynomials.

The weight 14/’(q) of a polynomial q is defined by
k

W(q) _<- k iff q ) (a).
a=0

In other words, we give the "weight" w to x. As a consequence, for each
multi-index ce =(al," ’’, a,), the weight of the monomial x (xl) "l... (x"). is
defined by W(x")== w’a. Hence the weight of a polynomial q is the greatest
weight of the monomials contained in it. If the graded structure is the trivial one, then
W(q) is the degree of the polynomial.

A polynomial vector field f is called homogeneous of weight if for each q (a),
f. o (a-j) (if a <0, (a) is understood to be equal to {0}). Roughly speaking if
the weight off is j then f "substracts" weight j from the functions. Therefore, in terms
of components,f is homogeneous of weightj if and only iff s (w -j). For example,
if w= (1, 2, 3), the vector field xl(o/Ox2)+[(xl)2-4x2] O/Ox is homogeneous of weight
one. Let us remark that in a trivial graded structure the homogeneous vector fields
with positive weight are the constant vector fields. In fact, the weight of a homogeneous
vector field in a trivial graded structure is equal to one minus the degree of the field.

The set of homogeneous polynomials vector fields of weight j will be denoted by
o//.(j). Let us remark that O/Ox //’(w’) and that o//.(j)= {0} if j> max {wl, w"}.
Moreover, in terms of dilations, fe o//.(j) if and only if (6),fo

The weight W(f) of a polynomial vector field is defined by
W(f) =<j ittf ( //’(k).

k_>j

It is easy to see that iff //’(i) and ge o//.(j), then [f, g]e (i+j), therefore the
set aV" =@i_->o (i) of the polynomial vector fields of weight zero is a subalgebra of
the Lie algebra of the polynomial vector fields and the set V=@=>I //’(i) is a nilpotent
ideal of No.

The graded order (q) of a polynomial q is defined by
(7(o) >- iff q ( (j).

The definition of graded order can be extended in an obvious way to the elements of
(U). Namely, ff(o) >- i, if each Taylor approximation at :o (in the chart x) of o has
graded order _>-i.
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The graded order (S) of a differential operator S is defined by saying that

(S) =<j iff (S. q)-> (q)-j.

In particular, iff (U), then

(f)=<j iff(f’)>=w’-j, i=l,...,n.

Example 2.1. Let w= (1, 2), if f(x, x2) sin (x + x2) O/Ox +cos (x + x2) O/Ox2;

so that (f)= 2.
It is easy to see that the following properties hold"

(P1) VS,S2@(U), (Si)<=ji, 1, 2:=>(S,. S:z)<=jl+j:z so that
’g,, g2 6 o//.(U), C(g,) <=j,, i= 1, 2=:>([g,, g2]) =<j +j2

(P2) For each c O%(U) and each integer k _>-0, there is a unique polynomial
of weight k such that (c ck)) -> k + 1. c3 is called the graded approximation
of weight k of q and it is the sum of the polynomials of weight less than or
equal to k in the formal Taylor expansion of c at o. q) coincides also with
the graded approximation of weight k of each Taylor approximation at o of
order greater than k.

(P3) For each f o//.(U) and each integer k-<max {w, w"}, there is a poly-
nomial vector field fk) of weight k such that (f-f))<= k-1. f) is called
the graded approximation ofweight k off and it is the sum of the homogeneous
vector fields of weight greater than or equal to k in the formal Taylor expansion
of fat 0.

For example if f and w are as in the Example 2.1, then

fo)(Xl xZ)=xl 0__+(1 1

ox’ - (xl)
OX2"

(P4) If o o%(U), (q)>-s if and only if the function defined on (-1, 1) U by

-’(a()) eo,
(, )_,

)(), e =0

is a C map.

(P5) Iff U(U), (f)<-s if and only if the map defined on (-1, 1) U by

(;’),/(()) 0,
(, )_

)(), =0

is a C map.

In the sequel we will use the notation introduced in 1.
Let a local graded structure (x, U, w) of M at :o be fixed. Let f {fo," ", fro} and

1=(/o,""", 1,,) be a set of integers, such that li _>-(f). The graded approximatio,n of
weight l off will be denoted by f; it belongs to (l), i=0,..., m. Note that f =0
if and only if l> 6(f). Set -f={fo,..., fro}.

then

0---+ (1 +f(x’, x1 (x’ + x +
Ox

(X " X2)2 ) 0

2 Ox2’
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DEFINITION 2.1. The system (Et) defined on U is named a graded approximation
of the system (El).

Examples of graded approximations of a control system can be found in
Example 3.1.

Remark 2.1. From F’(f,J.) w- li, it follows that if li 0, then f] depends linearly
on the xk’s with wk= w and does not depend on the xk’s with wk> w. If li > 0, then
fj does not depend on any xk with wk >- w. In other words, if each li is nonnegative,
then the system (5;t) is a cascade of linear systems and integrators; if each li is positive
it is a cascade of integrators.

Remark 2.2. 9t is a distribution spanned by homogeneous vector fields. Hence,
possibly after a linear change of coordinates that does not affect the graded structure,
we can suppose that

t(o)=span{_Ox0 ’ ’OX
r being the dimension of

LEMMA 2.1. If A is any bracket in
(a) (Af- At) < IIAIl,,
(b) 5ef({:o) +span {O/oxr+, O/Ox"}= TaoM.
Proof Part (a) is obvious by definitions.
(b) Let A1,"" ", Ar be brackets in Se such that

span {At({:o),""", Art(o)}

When we use (a) it is not difficult to see that

0 0
Alf(:o),"" ",Arf(:o),0Xr+ (o),

Ox
(o)

are linearly independent.
To the set of integers (lo,’" ", l,) we can associate a "one-parameter family

of variations" of the null control in L([0, T], Era), namely, a map

8 (-1, 1) x LI({o, T], IRm) - LI(, [m)

defined by

u)=_8u=_u.t_>(el’-lul(t/el), ., el’-lum(t/el)) ifte[O, elr],
(e,

0 otherwise.

The following results are devoted to relating the solutions of (;t) and (Ef) through
the dilations defined above. We can say that the solution of (Zt) relative to u gives
the principal part with respect to e of the trajectory’s variation induced by u
along

THEOREM 2.1. Let - [0, T], ( U and LI([0, -], Rm) be such that st(’,
is defined in [0, ]. There exists a neighbourhood V() of in U, a neighbourhood V(O)
of O in LI([0, -], Rm), and g>0 such that for all V(-), u6 V(O), and e(-g, g),
e #0, 6-sf(., , u) is defined in [0, elot-] (on [el[, 0] if e <0). Moreover,

(a) The map S" V()xV(O)x(-g, g)- U defined by

s(:, u, )=
s(, ,, u), =o

is a C map;
(b) st(’o?, :, u)= st(, :, u).
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Proof It is not restrictive to assume that U is an open neighbourhood of zero in
Rn. Let e # 0, : U, and u LI([0, ?], R"); the map t-- -lsr(elt , ue) is the solution
of the differential equation on U

i=1

which at time zero is equal to . Hence it is defined implicitly by the equation

@(t)= + Fo(e, @(s))+ Z ui(s)Fi(8, @(s)) as,
i=l

with

tf (x), e =0.

Let G" U x (-1, 1) x LI([0, ’], N’) x C([0, ?], U) C([0, ], N) be the map defined
by

G(, e, u, )(t) O(t)-- Fo(e, (s))+ ui(s)Fi(e, (s)) ds.
i=1

By propertj (P5) the F’s are_ C on_ (-1, 1)x U; hence G is a C map (see [5]).
F (0, x) =f (x), so that G(:, 0, ti, s(sc, ti,. )) 0. Moreover, in any point the derivative
of G with respect to q is a linear homeomorphism of C([0, ’], N") onto C([0, ],
[16] so that the implicit function theorem implies (a). Statement (b) follows by
f, v(/,).

Coot,ar 2.1. Let U and u L([O, ?], m) be such that st(., , u) is defined
in [0, ’]; then sr(e?, , u) is defined for e sufficiently small and

(2.1) x(st(elo?, , u))= x(6(st(?, :, u)))+ ex($h(e, sc, u))

with x(h(e, , u bounded on compact sets.
Remark 2.3. In [4] Bressan defines an approximating system by means of a graded

structure related to the family f. Moreover, he compares the system with its approxima-
tion through a linear rescaling of time and space coordinates. The approximating
system defined in [4] is a graded approximating system (El) defined above. Therefore
Theorem 2.1 generalizes the result in [4].

Remark 2.4. The L norm of u is given by

Hence if one of the li is negative, I[tU[[L -’ "-I-Q0 as e- 0, and it could be surprising
that nevertheless the relative solution goes to so. The explanation for this is that li < 0
implies that f 0 very fast near :o.

The following theorem provides the main approximation result. It states that if
there is a graded structure at :o such that the vector fields f’s are homogeneous, then
the local controllability property is stable under perturbations of the vector fields f’s
that do not affect the graded order.

THEOREM 2.2. Let us suppose that
(a) is a set of admissible weights such that lo>-_O, l >-_ (f), =0, 1,. , m.
(b) dim 5et(:o)= dim N(:o)= r.
(c) (El, 1)) is weakly locally controllable along t,--exp tfo" o.
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Then, (Ef, f) is weakly locally controllable along the trajectory t--exp tfo" o.
Proof. Without loss of generality we can suppose that U is an open neighbourhood

of :o in ", and o 0.
Taking into account Lemma 2.1, the assumption (b) implies that the tangent space

at sCo to N(sCo) is 6er(:o). We will consider as rx n-r SO that, again by Lemma
2.1, the point on r can be seen as coordinates both on N(o) and N(o). To be
more precise there are"

(i) Open neighbourhoods V, W, W’ of :o in r, N(:o) and N(:o), respectively;
(ii) C homeomorphisms 4:V W and th’: Vo W’ such that &-i and th ’-1 are

equal to the canonical projection 7r on r restricted to W and W’, respectively.
Let ?> 0 be such that exp tfo" o intre R(:o, t) for any belonging to the interval

t’, ]; Lemma A in the Appendix implies that there exists a neighbourhood W" of :o
in N(sCo) and a continuous map/x" W" a//fq LI([0, ?], f) such that

exp (-o) s(, o, (w))= w Vw w".

Without loss of generality suppose W"= W’. By possibly restricting W’, by Theorem
2.1 and the definition of the topology on N(o), there is g such that

exp(--elofo) Sf(elo,,o, 6d(w)) W tw W’ e[0, g].

Let G: W’ x [0, g] W be defined by

G(w, e)= exp (-elofo) s,(el, Jo, 6tz(w)).

By Theorem 2.1 we get for any v V

"rra-I G(’(o), 8)-- "tr(’(l))-4- 0(8)) 04-0(8).

Standard arguments in degree theory imply that there is e>O such that
7ra-G(q,’(V), e) contains an open neighbourhood of so in K But r6;-l= 6;-lzr, hence
G( W’, e) contains an open neighbourhood of so in N(so). being an admissible set
of weights and e 1o less or equal to , the theorem is proved. D

COROLLARY 2.2. If (E) is locally controllable along the trajectory t--exp tfo" o,
then (El) is locally controllable along the trajectory t--exp tfo" o.

Remark 2.5. In the proof of the above theorem, the assumption lo>= 0 is useful
only in proving that the reference trajectory is in the relative interior of the reachable
set at a time not greater than ?. Therefore the same proof gives the result stated below.

Let us suppose
(a) is a set of admissible weights such that li => (f), i-0, 1,. ., m,
(b) dim ST(:o)- dim N(o)= r,
(c) there is > 0 such that exp tfo" o is in the relative interior of R(:o, t),

then there is " such that exp ?fo" o is in the relative interior of Rr(:o, ).
The following corollary suggests Theorem 2.2 as a generalization of the "lineariz-

ation principle."
COROLLARY 2.3. Let M and fo(:o)= 0. Iffo is the linear part offo at o and,

for i= 1,..., m, f is the first significant term in the Taylor approximation off at o,
then the small time local controllability of (,, ’) at o implies the small time local
controllability of (,, ’) at o. Moreover, if fi is the first significant term of the Taylor
approximation off at sCo, 0,. , m, and if there is a such that o int R o, ), then
there is a such that o int Rr(:o, ?).

Proof. It is sufficient to apply Theorem 2.2 and the result in Remark 2.5 to the
trivial gradation wi= 1 for each i.
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Example 2.2. Let us consider the system given in Example 1.4. If we define on
3 a graded structure by w (1, 2, 5), we have that the graded order of both fo and fl
is one. The approximating system turns out to be

(X0 =l+u, y=ux, .=uy.
It is easy to see that all the elements in are zero at :o, so that we can prove that
the approximating system is locally controllable along the trajectory (t, 0, 0). Apply-
ing Theorem 2.2 we obtain the local controllability of the original system.

The approximating system depends strongly both on the coordinates x and on
the weights w. Hence we have many choices in the construction of (Et).

In the next section we will define a graded structure linked to the relations at :o
in Lie f.

3. Graded structure adapted to a filtration of a Lie algebra. Let L be a subalgebra
of F(M). An increasing filtration of L is a sequence = {Li}i>_0 of subspaces of L
such that

(a) Li Li+l,
(b) [Li, Lj Li+j,
(c) Ui_>_o L L.
Setting

A, span {Z Z: Z L,jl +. +is <-- i},

we get an increasing filtration M {A}__>o of the subalgebra A of @(M) generated
by L.

Let corM and m=dimLj(o),j=O,...,p.
LEMMA 3.1. For each a (M) such that
(a) do(o) # O,
(b) Z. a(o)=0, for all Z Lp,

there is a neighbourhood U ofo and ( U) such that
(c) dc(so) da(o),
(d) S (o) O, for all S Ap.
Proof Let {g,..., g,} c OF(M) be a basis of TM at :o such that
(i) {g,..., gin,} is a basis of Li at :o, <-p,
(ii) gj- a(:o) =0, j 1,..., n-l,
(iii) g,. a((o)= 1.

Let the chart x (x, , xn) be defined as the local inverse of the map

(x, x")->exp x"g, exp xgl o.
The function k x" obviously satisfies (c). Let S Zs ZI Ap with Zk Li and
i +.." + is-<p, we will prove (d) by induction on s. Parts (a) and (c) imply that (d)
is satisfied for s 1.

Since Zs Li.,., Zs(o)--Zjmi=l ajg; (:o) for some a; and

S. c(o) ’ a2(Z_, .g;. Zs_2""" Z +[g2, Z_,]" Zs_’’" Z,). c(o)
j=l

(by the induction hypothesis)

ajZs-1 "gj’’’ ZI" (0)"
j=l
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Iterating the procedure we can get S as a linear combination of elements of the type

gL g, o),
with n >mp ->is -->" -->jl --> 1. Therefore we get

s. (o)= s. x"(o) 0.

Remark 3.1. The function d is not unique. In [22] a way of obtaining c by means
of an algorithm is described. The algorithm can be applied if for each Z e Lo, Z({:o) 0.

COROLLARY 3.1. There exists a chart x (x , x") at o such that ifj O, p,
then

(a) L (:o) span {O/oxl(o), ., O/Oxm(o)},
(b) S. xk(o)= 0, for all S A and k > mj.

Proof Starting from any chart at o we can get a chart with the property (a) by
means of a linear change of coordinates. Applying Lemma 2.1 to each function of this
chart we get the statement.

DEFINITION 3.1. A chart at o with the properties (a) and (b) of Corollary 3.1 is
called a chart adapted to at o up to weight p.

Remark 3.2. Obviously, also the adapted chart is not unique. Applying the
algorithm described in [22] we can get an adapted chart by means of a polynomial
change of coordinates whose inverse is also polynomial. Moreover, using a proof very
similar to the one in Lemma 3.1, an adapted chart can be obtained as a local inverse
of the map (xl, , x")-exp x"g, exp xgl o where {gl," , g,} is a basis
of TM at {:o with the property (i) stated in the proof of Lemma 3.1.

DEFINITION 3.2. Let be such that Lo((o) {0} and let (x, U) be a chart adapted
to at {:o up to weight p such that x(U) is a ball centred at zero. Let w be defined by

w for each j {mi_ nt- 1, , mi}, 1, , p, w =p + 1 for each j > mp.
The local graded structure (x, U, w) will be called a graded structure induced by at
{:o up to weight p.

LEMMA 3.2. If (X, U, w) is a graded structure induced by at o up to weight p then
(a) max{w w"} <p+l
(b) L(o) ={h(o)" h T’( U), (?(h) <-j},j 1, p,
(c) S. xk((o) 0 for all S aw"-l.
Proof The proof is obvious by the definitions. 13

Remark 3.3. To define a graded structure induced by 5f we need that Lo({:o) {0}
because otherwise we could have a coordinate with null weight.

THEOREM 3.1. Iff Li, then (?(f <-_ i, where (? is the graded order associated to the
graded structure (x, U, w).

Proof Since for all f (U), (?(f)-<p+ 1, we need to prove the theorem for
i=0,...,p. Since (?(f)<=i if and only if (?(fk)=(?(f. xk)>__wk__i, k=l,’’.,n,
therefore it is sufficient to prove that for each k 1, , n and each hi, , h. e (U)
such that (?(h... h2)<_-wk-i- 1, we have

(3.1) hi’" h’f" xk(o) 0.

Let us prove (3.1) by induction on s. Let s 1 and (?(hi) -< wk i- 1. By Lemma 3.2(a)
there is g Lw_l such that hl(O)= g(o) so that hl. f. xk(o)= gl" f" xk(o) and we
get (3.1) by Lemma 3.2(b). Let (3.1) hold for a given s. If (?(hi"" hs+l)<- wk- i-1,
we get

hi" h+ f. xk(o) gl g+ f" xk(o)+terms of the type fl h. f. xk(o)
where g...g+ belongs to Aw_ and (?(/ /.) _<-wk--i 1. Therefore we get (3.1)
by Lemma 3.2(b) and the induction hypothesis. 13
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Let us now consider the case when the filtration is induced by a set of weights.
Let f, 1, and X be as in 1. If is a set of nonnegative weights it defines a filtration
on Lie f by setting

Li span {At: A e Lie X, IIAII, <--

{Li}i___o is a filtration on Lie f and if Lo(:o) {0} then it induces a graded structure
at :o. Theorem 3.1 implies that (f)-li, i=0,..., m, therefore we can define-the
family [ as in 2. Recalling that f e o//.(l), it is easy to prove the following result that
summarizes the main properties of the approximating systems induced by a set of
weights.

PROPOSITION 3.1. (i) 10, ", l,,, >-- 1 Lie is nilpotent.
(ii) 11, ", lm >= 1 6f is nilpotent.
(iii) For each bracket A subject to IIAII,= i, (A-A0(:o) L-l(Sco) and

af(sCo) L,_,(so) ==>A (so) 0.

(iv) If Lp(o)= Lie f(sCo), then Lie {(:o)= Lie f(so).
Remark 3.4. The properties described in Proposition 3.1 suggest that the system

(X) is much easier to handle than (Xf). Therefore we can try to prove the local
controllability of (X0 and then apply Theorem 2.2. The problem that might arise is
that the approximation induced by does not guarantee that dim 5(o)- dim 5ef(sCo).
As it will be seen in the next section, this problem can be avoided by introducing an
auxiliary system. However, note that if the reference trajectory is stationary, i.e.,
fo(sCo) 0, then

Lie f(:o)= 5ef(:o)= Lie {(sCo)= 5e (sCo),

see [21].
We end this section by summarizing the theory with an example showing how the

local controllability properties are more evident in an adapted chart.
The following system is exhibited in [3] as an example of a small time locally

controllable bilinear system for which the property is destroyed by a second-order
perturbation.

Example 3.1. Let M=2, :o= (0, 0), f={w: Itol_-<l} and

a a a a__fo x--+ax 2Y--oy, fl --x + (x + y) ay

The significant Lie brackets are

o a o
[f ,fo]=ad.fo =--+X--,oxoy ad’f=-x--=(-1)oy adoad}fo, 2_ad}, fo (-1 + x) Oy"

It is not difficult to see that Theorem 1.1 (or the result in [24]) can be applied with
(1, 1). Perturbing fo with the term x2(O/Oy) we obtain a new system that is not small

time locally controllable (see [25], [22]). The reason will be evident when we rewrite
the system in the adapted chart induced by 1. Set g =f and g2 -ad, fo (1 x)(O/oy).
The adapted chart suggested by Corollary 3.1 is given by the local inverse of the map

(x(a, ), y(a, B))=exp Bgz exp agl o=(a, (1-a)fl +e’-a-1)

and the graded structure is defined by w (1, 4).
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In the new coordinates the vector fields become

6 0/3
--+ a vector field of order 0.

0 /3(2-a) 0___ 0
+avectorfield oforderO.Z1 =--+ (1-a O-aa

Therefore the approximating system is given by

o
u, =--.

6

The perturbating vector field x(a/ay)= ce2/(1- ce) a/at3 has graded order two, hence
it affects the graded order offo. On the other hand in the new coordinates the perturbed
system is given by

d O+U,

[j (2-a)+a2+a3/6+’’"
(l-a) (l-a)

Therefore it is evident that the perturbation does destroy the small time local controlla-
bility of the original system.

Note that applying the algorithm described in [22] we obtain for the adapted
chart induced by

1 X2 1 x3"8=y- -..
This chart is global whereas the one above is local. With this choice of the adapted
chart the approximating system becomes

r =-g-+u3t
and the perturbed system becomes

";/=y+u, 2a + Y2+-6-+ u
6"

4. Proof of the main theorem. We start this section by reformulating the problem
by means of the "pull-back" system of (El). The controllability properties of (Ef, fl)
can be investigated much better by means of this new system. In fact it describes the
behaviour of the trajectories of (El) relative to the reference trajectory and it clarifies
the role of the submanifold N(:o) with respect to local controllability.

By the properties of differential equations it follows that there is a neighbourhood
U of :o and a neighbourhood I of zero in R containing J such that exp tfo" is defined
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for each in I and each : in U. Therefore we can define for any f Y’(M) the
time-dependent vector field

f*:IxU-->TUc TM, f*(t,)=-f*(t)()=exp(-tfo)..f(exptfo.s).
It is easy to see that whatever are f, g e V(M)

(4.1) [f*, g*] [f, g]*,

(4.2) Of*-(adfof)*.
Ot

Moreover, it is not difficult to prove the following property:

(4.3) ’q’AS Af.(t)(:)=exp (-tfo).A,(exp tfo" ).

If u belongs to a sufficiently small neighbourhood of zero in L([0, T], f), the map

t-- y(t, o, u)-- exp (-tfo)(S,(t, o, u))

is defined and it satisfies the time-dependent control system on U

j(t) E ui(t)fi*(t, y(t)), y(O) ’o.
i=1

The time-dependent vector field f* may be viewed as a C vector field on M* I x U.
If we set f*= {O/ot, f*,. ,f’m}, the pullback system of the system. (f) is the system
(Zt.) on M*, given by

0
(r*) -=--+ Z u,f*(x).

Ot i=

The solutions of the system (0 and those of the system (r.) are linked by the relation

(4.4) se(t, (r, :o), u) (t + r, exp (-(t + r)fo)" st(t, exp rfo" o, u)).

In what follows we will identify U with {0} x U, so that :o-= (0, (o), N.(:o) is
contained in N(so) and Ne(:o, t)={t} x N.(:o).

From (4.4) it follows that (r, [1) is weakly locally controllable along the trajectory
2 if (., ) is weakly locally controllable along the trajectory t-(t, o).

LEMMA 4.1. (f, H,) satisfies the assumptions ofTheorem 1.1 ifand only if (r., Ho)
does.

Proof The statement is obvious taking into account that (4.3) implies that X.(s:o)
Xf(:o) for each X 5.

LEMMA 4.2. If (b) of Theorem 1.1 is satisfied for a set of admissible nonnegative
weights 1, then it is satisfied for a set of admissible positive weights.

Proof. Let J--(i(O,...,m): l-O). If J-, nothing has to be proved. Let
J ; for each A 5, let p(A)-2 IAI. Choose A,..., A 5 in such a way that
A(:o),’"", Amf(:o) is a basis for V(:o) and Af(:o),’"", Af(o) is a basis for Of(:o).

Let h )max (p(Ai), i-1,..., s) and set l’- 1 if i J and l’- hl otherwise. If
is admissible for H then l’ is admissible for H. Moreover if the hypothesis (b) of
Theorem 1.1 is fulfilled for the set l, it is fulfilled for the set l’. In fact let (R) *.
The hypothesis (b) of Theorem 1.1 implies

Of(o) Z b2 Ajf(o) with

If p((R)) _>- P(Ai ), then

II(R)ll,, h [[(R)[[+p((R))> h]]Aj ]l,+p(A/) ]]Aj [[l’
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and if p(O) < p(Aj ), then

Iloll,,- h llA ll,+ h(lloll,- llAj ll,)+p(o)>-_ h llA ll,+ h +p(O) > llAj ll,,.
Lemmas 4.1 and 4.2 imply that we can prove the theorem for the system (El., Ho)

under the hypothesis that is a set of admissible positive weights. The sketch of the
proof is the following:

Step 1. We define a graded structure (x, U, w) at (o by means of the filtration
d {N/}i_>0 of 5el, where Ni span {Af: A O, IIAIl,<= i}.

We extend (x, U, w) to a graded structure (x*, M*, w*) at
Step 2. We prove that the approximating family *= {O/Ot, f*,... ,fro} has the

property

et. (o) 0,*(o).

Step, 3. We prove that (Et*, Ho) is weakly locally controllable along t-- (t, sCo), so
that Theorem 1.1 follows by Theorem 2.2.

Let (x, U,w) be a graded structure induced by A; at sCo up to weight p=
min {i Ni(sCo)= owf(:o)}. Without loss of generality we can suppose that the pull-back
system El. is defined on M*= I x U. Denoting by x: M*-*R the first canonical
projection, we set x*= (x, x) and w*= (1o, w). In the chart x* the vector field O/Ot is
O/Ox. (x*, M*, w*) defines a local graded structure on M* at sCo.

LEMMA 4.3. For each f6 7/’(M), (f*)= (Y(f), where (Y denotes both the graded
orders induced by the above graded structures on M and M*.

Proof The asymptotic expansion off* with respect to is given by
k

f*(t, so) =f(sc)+ Y
k>0

By the property (P1) of the graded structure, (ad;of)<-klo+(f) hence
((x)k adof)-< (f) for each k> 0 so that the statement is proved.

LEMMA 4.4. (X*, M*, w*) is a local graded structure induced by *= {L*}i__>o at o
up to weight p*, where

L*=span{Ar.:ALieX,[[A[[,--<i} and p*=max{lo,p}.

Proof Let N*=span{Af.:A9, IIAII,=<i}. By property (4.3) it follows that

N (:o) N[(sCo). Hence if j < lo, then

f
L(:o) N(:o)=span ]

OX

and if j => Io, then

+ N](sCo) span
0

0co,
For each bracket A , Af.lu Afl u, therefore if A1,..., As ow, then

(4.5) All. As,*" xt(o)= 0 if k=0,
Ar. Asf" xk(s%) ilk#0.

Moreover, for any A Lie X

0 k 0 Xk xkA,.. x -= A,.. + [Xo, A],. [Xo, A],.. x,
ot ot

so that (4.5) proves the statement.
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COROLLARY 4.1. Let f* be the graded approximation of weight l off* and let
f*= {o/ot, f*, ,f,,}; then

(a) 6-(o)= e,.(o)= e,(o).
(b) . is nilpotent of step p*.
(c) If (b) of Theorem 1.1 holds, then for all X Bl*, X.(sCo) 0.

Proof. Part (a) follows by N(o)= N (:o). Part (b) follows by Proposition 3.1(ii).
Part (c) follows by Proposition 3.1(iii).

THEOREM 4.1. Let the assumptions of Theorem 1.1 hold for a set of admissible
positive weights. Then (E., Hp) is weakly locally controllable along the trajectory t-->
(t, o).

Proof. First of all we note that (E.) is a cascade of integrators (see Remark 2.1)
so that it can be thought of as the restriction on U of an analytic system (6) on ".
The trajectories of (E.) coincide with the trajectories of (E6) that remain in U.
Moreover, the vector fields of b are complete and generate a nilpotent Lie algebra,
so that Lemma 1.1 applies.

Let K be the natural number given by Lemma 1.1 and let H,
be as in property (c) of the Appendix. Set

tr max {](/3,)j I" 1,..., r+ 1,j= 1,..., m}

and choose " / such that Kr < H and

(4.6) s,(t,o,u)6U Vt6[0, K-] and VuLI([O,K’],H).
Again by property (c) in the Appendix we can choose b Br, T < r, such that the map
glnT has rank r at b.

Applying Lemma 1.1 to the pair (fl, ) we get a X B and a pair (y, c) such that

s(LT, o, (y, gc))= s.(LT, o, (y, gc))=exp (LT+x.) o.
Therefore there is F Bl* such that- s.(LT, o, (Y, be))= exp r.. Co.

Let us consider the map G" Btr U given by

G’t-exp (-LT-) s.((L-1)T, s.(T, o, (, t)), (y, c)).

Since Corollary 4.1(c) implies F,(:o) 0, we have

G(b) exp r.. :o
Moreover, G has rank r at b. Hence exp(LT(O/Ot)). G(BLr)c Rt.(o, LT) is a
neighbourhood of (LT, :o) in Nt.(:o, LT). Therefore the reference trajectory is in the
relative interior of the reachable set at time LT. Theorem 2.1(b) and/o> 0 imply that
it is in the relative interior at any time less than LT.

Appendix. Let f= {fo,fl,""" ,f,} be a family of analytic vector fields on " and
let fl be as in 1. To each pair (a, a), a Ok, a (R+) k, k, we associate the piecewise
constant control defined in [o,k ai] which assumes the value ai in the intervali=1

aj ]. We will use the same notation for both the pair and the control. Hence

Sf ai, y,(o,a) =expa fo+ Z (ak)ifi ...expal fo+ ] (al)ifi "Y.
i=1 i=1 i=1
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A pair will be called a k-pair if it belongs to fk X (R+) k. Given a k-pair (t, a) and an
s-pair (1, b) we set (al, ab) the (k+ s)-pair

(a,, ak, ill,’’’, fl, a,, ak, b,, b).

We recall some properties of the reachable sets in the analytic case.
(a) The connected components of Nf(:, t) are integral manifolds of
(b) intre Rr(, t) is dense in R(sc, t);
(c) If dim 6ef() r, there exist H > 0 and/3 (f)r+l such that for all t (+)r+,

r+l= 6 < H, the map

r+l
is defined and analytic. Moreover, if Br is the set {t e +, 6>0,+ 6 T}, for each
< H there exist T < and b e Br such that g restricted to Br has rank

For propeies (a) and (b) we refer to [27]; propey (c) can be derived using the
arguments in [27] and [15].

LEMMA A. If exp ?fo’ e intr Rf( ?, ), then for all > ? suciently close to ?, there
exist

(a) a k-pair ( t), k
i=1 ti t,

(b) a neighbourhood V of exp tfo" in N(, t) and an analytic map " Vo (+)k
such that

sf(t, , (to, r(V)))= v v V.

Proof. Let t> be such that y=exp tfo" is defined. If d t-?, Rf(y,-d)f)
Rf(:, ?)# so that

W intre Rf(y, -d) f’) intre Rf(:,

Let z= sf(’, :, (t, a))s W. There is a neighbourhood V of : in N(:) such that for all
y’ Vsf(?,y’,(ot, a)) W.

r+lLet be as in (c) and let p > 0 be such that for each pair (It, t) with i=l ti <_-p,
r+lexp (--i=1 ti)(fo+,i=, (Ol)if/)" Sf( r+l

= 6, :, (B, t)) By (c) there exists h<
min (p, a), and Bh, such that the map defined in a neighbourhood of
st(h, , (B, b)) has rank r at b. By construction )7 sr(, :, (Bt,b(a-h)a2... a)) W.
Hence there exists a pair (/, e) such that st(d, 37, (3’, e)) exp tfo" . Let to (Bet/) and
d(b) (b, (al- h), a2, , as, c).

The map defined in a neighbourhood of b in Bh by b--sf(t, :, (to, d(b))) is an
analytic map from a neighbourhood of an r-dimensional analytic manifold to an
r-dimensional analytic manifold and has rank equal to r at b. The statement follows
by the inverse mapping theorem.
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A COMPARISON OF CONSTRAINT QUALIFICATIONS IN
INFINITE-DIMENSIONAL CONVEX PROGRAMMING*
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Abstract. In this paper the relationships between various constraint qualifications for infinite-
dimensional convex programs are investigated. Using Robinson’s refinement of the duality result of
Rockafellar, it is demonstrated that the constraint qualification proposed by Rockafellar provides a systematic
mechanism for comparing many constraint qualifications as well as establishing new results in different
topological environments.
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1. Introduction. This paper deals with constraint qualifications for infinite-
dimensional convex programs. A constraint qualification is an essential condition
needed to establish strong duality results for a pair of optimization problems. The
usual constraint qualification is a Slater-like condition that requires nonempty
interiority of a certain convex set. Unfortunately, this condition often fails for an
important class of optimization problems arising in applications, see, e,g., [3].

Recently, many authors have proposed new constraint qualifications for optimi-
zation problems in infinite-dimensional vector spaces, see [5]-[7], [2], 15]. Motivated
by the recent constraint qualification proposed by Borwein and Wolkowicz [7], in this
paper we investigate the relationships between various constraint qualifications. By
studying cores and interiors of convex sets, we show that many of the constraint
qualifications are equivalent or can be derived from the constraint qualification pro-
posed by Rockafellar [14]. Furthermore, we show that the Rockafellar constraint
qualification provides a natural mechanism for establishing new constraint
qualifications in various topological environments.

The paper is organized as follows. In 2 we recall the fundamental constraint
qualification proposed by Rockafellar, denoted by (R), and state Robinson’s refinement
of a result of Rockafellar. In 3 we demonstrate that condition (R) is instrumental in
constructing various constraint qualifications and that many seemingly unrelated con-
straint qualifications are in fact related to (R). We also derive new results in the general
setting of Baire spaces and provide examples.

2. A fundamental constraint qualification. Let X and Y be real locally convex
topological vector spaces and A" X- Y be a continuous linear operator. Let f" X-
(-, +c] and g" Y- (-, +] be proper, lower semicontinuous convex functions.
Consider the primal problem:

(P) inf {f(x) + g(Ax)}.
xX

The Fenchel-Roclcafellar duality theory, see Rockafellar [14], associates with (P)
the dual problem"

(O) sup {-g*(y)-f*(-A*y)}
y Y*
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Baltimore, Maryland 21228.
$ This research was supported by Air Force Office of Scientific Research grant 02!8-88 and National

Science Foundation grant ECS-8802239.

925



926 M. SEETHARAMA GOWDA AND MARC TEBOULLE

where A*: Y*- X* is the adjoint of A and X*, Y* are the dual spaces of X and Y,
respectively. We recall that for a given function b :X - (-oe, +oo], the domain is

dom b := {x X: b(x) <}

and the conjugate function is

b*(x*) := sup {(x*, x)- b(x)}, x* e X*.
xdom b

The main issue regarding the pair of problems (P), (D) is the lack of duality gap, i.e.,
the proof of the strong duality relation

(2.1) inf {f(x) + g(Ax)} max {-g*(y*) -f*(-A*y*)}
xX y. y.

which we write, for convenience, as

inf (P) max (D).

This can be obtained provided a certain constraint qualification (CQ for short) is
satisfied. One of the most popular (CQ) is the so-called Slater condition: (see, e.g., 1 ])

(S) 0 int (dom g A domf ).

THEOREM 2.1. Suppose that (S) holds. Then inf (P) max (D).
Unfortunately, in many important applications the Slater condition fails.
A more general constraint qualification was suggested by Rockafellar 14]. Before

stating the condition, we recall the definition of the core of a set. For a set C X, the
core of C is defined by

core C:={c C: VxX ::le>O: h [-e, e], c+hx C}.

In the context of the pair of problems (P), (D), Rockafellar’s (CQ) is

(R) 0 core (dom g A domf).

Robinson’s refinement [13, Cor. 1] of a result of Rockafellar [14, Thm. 18] leads to
the following theorem.

THEOREM 2.2. Let X, Y be Banach spaces and suppose that (R) holds. Then
inf (P) max (D).

We will show below that the core constraint qualification of Rockafellar is the
key for constructing new constraint qualifications and will, as well, explain most of
the classical and more recent constraint qualifications existing in the literature. In
particular, we will show that many seemingly unrelated constraint qualifications are
in fact related to (R) and show how new duality results can be derived from Theorem
2.2.

3. Comparison of constraint qualifications. In this section we present some con-
straint qualifications that can be derived from the Rockafellar condition (R). In the
first part of this section we discuss the case when A is a continuous linear operator
with finite-dimensional range, i.e., A" X Y with Y n. In the second part we give
corresponding results for an operator with infinite-dimensional range.

3.1. A is a linear operator with finite-dimensional range Y = II". We first recall the
following result, see, e.g., Holmes [9].

Throughout this paper we assume that inf (P) is finite.
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PROPOSITION 3.1. Let X be a real topological vector space and let C c X be convex.
Then, int C c core C. Further, int C core C under each of the following conditions:

(a) int C .
(b) X is finite-dimensional.
From Proposition 3.1 it follows immediately that if int (dom g-A domf),

then

0 core (dom g Adomf) <=> 0 int (dom g Adomf).

Recall that for a convex subset C c R" we have:

(3.1) 0 int C :> cone C =R".

where cone C {hx: h -> 0, x C}. Hence,

0 core (dom g A domf) <:> 0 int (dom g A domf)
(3.2)

:> cone (dom g A domf)

It follows that (R) and (S) are equivalent when Y=".
We recall that for a set C in ", y ri C if and only if 0 is an interior point of

C-y relative to the affine hull of (C- y). It turns out that

(3.3) 0 ri C if and only if cone C is a (closed) subspace of

Thus, in view of (3.2), the constraint qualification

(RR) 0 ri (dom g Adomf)

is weaker than (R). However, the following duality result for a Banach space can be
deduced from Theorem 2.2. (The proof is omitted since it is similar to the one given
for Theorem 3.5.) For a standard proof see, e.g., [6] or [12].

THEOREM 3.1. Suppose that X is a locally convex space and Y . If (RR) holds,
then inf (P) max (D).

The remainder of this subsection is devoted to the comparison of constraint
qualifications for linearly constrained convex programs. In a recent work, Borwein and
Wolkowicz [7] introduced a constraint qualification for the linearly constrained convex
program:

(L) inf {f(x): Ax b, x S}

where S is a convex cone in X, i.e., S + S c S and AS S for all A -> 0 and b ". The
feasible set of (L) is

F={xX:Ax=b,xS}

and it is assumed that F . Note that problem (L) is a special case of problem (P)
obtained by replacing f by f+6(’lS) and g by 6(.l{b}), where (.IE) denotes the
indicator function of a given set E. In this setting, the corresponding dual reduces to
the concave finite-dimensional problem

(DE) sup {bry- (f+ (’IS))*(A*y): yR"}.

In what follows, cone E stands for the closure of the cone generated by the set E. The
following result is proved in [7].

THEOREM 3.2. Let X be a normed linear space. If
(aw) cone (F- S) X,

then inf (L) max (DL).
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For problem (L), the constraint qualification (R) reads (by (3.2))"

cone (b A(S))

We show below that (BW) is stronger than (R), i.e., (BW)(R). We assume that
A" X - Nn is onto. This assumption is not really restrictive since we can always assume
that Y is the range of A, and, after a unitary change, write Y Nn. Also, we introduce
another interesting constraint qualification (to be called (BW)’) related to (BW) and
equivalent to (RR). In what follows, the kernel of A is denoted by Ker A.

THEOREM 3.3. Consider the following constraint qualifications:

(BW) cone (F- S) X,

(R) O core (b A(S)),

(RR) 0ri (b-A(S)),

(BW)’ cone (F-S)+ Ker (A) is a closed subspace of X.
Then (BW)=(R):=>(RR)C(BW) ’.

Proof. (BW)=(R): Suppose that (BW) holds. Then,

" A(X) A(cone (F- S))

cone A(F- S)

=cone (b-A(S))c".

So, the closure of the convex set cone (b-A(S)) is ". A simple separation argument
shows that cone (b-A(S))=". Hence 0 core (b-A(S)) by (3.2).

(R)(RR). The proof follows from (3.2) and (3.3).
(RR)(BW)’, From (3.3) we see that cone (b-A(S)) is a (closed) subspace of

". Hence

cone (F- S)+ Ker (A) A-I[A cone (F- S)]

A-’[cone (b-A(S))]

is a closed subspace of X.
(BW)’(RR). If cone(F-S)+Ker(A) is a subspace of X, then

cone (b-A(S)) A[cone (F- S)+ Ker (A)] is a subspace of

In view of the above result, it is clear that Theorem 3.2 is a special case of Theorem
3.1. The following example shows that (R) need not imply (BW) even when X is
finite-dimensional.

Example 3.1. Let X=2, S=[-1, 1]{0}, A:2- such that A(x,y)=x and
b=0 so that F=(0, 0). Clearly (R) holds since 0 core (b-A(S))=int ([-1, 1]) in ,
while cone (F- S) X.

In a recent work, Borwein and Lewis [6], introduced the notion of quasi-relative
interior. As we shall see below, this notion is useful in the verification of (RR).

DEFINITION 3.1 [6]. Let X be a topological vector space. For a convex C c X,
the quasi-relative interior of C (qri C) is the set of those x C for which cone (C -x)
is a subspace.

This notion is studied extensively in [6]. For any set E, in finite dimension, cone E
is a closed subspace if and only if cone E is a subspace; hence the notion of quasi-
relative interior coincides with the relative interior. However, what makes the qri useful
is the following important property.
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PROPOSITION 3.2 [6]. Suppose A:X-.R is a continuous linear map. Then,
A(qri C) ri (AC), and if qri (C) , then A(qri C) ri (AC).

Using the above proposition, we see that when qri S, the constraint
qualification (RR), namely b ri A(S), reads

(BL) x qri (S) such that Ax b.

Thus in view of Theorem 3.1 we have the following theorem.
THEOREM 3.4. Suppose that X is locally convex and qri S . If (BL) holds then

inf (L) max (DL).
We wish to emphasize the importance of this result. The importance lies in the

+fact that in many applications (for example, when S is the nonnegative cone Lp,
1 _-< p < oe), qri S # while ri S .

3.2. A is a linear operator with infinite-dimensional range. We have shown in the
previous subsection that the core condition provides a systematic mechanism for
constructing old and new constraint qualifications. The natural question is now to see
whether similar results can be derived for the general case. Unless otherwise specified,
in the sequel we assume that X and Y are Banach spaces. We recall that for a convex
subset C of an infinite-dimensional vector space X:

0coreC<::>coneC=X and 0intCconeC=X.

When A:X Y with Y Rn, we were able to relax (R) by (RR) using the notion of
relative interior instead of that of interior and core. Following the same methodology,
by introducing the concept of intrinsic core we may establish an appropriate (CQ)
when Y is a Banach space.

DEFINITION 3.2 [9]. The core of C relative to aft C, the affine hull of C, is called
the intrinsic core of C and is written icr C.

When C c X is convex and X is finite-dimensional we have

icr C ri C.

Recall that aft C is x +span (C- x) for any fixed x C, where span (C- x) is the
smallest subspace of X that contains (C- C).

PROPOSITION 3.3. Let C be a convex subset of X. Then,

x icr C :> cone (C x) aft (C x) aft (C C).

Proof By Definition 3.2, we have x icr C => cone (C x) aft (C x). But,
when x C, aff(C-x)=aff((C-x)-(C-x))=aff(C-C). V1

In the finite-dimensional setting, x e ri C if and only if cone (C x) aff (C C)
and further, att (C-C) is closed. Thus, a natural (CQ) in a general setting should
now be:

xicrC and aft(C-C) isaclosedsubspace.

For the problem (P) this general constraint qualification reads:

(GCQ) 0 icr (dom g-A domf) and

aft (dom g-. A domf) is a closed subspace.

From Theorem 2.2, we know that a strong duality result is guaranteed if

0 core (dom g-A domf).
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Since (dom g-A domf) is a convex subset of Y, condition (R) is equivalent to:

cone (dom g A domf) Y.

In the context of problem (P), if 0 core (dom g Adomf), then

0 icr (dom g- A domf) and aft (dom g-A domf) Y (a closed subspace).

Thus, the constraint qualification (R) is stronger than the constraint qualification
(GCQ). However, as we see below, the strong duality result under (GCQ) can be
deduced from Theorem 2.2. In this sense, (GCQ) and (R) are equivalent.

THEOREM 3.5. Let X, Y be Banach spaces and let A X--> Y be a continuous map.
Let f: X --> (-0o, +0o] and let g Y-, (-0o, +0o] be proper, lower semicontinuous convex
functions. Suppose that (GCQ) holds, i.e.,

0 icr (dom g Adomf) and aff (dom g Adomf) is a closed subspace.

Then, inf (P) max (D).
Proof. Let x0 domf such that Axo dom g. Define

F(x) :=f(x+xo) and G(y) := g(y + Axo).

Then, we have dom F domf- Xo, dom G dom g Axo,

F*(x*) =f*(x*)-(x*, Xo), G*(y*) g*(y*)-(y*, Axo),

inf {f(x)+ g(Ax)}= inf {F(x)+ G(Ax)},
xX xX

and

sup {-g*(y*)-f(-*y*)}= sup {-G*(y*)-F*(-A*y*)}.
y* y* y* y*

Further, if in the last equation, sup is attained in the right-hand side, then sup is
attained in the left-hand side. Also,

dom G A(dom F) dom g A(domf).

We see that F(0)=f(xo) and G(0)= g(Axo) are real numbers. Thus, without loss of
generality, we can assume that

(3.4) 0domf and 0domg.

Since (GCQ) holds, by Proposition 3.3,

M := cone (dom g Adomf) ait (dom g Adomf).

It is given that M is a closed subspace of Y. Then ’^-A-I(M) is a Banach space,
domfc X, dom gc M from (3.4). We replace X by X, Y by M in problem (P) and
regard A as a mapping from X- M. For the corresponding pair of transformed
problems (P’), (D’)

(P’) inf {f(x) + g(Ax)}
x

(O’) sup {-g*(y*)-f*(-A*y*)}
y*M*

the condition (R) holds, namely,

0 core (dom g Adomf).
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By Theorem 2.2, we see that inf (P’)= max (D’). To complete the proof it remains to
show that inf (P’) inf (P) and max (D’) max (D). Clearly, since domfc X, it follows
that inf (P’) inf (P),

Let v* M* be such that

max (D’) -g*(v*) -f*(-A*v*).

For any y* Y*, let Fy* denote the restriction of y* to M. It is easily seen that

and

Therefore,

g*(y*) g*(Fy*) (since dom g c M)

f*(A*(Fy*)) =f*(A*y*) (sinceA c M).

sup {-g*(y*)-f*(-A*y*)}= sup {-g*(Fy*)-f*(-A*(Fy*))}
y* y* y* y*

sup {-g*(w*)-f*(-A*w*)}.
w*F(Y*)

By the Hahn-Banach extension theorem, F(Y*)- M* and hence

sup (D)= sup {-g*(w*)-f*(-A*w*)}=sup (D’)--g*(v*)-f*(-A*v*).
w*M*

But it is clear that sup (D) is attained by any continuous linear extension of v* to Y.
Hence the above equality gives max (D)= max (D’).

A proof of the above result for the special case, X Y and A Identity, appears
in Attouch and Brezis [2]. The proof there is based on the Banach-Dieudonne-Krein-
Smulian theorem [8, Thm. V.5.7]. Based on this special case, using the notion of strong
quasi-relative interior (see Definition 3.3 below), Borwein et al. [5] prove Theorem
3.5. Using a completely different approach, Zalinescu 15, Cor. 4] shows that the above
theorem ofAttouch and Brezis is valid when X and Y are Fr6chet spaces. It is important
to note that, by modifying the argument of [5, Thm. 3.1], Theorem 3.5 will remain valid
when X and Y are Frdchet spaces. At this juncture, we wish to mention an earlier work
with applications to perturbational duality by Borwein [4]. We thank one ofthe referee’s
for bringing this reference to our attention.

In [5], the notion of strong quasi-relative interior is introduced as a natural
extension of the quasi-relative interior.

DEFINITION 3.3. For a Convex subset C c X, the strong quasi-relative interior of
C is the set of those x C for which cone (C- x) is a closed subspace.

When X is finite-dimensional we have

sqri C ri C qri C icr C.

In the context of problem (P), the following (CQ) is proposed in [5]"

0 sqri (dom g- A domf).

As the following proposition shows, the above constraint qualification given in terms
of the strong quasi-relative interior is equivalent to the constraint qualification (GCQ).

PROPOSITION 3.4.

{ xicr (C) }. :> x sqri C.
aft C- x) is a closed subspace
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Proof If x icr C and aft (C- x) is a closed subspace, then by Proposition 3.3
cone (C-x) aft (C- x) is a closed subspace, and hence x sqri C from Definition
3.3. On the other hand, if x sqri C, then cone (C-x) is a closed subspace. But, in
this situation, cone (C x) c aft (C x) and aft (C x) c cone (C x). Hence aft (C
x) cone (C- x) and thus x icr C by Proposition 3.3. [3

The name strong quasi-relative interior (sqri) has been introduced as a natural
generalization of the quasi-relative interior. However, our results below demonstrate
that in fact the strong quasi-relative interior is "closer" to the relative interior. Recall
that for a set C in a topological space X, y ri C if and only if 0 is an interior point
of C-y relative to the closure of the affine hull of C-y, see 11].

We prove the following results in the general setting of Baire spaces. Recall that
X is a Baire space if it is locally convex and the intersection of every countable
collection of dense open subsets of X is dense in X. Every closed subspace of such a
space is Baire and such a space is barrelled, i.e., each absorbing, convex, circled, and
closed subset of X is a neighborhood of the origin. Examples of Baire spaces are
Fr6chet spaces and Banach spaces (see [10]).

THEOREM 3.6. Let X be a Baire space and C be a closed convex set in X. Then

sqri C ri C.

Proof If sqri C , then there is nothing to prove. Let sqri C so that Y :=
cone (C-) is a closed subspace of X. Let K := C-. Note that 0 K and K is
absorbing in Y. Let B (3111 hK be the balanced core of K (see [10, p. 80]). We
note that

(i) 0’ B K,
(ii) B is balanced, dosed convex in Y,
(iii) B is absorbing in Y.
Statement (i) follows immediately from the definition of B and (ii) follows since

each hK is closed and convex. To see (iii), let y Y. Since K is absorbing we can find
/z > 0 such that +/zy K. Then from the convexity of K it follows that for every IAI -> 1,
tzy/A K, and so/zy B.

Since X is Baire, Y is also Baire and hence barrelled. B, being an absorbing,
balanced, closed, and convex set in Y, is a neighborhood of 0 in Y, and hence

0 int v B int v K int v C )

where intv denotes the interior relative to Y. Therefore ri C and the proof is
complete.

We remark that the above result may not hold for barrelled spaces since a closed
subspace of a barrelled space need not be barrelled.

COROLLARY 3.1. Let E be a convex set in X where X is a Baire space. Then

sqri E ri E.

Proof.
sqri E :=> cone (E :) =: Y is a closed subspace

cone (E-) Y (closure with respect to X)

cone (E ) Y

= ; sqri E c ri E.

Since E is closed convex in X, the last inclusion follows from the previous
theorem. [3
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We have seen, as a consequence of Proposition 3.4, that the constraint qualification
expressed in terms of the strong quasi-relative interior is equivalent to (GCQ). The
above corollary suggests looking at the following weaker condition to guarantee the
strong duality result:

(3.5) 0 ri (dom g- A domf).
The following examples demonstrate that

(i) equality may not hold in Corollary 3.1, and
(ii) the strong duality result may not hold under (3.5).
Example 3.2. Let X be an infinite-dimensional Banach space. Let 4" X be a

noncontinuous linear functional so that S := Ker 4 is a dense subspace of X. For any
e X\S, we see that

X=S+e and Se={0}.
Let E := S+[0, 1]e where [0, 1]={h" 0_-<h_-< 1}. Clearly, E S=X and hence E =X,
so that ri E ri X int X X contains 0.

To get a contradiction, suppose that 0 sqri E. Then 0 icr E, i.e., 0 core E relative
to aft E. Now -e aft E and hence there exists h > 0 such that

-heE=S+[O, 1]e.

Thus, -he s +/e for some s S and [0, 1 ]. This implies that e S, a contradiction.
Thus 0 ri E while 0 sqri E. We note that aft E X is closed while 0 icr E.

Example 3.3. As in [11, p. 77] we consider the following setting"

2X=12 x=(xl, ,xn," ,)" Xn,2Xn<O

C {X /2:X2n-1 -- X2n --0, Vn 1, 2, ,},
S {X /2: X2n "47 X2n+l -"0, Vn 1, 2, ,}.

Clearly, C and S are closed subspaces of X and C S {0}. Define f and g on X
by f(x)= 6(x] C) and g(x)= xl if x S and oo otherwise. It is easily seen that f and
g are convex and lower semicontinuous on X with domf C and dom g S. We now
compute the conjugates of f and g. Since C is a subspace it is easy to see that

f*(x*)-6(x*lC’)
where C +/- is the orthogonal complement of C. Also we have,

g*(x*) sup {(x, x*)- x}
xGS

=sup(x*-e,x) (where e=(1,0,...))
xS

--{0eo ifx*-el6S+/-
if x*- el S+/-

=6(x*le+S’).
We claim that the following are true:
(i) 0 ri (dom g-domf),
(ii) 0 sqri (dom g-domf),
(iii) infxx {f(x) + g(x)} 0,
(iv) supx*x, {-g*(x*)-/*(-x*)} =-.
It follows from these that the strong duality result fails to hold under the weaker

constraint qualification

0 ri (dom g-domf).
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To see (i), we show that (dora g domf) S- C is dense in X. To this end, let x (xn)
be orthogonal to S-C. Since e2n-1-e2n C and e2,,- e,,+ S for all n 1, 2,. .,
we see that Xz,,_-x2,, =0 and x,,-x2,,/l =0 for all n. Since x 12 we must have x=0
so that $- C is dense in X.

Statement (ii) follows immediately from the observation that

aft (dom g-domf) S- C is not closed.

Note however that 0 icr (dom g-domf).
Now infxx {f(x) + g(x)} infxdomgC3domf=f(O) + g(0) 0 gives (iii). We now

show that

(3.6)

so that

dom g* f’) domf*

sup {-g(x*) f*(-x*)} sup {-g(x*) f*(-x*)} -x*X* x*dora g* CI domf*

giving (iv). To see (3.6), suppose that

(x,) x dom g* fq domf* (el + S+/-) C +/-.

Then, as in the proof of (i), we get x._ x2, 0 and x2n x,+ 0 for all n 1, 2, .
Hence, x 0. But then 0 el + S+/- implies -el S+/-, which is false since e S.

Our last result resembles Proposition 3.2 and partially addresses the question of
verifying (GCQ).

PROPOSITION 3.5. Let X be a locally convex topological vector space and let Y be
a Baire space. Let A: X - Y be a continuous linear operator and C be a convex set in X.
Then

sqri A(C) c A(qri C)

whenever qri C # .
Proof. From Corollary 3.1 we have

sqri A(C) c ri A(C).

Let Xl qri C and y ri A(C). Since y and Ax belong to A(C), we have for some
e > O, e(y AXl) A(C) y, i.e,,

y e(Axl y) A( C).

Let V be any convex, balanced neighborhood of 0. Then there exists u e V such that

y e(Axl y) + u Ax for some x2 e C

and thus

u Ax2 + eAXly+
l+e l+e

from which it follows that

U
A(qri C)Y+l+e

since (xz + ex)/(1 + e) qri C by [6, Lemma 2.9]. Now

u/( 1 + e

implying that y
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SOLUTION AND CONTROL OF A BILINEAR
STOCHASTIC DELAY EQUATION*
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Abstract. A bilinear stochastic delay equation with delay in the coefficients of the noise is considered.
When the equation is rewritten in abstract form in Hilbert spaces, the coefficients of the noise are unbounded
operators. A direct solution of the abstract equation is presented, under a general assumption which allows
unification of this class of delay equations with a class of parabolic equations. Finally, the linear quadratic
regulator problem governed by this equation is studied by a direct solution of the associated Riccati equation.
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1. Introduction. Consider the following linear stochastic functional differential
equation:

(1.1) x(t)= yO+ F(xs) ds+ E FJ(xs) dwJ(s)+ Bu(s) ds,
j=l

t[0, T], xo=y 1.

Here x(t) is a Rd-valued stochastic process, r is a fixed positive real number,
xt: I-r, 0]-> Rd denotes the function xt(s)=x(t+s), w-(wl, w") is a standard
m-dimensional Brownian motion on a complete probability space (I),F,P),
F, F1, F are bounded linear operators from C([-r, 0]; Rd) into R d, u(t) is a
Rk-valued stochastic process (the control function), B Rkd, and finally (yO, yl) y,
where Y is the Hilbert space R d x LE(-r, 0; Rd).

Our final purpose is to study an optimal control problem for (1.1). To this end it
is convenient to rewrite the concrete delay equation as an abstract stochastic equation
in the Hilbert space Y of the form

y(t) S(t)y + E S(t- s)DJy(s) dw(s) + S(t- s)Bu(s) as
j=l

(the strongly continuous semigroup S(t) in Y, and the operators D and B, will be
defined in 2.1). An important feature of (1.2) is the unboundedness of the operators
Dg (corresponding to Fg).

Let us first consider the problem of the well-posedness of (1.2) and related closed
loop equations. Although a solution of (1.2) is y( t) (x( t), xt), where x(t) is the
solution of the concrete equation (1.1) (this approach is briefly discussed in 2), it is
of interest to directly consider (1.2) from an abstract point of view, and to see if it is
possible to identify some general assumptions, possibly common to other problems,
which are sufficient to study this equation directly. Note that classical results (see for
instance [I.1]) cannot be applied, because of the unboundedness of the operators D.

A partially analogous problem was studied by Da Prato [D.1] (see also [D.2] and
[D-I.1]) in the context of stochastic partial differential equations of parabolic type. In
[D.1], S(t) is generated by a second-order elliptic operator (in the typical situation),

* Received by the editors January 18, 1989; accepted for publication (in revised form) October 12, 1989.

" Dipartimento di Matematica, Universita’ di Torino, Via Principe Amedeo 8, 10123 Torino, Italy.
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and the operators D correspond to first-order differential operators. Hence D are
unbounded operators, as in the present paper. Besides this formal similarity, it is
possible to identify a basic property which is common to these two problems. In the
case studied by [D.1], under a natural coercivity assumption, there exists a constant
c (0, 1) such that

IDS(t)yl dt <= clyl
j=l

for every y Y, where I" denotes the norm in Y. Although the solution method of
[D.1] is not based on this property but on a similar result for stochastic convolution
integrals, we can show that this inequality is in fact sufficient to solve (1.2), in the case
of [D.1]. The remarkable fact is that a similar inequality can be proved for problem
(1.1). More precisely, if we use the natural norm of Y we cannot have c < 1 in general
(unless artificial assumptions on F, ., F are imposed), but for every c’ (0, 1) we
can find an equivalent norm in Y, denoted by l’ I (see 2.2) such that

IDES( t)y[ 2 dt < c’ / ’c" )[y[
j=l

for every z [0, T] and y Y, and for some constant c"> 0. This inequality allows us
to unify the two problems and solve (1.2) directly (see 3).

Finally, in 4 we study an optimal control problem over finite time horizon, with
quadratic cost functional, for (1.1) (or (1.2)). The solution of this problem is based
on the following Riccati equation, written in mild form with inner products"

(P(t)x, y) (PTS( T- t)x, S( T- t)y) + (P(s)DS(s- t)x, DS(s- t)y) ds

(1.3) (C(s)S(s- t)x, C(s)S(s- t)y)zds

T

(N(s)-’B*P(s)S(s- t)x, B*P(s)S(s- t)y) ds

for every x, y Y, Here and in the sequel (.,.) denotes the inner product in Y, while
the other inner products are explicitly indicated; moreover, the operators
PT, C(s), N(s), and the space Z are introduced in 4.

In the direct solution of the Riccati equation (1.3) we also meet the problem of
the unboundedness of Dj. Moreover, the Riccati equation, unlike (1.2), explicitly
depends on the norm chosen a priori in Y, via the cost functional. However, by a
simple linear transformation it is possible to rewrite (1.3) (as well as the cost functional)
with respect to the inner product (., ). Thus we can use the basic inequality mentioned
above to study (1.3) directly by a standard contraction principle. For the parabolic
problem of [D.2] a direct solution of (1.3) is presented in [D-I.1]. Finally, in 4.4 we
solve the synthesis of the associated optimal control problem.

1.1. Notation. We denote the norm and inner product in Y by l’[ and (.,.),
respectively, and the norm and inner product in R by [[. and (., )n, the corresponding
value of n (in the case of the norm) being clear by the context. Other norms and inner
products will be explicitly indicated.
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Given a separable Hilbert space X, we denote by Mw(0, T; X) the space of all
processes in L2(0, T; L2(II; X)) adapted to w(t), and by Cw(O, T; X) the subspace of
processes in C([0, T]; L(I-I; X)). Moreover, we denote by (X) the space of all
bounded self-adjoint operators in X, and by +(X) the subspace of those that are
nonnegative definite.

Given two Banach spaces X and Y, we denote by L(X, Y) the space of all bounded
linear operators from X to Y, and we set L(X)= L(X, X). If A is a linear operator
from X to Y, rrot necessarily bounded, we denote by @(A) its domain. Moreover we
denote by B(0, T; L(X, Y)) the Banach space of all P(. ):[0, T]-> L(X, Y) which are
strongly measurable and uniformly bounded over [0, T], i.e., such that
SUpo-t T[P( t)[/(x, y) <.

2. Properties of the stochastic delay equation (1.1).
2.1. Abstract formulation of the stochastic delay equation. This introductory section

is devoted to a brief discussion of the concrete equation (1.1) and to its reformulation
in the abstract form (1.2). The results are standard, or can be proved by standard
arguments, so we will only sketch the proofs.

We recall that the operators F in (1.1) are assumed to be bounded and linear
from C([-r, 0]; Rd) into Rd. Although F are only defined on continuous functions,
the quantities F(x,) still make sense as functions of with values in Rd, for every
x(.) in L2(-r, T; Rd). Indeed we have the following lemma.

LEMMA 2.1. If x(.)L2(-r, T; Rd) and F is a bounded linear operator from
C([-r, 0]; Rd) into Rd, then the function t F(xt) belongs to L2(O, T; Rd), and there
exists a constant c > 0 (independent of x(. )) such that

(2.1) I T

]IF(x,)II 2 dt<= c Ilx(t)ll = dt.

The standard proof is based on the representation of F(f) in the form F(f)=
_

drt(s)f(s), where r/(.) is a d x d matrix of functions of bounded variation (cf.
[D-S.1, p. 240]): inequality (2.1) is first proved for x C([-r, T]; Rd), by Fubini’s
theorem; thus (2.1) along with the density of C([-r, T]; Rd) into L2(-r, T; Rd)
provides the definition of t-+ F(x,) when x L(-r, T; Rd), and (2.1) holds true also
for this larger class.

Using the previous lemma, along with a standard application of Doob’s inequality
and contraction principle (or successive approximations), we easily obtain the following
result (see for instance [M.1]).

THEOREM 2.2. Let u Mw(O, T; R k) and (yO, yl) y. Then there exists a unique
continuous stochastic process x LE(EI; C([0, T]; Rd )), adapted to w( t), satisfying (1.1).
Moreover, there exists a positive constant c independent of u, yO, and yl, such that

(2.2) E sup I[x(t)ll2<=cl(y,y’)12+cE Ilu(s)ll=ds.
O<--_t<_T

We now reformulate (1.1) in the abstract form (1.2). Define the Y-valued process
y(t) as

y(t)=(X(t),X,)
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where x(t) is the solution of (1.1). Moreover, define the linear operators A (A) c y-
Y, DJ: (D)c Y- Y, and B:Rk Y as follows:

9(3) {(yO, yl) y: yl nl(_r, 0; gd), yl(0) yO},

A(y,.y) (F(yl), dyl/dt);

(D)= Rd x C([-r, O]; Rd), D(y, y)=(F(y), O), j= l, m;

Bu (Bu, 0) for every u R k.

It is well known that A generates a strongly continuous semigroup in Y (cf. [D-M.1]),
denoted here by S(t).

THEOREM 2.3. y(" is a continuous adapted Y-valued stochastic process belonging
to L2(; C([0, T]; Y)), and satisfying the mild equation (1.2), with y (yO, yl).

Proo The proof that y(. is a continuous adapted Y-valued process is standard;
we only explicitly note that the second component of y is a continuous L(-r, 0; Rd)
valued process, because almost surely x L2(-r, T; Rd), whence

Ilim x + s) x to + s)ll ds 0 a.s.,
tto

for every to [0, T]. Moreover, x. L(; C([O, T]; L(-r, O; Ra))) because

[Ix,(s)ll = dsN IIx(s)ll 2 as,

(x. is a C([0, T]; L2(-r, 0; Rd))-valued random variable since the Borel -field of this
space is generated by the evaluations.)

Let us now show that y(.) satisfies (1.2). Recall that S(t)y (x*(t), x), where
x*(t) is the unique solution of the homogeneous equation

(2.3) x*(t) yO + F(x) ds, e [0, T], x yl.

If U(t) denotes the fundamental solution associated to this problem, i.e., the
Rdd-valued function satisfying

U( t) I + F( U,) ds, Uo=0

(I is the identity in Rd), then S(t)(y,O)=(U(t)y, U,y). With this notation let us
define the process g(t) as

(2.4) E(t)= x*(t)+ Z U(t-s)FJ(x,) dwJ(s)+ g(t-s)Bu(s) ds,
j=l

t[0, T], Xo=y.
Clearly (.) Cw(O, T; Rd) (while the sample continuity of if(t) is less obvious a
priori). From (2.4) it follows

(2.5) , x* + U,_F(x,) dwJ(s)+ U,_,Bu(s) ds.
j=l

f’+ U(t +Indeed, for v[-r, 0], the integral o U(t+v-s)FJ(x) dwJ(s) is equal to o
v-s)F(x) dwJ(s) if t+vO, and to 0 if t+v<0, because U(t+v-s)=O for s
It + v, t]; a similar identity holds for the last integral in (2.4), so that (2.5) is proved.
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If we prove that y( t) (( t), 2,), then we obtain that y(. satisfies (1.2), by virtue of
(2.4) and (2.5). Thus we have to prove that almost surely x (in the sense of functions
of L(-r, T; Rd)). We have

F(X) as F(x*) ds+ E F U_oFJ(x) dwJ(v) as
j=l

fo (Io )+ F U_,Bu(v) dv ds

x,( _yO+ O(u_l asF(x

+ F(U_) s Bu(v) dv

x*(-+ 2 (U(-v-(x
j=l

+ (u(t-v-)u(v) v.

We have used a stochastic version of the Fubini theorem (cf. [I.2]), and the definition
of U(t). From this identity we have

2(t) =y+ F(2.,) ds+ E FJ(x) dwJ(s)+ Bu(s) ds,
j=l

where in particular we see that 2(t) is a continuous process. Therefore the process
z(t) 2(t)-x(t) is a continuous process satisfying almost surely the homogeneous
equation

z(t) F(z) ds, e [0, r], Zo 0.

Since the solution of this equation is unique, we have z 0. The proof is complete.
Remark. The operators D are unbounded in and y(t) does not belong to

(Dj) in general. However, DJy(t) is well defined by Lemma 2.1. Similarly, DJS(t)y
is well defined as a function in L(0, T; Y) for every y e because DJS(t)y
(FJ(x), 0), where x*(t) is the solution of equation (2.3) corresponding to y.

2.2. A basic inequality. In this subsection we prove an inequality for D and S(t)
which allows us to treat directly the abstract equation (1.2). The direct solution of
(1.2) is studied in 3.

Let us define a new norm in Y by setting

(2.6) [(y,yl)=lly[+A Ily(s)ll ds

for every (yO, y) where A is a positive real number. Clearly [. is equivalent to
], and it is induced by an inner product. We have the following remarkable propey.
LEMMA 2.4. Let D and S( t) be defined as in 2.1. en, for every c’ (0, 1), there

exist A > 0 and c"> 0 such that

rl
C’ C"(2.7) [DS( t)yl dt + T )lyl

o

for every T1 [0, T], and y
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Proof Let x*(t) be the solution of (2.3) corresponding to a fixed y in Y. By
definition of D we have

r’
IDS(t)yl dt= for’ [IF(xt*)[I 2 dt

c fSi Ilx*(t)ll= dt (by Lemma2.1)

_-<c Ily’(t)ll = dt+ T, sup Ilx*(t)ll =
OtT

c [lyl(t)ll - dt + cTly[

(the last inequality is a particular case of (2.2)). Here c denotes a generic positive
constant. Thus

(mc/, =)lyl / mcTllyl2,

for A >= 1. Therefore, given c’ (0, 1), it is sufficient to choose , such that mc!,2= c’
(with A _-> 1) and c"= mc.

3. Direct solution of the abstract equation (1.2). In this section we show that it is
possible to solve directly equation (1.2) in an abstract framework, using some functional
analytic properties which hold true for the delay equation (1.1) as well as for the
parabolic problem studied in [D.1].

We will assume the following abstract hypotheses:

(A1) Y is a separable Hilbert space; A: (A)c Y Y is the infinitesimal gen-
erator of a strongly continuous semigroup S(t) in Y; D :(D)c Y Y
are linear operators, for j 1,..., m;

(A2) there exists a separable Hilbert space V, continuously and densely embedded
in Y, with Vc @(D) and DeL(V, Y) for all j= 1,..., m, such that
S(t)Vc V for all t->0 and the restriction of $(t) to V is still strongly
continuous;

(A3) there exist two constants c’ (0, 1) and c">0 such that

(3.1) E IDES( t)y[ 2 at <= (c’+ c")lyl=
j=l

for every y V and [0, T].

Under these assumptions we study the equation

(3.2) y(t)=S(t)y+ E .S(t-s)DJy(s) dwJ(s)+ S(t-s)f(s) ds
j=l

with ye Y and fe M2w(0, T; Y) (additional terms of the form o.S(t-s)fi(s) dwJ(s),
with fJe Mw(0, T; Y), can be considered as well).

Remark 1. Taking V (A), we see that assumptions (A1)-(A3) are satisfied by
the delay equation (1.1). In particular, the constant c’ in (3.1) is even at our choice
(see Lemma 2.4).
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Remark 2. In the problem studied by [D.1], we can choose V (A) or V equal
to the domain of (-A) 1/2, the fractional power of (-A) with exponent 1/2. In this
case c’ is not at our choice, but c"= 0.

Remark 3. In the parabolic case, S(t)y belongs to V for every > 0 and y Y.
This property is no longer true for the delay equation (1.1) (at least for small t).

Since we expect to find solutions of (3.2) in Cw(O, T; Y), the problem of the
meaning ofthe terms DJy( arises. According to Remark 3, and taking V @((-A)
this problem is overcome in the case of parabolic systems, since we look for solutions
in 2Mw(O, T; V). In general we cannot follow this procedure, so that we have to give
a special meaning to Dy( ).

Let us introduce the following classes of processes.
DEFNrnON 3.1. Let be the class of all y(. Cw(O, T; Y) that can be represen-

ted in the form

(3.3) y(t)= S(t)y+j S(t-s)fJ(s) dwJ(s)+ S(t-s)f(s) ds

2forsomey6 y,fo, ,f,, Mw(O, T; Y). Similarly, giveny Yandf M(O, T; Y),
let Cb(y,f) be the class of all y(. ) Cw(O, T; Y) that can be represented in the form
(3.3) for some fl, f in 2

"’’, Mw(O, T; Y).
To be unambiguous, this definition requires the following result.
LEMMA 3.1. Ify(" Cb, then the representation (3.3) is unique (thus the same result

holds true in (y, fo)).
Proof. It is sufficient to prove the lemma in the case y(. )= 0. Since y y(0), we

readily have y =0. Compute joy(S) ds and apply the stochastic Fubini theorem (cf.
[1.2]) to the stochastic integrals of (3.3), and the classical Fubini theorem to the last
integral. We obtain

fO { JlfO fO’ }y(s) ds=A-1 y(t)-y-.= f(s) dw(s) f(s) ds

where --1 of(s) dwJ(s) =-Iof(s) ds for every t [0, T]. Since the right-hand side
of the last identity is a process of bounded variation, and the left-hand side is a
martingale with quadratic variation equal to --110 If(s)l ds, it follows thatf
f" 0. Therefore, also fo 0.

The following lemma allows us to give a meaning to DJy( when y .
LEMMA 3.2. (i) For every f L2(0, T; V) and r [0, T] we have

mforfot
2

fO(3.4) E Dk S(t-s)f(s) ds dt<-_r(c’+c"r) If(s)lads.
k=l

(ii) For every fl,. ,f,e Mw(O, T; V) and r [0, T] we have

Io l f/(3.5) E E Dk S(t-s)f(s) dw(s) dt<-_(c’+c"r) Y E If(s)l ds.
k=l j=l j=l

In (3.4) (respectively, (3.5)), toS(t-s)f(s) ds (respectively, fto S(t-s)f(s dw(s)) is
understood as the V-valued integral of a function in L2(0, T; V) (respectively, a process
in Mw(O, T; V)), well defined because V is a Hilbert space.

Proof As to (3.4) we have

io foDk S(t-s)f(s) ds dt DkS(t -s)f(s) ds dt
k=l k=l

<-- , " IDkS(t s)f(s)[ as at
=1
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IDS(t s)f(s)l dt ds;
=1

therefore (3.4) follows from assumption (A3). Since

E DkS(t- s)fJ(s) dwJ(s)
j=l

Y E IDkS(t-s)fJ(s)l 2 ds,
j=l

inequality (3.5) can be proved as (3.4).
DEFINITION 3.2. If y(" )6 (or y(. ) (y,fO)) is represented in the form (3.3),

then Dky(), k 1 m, denote the processes in 2
,’’’, Mw(O, T; Y) defined as

Dky(t) DkS(t)y+j.= Dk S(t-s)fJ(s) dwJ(s)+ Dk S(t-s)f(s) ds

where the terms on the right-hand side are defined by continuity (as elements of
Mw(0, T; Y)) in virtue of (3.1) and Lemma 3.2 (since V and 2Mw(O, T; V) are dense
in Y and 2Mw(O, T; Y), respectively).

We can now state the main theorem of this section.
THEOREM 3.3. Let y Y andf M2w(O, T; Y). Then there exists a unique solution

y(.) of (3.4) in the space (y,f). In particular, y(.)6 Cw(O, T; Y), and DJy( .)
2Mw(O, T; Y) for every j 1,. ., m.

Proof Consider the system of equations

(3.6) zk(t)=DkS(t)y+ , Dk S(t-s)zJ(s) dwJ(s)+Dk S(t-s)f(s) ds,
j=l

Let us first show that this system is equivalent to (3.2) via the transformations"

(3.7) zk(t)= Dky(t), k= l, m,

(3.8) y(t)= S(t)y+jZ S(t-s)zJ(s) dwJ(s)+ S(t-s)f(s) ds.

Precisely, if y(. is a solution of (3.2) in (y,f), then by definition of Dky( we see
that (zl( ),. ., z’(. )) defined by (3.7) belongs to [M2w(0, T; Y)]" and satisfies system
(3.6). Conversely, if (z( ),..., z"( )) is a solution of (3.6) in [Mw(0,2 T; Y)]’, and
y(t) is defined by (3.8), then y(.)6(y,f) and Dky(t) coincides with zk(t) for every
k= 1,. ., m, by definition. Then substituting zJ(s) with DJy(s) into (3.8), we see that
y(t) satisfies (3.2). Hence the theorem is proved if system (3.6) has a unique solution
in [M2w(0, T; y)]m. But the existence and uniqueness of a local solution of (3.6) can
be easily proved by means of inequality (3.5) and the contraction principle in

2Mw(O, T; Y)] for sufficiently small T1. Moreover, the contraction argument can
be repeated over intervals of constant length, yielding the global solution. [3

Remark. The abstract assumptions of this section do not seem to imply the sample
continuity of the solution y(t) of (3.2), in contrast to the concrete approach of 2.

Using the bound (3.4), along with (3.5), it is also easy to study "closed loop"
equations of the form

(3.9) y(t)= S(t)y+ Z S(t-s)DJy(s) dwJ(s)+ S(t-s)G(s)y(s) ds
j=l
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where G e B(0, T; L(Y)). The same proof as in Theorem 3.3 yields existence and
uniqueness of a solution of (3.9) in .

4. Riccati equation and optimal control.
4.1. Statement of the optimal control problem. Let Z be a Hilbert space (the

observation space), and C(t):Rd x C([-r, 0]; Rd)- Z be a linear operator of the form
C(t)(yO, yl) CO(t)yO+ Cl(t)F(yl), where C, C B(0, T; L(Rd; Z)) and F is a
bounded linear operator from C([-r, 0]; Rd) into R d. Let PTeE+(Y) and N
B(0, T;+(Rk)) such that N(t)v for every t[0, T] and for some constant v>0.

Given y e Y, we consider the problem of minimizing

(4.1) J(u)=E {[C(t)y(t)12z+llN(t)I/2u(t)ll2) dt+Elp2y(T)l

k),over all u Mw(0, T; R where y(t) is the solution of (1.2) given by Theorems 2.3
or 3.3. The process t- C(t)y(t) is understood as an element of M2(0, T; Z), similarly
to the processes Dky(t) considered in the previous sections.

In the solution of problem (4.1) the central role is played by the Riccati equation
(1.3). In 4.3 we prove the existence of a unique solution P of (1.3) in B(0, T; /(Y))
using inequality (2.7). The synthesis of problem (4.1) is solved in 4.4. The next section
is devoted to a preliminary formula which unifies several formulas and equations
appearing in the dynamic programming, and will be used in subsequent sections.

4.2. A general identity for the Riccati operator. Denote by the class of linear
operators G" Rd C([-r, 0]; Rd)- Rd of the form G(y, y) (F(y), 0), where F is
a bounded linear operator from C([-r, 0]; R a) into R d. Note that D for every
j=l,...,m.

Given toe [0, T), x, y Y, u, v M2w(to, T; Rk), and G1, G", H, Hm, consider the following equations on [to, T]’

(4.2.i) x(t)= S(t- to)X+ , S(t-s)GJx(s) dwJ(s)+ S(t-s)Bu(s) ds,

(4.2.ii) y(t)=S(t-to)y+Y’. S(t-s)HJy(s) dw(s)+ S(t-s)Bv(s) ds.
tO

It is clear that the results of 2 and 3 continue to hold over the interval to, T] instead
of [0, T]. Thus equations (4.2) have the solutions given by Theorems 2.3 or 3.3.

PROPOSITION 4.1. Let P B(0, T; 5(y)) be a solution of the Riccati equation (1.3),
and let x( t) and y( t) be the solutions of equations (4.2.i) and (4.2.ii), respectively. Then

(4.3)
(P( to)X, y)

E(PTX(T), y(T))

+ E E {(P(s)DJx(s), DJy(s))-(P(s)GJx(s), H)y(s))} ds
j=l

T

+ E {(C(s)x(s), C(s)y(s))z +{N(s)u(s), v(s))} ds
to

(N(s)-’(B*P(s)x(s)+ N(s)u(s)), B*P(s)y(s)+ N(s)v(s)) ds.
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Proof Let A. nA(n A)- L(Y) be the Yosida approximations of A, defined
for sufficiently large n N (cf. [Y.1]). Let S.(t) be the (uniformly continuous) semi-
group generated by A.. We,will use the fact that S.(t)y converges to S(t)y as n-c
for every y Y, uniformly on [0, T]. Define P., P..k B(O, T; (Y)) by means of the
identities"

Pn( t)Y S( T- t)*PrS( T- t)y

+
d
7S(s-t)*l O*P(s)D+ C.(s)*C.(s)

j=l

-P(s)BN(s)-BP(s)} S(s- t)y ds,

(4.4)
Pn,k( t)Y = Sk( T- t)*PS( T- t)y

+ Sk(S- t)* D*P(s)D + C.(s)*C.(s)
j=l

-P(s)BN(s)-aBP(s)} S(s- t)y ds,

t[0, T], y Y, where D=Dn(n-A)- and C.(t)=C(t)n(n-A) -.
From the convergence results proved in the Appendix we have lim. (P.(t)x, y)

(P(t)x, y) for every x, y Y and e [0, T]. Moreover, from the convergence propey
of Sk(t), we have limk(P.,k(t)x,y)=(P.(t)x,y) for every nN, x,y Y, and t
[0, T]. Let us also approximate x(t) and y(t) by the solutions x.(t) and y.(t) of
equations (2.4.i, ii) with G and H in place of G and Hj, where G GJn(n- A)-and H HJn(n-A) -. Moreover let X.,k(t) be the unique solution of the equation

x,(t)=S(t-to)x+ 2 S(t-s)G{x,(s) dw(s)+ S(t-s)Bu(s) ds,
j

and let y,(t) be similarly defined.
Since the operators in (4.4) are bounded, we can differentiate (4.4). After some

computations we have

+{ D*P(t)D+C.(t)*C.(t)-P(t)BN(t)-B*P(t)}Y =0j=l

for every [0, T] and y 6 Applying the Ito formula (cf. [1.2]) to (P.,k(t)X.,k(t),
Y.,k(t)) over [to, T], after some manipulations we obtain

Px., T) y., T)

=(e.(ox,y+ 2 (({*e,.(sa{-{*e(s{x.(s,y.(s as

{(C(sx.(s, C,(s.(s +(N(su(s, v(st s
o

+ {((s-*e(sx.(s, *e(sy.(s, +(u(sl,
o

+(*e.(sx.(s. v(sl +((su(s. v(st s.
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Since limk_ sUP ,o__< __< r ElX.,k(t) X.(t)[ 2 0 for every n N (this result is classical
because the operators in the equations for X.,k and x. are bounded; see [I.2]), and the
same result holds true for Y.,k and y., we can first take the limit as k in the last
identity. Then we can take the limit as n c, using the convergence results proved in
the Appendix. By these limit procedures we obtain the desired result. U

We conclude this section by proving a partial converse of Proposition 4.1. Consider
equations (4.2) with u= v=0, and Gj= H= Dj. Denote by x(t, to; x) the solution
of (4.2.i). Since x(t, to; x)=x(t-to; 0; x), we simply denote it by x(t-to; x). The
process y(t-to; y) is similarly defined. To summarize, we have

(4.5.i) x(t-to;x)=S(t-to)X+ S(t-s)DJx(s-to’,x)dwJ(s),
j= to

(4.5.ii) y(t-to; y)=S(t-to)y+ 2 S(t-s)Dy(s-to; y) dw(s)
j=

PROPOSITION 4.2. P B(O, T; (Y)) is a solution of the Riccati equation (1.3) if
and only if it is a solution of the equation

(4.6)

(P(t)x, y)= E(PTx( T-t; x), y( T- t; y))

+ E (C(s)x(s- t; x), C(s)y(s- t; y))zds

E (N(s)-lB*P(s)x(s- t; x), B*P(s)y(s t; Y))k as

for every [0, T] and x, y Y, where x( t; x) and y( t; y) are defined by equations (4.5).
Proof It is sufficient to prove that (4.6) implies (1.3). Let P(t) be a solution of

(4.6), and let Pn(t) be the unique solution in B(0, T; E(Y)) of the linear equation

"I T

(P,(t)x,y)=(PTS(T-t)x,S(T-t)y)+ E (P,(s)DS(s-t)x,DS(s-t)y)ds
j=l

(4.7)
+ ({C(s)*C(s)- P(s)BN(s)-B*P(s)}S(s t)x, S(s- )y) ds

x, y Y, [0, T]. Here the operators D and C,(s) are defined as in the proof of the
previous proposition. This equation is covered by [I.1], because D and C,(s) are
bounded operators in Y ((4.7) can be studied by standard contraction arguments). In
[I.1] it is also proved that

(4.8)

(P.(t)x, y)= E(PTx.( T- t; x), y.( T- t; y))

+ E ({C.(s)*C.(s)- P(s)BN(s)-lB*P(s)}x.(s- t; x), y.(s- t; y)) ds

where x.(t; x) and y.(t; y) are the approximations of x(t; x) and y(t; y), defined in
the previous proof. Note that (4.8) can also be obtained by Proposition 4.1. From (4.8)
and the convergence results proved in the Appendix it follows that (P.(t)x,y)-.
(P(t)x, y) as n-, for every t [0, T] and x, y Y. Thus it is sufficient to take the
limit as n in (4.7) to see that P satisfies (1.3). lq

4.3. Direct solution of (1.3).
THEOREM 4.3. There exists a unique solution Pc B(0, T; E+(Y)) of the Riccati

equation (1.3).
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Proof. Let us begin by changing the metric underlying (1.3). Let A > 0 be given
by Lemma 3.1 with respect to some ’ (0, 1). The norm 1.1 is induced by the inner
product (x, y)a (x, y)d + A 2

_
(X(S)yl(S))d ds, where x (x, x 1) and y (yO, y)

are elements of Y. Therefore there exists an invertible operator Q L(Y) such that
(x, y)=(Qx, y) =(x, Qy) (it is defined as Q(yO, y)= (yO, A2y)). If P(t) is a solution
of (1.3) in B(0, T; L(Y)), then P(t)=QP(t) is a solution in B(0, T; L(Y)) of the
Riccati equation

(4.9)

(ff( t)x, y)x (TS( T- t)x, S( T- t)y)x

+ , (13(s)DJS(s- t)x, DJS(s- t)y) ds
j=l

+ (C(s)S(s- t)x, C(s)S(s- t)y)zds

((s-*’(sS(s- x, *’(sS(s- ), ds, x, e ’,

where/3r OPt,/*= B*Q-1. Since Q is invertible, the converse is also true.
Due to the inequality (2.7), it is easy to see that the contraction principle in

B(T, T; L(Y)) can be applied to equation (4.9), as in [D-I.1], for T- TI sufficiently
small. Therefore, by the equivalence between (1.3) and (4.9), there exists a unique
solution P of (1.3) in B(T, T; L(Y)). Since Pre;+(Y), we see from (1.3) that
P(t) e ;(Y) for every T1, T] (the same argument could be applied to P(t), because
it is possible to show that also /3r+(Y) with respect to <., .)). Iterating this
procedure we get a unique maximal solution of (1.3), such that P(t),(Y) for every
in the maximal interval of existence. To show that P(. is in fact a global solution,

we prove an a priori bound for P(.). Let us apply Proposition 4.1 to P(t), with an
arbitrary to, but choosing x y, u v, and GJ= H= DJ. Thus

(4.10) (e(to)y,y)=Jto(U)-E IlN(s)-l/:B*P(s)y(s)+N(s)/u(s)ll 2 ds,
to

where
T

J,o(U) E {IC(s)y(s)lz / N(s)’/=u(s)ll } ds / E]P2y( T)I =.
to

If we take u =0 in (4.10) we can find a constant c>0 independent of y Y and
to [0, T], such that

(4.11 (P( to)y, y) <= clyl.
On the other hand, if we choose

(4.12) u( t) -N( t)-lB*P( t)y( t)

in (4.10), we have (P(to)y,y)=Jto(U)>=O. Therefore (4.11) yields IP(t)l<-c for every
in the maximal interval of existence, which is the required a priori bound. We have
also proved that P(t) +(Y).

Remark 1. We meet directly (4.9) if we rewrite the cost functional in (4.1) using
the inner product (., .)x

J(u) E IoT {[C(s)y(s)lz + IIN(s) ’/u(s)[I } ds +(firY( T), y( T)),,
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where/37-= QPr, Q defined in the proof of the previous theorem. As to this, notice
that/* is just the adjoint of B with respect to (.,.).

Remark 2. The Riccati operator P(t) can also be obtained by the method of
characteristics introduced by [D.2]. This method consists of the direct solution of (4.6),
which is equivalent to (1.3) by Proposition 4.2. The existence and uniqueness of a
local (and maximal) solution of (4.6) can be proved by the contraction principle, while
the global existence follows from an a priori bound similar to the one proved in
Theorem 4.3.

4.4. Synthesis. Finally, we have the following theorem.
THEOREM 4.4. For every fixed y Y, there exists a unique optimal control u* for

Mw(O, T; R ), characterized by the feedback formulaproblem (4.1) in 2 k

(4.13) U*(t)-----S(t)-B*P(t)y*(t), 0<-_ t<-_ T,

where P(t) is the unique solution in B(O, T; E+(Y)) of (1.3), and y*(t) is the solution
of (1.2) corresponding to u*( t), In other words, y*( t) (x*(t), x* ), where x*( t) is the
unique solution of the closed loop equation

x*(t) y+ F(x* as+ . F(x* dw(s)
j=l

(4.14)
rt

Jo BN(s)-IB*P(s)(x*(s)’ x*) ds, X*o

Finally, J(u*) (P(O)y, y).
Proof It is sufficient to take to=0 in (4.10); it follows that (P(O)y, y)<=J(u) for

every u Mw(0, T; Rk), and (P(O)y, y) J(u*) if and only if u* satisfies (4.13).

Appendix. Throughout this Appendix we shall assume the hypotheses of 2. Let
D be an operator in the class defined in 4.2. Clearly D L((A), Y), and there
exists a constant c > 0 such that

(A.1) IDS(t)yl 2 dt <= clyl Vy Y

(this can be proved as inequality (2.7)).
PROPOSITION. Let D be given as above, and let D, Din, where in n(n-A)-(for n N large enough). Then

(A.2) DnS(" )y DS(. )y in L2(O, T; Y) as n co, ly Y.

Moreover, lety( be the solution of (3.2), and let yn( be the solution ofthe approximating
equation

(A.3) y(t) S(t)y+ S(t-s)D{y(s) dw(s)+ S(t-s)f(s) ds

where D{ DL. Then

(A.4) y(. - y(. in Cw(O, T; Y) and Dny(’ - Dy(. in M2w(O, T; Y)

as
_Proof. Since D,S(t)y- DS(t)y DS(t)[Iy-y], (A.2) readily follows from (A.1).

Similarly we can prove that

(A.5) D{y( ) Dy( and Dy( ) Dy( as n oe in Mw(0,2 T; Y).
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Let us now prove the first part of (A.4). Let Zn(t)=yn(t)--y(t). Then

(A.6) z(t) =.; S(t-s){D{zn(s)+[D{-D]y(s)} dw(s).

Given c’ (0, 1), let c" and A be given by Lemma 2.4. Then, from Lemma 3.2,

E E IDz(t)l at
k=l

m IOr<=(c’+c"r) , E II{PJz(s)+[PJ-PJ]y(s)}] ds
j=l

<=(c’+c"r)2c E E ID{zn(S)l ds+(c’+c"r)2c E I[O{-OJ]y(s)l ds
j=l

where c is a constant greater than II1 = for every n (it exists by the Hille-Yosida
theorem). Thus, taking c’ such that 2cc’< 1 and then r such that 2c(c’+ c"r)< 1, we
see that

(A.7) E E kD,z,(t)12 dt’>O as
k=l

in virtue of the convergence result (A.5). This argument can be repeated over intervals
of constant length, so that (A.7) holds true with r T. Now using (A.5) and (A.7) in
(A.6) we obtain the first convergence result stated in (A.4). As to the second one, from
(A.6) we have

(A.8) D.z.(t)= , D S(t-s)I.{Dz.(s)+[D-D]y(s)} dw(s).
j=l

Thus, again using (A.5) and (A.7) in (A.8), we see that D.z.(.)O in MZw(0, T; Y)
(note that inequalities of the form (3.4) and (3.5) hold true for D in place of D, by
virtue of (A.1), replacing the constant (c’+c"r) of (3.4) and (3.5) with the constant c
of (A.1)). Therefore, D.y.(.)-Dy(.)=D.z.(.)-[D.-D]y(.)O in MZw(0, T; Y)
(recall (A.5)), completing the proof.
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AN APPROXIMATION SCHEME FOR THEMINIMUM TIME FUNCTION*

M. BARDIt AND M. FALCONE

Abstract. This paper presents an approximation scheme for the nonlinear minimum time problem with
compact target. The scheme is derived from a discrete dynamic programming principle and the main
convergence result is obtained by applying techniques related to discontinuous viscosity solutions for
Hamilton-Jacobi equations. The convergence is proved under general controllability assumptions on both
the continuous-time and the discrete-time systems. An explicit sufficient condition on the system and the
target ensuring the desired controllability is given. This condition is shown to be necessary and sufficient
for the Lipschitz continuity of the minimum time function if the target is smooth. An extension to the case
of a point-shaped target is given.

Key words, discrete dynamic programming, viscosity solution weak limits, Hamilton-Jacobi equation,
time-optimal control

AMS(MOS) subject classifications. 49C20, 93C55

1. Introduction. In this paper we begin a study of the minimum time problem
from a computational point of view in the framework of dynamic programming.

We consider a controlled dynamical system

(1 1) {Y’= b(y,
ty(0) =x

y lt, a(t) A RM, and a compact target set 3-. We call the set of all initial points
from which the system can reach 3- in finite time, and T(x), x , the infimum of
the times necessary to reach 3- starting at x. If 3- {0}, then T is the classical minimum
time function, see e.g., Lee and Markus [25], Hermes and La Salle [21], Conti [11],
and Bacciotti 1 ]. The dynamic programming principle (see e.g., 18]) leads to associat-
ing to this problem the Hamilton-Jacobi-Bellman partial differential equation

(1.2) sup {-b(x, a). VT(x)}= 1 in \3-
aA

(where stands for the scalar product). P. L. Lions [26] has shown that the value
functions of a large class of deterministic control problems satisfy the dynamic program-
ming equation in the viscosity sense, a concept introduced by Crandall and Lions 13].
As far as the minimum time problem is concerned, Bardi [3] has recently proved that,
if the system is locally controllable around the whole target 3-, then T is the unique
viscosity solution of (1.2) satisfying the boundary conditions

(1.3)
T(x) =0 onO3-
T(x) +c asx

A basic role in that proof is played by the change of unknown variable

(1.4) v(x)=l-e-T<x)
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first used by Kruzkov [24], which transforms (1.2), (1.3) into

v(x)+sup {-b(x, a) Vv(x)}= 1 in \3-
aA(1.5) v=0 on03"

v 1 on 0.

In this paper we change slightly the point of view in that we consider as an unknown
set. We remark that, since v is itself the value function of a control problem with
discount rate, it satisfies also the boundary value problem

v(x)+sup{-b(x,a).Vv(x)}=l in’N\3
(1.6) aa

v=0 on 03.

Once this problem is solved we immediately recover both T and via the formulas

(.7) 7(x) =-og (- v), ={x. v(x)< }.

Therefore, we will look for a numerical approximation of (1.6) and we will employ to
this end the notion of viscosity solution. The viscosity solution approach has already
been used to prove the convergence of discrete approximation schemes for Hamilton-
Jacobi equations and for control problems by Capuzzo Dolcetta [8], Capuzzo Dolcetta
and Ishii [10], Souganidis [30], Falcone [17], (see also the survey paper of Capuzzo
Dolcetta and Falcone [9] for a more extensive list of references). As in [8] and [10],
we approximate (1.1) via a one-step scheme (for simplicity we adopt a Euler scheme
of step h) and consider the corresponding discrete-time control problem which consists
of minimizing the number of steps necessary to reach the target starting at x. Let us
denote Nh(X) this minimum number of steps and define

(1.8) Vh(X)= 1--e-hvh(x).

The dynamic programming equation for Vh(X) is the following discretized version of
(1.6)"

a))}= 1-e-h in\3
(1.9) aA

v =0 on 03,

and it is equivalent to a fixed point problem for a contraction mapping in L. Once
(1.9) is solved, dynamic programming provides an optimal control in feedback form
for the discrete-time problem. However, by its very definition, v is piecewise constant
and discontinuous, so that the standard compactness argument based on the Ascoli-
Arzela theorem used in [8] to pass to the limit as h0 does not apply here. To
overcome this difficulty and show, nonetheless, the uniform convergence vh- v, we
introduce a method inspired by some recent strong stability results for Hamilton-Jacobi
equations proved by Barles and Perthame [5] in the framework of the theory of
discontinuous viscosity solutions (see also [6] and Ishii’s papers [22], [23]). The main
idea of this method is to take "weak limits" based on just L estimates and then use
a strong comparison result between semicontinuous sub- and super-solutions of the
limit equation (1.6). This works if both the continuous and the discrete systems are
locally controllable around 3-, in the sense that (i) T is continuous, and (ii) the
following condition holds for the discrete system"

(1.10) v(x) <= cr (dist (x, W), h)
for x sufficiently close to - and h sufficiently small, where o- is continuous and
o-(O, o) 0.
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In view of the recent deep developments of "geometric control theory" (see, e.g.,
[1], [2], [11], [28], [31] and the references therein) our results should be applicable
in a variety of interesting cases. However, most of the literature in this field is devoted
to studying controllability for the continuous system around a point-shaped target, so
it is not. directly applicable here (in general it is necessary to assume the target has
nonempty interior in order to hope to hit it with the discrete system, that is to have
(1.10)). Therefore we look for sufficient conditions on the system ensuring the desired
controllability in the sense of (i) and (ii), for targets with piecewise smooth boundary.
We limit ourselves here to a "zeroth order condition," namely a condition just on the
fields b and not on their derivatives (if they exist), their Lie brackets, and so on.
Roughly speaking, the sufficient condition is:

(1.11) in each point of 03- there is a vector field b pointing inward 3-.

We show that (1.11) is necessary and sufficient for the local Lipschitz continuity of T
if the target is smooth, so that it plays the same role for such targets as Petrov’s positive
basis condition does for the case 3- {0} (see [28], [29], [33]). For C2 targets, Friedman
[32] showed the sufficiency of condition (1.11) for the Lipschitz continuity of T, in
the more general context of differential games.

In a forthcoming paper [4] we will establish estimates of the rate of convergence
of the above discrete approximation.

Other authors have recently studied the minimum time problem using the theory
of viscosity solutions. A local uniqueness result for equation (1.2) has been proved by
Evans and James [15], while Hermes [20] has proposed a method for studying the
local structure of optimal feedback controls employing the Bellman equation.
Combining the change of variables (1.4) with the methods of Barles and Perthame [5]
it is also possible to give a uniqueness result for semicontinuous solutions of (1.2),
plus a modified boundary condition on 03- (see Remark 3.5 below) provided the
target is smooth. This is interesting for problems lacking controllability on some
parts of 0 3-.

Other numerical methods for the minimum time problem, mostly for the linear
case with point-shaped target, can be found in Neustadt [27], Eaton [14], Fujisawa
and Yasuda [19], Canon, Cullum, and Polak [7] and Falb and de Jong [15]. We refer
the interested reader to the Appendix where we discuss the main differences between
these methods and ours.

The paper is organized as follows. In 2 we lay down the hypotheses and study
the discrete-time problem. In 3 we prove the general convergence result as h--> 0. In
4 we show that (1.11) implies the local controllability of the discrete system. In 5

the same is done for the continuous system, the Lipschitz continuity of T is studied,
and a final remark shows a way to apply these techniques also to the classical case
3- {0}. The Appendix, 6, compares our method to other approximation schemes.

2. The minimum time problem and its discretization. Before giving the discrete
version of the minimum time problem we recall, for the reader’s convenience, its
continuous version and some assumptions and results which we will use in the sequel
of this paper. We assume that the set of admissible controls A is a subset of 4 and
we define the set of admissible control functions appearing in (1.1) to be

{a :[0, +az[ --> A, measurable}.

Let us denote Yx (t, a) y, (t) the solution of (1.1) and define

(2.1) tx(a) inf{t: y,(t) 3-}--<_ +,
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where tx +oe if yx(’) never reaches the target. As we said in the introduction, our
problem consists in minimizing the time necessary to reach the target -, that is, to obtain

(2.2) T(x)= inf tx(a).

We define the set

=- {x " T(x) <
(2.3)

{xeNn" there exists a M and t->_0 such that y(t) -}.

Obviously - and T(x)= 0 for any x -. We will use the following assumptions

b" Nn x A - Nn is continuous;

(A1)
[b(x, a)- b(y, a)l--< LIx-yl and Ib(y, a)l--< K(1 +lyl)
for all x, y e R rq

and a A;
0- is compact.

The next theorem gives the connection between the control problem and a well-posed
boundary value problem for a Hamilton-Jacobi partial differential equation (PDE),
whose solution determines both T and

THEOREM 2.1. Assume (A1), T continuous, and define
-e

r(’) forx"v(x) =--
1 forxe!Y?.

Then v is the unique bounded viscosity solution of (1.6).
Proof. We can write

(’)

v(x) inf e-’ dr,

which shows that v is the value function of a control problem "with interest rate."
Then the Dynamic Programming Principle implies that v is a viscosity solution of
(1.6), by the arguments of [26]. The uniqueness of bounded continuous solutions of
(1.6) is proved in [3].

We can obtain a discrete version of the minimum time problem in the following
way. Let us first choose a step in time h, h > 0, and define the sequence

(2.4) t =-jh.

We shall assume that the state is observed only at discrete times t so we replace (1.1)
by the recursive sequence

xj+ xj + hb(x, a(2.5)
(Xo= X

where x x, a a,, and a e A (just to simplify notation, xj and a will sometimes
also denote the whole sequences {x} and {a}). For any given x and {a}, we define
the function

(2.6) n (aj, x) -= min {j N: x } = +oo,
where nh +eo if x./never reaches the target -. We want to determine, for any x, the
minimum number of steps necessary to reach -, that is

(2.7) Nh(X) =-- min nh(aj, x).
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We define the set

Yh =- {x Na(x) < +oo}
(2.8)

{x eNN" there exists {a; } andj eN such that x; 3-}.
As in the continuous version we will make use of the change of variable (1.4) and
define the cost

nh(aj’x)-I
(2.9) J({aj})-= 1--e-h"h(%x)= E e-Jh (1--e-h)X(x)

j=0

where gc(x) is the characteristic function of C3-=Ru\3-. Then the value function
for this problem will be given by

fmin J({aj }) 1 e -huh(x) for any x
(2.10)

for any x
The following proposition is well known.

PROPOSITION 2.2. (Discrete Dynamic Programming Principle). The valuefunction
Oh verifies

(DDPP) Vh(X)=min (1--fl) Y [3P-Vh(Xq) q where fl=-e-h
{a} p =0

for any x belonging to h\- and 0 < q <- Nh (x).
Proof. From (2.9) and (2.10), there exists a sequence {a} such that

q--1

Vh(X)=Jh({a})>--(1--) E P+vh(Xq) q

p=0

for 0 < q <-_ Nh(X), and we obtain the first inequality. The converse inequality is easily
seen by the definition of Vh.

The (DDPP) for q 1 and x 6 h\3" gives
(HJh) Vh(X) =min [Vh(X + hb(x, a))] + (1 -/3)

aA

which, due to the definition of h and (2.10), is valid not only in h\3- but in

THEOREM 2.3. The function Vh is the unique bounded solution of (1.9), i.e., of
u(x) Su(x) Vx f

(2.1 1
u(x) =0 Vx

where

(2.12) Su(x) -= inf {flu(x + hb(x, a))} + 1 .
aA

Proof. Let us observe that if u:Ru - is bounded, then Su >-oo and we have
(2.13) ISu(x)l <_- sup u +(1-]3)

so that Su is also bounded.
Let u, u2 :u be bounded and Ul u2 0 in -. For any fixed e

we choose a and a such that
(2.14) inf {flu(x + hb(x, a))} _-> flu(x + hb(x, a)) e, 1, 2,

aA

and then
S/,/1 (x) Su2(x -< [l,/l(X -J- hb(x, a2)) U2(X q- hb(x, a2))] +

(2.15)
-</3 sup [u,- 1,/21--I-- E,

where the last inequality holds because u u2 on 3.
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In the same way we prove the converse inequality and, for e --> 0+, we obtain

(2.16) sup ISUl Su21 sup

Since/3 < 1 by definition, we conclude that there exists at most one bounded solution
of (2.11). We already noted that vh verifies (HJh) for any xf, and by definition
Vh(X)=--O for all x -.

The last result of this section says that the discrete version of the minimum time
problem can be completely solved in feedback form once a solution of the discrete
Hamilton-Jacobi-Bellman boundary value problem (1.9) (i.e., (2.11)) is known.

COROLLARY 2.4. Let u .N _. be a bounded solution of (2.11). Then there exists
F" N \-_ A such that

(2.17) u(x + hb(x, F(x))) inf u(x + hb(x, a)),
aA

and any such F has the property that the solution zj of
zj+l z + hb(zj, F(zj ))
ZO-- X

is an optimal trajectory, i.e., the sequence F(z is an optimal control"

v(x)= J({F(z )}).

Proof By Theorem 2.3, u(x)= Vh(X). Since this function takes values in a discrete
set, the inf in (2.17) is a min, which proves the existence of F satisfying (2.17). The
Bellman equation in (2.11) implies

U(Zk) /b/(Zk+l)-" 1 -/3 for all k < rth(X F(zj)),

which gives easily, also using the boundary condition u- 0 on -,
u(x) 1 fl"h(x’F(

which is the desired equality.

3. A general convergence theorem. We introduce the following notation:

(3.1) _v(x) lim inf Vh(y), (X) lim sup Vh(y)
hO h__,O
y-> y->

and note that these functions are defined everywhere in N since 0_-< Vh--<--1. For any
bounded function u"N --> we define

(3.2) u (x) lim inf u(y), u*(x) lim sup u(y)
y-x y-x

which are, respectively, the lower semicontinuous and the upper semicontinuous
envelopes of u. These functions will play a crucial role in the following lemma.

LEMMA 3.1. If (A1) holds, then (respectively, v_) is a viscosity subsolution (respec-
tively, supersolution) for
(HJB) sup{v-Vv" b(x, a)}= 1 in

aA

Proof Let e C1(1)) and Xo be a strict local maximum for 5-. By Lemma
A.3 in Barles and Perthame [5], any sequence Xh of maximum points for Vh*--b in
B(Xo, r) satisfies

(3.3) lim Xh XO, lim V*h (Xh) (Xo).
h-O h._,O
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Then there is hl>O such that Xh B(Xo, r/2) for any h<hl and, by (A1), there exists
h2> 0 such that Ihb(xh, a)l < r/2 for any h h2. Then we have

(3.4) v*(xh)- (xh) > v(xh + hb(xh, a))- c(xh + hb(x, a)), Vh h Va A

and h min {h, h2}. Let x - x be such that

(3.5) lim v(x)= v(x,).

Let us fix a control a and take a subsequence, still denoted x, such that

(3.6) lim v(x + hb(x, a))= 7.

By definition (3.2), 7 v(x, + hb(x, a)), then passing to the limit over the sub-
sequence in the (DDPP) we obtain

(3.7) v(xh)-Bv(xh+hb(xh, a))-l+N0, VaeA.

By (3.4), we have

0 sup {B[V(Xh)- V(X + hb(xh, a))]+ (1 B)v(xh)- 1 +}
aeA

(3.8)
e sup {B[(Xh) (Xh + hb(xh, a))] + (1 B)v(xh) 1 + }.
aA

Then dividing by h and passing to the limit for h 0+ (and remembering that B e-)
we prove

(3.9) sup {-V(Xo) b(Xo, a)+ ff(Xo)- 1}N0

that is, is a viscosity subsolution.
Now let us consider the case when f- has a strict minimum at Xo e . If Xh is

a sequence of strict minimum points for v- belonging to B(XOr), we have

(3.10) lim xh Xo, lim v(xh) f(Xo).
h0 h0

Moreover for any e and x e , there exists a e A such that

(3.11) vh(x)-vh(x + hb(x, a))- 1 + -e.

Let x xh be such that Vh(X)" V(Xh). By the hypotheses on b the sequence {b},
{b(x, a)} is bounded and we can write

b b(Xo, axe)+ E(h, n)

where IE(h, n)lLIx-xol. Taking a subsequence (still denoted by x) and passing
to the limit for n + we get

b(xo, axg)-bh e O co {b(xo, a)" aeA}

E(h, n)- (h) and I(h)lLlx-xol.
There will also be a subsequence (of the one already considered) such that

vh(x + hb) ye V(Xh + hh + h(h)).

Then, by (3.11), passing to the limit for n -+ and e 0 over the subsequence we get

(3.12) v2(xh)-Bv(xh + hgh + h(h))e 1-.
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Since xh is a local minimum point for v-4 and )h Xh + hgh + hff.(h) B(xh, ro), for
h sufficiently small, we have

v(x) v() _- 6(x)
Substituting the above inequality in (3.12) we’obtain

(3.13) [6(Xh)--6(gh)]+(1--fl)V(Xh) >- 1--.
By Taylor’s expansion we have

(Xh)-- 4(h) V(Xn) (hh + hff.(h))+ o(h) Vch(Xo) hh + o(h).

Then dividing by h in (3.13), extracting a subsequence such that bh obo E Q, and
passing to the limit as h- 0, we obtain

(3.14) -Vb(Xo) bo+ t(Xo) > 1.

Since supb: p" b supb,K p" b we get

sup {-Vb(Xo) b(xo, a) +_V(Xo)}- 1
aaA

that is, ! is a viscosity super-solution.
We remark that, by definition, !; <= on . Now we want to prove the converse

inequality. We define

d (x)= dist (x, 03-)

and

X8 ---- {x: dist (x, OX) < 6}.

THEOREM 3.2. Let vl( respectively, V2)"N o.9, be an upper semicontinuous (respec-
tively, lower semicontinuous) bounded viscosity subsolution (respectively, super-solution)
of
(3.15) v+sup {-Vv. b(x, a)}- 1 =0 in 1"

aA

such that for some > 0

(3.16) Iv,(x)l <= to(d(x)) i= 1, 2 for all x 38,

where to tends to 0 as its argument goes to O. Then vl <-_ v2 in 1.
Proof Condition (3,16) implies that Vl and v2 are both continuous on 03- and

v(x)= v2(x)=0, for all x E03-. Then the proof of Theorem 2 of [3] applies. The
possibility of comparing semicontinuous functions has been remarked in Crandall,
Ishii, and Lions [12]. [3

THEOREM 3.3. Assume (A1) and v continuous on 03-. Suppose there exists a
continuous or" 2+ -+ such that or(O, O) 0 and for some 8, > 0

(3.17) Vh(X) <---- cr(d(x), h), for all x 3-8 and h <-_ h.

Then

v(X) =_v(x) f(x) for all x

and Vh converge uniformly to v on compact subsets of Nrv as h- 0/.
Proof Condition (3.17) implies

0=< _v(x)-<_ O(x)_-_ o-(2d (x), 0)-= to(d(x)).
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Then by Lemma 3.1 and Theorem 3.2 we have

3(x) =< _v(x) for all x

and therefore vh converges uniformly on compact sets to the unique continuous viscosity
solution w of (1.6).

Since v is assumed continuous only on 0-, we cannot yet conclude that w--v.
By Theorem 3.1 in [23] we know that v* and v* are, respectively, a sub- and a
supersolution of (3.15). The continuity of v on 0- implies (3.16) for v* and v. Then
Theorem 3.2 gives

v*<_ w=< v

and the proof is complete.
Remark 3.4. The continuity of v is an assumption of local controllability of system

(1.1) around the whole target, while (3.17) states a sort of discrete local controllability
(see Remarks 4.2 and 5.3). In the following two sections we will give a sufficient
condition on - and b for both of these assumptions to hold.

Remark 3.5. There are some interesting problems where neither (3.17) holds nor
the minimum time function is continuous, because of a lack of controllability on some
part of the target. In these cases the following boundary condition is satisfied on 0-
(in the viscosity sense)"

eitherv=<0 or v+sup{-Vv.b(x,a)}-l-<0,
aA

see [5], [6], [23]. Barles and Perthame [5] have proved a uniqueness theorem for
semicontinuous solutions of such a boundary value problem which perhaps can be
used to prove some convergence of our scheme even when there is no local controllabil-
ity. For instance, there may be some hope to obtain the uniform convergence of the
approximation scheme away from the discontinuities of v. However this seems a rather
hard goal to pursue and we limit ourselves here to the locally controllable case.

4. A sufficient condition for discrete controllability. In this section we introduce
the following assumptions on - and b"

(i) -={x" gi(x)<=O V i=l,. .,M} where giC(l1) and
(A2) [Vgi(x)[ > 0 for all x such that g(x)=0;

(ii) Vx 0- =l a A such that gi(x) 0 implies b(x, a) Vgi(x) < O.

Hypothesis (A2) means that 0- is piecewise Ce and at each point of the boundary
the controller can choose a vector field pointing inward -. A simple special case of
(A2) is

(i) - is the closureof an open bounded set with C boundary,
(A2’) (ii) infA b(x, a). 7(x)<0 for all xO-, where r/(x) represents

the outward normal to - at x.

We want to show that these assumptions guarantee that condition (3.17) holds. Assump-
tion (A2) is also sufficient for the local controllability of system (1.1) and the Lipschitz
continuity of T, as we will see in the following section.

LMMA 4.1. Assume (A1), (A2). Then there exist some positive constants , h, C
such that

(4.1) hNh(x)<-Cd(x)+h, Vh<h and Vx-.
Proof. We first give the proof under assumption (A2’) in order to show how the

constants C, h and 3 can be computed.
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Let Xo 0- and choose ro, :o, and ao A such that d can be redefined as a negative
function inside - to be C2 in Bo B(xo, ro) and

(4.2) b(x, ao) rt(x) <-- -o < O, V x Bo,

where we have extended rt(x) out of 0-by setting rt(x)=-Td(x). Define

C,=-- sup lDZd[, C2-= sup Ib(x, a)l<- K(l +lxol+ ro).
Bo Bo A

Since any trajectory of (2.5) living in Bo satisfies Ixj-xl <=jhC, it is easy to see that

(4.3) x Bo if x B Xo, and jh <-.
3C

The solution of (2.5) corresponding to the constant control ao satisfies, as long as

x Bo for k=0, 1,. .,j,

d(x <-_ d(x_) + hb(x_, ao) Vd(x_) + hClCN d(x)-jho+jhC,

where Ca-= CC and we have used Taylor’s expansion of d(x) and (4.2). If we restrict
to

we get

(4.4)

Now if we take

oh -< hi- 2C

d(x) <= d (x) 1/2jho, if x e Bo, k=0, 1,. .,j.

+1,
oh J

(4.3) and (4.4) imply d(xj*.)<=O provided xB(xo, ro/2), j*h<-_ro/(3C2) and the last
condition holds if

ro:o ro
d(x)<=31-]2C2 h<h2-6C2

d(x)
(4.5) hNh(x) <= + h V x 6 B(xo, 3o), h N ho,o
where 30-- min {ro/2, 3}, ho -= min {h, h2}.

By the compactness of 0- we can cover a neighbourhood of - by a finite number
of balls where (4.5) holds and then get (4.1) with C, 3, h given by the minimum of
the corresponding constants (2/o), 30, ho.

We now show how the above arguments work in the general case (A2). We begin
multiplying the gi for suitable positive constants so that in a large compact set containing- they satisfy

(4.6) gi(x) <-- dist (x, {gi(X) <: 0}) < d (x), 1," ", M.

Given XoO-, let I be the maximal subset of {1,..., M} such that gi(Xo)--O for all
i I. We first choose r such that

B(xo, r) ["l -= B(xo, rl) {x" gi(x) <= 0 V I}.

Then
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Now we take ro < ri, :0 and ao such that

b (x, ao) Vg(x) -<_ :o < 0, V x Bo, L

We are going to repeat for each g, I, the calculations made for d. We arrive at

g(x)<=g(x)-1/2jhso, if xgBo, k=O,...,j, iI, h<=h,,

where C sup {[Dg(x)l x Bo and I} and hi is modified accordingly. Then for
d(x) <-8l, h <= he and j* chosen as above, using (4.6) we get

x.Bo and g(x.)<=O foriI.

This means that xj. 3-, thus (4.5) holds and we conclude as before.
Remark 4.2. Assumption (A2) gives also a sort of discrete local controllability.

Let us consider the sets

h(j):{XN" ]{ai} such that Xj "}, jN.

Obviously

C .(j).

It is easy to see from the proof of Lemma 4.1 that for each h and j, there exists 8j (h) > 0
such that 3-j(h c__ th(j). This means that (A2) is a sufficient condition for

(LCh) ’Oh(j) VjN, V h<h-.
Note that (LCh) is a discrete analogue of the local controllability condition for the
continuous problem (see Remark 5.3).

5. A necessary and sufficient condition for the Lipschitz continuity of T. In this
section we show that (A2) is also a sufficient condition for the controllability of the
system (I.I) around W, which gives the continuity of T. Therefore Theorem 3.3 applies
and so (A2) is a sufficient condition for the uniform convergence of v to v. We also
prove that if 03- is smooth, i.e., (A2’)(i) holds, then condition (A2’)(ii) is necessary
and sufficient for the local Lipschitz continuity of T in . Finally we compare (A2’)
with the classical "positive basis condition" by Petrov for the case W {0} and discuss
the applicability of our approximation results to such a case.

LEMMA 5.1. Assume (A1), (A2). Then there exist ,5’, C > 0 such that for all x -,
there exists a constant control a( t)=-a such that

tx(a)<=Cd(x).
In particular

(5.1) r(x)<=Cd(x)

Proof. We follow the arguments of the proof of Lemma 4.1. Given XoeO we
define I, to, :o, ao, C, C as in that proof. For any trajectory of (1.1) in Bo we have

ly(s)-xl<=sC(5.2)
which implies

yx(s)eBo ifxeB(xo,) and s <
ro

=3C2"
For such s and the constant control a(t)---ao we have

gi(y,(s)) <- gi(x) + I] Vgi(x) b(yx(t), ao) dt+ C1C2s2

<-_ g(x) oS + C3s, I,
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where C3 -= LC2 sup {IVg,(x)l" x Bo, I} + CC, and in the last inequality we have
used (A1) and (5.2). Then

1 {ro :o}(5.3) g,(yx(S)) <= g,(x)-- oS, if I, s _-_. So min
3C2’ 2"

Now s*=2d(x)/o<=So, provided d(x)<-_6l=oro/(6C2) and d(x)<-:62=-/(4C3).
Then we set 6o min {ro/2, 61, 6}, and combining (5.3) and (4.6) we obtain

yx(s*) Bo and gi(yx(s*)) <-- 0 for I, x B(xo, 60).
This means that yx(s*) - and gives

2d(x)
tx(a)<-_ VxeB(xo,6o).o

A compactness argument completes the proof. [3

Combining Theorem 3.3, Lemma 4.1, and Lemma 5.1 we obtain one of the main
results of the paper.

THEOREM 5.2. Assume (A1), (A2). Then Vh - V locally uniformly in RN and hNh T
locally uniformly in .

Proof Under the above assumptions,

Vh(X 1 e-hNh(x) : 1 e-(Cd(x)+h) C d(x) + h.

Then Theorem 3.3 applies for tr(d(x),h)=Cd(x)+h. [3

Remark 5.3. Lemma 5.1 immediately provides the following form of small time
local controllability: if (t) is the set of points from which the system can reach -in time smaller than t, i.e.,

(t):={x" T(x)<t},
then we have

-__. (t), for all t>0.

This result has already been proved in a more general context by Bacciotti and Stefani
[2]. Results of this type have been studied extensively in the case -= {0}, see e.g.,
Petrov [28], Lee and Markus [25], Hermes and La Salle [21], Bacciotti [1], Sussmann
[31].

THEOREM 5.4. Under the assumptions (A1), (A2) the minimum time function T is
locally Lipschitz continuous in .

Proof. Let us take x, z in a compact subset of and suppose T(x)<= T(z)< T.
We fix e > 0 and a control c such that

T(x) + e <-_ T and y(T(x) + e) x -.
Let yz(t) be the trajectory starting at z under the same control a and z -y(T(x)/ e).
By Gronwall’s lemma we have

Ix-zl<=elx-zI.
In order to apply Lemma 5.1 we choose

ix--zl<=’e-,
and find

T(z)- T(x) <= e + T(Zl) <= e + C elx- zl,
and the conclusion follows from the arbitrariness of e. [3

The next theorem will show, in particular, that (A2’)(ii) is a necessary condition
for the Lipschitz continuity of T in a neighbourhood of - when ff is smooth.
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THEOREM 5.5. Assume (A1) and (A2’)(i). Suppose there exist positive constants
C, , and 1/2< a <- 1 such that

(5.4)

Then

(5.5) inf b(x, a) (x) < O,
aA

where q is the exterior normal to -.

T(x) <-_ C d (x), for all x B(ff, ).

for all xO-71B(.,),
Proof We assume by contradiction that the inequality in (5.5) is violated for some

XoO-fqB(, /2), so that by (A1)

(5.6) inf b(x, a). w(x)>=-Llx-xo[, for all x6 -,
aGA

where 6 is such that d C2(6\-), and we have defined r/(x)-= V d(x). We fix e>0,
xn --> Xo and controls such that

(5.7) yx,,(T(x.)+e)=-y. 6-.

Observe that T(x.)+ e <-_ T, for all n, and (A1) imply

lyx.(S)l<-(lXol+6+l)e I--- g for s_-<,

(5.8) ly,-x,l<-_(T(x,)+e)K(l+ Y).

Using a Taylor expansion of d(x), (5.6), (5.7), and (5.8) we obtain

r(xn)+e
d(xn)<-d(y,) V d(y,) b(y,, a(t)) dt+O((T(x,)+e)2)

dO

<= Lly. Xol(T(x.) / e) / O(( T(x.) / e )2)

<= Llx. Xol( T(x.) + e) + 0((T(x.) + e )2).

Now we make the more precise choice x, =Xo+(1/n)rt(Xo), to have Ix,-xol<=2 d(x,)
for n sufficiently small, and deduce from the previous formula and (5.4)

d (x.) <-2LC d+(x.)+ O(d(x.)),

which gives a contradiction if a > 1/2. ]

Remark 5.6. Theorem 5.5 is of local nature whereas Theorem 5.4 is global, but it
is easy to give a local version of it making minor changes to its proof and the proof
of Lemma 5.1. More precisely, if 0-, 0-f’)B(, ) is a C manifold with " lying
on one side of it and infaA b(x, a). r/(x)<0 for all xO-f3B(,?), then T(x) is
Lipschitz continuous in - 0 B(:, (/2)) for some 6 > 0. A similar result can be given
for a piecewise Cz portion of 0-.

Remark 5.7. (The relation between (A2) and Petrov’s condition). Condition (A2)
(ii) is the counterpart for piecewise smooth targets of the classical "positive basis
condition" due to Petrov, which is necessary and sufficient for the Lipschitz continuity
of T in the case -= {0} [29]. One of the equivalent formulations of this condition is
the following [28]’

(PC) for every unit vector y there exist a A such that b(0, a) , < 0.

and then
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The explicit relation between (PC) and (A2) is summarized in the following statements
whose proof is straightforward:

(i) if (PC) holds, then there exists e > 0 such that every - B(0, e) and satisfying
(A2)(i), must satisfy (A2)(ii);

(ii) if there exist :, g > 0 such that for all e < g

inf b(x, a) r/(x) < -: for all x OB(O, e),
aA

then (PC) holds. If (A2’, i) holds, then Theorem 5.4 is a special case of a result
by Friedman [32] on differential games of pursuit and evasion. The relation
between Friedman’s assumption, i.e., (A2’, ii), and the positive basis condition
(PC), was remarked by Petrov in [33].

Remark 5.8. (Approximation of T in the case -= {0}). In order to apply
the convergence results to the case -= {0} we need a further approximation
step. We consider a family of approximating targets - B(0, e) with
unchanged dynamics and denote by and T the corresponding controllable
set and minimum time function. If Petrov’s condition (PC) holds then by
Petrov’s Theorem [29] there exist g> 0, and a positive constant C1 such that
B(0, g) c and

T(x)<= CllX] V x B(O, g).

Therefore it is easy to show that, for any e =< g,

=
and

O<= T(x)- T(x) <= C,e V x .
Moreover, by Remark 5.7(i), we can choose g such that (A2) is satisfied for
any approximating problem with e < g. Then the convergence theorem applies
to each of these problems and the discretization method can be used to obtain
an approximate solution of the minimum time problem in the case 3-= {0} as
well.

6. Appendix. A brief comparison with other approximation schemes. Several
numerical methods for the minimum time problem have been proposed, mostly for
linear systems, point-shaped targets, and under global controllability assumptions. A
first group of papers [27], [ 14], 19] exploit the explicit representation of the trajectories
of the controlled system available in the linear case, which provides a bang-bang
optimal control defined componentwise by

(6.1) ce( t) =- sign Y( t) r/*) for all t<t*,
where Y is a matrix which can be computed from the linear vector field, t* is the
minimum time, and r/* is some constant vector. Then the minimum time problem
reduces to finding an appropriate r/* to substitute in (6.1). Neustadt [27] showed that,
for a fixed point-shaped target and under "normality conditions" (see [21]), r/* is the
point where a suitable regular function attains its maximum so that a gradient method
can be used to compute it. Eaton [14] extended this procedure to the case of a moving
target. He used some geometric properties of the reachable sets for normal linear
systems to give an iterative procedure which computes {tk} and {r/k} converging,
respectively, to t* and r/*. Finally Fujisawa and Yasuda [19] proved that, without
normality conditions, a modification of Eaton’s procedure gives exponential conver-
gence of tk toward t* for fixed point-shaped targets.
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We want to emphasize several important differences between these methods and
ours.

(1) All these methods do not apply in the nonlinear case where a formula like
(6.1) for an optimal control is missing. On the other hand they can handle the
nonautonomous case.

(2) The above procedures compute an optimal strategy steering a given initial
point Xo to the final state. For a different Xo the algorithm must be restarted. On the
contrary, dynamic programming gives information for all initial points in a domain.

(3) The optimal control computed by applying these methods is in open loop
form, whereas the dynamic programming approach provides a feedback control (see
Corollary 2.4).

(4) Using these techniques it does not seem possible to identify whether an initial
point is controllable to the target in finite time, i.e., to know if Xo or not. On the
contrary our approach is global and gives at least an approximate knowledge of .

(5) The above procedures do not seem adequate to treat general targets instead
of a single terminal point.

A completely different method can be found in the book by Canon, Cullum, and
Polak [7] (see also the references therein), again for linear systems satisfying a
controllability assumption. It considers a discrete version of the system and derives a
sequence of linear programming problems of growing dimension, each one solved by
the simplex algorithm. The discrete version of the system corresponds to the Euler
scheme (2.5) with the choice h 1, but the convergence to the continuous-time system
as h - 0 is not studied. It is worthwhile to note that a slight modification of the method
can also be used to determine whether a point can be steered to the final state in a
given number of steps. The remarks (1), (2), (3), and.(5) still hold. In particular, the
solution of the minimum time problem in a given set instead of that for a single initial
point may lead to a very large amount of computations.

Finally, a method for treating the problem in the nonlinear case can be found in
the book by Falb and de Jong [16] (see also the references therein). Under strong
regularity assumptions on the data, the Pontryagin minimum principle is used to obtain
a two point boundary value problem solvable by means of the Newton-Kantorovich
method in Banach spaces. The convergence of this method is sensitive to the choice
of the initial guess. Remarks (2), (3), (4), and (5) remain valid for this method.
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A GENERAL STOCHASTIC MAXIMUM PRINCIPLE
FOR OPTIMAL CONTROL PROBLEMS*

SHIGE PENG

Abstract. The maximum principle for nonlinear stochastic optimal control problems in the general case
is proved. The control domain need not be convex, and the diffusion coefficient can contain a control variable.

Key words, stochastic optimal control, maximum principle, variational inequality
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1. Introduction. In this paper we study the following type of stochastic optimal
control problem. Minimize a cost function

J(v(.)) E l(x(t), v(t)) dt+h(r)

subject to

dx(t)=g(x(t), v(t)) dt+tr(x(t), v(t)) dB(t),

x(0) x0.

In the above, v(.) is the control variable valued in a subset of R k, x(.) is the state
variable, B(. is a standard Wiener process, and l, h, g, tr are given maps. Our object
is to obtain a necessary condition, called the maximum principle, for optimal control.
There are many works concerning this subject (see [1]-[4], [7], [8], [10]). A difficulty
is treating the case where the diffusion coefficient tr contains the control variable v.
Bensoussan 1], [4] studied such a case. The maximum principle he obtains is of local
condition (see (26) of this paper), and his method depends heavily on the control
being convex. In our problem, since the control domain is not necessarily convex, we
must obtain the maximum principle in i.ts global form. A classical way of treating such
a problem is to use the "spike variation method" [12]. More precisely, if u(. is an
optimal control and v is arbitrary then we can define an admissible control as follows"

u(t)={ v if s<--t<=s+e,
u(t) otherwise,

with a sufficiently small e > O. Then, we derive the variational equation from the state
equation, and the variational inequality from the inequality

(u(.))-(u(.))->_ 0.

But in this situation o- contains v, and thus, from the spike variation of control u(. ),
we can only obtain the following estimation:

(*) E]y(t)- y(t)[2= O(e),
where y(. and y(. are the trajectories of the state equation corresponding to u(
and u(. ), respectively. We should note that in [1] and [3], we have the estimation

Elx t) y( t)] 2 O(e2),

* Received bythe editors February 16, 1989; accepted for publication (in revised form) September 5, 1989.
t Institute of Mathematics, Fudan University, Shanhai, China and Institute of Mathematics, Shandong

University, Jinan, China. This work was partially supported by the Chinese National Natural Science
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where x(.) is the trajectory of the state equation corresponding to the control
u(. )= u(. )+ ev(. ). Due to the estimation (.), the classical way of deriving the
variational equation does not work. We introduce a new approach to overcome this
difficulty. The main idea is to consider the second-order terms (with respect to the
state) in the expansion of J(u( ))-J(u(. )). Although the sum of these second-order
terms are quadratic with respect to the state variable, we can regard it as a linear
functional on the product of the state space. Then a so-called second-order variational
equation and second-order variational inequality are introduced. Based on this, we
obtain the corresponding (second-order) adjoint processes and adjoint equations that
lead to the maximum principle. It turns out that the maximum principle we derived
is novel, and it contains the earlier work as a special case. The paper is organized as
follows. In 2, we give the statement of the problem and our main assumptions. In

3, we study the second-order expansion of the perturbed state variable y(.), and
the perturbed cost function J(u( )). We also treat the estimations of these terms. In

4, we obtain the first- and second-order adjoint processes. Consequently, the second-
order variational inequality is given in this section. Our main result, the maximum
principle, is given in 5. The first- and second-order adjoint equations are also derived
in this section. In the last section, we show how to obtain the maximum principle in
the case when an endpoint constraint is imposed.

2. Statement of the problem. Let (12, , P) be a probability space with filtration
’. Let B(.) be an Rn-valued standard Wiener process. We assume that

’=cr{B(s); O<-_s<-_t}.

Consider the following stochastic control system:

(1)
dx( t) g(x( t), v( t)) dt + or(x(t), v( t)) dB( t),

x(O)=xo,

where

g(x, v) R" x R k --> R",
or(x, v) R" x R k --> (Rd, R"),

O’= (O"l, O’2, o’d),
An admissible control v(. is an t-adapted process with values in U such that

sup Elv(t)l <cx3 m= 1,2,
OtT

where U is a nonempty subset of Rk (control domain). We denote the set of all
admissible controls by Uad. Our optimal control problem is to minimize the following
cost functional over Uad"

J(v(.)) E l(x(t), v(t)) dt+Eh(x(T)),

()
inf {J v (.)); v (.) e Ua,},

where

l(x, v) R" x R k --> R, h(x) R" ---> R.

Our assumption is:

(3) g, tr, l, h are twice continuously differentiable with respect to x. They and all
their derivatives gx, gxx, trx, crxx, lx, lxx, hx, hxx, are continuous in (x, v).
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gx, gx, r, cr,, lxx, h are bounded, and g, tr, l, h are bounded by C (1 + Ix] +

3. Second-order expansion. The purpose of this section is to derive a kind of
variational equation and variational inequality. Due to the appearance of the control
variable in or(., and the control domain U not necessarily convex, the usual first-order
expansion approach does not work. Hence, we introduce a second-order expansion
method. Let (y(.), u(.)) be an optimal solution of the problem. It is classical to
construct a perturbated admissible control in the following way (spike variation)"

u(t)={ v if ’--< t--< ’+ e,
u(t) otherwise.

Where 0 < T is fixed, e > 0 is sufficiently small, and v is an arbitrary -measurable
random variable with values in U, such that

Let y(. be the trajectory of the control system (1) corresponding to the control u(. ).
We would like to derive the variational inequality from the fact that

J(u(.))-J(u(.))0.

To this end, we need the following estimation.
LEMMA 1. We suppose (3). en

(4) e -2 sup E[y(t)-y(t)-yl(t)-y2(t)[2 C
OtT

where Yl(" ), Y2(" are solutions of

(= [g((s, u(s(s+(g((s, u(s-g((s, u(s] s

+ [((s, u(s(s+(((s, u(s-(y(sl, u(s] a(s,

y() gx(y(s), u(s))y(s)+ !
2
g(y(s), u(s))y(s)y(s) ds

+ x((s, u(s(s+ x((s, u(sl(Sy,(s (s

+ ((y(s,u(s-(y(s,u(s(s(s,

where

fxxyy f,,xyiy forf=g, cr, l,h.
i,j=l

Remark. Equation (5) is called the first-order variational equation. It is the
variational equation in the usual sense. We must introduce what we call "the second-
order variational equation" (6), because with the solution of (5), we can only obtain
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the following estimation:
-1 sup Ely(t)-y(t)-y(t)12<= C.

It is not enough to derive the variational inequality.
Proof From the construction of u( ), it is easy to verify by Gronwall’s inequality

and the moment inequality (see Ikeda and Watanabe [9]) that

(7) sup Ely t)l 2 <= Ce,

(8) sup Ely,(t)] 2-<- Ce 2,
Ot<= T

sup Ely,(t)l 4--< Ce,
(9) sup Ely(t)l4 =< Ce4,

O<_t<_ T

sup Ely,(t)l s--< Ce4.
O<=tT

Set

Y3 Y + Y2.

We have

o’ og(Y+Y3, u) ds+ o’(y +y3, u) dB(s)

fo o’’[g(y, u)+g(y, u)y3+ agx(y+ay3, u) aa ayy] as
o

Io[ Iofo+ (y, u)+(y, u)y3 + A(y+Ay3, u) dA dy3Y3 dB(s)

g(y, u) as+ (y, u) an(s)+ g(y, u)y as + (y, u)y an(s)

+ g(y(s), u(s))-g(y(s), u(s))) ds

o+ ((y(s,u(sl-(y(s,u(sl (s

+ gxx(, N)3(S)3() d + xx(, )3(s)3(s) dB(s)

o+ (g(,u)-g(,v3(s s

+ ((,u-x(,ug(S (s

oo’o
+ A[xx(y + A#y3, ue)-xx(y, u)] dA d Y3Y3 dB(s)

=y()+y3(t)--Xo+ a(s) ds+ A(s) dB(s),



970 SHE PENG

where (using (5) and (6))

G(s) 1/2gxx(y(s), u(s))(y2(s)y2(s)+ 2yl(s)y2(s))

+(g,(y(s), u(s))-gx(y(s), u(s)))y2(s)

+ A[gxx(y+AtxY3, u)-gx),(y, v)] dA dtxy3(s)y3(s)

A(s) (y(s), u(s))(y2(s)y(s)+ 2y(s)y(s))

+(x(y(s), u(s))-x(y(s), u(s)))y(s)

+ a[x(y +a, u-x(y, vl y(sy(s.

From (7), (8), and (9) we can check that

(o) sup G(s) s + A(s) (s) o(e).
OtNT

Thus we have

y()+ y(t)= xo+ g(y(s)+ y3(s), u(s)) ds

+ r(y(s)+y3(s), u(s)) dB(s)- G(s) ds- A(s) dB(s).

with

[A(s, w)[+iD(s, o)1= C Vs, Va,.

(11)

From this relation and (10), we can use Ito’s formula and Gronwall’s inequality to
obtain the estimation (4). The proof is completed.

Since u(.) is an optimal control, from Lemma 1 we can easily derive Lemma 2.
LEMMA 2. Under the assumption of Lemma 1, we have

E l,(y(s), u(s))(y(s)+yz(s))+’ lx,(y(s), u(s))y(s)y(s) ds

+ E (l(y(s), u(s)) l(y(s), u(s))) ds

+ E(hx(y(T))(yl(T) + y2(T))) +1/2Ehx(y(T))y(T)ya(T)

>-_o().

Since

y(t)=xo+ g(y(s), u(s)) ds+ o’(y(s), u(s)) dB(s),

we can derive

(y-y-yl(= (sl(y-y-yl(s as+ (s(--(s(s

+ G(s)s+ A(s)B(s)
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Remark. In the case where cr does not contain the control variable v, the relation
(11) can be reduced to

E [lx(y(s), u(s))yl(s) as+ E(hx(y(T))yl(T)

+ E (l(y(s), u(s))- l(y(s), u(s))) as >- o(e).

Thus we need only the first-order variational equation (5).
Proof Since (y(.), u(. )) is optimal, we have

E l(y(t), u(t)) dt+Eh(y(T))-E l(y(t), u(t)) dt+Eh(y(T))>=O.

Thus from Lemma 1,

ONE (l(y+y,+y2, u)-l(y, u)) dt+E[h(y+y+y2)(T)-h(y(T))]+o(e)

= (l(y+y+y, u)-l(y, u)) dt+[h(y+y+y)(r)-h(y(r))]
o

+E (l(y+Yl+Y2, Ue)--l(y+Yl+Y2, u)) dt+o(e)

E lx(y(s), u(s))(yl(s) + y2(s))

l,(y(s) u(s))(y(s)+ y2(s))(y(s)+ yz(s))] ds
1+-

+ E (l(y(s)" u(s)) l(y(s), u(s))) ds

+ E (lx(y(s) u(s))- l,(y(s), u(s)))(yl(s)+ yz(s)) as

((y(s, u(s l(y(s u(slyl(sy(s as+-
+ (h(y( r(y(r +y(

+- hxx(Y( r))y( r)yl(r) + o(e).
2

Then, (11) follows from (7) and (8).
4. Adjoint processes and variational inequality. In this section, we introduce the

first- and second-order adjoint processes for (5), (6), and (11). With these processes,
we can easily derive the variational inequality from (11). The linear terms in the
inequality (11) (the first and the second terms) can be treated in the following way
(see Bensoussan [1]). For simplicity, we let

fx(t)=f,(y(t), u(t)), fx,(t)=f,(y(t), u(t)) for f g, or, 1, h.

Consider a linear stochastic system

dz( t) (gx( t)z( t) + qb( t)) at + (O-x( t)z( t) + tp( t)) dB( t), z(O) O,
(12)

(d(.), all(. )) L(O, T; R") x (L(O, T; R")) d, = (ql, ", qd),
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where L(0, T; R ") is the space of all R"-valued adapted processes such that

E 16(t)1 at < .
We can construct a linear functional on the Hilbert space L(0, T;R")x
(L(O, T; R"))d as follows:

1(6(’), (.)) E lx(t)z(t) dt+E(hc(T)z(T)),

where (6(’), @(’)) and z(.) are related by (12). It is easy to verify that I(.,.) is
continuous. Then by the Riesz Representation Theorem, there is a unique

(p(.),K(.))L2(O, T; R)x(L2(0, T; R))d,
K=(K,,... ,Kd),

(13)
E (p(t), 6(t))+ ’, (Kj(t), Oj(t)) at= 1(6 (.), 0(’))

j=l

V(6(. ), q(" )) L(0, T; R ") x (L (0, T; R))a.
With (5) and (6), we can apply this result to some of the terms of (11)"

[l(s)y(s) ds + E(h(y(T))y(T))]

0

+ tr[K(s)((y(s), u(s))-(y(s), u(s)))] ds

p(sgx(s+ 2 (s(sl (Sll(S s
j=l

+ E p*(s)(gx(y(s), u(s))- g(y(s), u(s)))y,(s) ds

+ E K](s)((y(s), ue(s))-(y(s), u(s)))yl(s ds.
j=l

Thus we can rewrite (11) as

(H(y(s),u(s),p(s),K(s))-g(y(s),u(s),p(s),K(s)))ds

y(Slxx((sl, u(s, p(s, (s(s as(4 +
1

+- y(r)hx(y( r))y( r) e o(),
2

where we denote
d

(x, v, p, (x, v+(p, g(x, v+ (, o(x, v.
j=l

such that
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The interesting thing is that the quadratic terms of (14) can still be treated by applying
the Riesz Representation Theorem. Indeed, applying Ito’s formula to the matrix-valued
processes

we have

1YY YYl
Y(s)=yl(s)y*l(S)=

yy’ y’y

(15)
dY(t) Y(t)g*x(t)+g(t)Y(t)+ Y’. crJ(t)Y(t)tr (t)+ (t) dt

j=l

+ Y(t) O’x* (t) + O’x(t) Y(t) + (t)] dB(t),

where

(t)=y(t)(g(y(t), u(t))-g(y(t), u(t)))*+(g(y(t), u(t))-g(y(t), u(t)))y*(t)

+tr(t)y(s)(cr(y(t), u(t))-(y(t), u(t)))*

+ ((y(t), u(t))-(y(t), u(t)))y(t)(t)

+ ((y(t), u(t))-(y(t), u(t)))((y(t), u(t))-(y(t), u(t)))*

(t) y(t)((y(t), u(t))-(y(t), u(t)))* + ((y(t), u(t))-(y(t), u(t)))y(t).

Consider the following symmetric matrix-valued linear stochastic differential equations:

dZ(t) Z(t)g(t) + gx(t)Z(t) + 2 (t)Z(t)*(t) + (t) dt

+ [Z(t)(t) + x(t)Z(t) + (t)] dB(t),

z(o) =o,
((.), .(. )) e (o, r; ",") x ((o, r; "."))", . (, ,..., .),

where R"’ is the space of all n x n real symmetric matrices with the following scalar
product:

(A1, A2), tr (AA2) VA, A2 R "’".

Now, let us construct a linear functional via (15):

(6 M((.,,(. (Z(t,gxx(t),&+(Z(r,hxx(y(r,.

Obviously, M((. ), (. )) is a linear continuous functional on

(0, r;, x ((0, r;
thus there exists a unique (P(.), Q(. )) e L(0, T; R’) x (L(0, T; R’))e, such that

(17 M((.I,,(.I= (e(t,(t,+ (Q(tl,,(t). t.
j=l

Since for all y R , A R’
(yy*, A), tr [(yy*)A] y*Ay,
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from (15), (16), (17) we can rewrite (14) as

E (H(y(s), u(s), p(s), K(s))- H(y(s), u(s), p(s), K(s))) ds

+E (P(t),dP(t)).+ Y’. (Oj(t),xltf(t)). dt>=o(e).
j=l

From the definition of ,, we obtain

E (H(y(t),u(t),p(t),K(t))-H(y(t),u(t),p(t),K(t)))dt

1
+-E tr [(cr(y(t), u(t))-cr(y(t), u(t)))*P(s)
2 o

(cr(y(t), u(t))-cr(y(t), u(t)))] dt >- o(e).

Finally, we have

H(y(r), v, p(’), K(z))- H(y(r), u(’), p(’), K(r))

+1/2 tr [(cr(y(r), v)-r(y(r), u(z)))*P(r)(r(y(r), v)-cr(y(z), u(z)))]

>_-0 /v U, a.e.,a.s.

or, equivalently

H(y( r), v, p( r), K z) P(r)cr(y( r), u( r) + 1/2 tr crcr*(y( z), v)P( r)

(18) >= H(y(r), u(r), p(r), K(r)- P(r)cr(y(’), u(r)))

+1/2 tr (crcr*(y(r), u(r))P(r))

/v U, a.e., a.s.

Remark. Inequality (18) is the so-called variational inequality (V.I.) of our optimal
control problem. In general, it cannot be reduced to the classical form of V.I. except
in the case where cr does not depend on the control variable v (see the example at the
end of the paper).

5. Adjoint equations and the maximum principle. In this section, we discuss the
adjoint equations that solve uniquely the first- and second-order adjoint processes. We
give our main result, the maximum principle, at the end of this section. The first-order
adjoint equation is the classical one. In fact, from [2] and [3], the first-order adjoint
process (p(.), K(. )) described in a unique way by (12), (13) is the unique solution of

-dp(t)-- ]g*(y(t), u(t))p(t)

(19) + Z o’*(y(t), u(t))Kj(t)+lx(y(t), u(t)) dt-K(t) dB(t),
j=

p(T)=hx(y(T)).
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We can also use this result to obtain an equation for (P(.), Q(. )). In fact, (P(.), Q(. ))
is uniquely determined by (16), (17). Thus exactly as in [2] and [3], we can obtain

-dP(t)= [g*(y(t), u(t))P(t)/ P(t)gx(y(t), u(t))
I

(20)

d

+ E r*(y(t), u(t))P(t)crx(y(t), u(t))
j=l

d

+ o’*(y(t), u(t))Qj (t)
j=l

+ Qj(t)o’(y(t),u(t))+H,,x(y(t),u(t),p(t),K(t)) dt
j=l

Q(t) dB(t),

P(T) h,,x(y( T) ).

Now we are ready to state our main result.
THEOREM 3. Let (3) hold. If (y(. ), u(. )) is a solution ofthe optimal controlproblem

(1), (2), then we have

(p(. ), K(. )) t(O, T; R") x (t(O, T; R")) d,
(n( ), Q( )) t(O, T; R n’") x (L(O, T; Rn’")) d,

which are, respectively, solutions of (19) and (20) such that the variational inequality
(18) holds.

Remark. Recently, we obtained the following result. Under a very heavy additional
assumption, we can relate K (.), P(. by

K(t)= P(t)cr(y(t), u(t)).

So, we can rewrite the maximum principle (18) as

H(y(r), v, p(r), 0)+1/2 tr (rcr*(y(r), v)P(r))

>-H(y(r), u(r),p(r),O)+1/2tr(mr*(y(r), u(r))P(r)) /v U, a.e.,a.s.

But this relation does not hold in the general case, and not even in the linear quadratic
case (see 11 ]).

6. Problem with final state constraint. We discuss briefly the case when there is
an endpoint constraint on the state variable

EG(x(T))=O,
where

G(x). R" -O R ", m <

We also assume that G satisfies the same smoothness condition as h, in (3). We will
apply the following well-known Ekeland Lemma (see [5], [6]).

LEMMA 4 (Ekeland’s variational principle). Let (V, d(.,. )) be a complete metric
space, and let

f(.): V-oR

be lower-semicontinuous, bounded below. Iffor all p > 0 there exists u V satisfying

f(u) inf f(v) + p,
vV
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then there exists uo V, satisfying the following"
(i) f(u) <=f(u).
(ii) d (u. u.) <= p/.
(iii) f(v)+p/d(v, u)<-f(u),.for all v V.
We consider only the case where l(x, v)=0 to simplify the statement. Let

(y(.), u(. )) be an optimal solution of the problem (1), (2) with final state constraint
(21). For any v(. ) Ua, consider the following cost function of the free final system
(1).

J" v( Eh x( T) Eh (y( T) + p )2 +lEG(x( T) )[] ’/.

It is easy to check that

OKJP(1)(.)) [I)(.)G Gd,

J’(u(.))=p.

Thus, from Ekeland’s variational principle, there is a G(’) Ua, such that
(i) JP(vp(.))<-_p,
(ii) d(G ), u(. )) <-- pl/2,
(iii) v, (.) is an optimal control of the system (1) under the following cost function"

J(v(’))=JP(v(.))+pa/Zd(v(.), vo(.)),

where we choose the metric in Uaa as

d(v(. ), u(. ))= E mes {0-<_ <- T; v(t) # u(t)}.

It is easy to check that (Uaa, d(’,’)) is a complete space. Thus we have an optimal
control similar to the one previously discussed (with a slightly different cost function).
In fact, we can make a "spike variation" for this optimal control G(" as in 3"

v,(s)=
v =s=+e,
vo(s) otherwise.

Let xo(. ), x;(. be the trajectories corresponding to vo(. ), vo( ), respectively, and we
have

[Eh(x,( T))-Eh(xo( T))-Eh,(x,( T))(y,( T) +y2( T))-1/2Ehxx(Xo( T))y,( T)yl( T)]= C62

with a constant C independent of p, where yl(’ ), Y2(’ are solutions of (5), (6) with
y(.) =x,(.), u(.) vo(.). We also have

IEh(xo( T))(y,(T) + Y2(T)) + 1/2Eh)c(x.( T))y,( T)yl( T)[ < CE.

Similarly,

[EG(x( T))-EG(xo( r))-EGx(x( r))(y,( T)+y2( T))-1/2EGc(x.( r))yl (r)yl( r)]=< Ce2,

IEG(xo( T))(y,( T) + ya( r)) + 1/2EGx(Xo( r))y,( r)yl( r)]--< Ce.

Since jo (vo (.)) > 0, we have

O<-J(v;(. ))+x/-fid(vp(. ), v;(. ))-J(vo(. ))

J(vp(.))-Jt’(vo(. ))+ ex/-fi
<= A "(Eh(xo( T))(y,( T) + Y2(T)) + 1/2Eh,,(x.( T))y,( T)yl(T))

+ [a.e(EG(x.( r))(y,(T) + Y2(r)) + 1/2EGx(Xo( r))y,( r)y,(r)) + ex/+ o(e),
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where o(e) does not depend on p"

A p (JP(vv(.)))-l/2E(h(xv( T))- h(y(T))+ p,

(J (v(.)))-’/ ((x(r))).
Thus, exactly similar as in 4, we can derive

for[H(xt,(t), v(t), pV(t), KV(t)-PV(t)o’(xp(t), vp(t)))

+1/2 tr (mr*(x(t), v(t))PV(t))] dt

>- [H(xo(t), vp(t),p(t),K(t)-P(t)cr(xo(t), vp(t)))
0

+1/2 tr (mr*(xo(t), vo(t))PV(t))] dt- e,c/--o(e),
where pV(. ), Kv(. ), pv(. are the solutions of (see (19), (20))

-dpV(t) [g*x(Xp(t), vv(t))pV(t)+ (rx*(Xo(t), vv(t))K(t) ] dt-KP(t) dB(t),
j=l

p’(T) Ah(xo(T))+lzGx(xp(T)),

-dp’(t) [g*x(Xo(t), vv(t))n’(t)+ PP(t)gx(Xo(t), vo(t))

+O’*x(Xp(t), vp(t))PP(t)Crx(Xp(t), vp(t))
d

+ Y cr{*(x(t), v(t))Q(t)
j=l

+ O;(t)C#x*(Xp(t), vp(t))+Hxx(Xo(’), vo(t),p(t),KP(t))] d,
j=l

QP (t) dB(t),

P(T) A h,(xo( V))+ tzGxx(Xo( V)).

Thus we have

H(xp(’r), t, pP(r), KP(7") n(r)tr(xo(’), vo(r))) + tr (o’tr*(xo (r) v)nP(r))
>- H(xv(’) v(’), pO(.), Ko(.)_ P’(’)tr(x,(’), Vo(T))

+ 1/2tr (mr*(xo(r), vv(r))PP(r))-x/- Vv e U, a.e., a.s.

Clearly,

(A)2+IoI2= 1.

Thus there exists a subsequence of (h , ) that converges to a nonzero (A,/z). On
the other hand, by the construct of vv(. ), we know that

xv(.)-.y(.) inL(0, T;R’).

Consequently,

p’(.)-)p(.) in L(O, T; R"),

K’(.)--) K(.) in (L(O, T; R’))d,
P(. )--) P(. in L(0, T; R""),
Q(.)- Q(.) in (L(0, T; R"")) d.
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Thus we have

-dp(t)= [g*x(y(t), u(t))p(t)+ tr*(y(t), u(t))Kj(t)] dt-K(t) dB(t),

(21)
p(T) Xh(y( T)) + IxGx(y( T)),

-dP(t) [g*(y(t), u(t))P(t)+ P(t)g(y(t), u(t))

d

+r*(y(t), u(t))P(t)tr(y(t), u(t))+ E cr*(y(t), u(t))Q(t)
(22)

j=l

+ Q(t)tr*(y(t), u(t))+Hxx(y(t),u(t),p(t),K(t)) dt
j=l

Q(t) dB(t),

P(T) Ahxx(y(T)) + tzGxx(Y( T) ),

H(y(r), v, p(r), K(r)- P(’)tr(y(r), u(’))) + 1/2 tr (trcr*(y(’), v)P(’))

(23) >= H(y(’), u(r), p(r), K(z)- P(’)cr(y(r), u(’)))

+1/2tr(o’cr*(y(’), u(’))P(r)) Vv U, a.e.,a.s.

Thus we have Theorem 5.
THEOREM 5. Let (3) hold. If (y(.), u(.)) is an optimal solution of the optimal

control problem (1), (2) with final state constraint (21) (and l(x, v) 0), then there are
nonzero A, IT) R x R

(p( ), K( )) L(O, T; g") x (L(O, T; R"))d,
(P(.), Q(. )) L(0, T; R"’") (L(0, T; g"’")) d,

that are, respectively, solutions of (21) and (22) such that the variational inequality (23)
holds.

To finish this paper, let us consider two special cases.
Case (i). The diffusion coefficient does not contain the control variable cr- or(x).

In this case (18) becomes

H(y(t), v, p(t), K(t))>-_ H(y(t), u(t), p(t), K(t)).

This is a well known result (see [5], [6]).
Case (ii). The control domain is convex, and the data are continuously differenti-

able with respect to v. In this case from (18) we can deduce

(Hv(y(t),u(t),p(t),K(t)),v-u(t))>=O Vv6U, a.e.,a.s.

This coincides with the result of [1] and [2].
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REGULARITY PROPERTIES OF OPTIMAL CONTROLS*
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Abstract. A class of optimal control problems is considered, involving integral cost functions and linear
dynamics. Broad, verifiable hypotheses (HE) are known under which the problems have solutions. These
must be supplemented for standard optimality conditions, in the form of a Maximum Principle, to apply.
New regularity properties of optimal controls, when merely hypotheses (HE) are in force, are established.
A byproduct is a Maximum Principle governing optimal controls under such circumstances, where the
costate function is possibly unbounded. Criteria for minimizing controls to be essentially bounded are also
deduced.

Key words, optimal controls, bounded controls, regularity, necessary conditions, maximum principle
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1. Introduction. This paper addresses the question of regularity of optimal con-
trols. Except in the special case of optimal control problems that can be reformulated
as problems in the calculus of variations, regularity theory has received scant attention
as compared, say, with existence theory or necessary conditions of optimality akin to
the Maximum Principle. Available regularity results are typically adjuncts to the
Maximum Principle; for certain classes of problems the maximization of the Hamil-
tonian condition directly yields the information that optimal controls must be, say,
continuous, or piecewise constant ([10], [13]).

However, regularity theory, in addition to being of interest in its own right, has
an important and underestimated bearing on other aspects of the subject. Consider,
for example, necessary conditions. We should like to have necessary conditions at our
disposal to identify minimizers predicted by existence theory. Yet the hypotheses of
existence theory alone (see, e.g., [10]) do not guarantee validity of the standard form
of the Maximum Principle, or guarantee even that it makes sense. But, as we show
below, the hypotheses of existence theory, supplemented by a priori regularity proper-
ties of optimal controls supplied by regularity theory, suffice to extend the applicability
of standard necessary conditions and to generate new ones. Thus regularity theory is
a source, as well as a byproduct, of necessary conditions.

The optimal control formulation is very broad, and to establish any kind of
regularity properties of optimal controls, we need to focus attention on particular
classes of problems. The problems considered in this paper are integral cost problems
associated with linear time invariant systems:

(1.1)

Minimize L( t, x( t), u( t)) dt

(P)subject to

[(t)=Ax(t)+Bu(t)+d(t), a.e. t[a,b],
(x(0) o, x(1) ,.
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Here a, b are real numbers (b > a), n(>0), m(>0) are integers, so0, sol are n-vectors,
and L’R x Rn x E" - E, d "E- En given functions.

We term control an integrable function u’[a, b] E. A solution to the differential
equation is called a state trajectory (corresponding to u). A state trajectory together
with the control to which it corresponds is called a process. Precisely stated then, the
control problem (P) is to minimize the value of the integral functional over processes,
the state trajectories of which take the specified values at times a and b.

Notice that, since we are interested in regularity of optimal controls, we lose
nothing by imposing fixed endpoint constraints on the state trajectories. Indeed suppose
u* is an optimal control (with x* a corresponding state trajectory) for some problem
with endpoint constraints (x(a),x(b)) C, Then u* is certainly still minimizing for
the related fixed endpoint problem where we require x(a) x*(a), x(b) x*(b). Thus
regularity results for fixed endpoint problems immediately carry over to problems with
any other kind of endpoint constraints.

The hypotheses we impose on the integrand L in the cost function are more or
less the weakest which are known to guarantee existence of optimal controls ([10]).

(H1)" L(t, x, u) is locally bounded, measurable in and convex in u. d is an
integrable function.

(H2)" L(t, x, u) is locally Lipschitz continuous in (x, u) uniformly in t. This means
that for each bounded set S x, there exists a constant K such that
for all t [a, b] and (Xl, u), (x2, u2) S the following inequality holds"

IL(t, x, u)- L(t, x, u2)l N KI(x-xe, u- u2) I.
(H3)" L(t,x, u) is coercive in the following sense. There exists a number c0

and a convex function 0"[0,) such that

t, x, -clxl + 0([ul)
for all (t, x, u)[a, b]x"x, where O(r)/r as r.

These hypotheses will be in force throughout the paper.
Notice that we have not included constraints on the control values in problem

(P) and it is possible that the values of optimal controls are unbounded. The Ball-Mizel
problem, which may be expressed as an optimal control problem, is one instance where
hypotheses (H1)-(H3) are satisfied and such behaviour is observed"

Minimize [Ix3(t) t[[ u(t)l 4+ elu(t)[3 dt

P(k, e)subject to

tx(0)=0,
It is known ([1], [5]), that for certain choices of constants k and e, P(k, e) has a
unique optimal control u(t)= kt-/3, a function with unbounded values.

Under the circumstances, we should aim to describe the manner in which the
optimal controls are unbounded as best we can. Here the notion of "regular point" is
helpful.

DEFINITION 1.1. Given a measurable function g’[0, 1]- and a point [a, b],
is said to be a regular point of g if there is some neighbourhood of in [0, 1] on

which g is essentially bounded.
The set of regular points is open in [0, 1]. It may be empty; g given by

g(s)=E2-’ls-t,I
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in which (ti} is an ordering of" the rationals in [0, 1], is an example of. an integrable
function with no regular points. In a sense, the larger the set of regular points, the
better behaved is the function g. In the extreme case when all points in [0, 1] are
regular, the function g is actually essentially bounded.

Our main result is that, for any optimal control, the set of regular points has
full measure; we are not able to exclude bad behaviour, of. course, but we can at least
confine it to a closed set of zero measure (the complement of fl). This information
about regular points leads to new optimality conditions to replace the Maximum
Principle when it fails to apply, and to new criteria for optimal controls to be bounded,
continuous, etc.

It is true to say that any reasonable design procedure in control engineering,
including those based on optimization, must yield controllers with bounded values,
because there will always be physical bounds on the outputs of" control devices. The
problems we study here, while admitting optimal controls with unbounded values, are
nonetheless relevant to control engineering. Indeed a common procedure in optimiz-
ation-based control system design is to replace control constraints, which complicate
the analysis, by a penalty term Q(u), for example,

Q(u) e lu(t)l 2 dt,

in the cost. Our theory, among other things, gives criteria for optimal controllers to
have bounded values, and therefore has something to say about whether this penaliz-
ation technique has the desired effect.

Regularity properties of minimizing arcs have long been a field of enquiry in the
calculus of variations ([4]-[9], [14]). The present paper builds on this literature, and
above all on [9], which treats problems in the calculus of variations with higher order
derivatives.

We conclude with some notational points. For integers a >- 2, W’(I;) is taken
to be the space of (a- 2) continuously differentiable n vector-valued functions on the
interior of the closed interval I, whose first (a- 2) derivatives have finite limits at the
endpoints of I, and whose (a- 1) derivative is absolutely continuous. W’(I;) is
the space of n vector valued absolutely continuous functions on I. Given a function
y, Dy, Dy, denote the derivatives of y of order 0, 1, . For nonnegative integers
j and k, with j<-k, we define Dy( t) col (lYy( t), iY+y( t), .,Dky(t)). We also
employ the notation [[..t for the L([s, t]) norm.

2. The regularity results and a new maximum principle.
THEOREM 2.1. Suppose there is a process that satisfies the endpoint constraints. Then

a minimizing process (x*, u*) exists and the set [l, comprising the regular points of u*,
is open in a, b] and offull measure. Furthermore, contains all closed subintervals of
[a, b], ofpositive length, on which u* is (globally) essentially bounded.

The principal content of the theorem is the assertion that the relatively open set
12 has full measure in [a, b]. Included also is a criterion for a point to lie in [/which

may alternatively be expressed" for u* to be essentially bounded on a relative neighbour-
hood of a point [a, b l, it suffices that u* be essentially bounded on an interval of
positive length immediately to the left, or right, of the point in question. This criterion
will be useful when we seek to show that, in special situations, fl- [a, hi.

Under additional continuity and strict convexity hypotheses on the data, we shall
establish continuity properties of optimal controls and their derivatives on

THEOREM 2.2. Let (x*, u*) be a minimizing process and let be the set of regular
points of u*. We have
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(i) if (in addition to (H1)-(H3)) for each in [a, b] and v the function
w L( t, x*(t), w) is strictly convex and the function s -+ L(s, x*(s), v) is continuous at

t, then u* is continuous on f, and
(ii) if (in addition to (H1)-(H3) and the extra conditions in (i)) for each [a, b]

thefunction L is C in its arguments near t, x*( t), u*( t)) and d is Cr-l, for some integer
r >- n + 1, then u* is C on f. (If f contains an endpoint, a say, then "u* is C
(at a)" is taken to mean that u* is continuous at a and, for s 1, , r n, the derivatives
DSu* exist and are continuous on (a,a+e) for some e>0, and DSu*(t) has a finite
limit as , a.)

Finally, we give a new version of the Maximum Principle which is valid merely
under the hypotheses (H1)-(H3). This involves the (pseudo) Hamiltonian function
H(.,.,., .),

H(t, x, u, p):= p [Ax + Bu] L( t, x, u).

THEOREM 2.3. Let (x*, u*) be a minimizing process and let f be the set of regular
points of u*. Then there exists a measurable, row vector valued function p:[0, 1]-+ n,
which is locally Lipschitz continuous on , and for which

(2.1)

and

(2.2)

-(t) 6p(t) A-OxL(t,x*(t), u*(t)), a.e.,

H(t, x*(t), u*(t), p(t)) max {H(t, x*(t), u, p(t))}, a.e.

The novelty of this Maximum Principle is that, in contrast with the standard
versions, the costate function p is not required to be absolutely continuous; it may
even be unbounded. The costate differential inclusion (2.1) is satisfied in an "almost
everywhere" sense and, since there is no guarantee under hypotheses (HI)-(H3) that

O,L(t, x*(t), u*(t)) will have integrable selectors, we cannot necessarily express it
as an integral inclusion

p(t)ep(a)+ [p(s). A-OxL(s,x*(s), u*(s))] ds, for all t.

(Problem P(k, e) is one instance where a Maximum Principle of this type is needed;
here the costate function corresponding to the optimal control u(t)=kt-/3 is
unbounded and fails to satisfy the integral inclusion.) In 5, we shall apply these
results to identify conditions implying that f a, b], i.e., that u* is globally essentially
bounded.

3. Proof of the regularity theorems.
3.1. Reduction to a special case. It is convenient at the outset to reduce the

optimization problem considered to one where extra hypotheses are assumed to be in
force.

(H4): The exogenous term d(t) in the dynamic equations (1.1) is zero.
(HS): The constant c and convex function 0 of hypothesis (H3) satisfy c=0 and

0 is an increasing function.
(H6): (A, B) is a controllable pair and B has full column rank.

LEMMA. It suffices to prove Theorems 2.1 and 2.2 in the special case where, in
addition to hypotheses (H1)-(H3), we impose (H4)-(H6).

Proof. We suppose the assertions of Theorems 2.1 and 2.2 are true under
hypotheses (H1)-(H6).
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Step 1 (Disposal of (H6)). Suppose the data satisfies (H1)-(H5), but possibly not
(H6). We treat only the case where (A, B) is not controllable, B does not have full
rank and B # 0 (the other cases one needs to consider "(A, B) is not controllable and
B has full rank," etc., are treated by obvious simplifications of the arguments to follow).
Changing the basis on the state space (to exhibit the controllable part of the control
system and its complement) and the basis on the control space (to exhibit the kernel
of B and its complement), yields a nonsingular n x n matrix P, a nonsingular m x m
matrix Q, and integers t, th (0< r < n, 0< th < m) with the following properties"

P-’AP= ffL P-’BQ= .
Here , and are matrices which may be partitioned thus"

= Ae =Ae
(A is x, A is ffx(n-), Ae is (n-)x(n-), and B is x). We also
have that (, e) is a controllable pair and e has full column rank. These are
simple refinements of results proved in [11].

Now define functions 2(t) and y(t) to satisfy

(t) z(t), z(a)=[p-’o],
and

Y(t)=11y(t)+12Y2(t), y(a)=[P-o].
Here the notation ]1, ]2 indicates the first and second block components of a
partitioned vector, thus

P-’so =col {[P-’so],, [P-’:o]}.
Consider now the following optimal control problem (P1), in which the state

vector E is partitioned E=col {Eo, El} and the control vector is partitioned
col {v, w}. Here Eo, ), v, and w are vectors of dimension m- tfi, , m- rfi, and
respectively.

Minimize L(t, (Eo(t), E(t)), (v(t), w(t))) dt

subject to

dt LE,(t) 0

Eo(a)] =0l(a)
and

0 I 0:l(t)] +IO ]12] [ W(t)l’
b

*(lEo(b)’] [O-’u t)]l dt
/ JLE,(b) n-’sc,],-y(b)

In this problem the cost integrand is defined as follows"

(t, (:o, :1), (v, w)):= L(t, P col {: + y( t), Y2( t)}, Q col {v, w}).
It is a straightforward task to show that

(3.1)
CO1 )o(t)-- [Q--lu*(S)]I ds’’l([)--[p-lx*([)]l-y(t)

col {v(t), w(t)} Q-lu*(t)
solves this problem.
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Now we observe that the data for problem (P1) satisfies hypotheses (H1)-(H5)
for appropriately chosen 0 and c. However, (H6) is also satisfied. We know then that
the process for (P1) given by (3.1) has the properties listed in Theorems 2.1 and 2.2.
But the same is then true of the solution (x*, u*) to (P) since it is expressible in terms
of the solution (3.1) to (P) according to

x*(t)=-Pcol{(t)+y(t),Y2(t)}, u*(t)=Qcol{v(t), w(t)}.

We conclude that the assertions of Theorems 2.1 and 2.2 are true merely under
hypotheses (H1)-(H5).

Step 2 (Disposal of (H5)). Next assume (H1)-(H4) are satisfied, but possibly not
(H5). Consider 0"[0, oe)--> defined by

O(r) := inf {O(r’)" r’> r}.

Since 0 is superlinear and convex, and is majorized by 0, (H3) remains in force when
0 replaces 0. Note that 0 is an increasing function.

Take k to be a constant such that IIX*llo.a.b < k. Consider a new problem (P2)
in which the Lagrangian L of problem (P) is replaced by Lz(t,y,w):--
max [L(t, y, w),-ok+ 0(]wl)] + ok. We easily check that (H1)-(H4), and also (H5), are
satisfied by (Pz) (with 0 0 and c =0). We have that L2 >- L-+-ck everywhere and
L2(t, y, w) L(t, y, w)+ ck for all points w and all points (t, y) in some tube about x*.
Consequently, (x*, u*) is a minimizing process for (Pz) also. Applying the special
cases of Theorems 2.1 and 2.2 to (P) where (H1)-(H5) are in force, we deduce the
assertions of these theorems for (P), merely under (H1)-(H4).

Step 3 (Disposal of (H4)). Finally assume the data of (P) satisfy (H1)-(H3).
Consider the problem (P3)

I I b

Minimize L dt

|subject to 2 Ax + Bu and

Ix(a) (o, x(b) .
Here

L3(t,y, w):=L(t,g(t)+x(t), w)

and : := 1- g(b), where the function g is the solution to the differential equation

,=Ag+d, g(a) =0.

Evidently the process (x*( t) g( t), u*(t)) is minimizing for (P3), and the data for (P3)
satisfy hypotheses (H1)-(H4). Applying Theorems 2.1 and 2.2 to (P3), as is permissible
since (H1)-(H4) are in force, we verify the assertions of Theorems 2.1 and 2.2, in
relation to problem (P), when merely (H1)-(H3) are in force.

We are justified then in adding (H4)-(H6) to the list of hypotheses.

3.2. Canonical representation of the dynamic equations. Our purpose here is to
show that an arbitrary process for problem (P) can be expressed in terms of higher
order derivatives of a single vector valued function. This will pave the way to reducing
problem (P) to a problem in the calculus of variations with higher order derivatives,
the minimizers for which have known regularity properties.

The required relationships are summarized in the following proposition (whose
proof is to be found in the Appendix). Recall that the supplementary hypotheses
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(H4)-(H6) are in force and so, in particular, the proposition deals with the situation
in which the dynamic equations take the form

: Ax + Bu,

where (A, B) is a controllable pair and B has full column rank.
PROPOSITION 3.1. There exists a positive integer a, an am column vector q, and

matrices F (det F # O), G and H of dimension m x m, rex(am), and n x (am), respec-
tively, with the following properties"

Define the mapping

9: {processes (x, u) for (1.1)" x(a)= 0},

5:= {z W"([a, b]; W"): D-’z(a)= q},

to take the value z at (x, u) if’, where z is the unique solution to the higher order
differential equation

a.e. t[a,b],
D-z(a)=q.

Then Z is a bijection and if z Z(x, u), we have

x(t)=HD;-z(t), for all t[a,b].

Furthermore, for any open subinterval I c [a, b], we have
(a) u L(I) if and only ifDz L(I) and
(b) for any integer >=0, u C(I) if and only ifDz C(I).

3.3. Variational problems with higher order derivatives. This subsection provides
a summary for future reference of known regularity properties of minimizers for
problems in the calculus of variations involving higher order derivatives. Consider

Minimize M(t, Dg-z(t), Dz(t)) dt
(Q) W, b],over arcs z ([a, such that

D-’z(a) so and D-’z(b)

Here a, b are given real numbers (a > b). a and fl are positive integers. :o and s are
given cq vectors, and M’ is a given function. We shall invoke the
following hypotheses:

(I1)" M(t, z, w) is locally bounded, measurable in and convex in w.
(I2)" M(t, z, w) is locally Lipschitz continuous in (z, w), uniformly in t.
(I3)" There exists >= 0 and a convex function y" [0, c) such that

M(t, z, w) - lzl /

for all (t,z, w)e[a,b]’tW, where y(r)/ro as r.

THEOREM 3.2. Assume (I1)-(I3). A minimizing arc z for problem (Q) exists. Let
J be the regular points of Dz. Then J is an open set offull measure and J contains all
closed subintervals of a, b] on which Dz is essentially bounded. Furthermore
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(i) If in addition to (11)-(13) we assume that, for each in [a, b] and v in Rt3, the
function w M( t, D-lz( t), w) is strictly convex and thefunction s M(s, D-z(s), v)
is continuous at t, then D’z is continuous on J, and

(ii) If in addition to the hypotheses of (i) we assume that, for each t[a, bl,
the function M is C near (t,D-lz(t),Dz(t)) for some r->_c+l and
Mww(t, D-Iz(t), Dz(t))>O, then Dz is C on J.

This theorem is a recasting of [9, Thm. 2.1], suitable for present applications. As
an aid to relating the two, we remark that the set of points which are regular points
of z in the sense of [9, Thm. 2.1] coincides with the regular points of Dz in the sense
of this paper, and contains all closed subintervals of a, b], of positive length, on which
Dz is essentially bounded.

3.4. Construction of the auxiliary Lagrangian. Our task here is to associate with
the minimizing process (x*, u*) a minimizer for a problem of the kind treated in 3.3.
Reference will be made to the mapping Z of Proposition 3.1.

Define

and set

z* W’([a, b]; ") according to

z* := Z(x*, u*)

K:=IID-lz*II,.,.
Now define the function q "R’o to be

o(w) := inf {L(t, Hy, Fw+ Gy)" [a, b], lyl <= K + l}.

Define also the real value functions L and L on xmx" to be

L(t, y, w):= L(t, Hy, Fw/ Gy)

and

L(t, y, w):= max {L(t, y, w), co q(w)}.

Here F, G, and H are the matrices of Proposition 3.1. co o denotes the function whose
epigraph is the convex closure of epi q.

We list important properties of the integrand L just constructed.
PROPOSrrION 3.2.
(a) L satisfies the hypotheses (I1)-(I3) of 3.2.
(b) L(t,y, w)>-L(t, Hy, Fw+Gy) for all t[a, b], y" and wR".
(c) For all [a, b], y Em such that [y[ <- K + 1 and w " we have

L( t, y, w)= L( t, Hy, Fw+ Gy).

Proof By (H5), 0(. is a nondecreasing function. It follows that q is bounded
below by 0(0). Consequently we know that co q is a finite valued convex function on
m; it is therefore locally Lipschitz continuous by the properties of convex functions.
In particular, q is locally bounded.

L(t, y, w) is locally bounded since it is the pointwise maximum of two locally
bounded functions. For fixed y, w, L(., y, w) is the pointwise maximum of the measur-
able function L(., Hy, Fw+ Gy) and the constant function with value co q, and is
therefore measurable. For fixed t, y the function L(t, y, is convex, since it is expressible
as the pointwise supremum of convex functions. Hypothesis (I1) is verified.
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That L(t, .,. is locally Lipschitz continuous, un,iformly in t, follows from the fact
that it is the pointwise supremum of two functions , and q having this property. This
is hypothesis (I2).

Define the numbers c1(>0) and c2(0 to be c := IIF-’II and cz: IIF-’GII(K + 1).
(11 denotes the operator norm.) Since 0 is nondecreasing and convex (hypothesis
(H5)), we have co q(w) -> 0’(]w]), for all weN", where 0’ is the convex, finite valued
function

0’(r) := 0(max [0, cr- c2]), for r-> 0.

But 0 is superlinear, so

0’(r) 0(c r c2) c r c2
lim lim x +c,

r r-- (C r c2) r

i.e., 0’ is also superlinear. We have

L(t,y, w)>co q(w) >- 0’(Iwl).

Hypothesis (13) is thereby verified.
Properties (b) and (c) follow readily from the definitions of , , and q.

3.5. Conclusion of proof. Once again take z*= Z(x*, u*) where (x*, u*) is the
minimizing process for (P) of interest, z* satisfies the boundary condition D-1 z*(a)
q on elements in 57. Define r := D-1 z*(b). In what follows, is the Lagrangian defined
in 3.4.

LEMMA 3.4. The element z* is a minimizer of the functional .,
.(z) f_,(t,D-lz(t),Dz(t)) dt

over arcs z W’([a, b]; ") which satisfy

D-’z(a)= q and D-z(b)= r.

Proof Take an arbitrary element in W"’ such that

Dg-lz(a) D-’z*(a) and D-z(b) D-’z*(b).

Let (x, u)= Z-(z). By Proposition 3.1,

x(a) HD-lz(a)= HD-’z*(a)= x*(a)= o.
Likewise x(b)=:. Thus the process (x, u) satisfies the endpoint constraints on
problem (P).

We have

.(z) (t, D-lz, Dz) at

>-- L(t, HD-z, FDz+GD-lz) dt L(t,x,u) dt,

by Proposition 3.1 and Proposition 3.2(b),

>= I b

L( t, x*, u*) dt,
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since (x*, u*) is minimizing for (P),

If L(t, HD-lz*, FDz*+ GD-Iz*) dt

f [,(t, D-z*, Dz*) dt

in view of the fact that I]D-z*ll <= K and by Proposition 3.1 and Proposition 3.2(c).
This establishes that z* is a minimizer.

The requisi,te hypotheses are satisfied for application ofTheorem 3.2 to the problem
of minimizing J, with reference to the minimizer z*. We conclude existence of an open
set 1) c [a, b] of full measure, on which Dz* is locally essentially bounded. But then
u* is also locally essentially bounded on 1) by Proposition 3.1. Theorem 2.1 is proved.

We turn now to Theorem 2.2. Suppose that, in addition to (H1)-(H3), (t,
L,( t, x*( t), v) is continuous in and strictly convex in v. Define :(t,w):=
L( t, D-z*( t), w). Since ]]D-z*]],a,b<K, we have from Proposition 3.2 and
Proposition 3.1

(t, w)= L(t, x*(t), Fw/ GD-lz*(t)).

In view of the continuity of - L(t, x*(t), v) for each v, the continuity of - D-1 z*(t)
and the fact that L(t, y, w) is locally Lipschitz continuous in y, w, uniformly in t, the
function s(t, w) is continuous in for each w. It is strictly convex in w for each since
L(t, x*(t),.) is strictly convex and F is nonsingular. Theorem 3.2 now tells us that
Dz* is continuous on . By Proposition 3.1, u*, too is continuous on

Finally, we suppose that the hypotheses of Theorem 2.2(ii) are in force. Then for
each t6[a, b], L(t,y, w) is C near (t,x*(t), u*(t)). By Proposition 3.2, there exists
e > 0 such that

L(t, y, w)= L(t, Hy, Fw+ Gy),

for all [a, b], y D-z*(t) / eB and w R". Another way of expressing this relation-
ship is that

L(t, y, w)= Lo X(t, y, u),

for all (t, y) lying in a tube about graph {D-lz*} and all w [’. Here X is the linear
map

x
(t, y, w)-- (t, Hy, Fw+ Gy).

Now

X( t, D-z*(t), Dx*(t)) (t, x*(t), u*(t)),

for all t[a, hi. For each t[a, b] then,/_7, is C near (t,D-lz*(t),Dz*(t)) since it
is a composition of maps X and L which are C on neighbourhoods of
(t, Dd-z*(t), Dz*(t)) and X,(t, Dd-z*(t), Dz*(t)), respectively. We have already
shown that if the data for problem (P) satisfies the extra hypotheses of Theorem 2.2,
part (i), at (x*, u*), then the data of problem (P) satisfies the extra hypotheses of
Theorem 3.2 at z* (=Z(x*, u*)). We are justified then in applying Theorem 3.2, part
(ii), to problem (/3) at z*. This tells us that Dz* is C on . By Proposition 3.1, u*
is also C on . This concludes the proof.



990 F. H. CLARKE AND R. B. VINTER

4. Proof of Theorem 2.3. Assume that (A, B) is controllable (we shall relinquish
this extra hypothesis later). The set [I is open in [a, b]. it is therefore expressible as
the countable union of disjoint, relatively open intervals in [a, b],

i=l

Denote by a, fl the left and right endpoints of J and take z (a, fl). Let {cri) and {’}
be monotone sequences in (a, r) and (z, fl), respectively, such that r $ a and % ’ fl
and -> .

For each j, the control process on [%, %], obtained by restricting (x*, u*) to

[%, %], minimizes L dt subject to the appropriate fixed endpoint conditions. Also u*
is essentially bounded on [%, %] by Theorem 2.1. This essential boundedness property
ensures that the hypotheses are satisfied for application of the Maximum Principle
([3, Thm. 5.2.1]). We deduce existence of Lipschitz continuous functions q [%, %] ->

such that

(4.1) -dt(t)cb(t)" A-OxL(t,x*(t), u*(t)), a.e. [cry, "rj]

and

(4.2) qj(t).Bu*(t)-L(t,x*(t),u*(t))=max{q(t).Bw-L(t,x*(t), w)}, a.e.[rj, z].

(Notice that, since (A, B) is assumed controllable, the Maximum Principle applies in
"normal form.") The last equation implies

(4.3) q(t) B OuL(t, x*(t), u*(t)), a.e. [tr, %].
We deduce from (4.1) and (4.3) existence of essentially bounded, measurable functions

" cr, r --> [" and r/" r, z --> m such that, for j 1, 2,.

(4.4) -(t(t)=q(t).A-(t), a.e. [, ]
and

(4.5) q(t). B r/(t), a.e. [%, r].
Furthermore, there exists an increasing sequence of numbers {} such that, for
fixed k,

<k(4.6) 1[(.)[[. I[rt(.)[[,.
for all j ->_ k.

We show that there is a uniform bound on [Iq(z)[[, for j 1,2,.... From (4.4)
and the variation of constants formula it follows that

(4.7) qj(t)-’qj(’r)" e-a(t-)+sj(t), a.e. [r, z],

for j 1, 2, , where

sj(t) j(S) e-A(t-’) ds.

Postmultiplying across equation (4.7) by BD(t), where

D(t) :: B’ e-A(’-*) ds,

integrating over [% z] and noting (4.5), we obtain

q(’) W(% z)= [r(t)-s(t)B]D(t) dr,
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where W(r, rl) is the controllability Grammian of (-A, B), namely,

W(r, ’1) := e-BB’ e-’ ds.

Since (A, B) is controllable, W(r, ’1) is invertible. The uniform boundedness of -(. ),
r(. ), and hence of s(. ), on It, r] (see (4.6)) ensures existence of a number d such
that

Ilqj()ll-_<d, for j= 1,2,....

This establishes the uniform bound on the
It follows from this property, (4.4), and (4.6), via application of Gronwall’s

inequality, that there exist numbers c, k 1, 2,..., such that for each k, and j
k,k+l,.

q(" )11 ,,.--< c.
We conclude from (4.4) that for each k, the functions qj(. ),j k, k + 1, are uniformly
bounded and equicontinuous on the fixed subinterval [trk,

Ascoli’s theorem now permits us to construct a nested family of subsequences of
{q2(’)},

{qlj(" )}j {q2j(" )}j

with the following properties" for fixed k, terms in the sequence {q}= are selected
from {q(. )} and

(4.8) qkj(t)pk(t), uniformly on [trk,

for some continuous function p(" ).
Take k an arbitrary index value. Then since {q} is a subsequence of {q}%,

(4.1) and (4.2) remain valid when qkj replaces qj and the fixed time interval
replaces [r, ], for j 1, 2,. .. In view of (4.8), standard arguments (see, e.g., [3, p.
201 et seq.]) permit us to pass to the limit in these relationships and obtain the following
information about Pk(’): pk is a Lipschitz continuous function on [o-k,

(4.9) -p(t)p(t) A-OL(t, x*(t), u*(t)), a.e. [r,

and

(4.10) pk(t)" Bu*(t)-L(t,x*(t),u*(t))=max{pk(t). Bw-L(t,x*(t),w)},

a.e. [o’k, rk].

Now the fact that the sequences {qkj}j=, k 1, 2,... are nested ensures that

pj(t) pk(t), all [o), ],
for any index values i, j, k such that i<-j <-k.

We may define a function p:J " then in the following manner: if J1

p(t) pj(t),

where j is any index value such that 6 [o), ]. Since each of the pj(. )’s are Lipschitz
continuous, p(.) is locally Lipschitz continuous on J.

Let Ik c [trk, ’k] be the nullset of points at which either (4.9) or (4.10) is not
satisfied. Evidently p(.) satisfies (4.9) and (4.10) for all Jl\i Ik, a subset of Jl
having full measure.
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We now extend .p(. to all of [0, 1]. It is constructed on J2 U J3 m... precisely as
on J1. Values are arbitrarily assigned on the nullset [0, 1]\UiJ. Retaining the symbol
p(.) for the extension, we see that p(.) is locally Lipschitz continuous on J and
satisfies (2.1) and (2.2) almost everywhere. This completes proof of the theorem in the
case where (A, B) is controllable,

Suppose now that (A, B) is not controllable. Consider first the case B 0. Then
u*(.) must satisfy

L(t, x*(t), u*(t)) min {L(t, x*(t), u)}, a.e.

We readily deduce from this property and hypotheses (HI) and (H3) that u*(.) is
essentially bounded on [0, 1 ]. But then the theorem is just a special case of the standard
Maximum Principle [3, Thm. 5.1.2].

If B # 0, we can find. a no.nsingular n x n matrix P and an integer nl, 0 < n < n,
such that the matrices A and B,

have structure

fft := P-AP and =p-1B

A22J’ 0

Here/11,/12, /22, and /}1 have dimensions nl x nl, nl x (n nl), (n nl) x (n- nl),
and n x m, respectively. Furthermore (1,/}) is controllable.

By considering a change of coordinates on the state space, col {1, )72} p-Ix, we
can easily see that the process (1", u*) solves the problem,

Minimize L(t, Pl:l(t)+P2:*2(t), u(t)) dt

over processes (, u) such that

#I(t) II #l(t) -- lU(t)+[P-’d(t)]1,#(0) [P-’o], and (1) [P-’,],.
Here P, Pz] is a partitioning of P into matrices of n and n- nl columns, respectively,
[’’" ]1 ([’’" ]2) denote vectors formed of the first n (last (n-nl)) entries of a given
n vector and (Yl*(t), Yz*(t))= P-x*(t).

The optimization problem arrived at satisfies the hypotheses of Theorem 2.3 and,
in addition, has controllable dynamics. Applying then a special case of Theorem 2.3
that we have proved, we obtain a function/1"[0, 1]R" which is locally Lipschitz
continuous on j and satisfies

(4.11) - 1" -OxL(t, Pl* (t)+ P2*z(t), u*(t))P1, a.e.

and

ill" lu*(t)-L(t, P,#* (t)+ P2#2*(t), u*(t))
(4.12)

=max{/l. ,u-L(t,P,Y*(t)+P2;*2(t), u)}, a.e.

Next, a simpler version of a technique already employed in this proof is used to
construct a function fi2" [0, 1]- R"-", which is locally Lipschitz continuous on J and
satisfies

(4.13) --2(t) Cfiz(t) Zzz+fil(t)" Ale-OxL(t,x*(t), u*(I))P2, a.e.



REGULARITY PROPERTIES OF OPTIMAL CONTROLS 993

Briefly, we construct the values of/2 successively on J1, J2," (where J tA Ji is a
decomposition of J into relatively open, disjoint intervals). It suffices to say that, in
place of an application of the standard Maximum Principle, to assure existence of a
Lipschitz continuous solution on a closed subinterval of J to the relevant costate
differential equation, we need only appeal to existence theorems for solutions to
ordinary differential equations (involving arbitrary selectors of 0x L(t, x*, u*) P2). Also,
instead of using a "controllability" argument to obtain bounds on these solutions at
a point in each of the ’s, we simply set the value to zero there.

Noting PlY*+ P22"-- x*, we assemble (4.11), (4.12), and (4.13) to obtain

_d (1, 2) (1, fi2)-OxLP, a.e.(4.14)
dt

and

(4.15) (/1,/2)/u* L(t, x*, u*) max {(/,/z)/u L(t, x*, u)}, a.e.

Finally, we define p(. [0, 1 ":

p(t) := fi( t), fiz( t))P-.
This function has the required regularity properties, and (2.1) and (2.2) follow from
(4.14) and (4.15).

5. Bounded controls. While we are prepared to countenance unbounded controls
in optimal control theory, any practical controller design procedure must take account
of control magnitude constraints. Such constraints are inevitable; they may describe
performance limits on the control actuators, or serve to confine the control and state
variables to regions where the given dynamic equations provide an adequate description
of the system response.

The presence of constraints can add very significantly to the difficulty of solving
an optimal control problem. It is common practice then to replace the constraints by
a penalty term. The cost in this case takes the form:

J(x(. ), u(. )) [L(t, u(t), x(t))+ lu(t)[] dt,

in which L is the cost integrand of the original, constrained, problem and e[ul is the
penalty term. Here e > 0 and r_-> 1 are parameters whose magnitudes are adjusted to
force the minimizing control to assume values in acceptable regions of the control space.

We should like to know then when inclusion of the term lul in the cost gives
rise to bounded controls. In quadratic cost optimal control, where L(t, u, x)= x’Qx
for some symmetric matrix Q (Q_-> 0), inclusion of elul2 has this effect for any e > 0.
This is shown by direct calculation of the optimal control [2], an approach which is
not available for broader classes of problems.

Our object in this section is to derive from the regularity results of 2 new criteria
for minimizing controllers to be bounded, and in particular for the penalization
technique just described to work.

THEOREM 5.1. Let (x*, u*) be a minimizing process. Suppose that, in addition to

(H1)-(H3), the following hypothesis is satisfied: there exists an integrable function y(.
such that

(5.1) max {[al+[b[: aOxL(t,x*(t), u*(t)), bO,L(t,x*(t), u*(t))}<- y(t), a.e.

Then u* is essentially bounded on [a, b].
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Proof. We deal only with the case in which (A, B) is controllable. The noncontrol-
lable case is handled by the obvious state reduction techniques (c.f. the proof of
Theorem 2.3). Denote by f the regular points of u*. Take a point (a, b)(’112 and
define tma :’-sup {t > ’: /* is essentially bounded on [?, t]}. We show presently that
u* is essentially bounded on [?, tmax]. It will follow from Theorem 2.1 that tma
In view of the definition of tmax, this implies that tmax b. Thus u* is essentially
bounded on [?, b]. Likewise we show that u* is essentially bounded on [a, ?], and
hence on [a, b].

To show that u* is essentially bounded on ?, tmax] we take a sequence of points
{ti} in (?, tmax) with ti ’ tma For each we know that u* is essentially bounded on

?, ti]. Regarding the restriction of (x*, u*) to [?, t] as a minimizer with respect to this
time interval and appropriate endpoint constraints, we are justified then in applying
the Maximum Principle [3, Thm. 5.1.2]. Accordingly there exists an absolutely con-
tinuous function pg [0, 1 R such that

(5.2) -,(t)Pi(t)" A-OL, a.e. [?,

and

(5.3) -p,(t). BO,L, a.e. [?, t,].

(In these two inclusions the generalized gradients are evaluated at (t,x,u)=
(t,x*(t),u*(t)).)

Noting that, under the hypotheses, selectors of tO,L(t,x*(t), u*(t)) and t-

OuL(t, x*(t), u*(t)) are uniformly integrably bounded, we deduce from these inclusions
that the numbers Ipi(1)], 1, 2, , are uniformly bounded. A "controllability Gram-
mian" argument is involved, precisely along the lines of the passage in the proof of
Theorem 2.3 which follows label (4.6).

Once again, using the integrable boundedness of O,L, we now obtain from (5.2)
and Gronwall’s inequality a constant c such that

Ilp, ll,,,i<c for i= 1,2,....

It follows now from (5.3), the convexity of L(t, x*(t),. and hypothesis (H3) that
there exist positive constants cl and c2 such that

(5.4) -0(lu*(t)l) / clu*(t)l > -c=, a.e.

Let ro> 0 be such that

O( r)/ r > C "]- C2/ro, whenever r > ro.
Consider the set of points on which lu*(t)l > to. Then

o(u*(t))/lu*(t)l> c /
By (5.4), such points form a nullset. This establishes that Ilu*ll ,o, <-- ro, and completes
the proof.

It is a simple step now to derive conditions for the penalty term to suppress
unboundedness of optimal controls.

COROLLARY 5.2. Let (x*, u*) be a minimizing process for problem (P). Assume
that hypotheses (H1)-(H3) are satisfied and L has the form

t(t, x, u)= tl(t, x, u)+ ]u] r,
in which LI : xR x"[ is a givenfunction, and r(>=l) and e(>0) are given numbers.
Suppose further that

L(t,x,v)>=Oforall (t,x,u)[a,b]n
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and
given a compact set K c [a, b] x Rn, there exists a number c, such that

max {[a[ + [bl: a OxZ( t, x, u), b O,L( t, x, u)} -< cl(1 + lUlr),

for all (t, x) K and uR". Then u* is essentially bounded on [a, b].
Proof Under the extra hypotheses, the left side of (5.1) is bounded bythe integrable

function c1(1 /[u*(t)l), where cl corresponds to K, the radius of a ball containing
graph x*. Now apply Theorem 5.1.

The corollary says that u* will be essentially bounded provided the polynomial
growth of L and its derivatives, with respect to the control variable, matches that of
the penalty term.

Note that in problem P(k, e) of 1, the exponent r= 2 in the penalty term elul
is insufficient; there is an unbounded minimizing control. If however we were to set
r 14, or more, the theory of this section tells us that minimizing controllers would
then be bounded.

Appendix. This appendix provides some results on the decomposition of the
dynamic and endpoint constraints

(t)=Ax(t)+Bu(t), a.e. [a, b],

x(a) :o, x(b) :1,

ofproblem (P), Notice that there is no exogenous term d (t) in the dynamical equations.
A is n x n and B is n x m. It is assumed throughout that (A, B) is controllable and B
has full column rank.

LEMMA A.1. There exist matrices F, M and K (det F # O, det M # O) ofdimension
n x n, m x m, and m x n, respectively, and positive integers n1," , nm with the following
properties:

nl >---- rl2 rim and m tl + n2 +" + n,,,

and defining . M-1AM M-1BFK,

we have

:=.M-1BF,

in which Ji is the ni x ni matrix and bi is the n vector

0 1 0

for l, m.

0 1

0 0

0

hi=

1

Proof. The nonsingular matrix M and the "controllability indices" nl,..., nr
are chosen to reduce the dynamical equations to "controllable companion form" [12].
The nonsingular matrix F, which changes the basis on the control space, is chosen to
eliminate off-diagonal entries in the block representation of the input matrix. Finally
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K is a feedback matrix chosen to place the poles of the reduced dynamic equations
at the origin. Details of the steps involved are supplied in [12].

In what follows, F, M, and K remain as in Lemma A.1. Set a := n l.

ProofofProposition 3.1. We begin by specifying the matrices and vectors in terms
of which the mapping Z" 9 ow is defined. Recall

ow:= {processes (x, u) for (P)" x(a)= o}

and

57:= {z W’([a, b]; JR")" D-z(a)= q}.

For i= 1,. ., m, the a vector q is taken to be

q := col {0, M-o]i},

i.e., to get the q’s we partition the vector M-l:0 into vectors of dimension
n,...,nm(M-lfjo=col{[M-lo],...,[M-,o],,}) and add leading zeros if
necessary to raise the dimension of each vector [M-:o] to a. Now set q:=
col {q,. ., q,}. This describes the boundary condition on elements in O.

Given (x, u) 5, Z(x, u) is taken to be the unique element z e W’1 satisfying
o--1 Zj( t)}?= 1} im=l(A.1) u(t) F col {Dzi(t)+ k. col {D_,

and

D-z(a)=q.
Here k,....., km are the rows of K.

Notice that the right side of (A.1) defines a linear transformation of
(Dz(t), D-z(t)) and accordingly can be written

(A.2) u(t) FDz(t)+ GD-Iz(t)
for some matrix G, in accordance with the assertions of Proposition 3.1.

The mapping Z is well-defined since, if (x, u) is fixed, (A.2) amounts to a
nondegenerate system of a order differential equations for z Z(x, u),

Dz(t)+ F-’GD-’z(t)= F-u(t),
which together with the boundary condition on lower order derivatives, D-z(a) q,
has a unique solution z 6 W’. Z is a bijection in view of (A.1), and since a control
function u(.) uniquely determines a state trajectory which satisfies the boundary
condition on elements in 5, x(a)- o.

Take z Z(x, u), and an open subinterval I [a, b]. It is evident from (A.1) that
u L(I) if and only if Dz 6 L(I) and, for any integer/3 >- 0, u Ct (I) if and only
if Dz CrY(I).

It remains to check that, if z Z(x, u),

x(t) HD-’z(t),
for some matrix H. We shall show specifically

(A.3) x(t) M col {D-1niZi(l)}i=
(i.e., H can be taken to be the matrix representation of the right side of (A.3), viewed
as a linear transformation of D-lzi(t)). Let Y M-x and F-lu. Then it is easy
to show that Y and are related according to

) ,+/[fi- K)],

(a) M-’o.
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Now partition the transformed state vector Y into vectors of length nl,...

: col {:1, :m}.

Noting the special structure of A and B we deduce that Yi is expressible in terms of
an element wi W",’([a, b]; R)"

and

D"’w,( t) {v-lu( t)}i q ki col {D;J-’ wj( t)}’=l.
Let z,..., z,, be defined to satisfy the differential equations

D-",zi(t)=wi(t),

with boundary conditions

D-",-zi(a) =0,

and write z col {zl,. ., z,}. Then

i(t) D_n, zi(t), Do-zi(a)=col {0, ,(a)}

and
c--Ia(t) =col {Dzi(t)+ k" col {D,-.,z(t)}’f’=l}i=l.

Since Y(t)= M-ix(t) and a(t)= F-u(t), we deduce z= Z(x, u) and (A.3) is true.
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specialized and are readily accessible to a limited group of experts only. Moreover, the original motivations and
practical importance of the ideas are sometimes difficult to find in the mathematical development. The purpose
of these papers is to bring the ideas, techniques, and applications of a few selected areas to the attention of a
wider audience, so that their basic importance can be more easily and widely appreciated.

NUMERICAL METHODS FOR STOCHASTIC CONTROL PROBLEMS
IN CONTINUOUS TIME*

HAROLD J. KUSHNER?

Abstract. A powerful and usable class of methods for numerically approximating the solutions to
optimal stochastic control problems for diffusion, reflected diffusion, or jump-diffusion models is discussed.
The basic idea involves a consistent approximation of the model by.a Markov chain, and then solving an
appropriate optimization problem for the Markov chain model. A general method for obtaining a useful
approximation is given. All the standard classes of cost functions can be handled. Here, for illustrative
purposes, discounted and average cost per unit time problems with both reflecting and nonreflecting diffusions
are concentrated on. Both the drift and the variance can be controlled. Owing to its increasing importance
and to lack of material on numerical methods, an application to the control of queueing and production
systems in heavy traffic is developed in detail. The methods of proof of convergence are relatively simple,
using only some basic ideas in the theory of weak convergence of a sequence of probability measures or
random processes. For the deterministic problem, one form of the method reduces to the method of finite
elements, but the probabilistic approach allows a much simpler proof of convergence than that usually used
for the deterministic problem.

Key words, numerical methods for stochastic control, optimal stochastic control, diffusion approxima-
tions, reflected diffusions, weak convergence, martingale measures, Markov chain approximations, ergodic
control

AMS(MOS) subject classifications. 93E25, 93E20

1. Introduction. This paper deals with a family of powerful and intuitively appeal-
ing numerical methods for a wide variety of stochastic (and even deterministic) control
problems. The underlying stochastic processes can be of the diffusion, jump-diffusion,
or reflected diffusion types discussed in [20] and [25] or of the sort of reflected diffusion
that arises in the heavy traffic modeling and control of queueing and production systems
[22], [31-1, [44]. The basic idea is the "Markov chain approximation" method used in
[29] and [35]. The essential idea involves an approximation of the controlled stochastic
process by a suitable controlled Markov chain, for which the optimal cost functions
are readily computed, and then showing that we can approximate the optimal cost for
the original problem arbitrarily closely by the optimal cost for such a controlled chain.

We survey, update, and substantially extend the basic ideas in [29] in a way that
allows the coverage of a much wider variety of problems in a somewhat more straight-
forward way, including relaxed controls, heavy traffic modeling, ergodic control, and
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variance control as well as all the cases dealt with in [29]. The method can handle
control over a finite interval, control until a target set is reached, discounted control,
optimal stopping and impulsive control, average cost per unit time over an infinite
time interval, and various combinations and extensions of these. There are versions
that are suitable for (convergent) approximations to nonlinear filtering problems [29,
Chap. 7.5], [30], 12], and these can be extended to cover smoothing and interpolation
problems. An extension of the filtering approximation covering point processes also
appears in [11] and an interesting application of that to reliability theory is in [9].
Unlike classical methods for solving optimal stochastic control problems, smoothness
of the solutions to the Bellman-Hamilton-Jacobi (partial differentialmor partial
differential integral) equations (BHJ) is not needed. On the contrary, the numerical
methods to be presented yield numerical approximations to the solutions of such (weak
sense) equations by exploiting the fact that their solutions have representations as
functionals of diffusions or jump diffusions.

The basic idea of the technique is discussed in 2. The concept of relaxed controls
is very useful in dealing with existence and convergence questions in the calculus of
variations and control theory [2], [50]. This technique simplifies the analysis, since
(typically) any sequence of relaxed controls has a convergent subsequence (in an
appropriate topology; see 3). The use of this technique for stochastic problems was
introduced in [17] and then used in [18] and [37], and elsewhere. In 3, we define
the admissible relaxed" stochastic controls. Section 4 contains some definitions concern-
ing weak convergence, and a useful criterion for tightness, as well as a brief discussion
of the general method of showing that the limits of our approximating interpolated
chains are indeed controlled diffusion processes. Methods for obtaining the
approximating chain are given in 5. For practical programming, efficient methods
are essential. Two basic "automatic" schemes are discussed; the first getting the
transition probabilities for the chain from the coefficients of a suitably chosen finite-
difference approximation to the BHJ equation (whether or not the equation has a
smooth solution--the use of finite differences is just a "device" to get the chain" the
method is not a finite-difference method), the second involves a form of finite-element
method (again, this is just a "device"rathe methodology or assumptions of finite
elements are not used).

Deterministic control problems are often special cases of the stochastic problems
dealt with here. It is instructive to see how the general ideas simplify and can be used
for deterministic problems, and for purposes of illustration this is dealt with in 6 for
a special two-dimensional case.

Section 7 treats a problem for a controlled (drift only) diffusion process, with a
discounted cost--until a target set is hit or a desired domain is exited. This illustrates
the general method of proving tightness and convergence of the controlled approximat-
ing chains to an optimal diffusion process. Very similar techniques are used for many
other problem types.

In 8, we treat the problem of optimally controlling a diffusion where the control
also appears in the "diffusion" term. The Markov chain method also works here. The
proofs require the introduction of the concept of martingale measure 14], [51 to deal
with the type of "controlled" stochastic integrals needed for the proper representation
of the system. In 9, we treat the numerical method for the type of reflected diffusion
that arises in the modeling of queueing and production systems operating in a so-called
heavy traffic environment. The ideal limit model here is a reflected diffusion in the
positive orthant of some Euclidean space. Two separate approximation problems arise
here, since the "limit reflected diffusion" is not the actual physical model. We must
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first find the appropriate limit control problem and an approximation procedure for
solving that optimization problem. Then we must show that the optimal value functions
for the controlled true physical processes (as the traffic intensity goes to one) converges
to the optimal value function for the limit controlled reflected diffusion. In 10 and
11 we treat the reflected diffusion and average cost per unit time problem, respectively.
For simplicity, we concentrate on the case of diffusion processes. There are obvious
extensions of the method and of all the results to controlled jump diffusions, and to
impulsively controlled problems. The singular control problem has some special twists
and will be dealt with in a separate paper.

2. Approximation by Markov chains: Introduction. To see how the Markov chain
approximation method works, consider our canonical system (2.1) with cost given by
(2.2) and where m or m(.) denotes a control policy. The control value u is in U, a
compact set, and Go is defined in (A2.2) below"

(2.1) dx b(x, u)dt + r(x)dw, x R Euclidean r-space,

(2.2) V(x,m)=E: e-3tk(x(t),u(t))dt+E e-tg(x(’)), >0,

’=inf{t’x(t):G} if x(t):G,forsome t<,
otherwise.

The control terminology will be made more precise in 3. E denotes the
expectation under x(0)= x and control policy m(.) used. Assumptions (A2.1) and
(A2.2) will be used. Also, w(.) is a standard vector-valued Wiener process, and the
dimensions of x, b, or, and w are compatible.

(A2.1) b( .,. is continuous and b(., u), r(. are Lipschitz continuous, uniformly
in u. Write a(. or(. )tr’(. ).

Note that our definition of a(. is twice the value used in [29].

(A2.2) k(. and g(. are continuous and bounded and G is a compact set, which
is the closure of its interior G, and has a piecewise smooth (differentiable)
boundary.

Our purpose in this section is only illustrative. More details and conditions appear in
the later sections. Our conditions are also usually stronger than necessary for the
convergence of the numerical methods: e.g., usually a weak sense uniqueness condition
can replace the Lipschitz condition, u(. m is said to be admissible if it is U-valued,
measurable, and nonanticipative with respect to w(.). An extended definition of
admissibility appears in 3. The discounted cost (2.1) is chosen here for illustrative
purposes and is used in most of the sequel. All the standard forms of the cost function
can readily be treated. See [29]. The set G might or might not be part of the original
problem statement. In order to numerically solve a control problem it is usually
necessary that the process be confined to some bounded set, and some bounding set
G might be used for numerical purposes only. Define

(2.3) V(x) inf V(x, m).
admissible

The Markov chain approximation. For each h > 0, let {srh, n _--> 0} be a controlled
Markov chain with transition probabilities p h (X, ylu), U U, and a discrete state space
Rrh R r. Let u hn denote the control used at step n, and suppose that an (continuous in
x, u) interpolation interval Ath(x, u) is given. Define Ath=n Ath(h,, U h). and set Gh
R, G, the effective state space of {:h} until escape from G.
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Define 6:h, :+,-. Let E h. denote the expectation given {:, uh,. <= n}. Sup-
pose that for some a > 0 and x,

E Ath(x, u)b(x, u)+ O(hth(x, u)),

(2.4) Eh[-E][-E]’=a(x)Ath(x, u)+O(hAth(x, u)),

]+1-1 O(h).

We use the O(h) bound in (2.4) for convenience in unifying the presentation, it would
not usually hold for cases where the control is of the impulsive, singularly controlled,
or hard reflection type. But in all of these cases there are obvious modifications.
Approximations for the impulsively controlled problem appear in [29], and the singu-
larly controlled problem [26], [27] would use a combination of the ideas in this paper
and those in [38]. Owing to its special nature and the length of this paper, the singular
control problem will be dealt with in a separate paper.

Define the interpolated chain :h(. and control Uh( by
n--1

(2.5) h(t)= h and uh(t)= U
h on [th thn+l) h 2 Athi

o

DEFINITION (to be extended in 3). A control policy m h for {:h,} is said to be
hadmissible if the associated un are U-valued random variables and, with {uh,} used,

the process is still a Markov chain, i.e.,

(2.6) P{s%h+l ylsCh u/h in}=ph(hn,yluh)
Let E’ denote the expectation under initial condition x and policy m h.

Define the discounted cost

(2.7)
N

h hvh(x, mh) E Z e-t’"k(h., u,)Atn + Ex e--t3’hg(hNh),
o

where Nh =min {n" schn ah} (or Nh oe if it is not otherwise defined). Set ’h th,
the escape time of,h( from G. Then (2.7) can be written

(2.8) for e-’hg( (’h)).Vh(x, m h) E e-’k(h(s), uh(s)) ds+E h

Define

(2.9) Vh(x) inf Vh(x, mh).
adm.

We use "deterministic" intervals Ath(x, U) (see below for further remarks). We
could work with continuous parameter Markov chains {h(. )} with "infinitesimal"
transition probabilities given by (2.6), but where the holding times are exponentially
distributed, and with mean duration Ath(x, tt). The results would be exactly the same.
For our purposes here there is little advantage in doing so. See [35, 8], where such
models are used for approximations to a jump-diffusion process.

Conditions (2.4) are "local consistency" conditions between x(.) and :h(.). It
will turn out that this is the essential quality we require of the chain, irrespective of
how it is obtained (or appropriate analogues for the jump-diffusion or "singular"
cases). This consistency and the similarity between (2.2) and (2.8) suggest that the
optimal values Vh(x) and V(x) will also be close for small h, and this will turn out
to be the case. We try to choose {ph(x, ylu)} so that the process sch(") approximates
x(" "reasonably well," while keeping the computation of Vh(x) tractable.
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Computing Vh(x). The dynamic programming equation for (2.7) is

Vh(x) =min [y e-3ath(x’uph(x, ylu)Vh(y)+ Ath(x, u)k(x, u) 1, Gh,
(2.10)

g(x), X V: Gh.
There are many methods for computing the vh( ), although we do not deal with them
here. References [32], [42], and [45] concern Gauss-Seidel or successive overrelaxation
or other methods that have been found to work well on two- or three-dimensional
problems. A promising "aggregation" method is discussed in [3]. The Markov chain
approximation scheme has beenincorporated into the expert system of Quadrat et al.
[6], [7]. There are forms of the multigrid method being investigated for computing
V(.) [1]. Although these are not "Markov chain" methods, they appear to have
considerable promise, at least for nondegenerate models (2.1).

Convergence of {V"(.)}. Under quite general conditions, any subsequence of
{:h(. )} has a further subsequence that converges to some controlled diffusion with an
admissible policy n3 in the sense ofweak convergence (see 4), and Vh(x) will converge
to the cost V(x, r) for that diffusion. The limit policy might be a "relaxed" control,
even if the uh( are not (see 3 for the definition). Clearly, V(x, r) >= V(x), since n
is no better than the optimal control. Then li_._mh Vh(x)>= V(x). In order to get Vh(x)-
V(x), we need a reverse inequality. To get that, given any > 0, we find a special
-optimal control m for x(.) that has an "adaptation" m h’ for use on {h} SO that
Vh(x, tn h’) - V(x, m). These estimates and Vh(x) <= gh(x, rrl h’) (due to the optimality
of Vh(x)) yield the desired result. In fact, the convergence will be uniform in x E GO

under broad conditions.

On th(x,U). For many applications, we might wish to use zth(x, U)-----A, a
constant, for example, in applications to the nonlinear filtering problem [29, Chap.
7.5]. As seen in 5, a suitable chain with constant interpolation intervals can always
be found. Fixed zth(x, U)= Z intervals are also an alternative (but not the only one)
when control is over a fixed finite time interval, or whenever the underlying PDE is
of the parabolic type [29, Chap. 7]. Actually, a fixed interval can be used with any
problembut it is not usually (numerically) efficient to do so. We comment on this
further in 5 when specific chains are dealt with.

For problems where the control is potentially over an unbounded interval, it is
usually both intuitively natural and numerically desirable to let Ath(x, U) depend on
x and u. The usual methods of choosing the chain explicitly yield the Ath(x, tl), SO it
is obtained automatically. Intuitively, as Ib(x, u)l or ]a(x)l increases, we want a shorter
Ath(x, U), because the "faster" the dynamics, the shorter the desired "holding times."

3. Relaxetl controls. In this section, we define the actual class of admissible
controls that will be used. The definitions given here greatly simplify the convergence
analysis (in comparison with the methods in [29]). Let (f, P, ) be a probability space
and , a sequence of nondecreasing sub-or-algebras of . Let w(. be an t-standard
vector-valued Wiener process. (That is, w(t) is t-measurable and w(t + s)- w(t),
s

_
0, is independent of all -measurable random variables.)

Deterministic controls. A U-valued measurable function u(.) is said to be an
ordinary control for (3.1)"

(3.1) 2=b(x,u).
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Let m(.) be a measure on the Borel sets of U x [0, o) such that

(3.2) m(U x [0, t]) for all t-> 0.

For notational convenience, we often write m(B x [0, t])= m(B, t). Under (3.2), there
is a measure m,(.) on the Borel sets of U such that for Borel B, m.(B) is Borel
measurable, and m(dc dr) mt(dc) dt. We say that m(. is an admissible relaxed control
for (3.1) and rewrite (3.1) as

(3.3) 2= I b(x, c)m,(dc).

Any ordinary control u(. has a representation as a relaxed control where mt(dc)=
8u(,(c) dc. There is a so-called "chattering lemma" [2], which states that for any relaxed
m(. and associated x(. there is a sequence of ordinary admissible controls uS( ),
each taking only a finite number of values, and associated solutions x(.) to (3.1),
such that x(.)x(.), uniformly on each interval [0, T], and m(.) m(.) (weak
topology), where mS(. is the relaxed control that is equivalent to uS( ).

The advantages provided by the relaxed controls stem from the fact that the
dynamics in (3.3) are now linear in the control, and it is much easier to work with
questions of approximation, limits of sequences of controls, and existence of optimal
controls [2], [17], [50], and similarly for the stochastic case below.

Stochastic controls. Write x , for the minimal r-algebra containing the prod-
uct sets, where t is the Borel algebra on [0, t], and completed with respect to the
null sets (Px Lebesgue measure) of x. If a U-valued function u(.), when
restricted to 12 x [0, t], is if, x t measurable, we say that it is an ordinary admissible
control for the SDE

(3.4) dx b(x, u) dt + or(x) dw.

Such functions u(.) are also called progressively measurable.
Let m(. be a measure-valued random variable (on the Borel sets of U x [0, c))

such that for all and Borel B

(3.5) m( U, t): t,

(3.6) m(B, t) is t measurable.

Conditions (3.5) and (3.6) imply the existence of a measure-valued t-adapted deriva-
tive m,(. such that m(dc dr) m,(dc) dt. This follows from the following facts, m(B,.
is nondecreasing and Lipschitz continuous (Lipschitz constant less than or equal to
1). Hence for Borel B, [m(B, t)-m(B, t-8)]/8 converges (for almost all t, to) to an
F/-adapted process m,(B). Similarly to what we do in the construction of a regular
conditional probability distribution, a version of m.(B) can be chosen such that the
convergence is for all Borel B (for almost all to, t), and m,(.) is a measure on the
Borel sets of U.

We call m(.) an admissible relaxed control for (3.3), and for such controls, the
model (3.7) replaces (3.3):

(3.7) dx dt f b(x, c)m,(dc)+ r(x) dw.

If u(t) Uo(X(t), t) for some Borel function Uo(" ), we call u(. an admissiblefeedback
control The only important fact concerning the filtration , with respect to which
admissibility is defined is that w(.) is an ,-Wiener process. If if, is not important,



NUMERICAL METHODS 1005

we often say that (m(.), w(.)) is an admissible pair or that m(.) is admissible with
respect to w(, ).

The following result is well known 17], [18], and the proof is a natural analogue
of the proof of the chattering lemma for the deterministic case.

THEOREM 3.1. Assume (A2.1), and let (m(.), w(.)) be an admissible pair. Then
(3.7) has a unique (strong sense) solution. Also the probability law of (x(.), w(.)) is
determined by that of m (.), w( )). For any T < oe 6 > O, there is an ordinary admissible
control u(. ), which is piecewise constant and takes only a finite number of values and
is such that ifx( and x(. ), respectively, correspond to u( ), and m(. ), respectively,
then for any bounded continuous real-valued f(.

(3.8)
P{sup lx(t)-x(t)l> 6} 0’

E f(s, u(s)) ds- f(s, c)ms(dc) ds

For m(.) an admissible relaxed control, the V(x, m) of (2.2) is written as

(3.9) V(x,m)=E e-’k(x(t),c)m(dc)dt+E e-’g(x(-)).

The reader is reminded that the cost depends on the joint distribution of (m(.), w(. ))
and not only on m(. ), but we omit the w(. from the notation for simplicity.

Controls for {se}. The U-valued sequence {uh} is said to be an ordinary admissible
control if (2.6) holds. If there are Borel functions u,(.) such that u h=" U,(h), then it
is said to be an ordinary admissible feedback control. A sequence mh( of measure-
valued (on the Borel sets of U) random variables is an admissible relaxed control if
mh(n U) 1 and

P{s%h+I yl, m, <- n} f ph(h, y[c)mh(dc)

Throughout the paper, we will use only ordinary admissible controls for the {:h,}.
Nevertheless, it is often important to use the relaxed control terminology and the
relaxed control representation of the ordinary control, since the limits of the "relaxed
control representations" of the ordinary controls might not be ordinary controls, but
only relaxed controls.

h hDefine mh(") by its derivative mr(’)" m,(’)=mh(’) on It h hn/l), and write
mh(dcdt) m h (dc) dr. We rewrite (2.8) in terms of relaxed controls as

Iofe-’k(,(s),c)mh(dc)ds+E, -(3.10) Vh(x, m h) E" e g(h(rh))

For any ordinary control {uh,}, we define the relaxed control equivalent by mh(dc)=
,(c) dc.

4. Weak convergence. In the first part of this section, we discuss the concepts and
results in the theory of weak convergence, which will be useful to us in the sequel. In
the second part, these results are applied to characterize the limits of the interpolated
processes {h(o), mh(.)}, as h0. Let {X,} and X be random variables with values
in a metric space $, and with induced probabilities {P} and P on the r-algebra 6e of
S. If Ef(X,) Ef(X) for every bounded real-valued continuous function f(. ), then
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we say that {Xn } (or {P, }) converges weakly to X (or P), and write Xn X (or P, :=> P).
An important extension (used in 6-9 below) [4, Thm. 5.1] is Theorem 4.1.

THEOREM 4.1. Let X,==>X and suppose that f(.) is bounded, real-valued, and
measurable with discontinuity set Dr. If P{Dr} 0 (where P is the measure induced by
X), then Ef(X Ef(X and f(X, =:>f(X).

The following theorems and definitions provide the basis of the subject of weak
convergence [4], [15], [28]. The sequence {X} (or {P}) is said to be tight (relatively
compact) if for each e > 0, there is a compact set K c S such that

inf P{Xn K} >-_ 1 e.

If the X, are vector-valued, then tightness is equivalent to limu sup, P{IX, >= N} O.
One part of Prohorovs’ theorem [4, Thm. 6.1] states the following.

THEOREM 4.2. Let {X,} be tight in (S, Sf). Then for each subsequence, there is a

further subsequence {Xn} and an X such that X,X.
For analytical purposes, it is often more convenient to work with probability one

convergence than with weak convergence. If only the distributions of the random
variables or functions are of interest, then the underlying probability space is unimpor-
tant and can be chosen so that the following theorem of Skorokhod holds [25, Thm.
2.7, Chap. 1].

THEOgEM 4.3 (Skorokhod representation). Let S be a complete and separable metric

space with metric d .,. and let Xn X on S. Then there is a probability space (, ’, ’)
with S-valued random variables Xn, X, defined on it such that for all Borel sets A in S

{fn A} P{X, A}, {2 A} P{X A}

and d fi,, f[) --> 0 with probability I.
Let (T), T <, denote the set of measures m(. on the Borel sets of U x [0, T]

that satisfy m( U x [0, t]) m( U, t) t, for all =< T, and with weak topology. On
:g() we use the strongest topology which coincides with that of each J/(T) on [0, T].
Since each /(T), T <, is compact, so is (), and any sequence of ()-valued
random variables has a weakly convergent subsequence. Such a "compact weak"
topology will be used for all the measure-valued functions. The topologies are
metrizable.

Let Dg[0, o) denote the space of Rg-valued functions on [0, ) that are right
continuous and have left-hand limits and all endowed with the Skorokhod topology
[4, 1.4], [28, Chap. 2].

The Skorokhod topology is metrizable so that Dk[0, cx3) is a complete and separable
metric space under that metric. Very loosely speaking, a compact set A in Dk[0, c) is
characterized by the facts that on any bounded interval [0, T], the elements are
uniformly bounded, and for any e > 0 the number of discontinuities larger than e are
bounded and the functions are equicontinuous between the "discontinuities."

The processes and random variables of interest in this paper are mostly {sch( ")}
with paths in D[0, e), {mh(.)} with values in M(), and stopping times {Zh} with
values in the compact space [0, ] =/. For processes { Y"(. )} with paths in Dk[o, o),
a very convenient criterion for tightness (due to Aldous and Kurtz [28, Thm. 2.7]) is
given by the following theorem. Let ff’ denote the minimal tr-algebra generated by
{Y"(s),s<-t}.

THEOREM 4.4. Suppose that for each T < c,

(4.1) N.olim sup, PIsupt<T
Y"(t)[--- N} =0.
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For each T < c, let

(4.2) lim li-- sup E min (1, r"(’/ 6)- r()l)- 0,
6-0

for some O, where ranges over all -stopping times. en (Y(.)) is tight in
Dk[o, ). Under (4.2), (4.1) is implied by

(4.3) lim sup P{] Y(t) N} 0 for each t.

Iffor all t, Y(t) takes values in a complete and separable metric space S1 with metric

d(. ), then (4.3) and (4.2) are replaced by" for each and e 0 there is a compact
K, S1 such that

(4.3’) inf P(Y(t)e K,t} l-e,

(4.2’) limlisupEmin(1, d(yn(z+8), Y(z)))=O forsome fl>O.
0 zT

Tightness of {(.), m(-)}. Let E and E denote the conditional expectation
with respect to the -algebras generated by (, m, i n) and (h(s), mh(s), S t),
respectively.

THEOREM 4.5. Assume (A2.1) and (2.4), and let mh(’) be the admissible relaxed
control representation of a sequence (u) of ordinary admissible controls for (). en
(h(.), mh(. )) is tight in D[0, )x(), and the limits of {h(. )) are continuous
processes.

Proof For simplicity of development, we let sup, Ath (X, C) 0. The general case
is handled in the same way. We first show (4.3) for Y(. replaced by h(. ). We have
(mod O(h)), with h(0)= X and for some constant K

2

E[(t)-x[2= E Z (-. Eh6. + Eh6)
(4.) t,

< KE ,E (t) +KE
tnt

which yields (4.3).
Relation (4.2) also follows from (2.4) and the boundedness of b(. and a(. ), and

a calculation similar to (4.4). The {m(.)) is always tight in the compact set ().
The fact that the paths of the limits of {h(.)} are continuous follows from: (a) the
piecewise linear interpolations of (. are continuous and differ from (. by O(h),
and (hence) are also tight in D[0, ); (b) a sequence of processes in D[0, ) with
continuous paths that converge weakly can only converge to a process with continuous
paths, by the properties of the Skorokhod topology.

Weak convergence of {K(.), m(.), ,}. By the tightness proved in Theorem 4.5,
each subsequence of {h(. )} has itself a subsequence that converges weakly. The next
theorem shows that the limits are actually controlled diffusion processes. This fact
plays an impoant role in the proofs that V(x) V(x). Let $(.) be bounded and
continuous functions on U x [0, ), and define (m, ) o $(s, c)m(dc ds). Define, the differential generator of (2.1) with u c" for continuous real-valued f(. having
compact suppo and continuous second partial derivatives,

1
f(x) f(x)b(x, c) +- .f,2(x)aj(x).

t,J
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The technique used in Theorem 4.6 is widely used to characterize the limits of weakly
convergent sequences as solutions to an appropriate martingale problem.

THEOREM 4.6. Assume (2.4) and (A2.1) and let ’h be h-stopping times. Let mh(
be the admissible relaxed control representation ofthe interpolated (intervals Ath,) sequence
of admissible ordinary controls {uh,}. Suppose that {:h(. ), mh(. ), ’h} converges weakly
to (x( ), m( ), ’). Then there is a filtration , and an ,-standard Wiener process w(
such that " is an rstopping time, m(. is admissible (i.e., (m(. ), w(. )) is an admissible
pair), and

(4.5) dx= [ b(x, a)m,(da) dt + or(x) dw.
d

Proof. Let p, q, ti, _-< q, t, and s be arbitrary, but with ti <-- -<_ + s and such that
P{" t} 0. We will show that for arbitrary smooth real-valued functions f(. and
h(. with compact support,

Eh(x(6), "t’l{z<=t}, (qbj, m)t,, i<=q,j<-p)

(4.6)
f(x(t+s))-f(x(t))- f(x(v))m(dcdv) =0.

For the moment, suppose that (4.6) holds. Let , denote the minimal o’-algebra, which
measures {x(s), m,(. ), -I,,, s N t}. Then the arbitrariness of h(. ), ti, 4(" ), and (4.6)
imply that

E, f(x(t+s))-f(x(t))- Cf(x(v))m(dcdv) =0.
dt

Hence

f(x(t))- Cf(x(s))m,(dc) as=- My(t)

is an ,-martingale for each f(.) of the chosen type. But this implies that there is an

ffrWiener processlw(.) such that (4.5) holds [25, p. 73], [49]. Thus we need only
establish (4.6).

We now use the Skorokhod representation (Theorem 4.3) so that all weak conver-
gences become with probability one (w.p.1) convergences in the topologies of Dr[0, ),
(o) or R, as appropriate. Note that if y,(. )- y(. in the Skorokhod topology, and
y(.) is continuous, then the convergence is uniform on bounded time intervals. We
now prove (4.6) in the scalar case only, for notational convenience. By (2.4)

Ehf(.+1)-f()
j
f()b(, c)m(dc)at +fx()2()at. + O( ate)

This yields

Ehtf(h(t+s))--f(h(t))=Eht fx(h(v))b(h(v),c)mh(dcdv)
t+s1 Eh fxx(h(v))o’2(h(v)) dr+ 6h(t, + S)(4.7) +

t+s

--Eh-- ocf(h(v))mh(dcdv)+3h(t,t+s),

If a(x) is not uniformly positive definite, then we might have to augment the probability space by
adding an independent Wiener process.
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where 6 h is bounded and goes to zero as h-> 0. Thus

Eh(h(ti), "rhi{zh<=t), (j, mh)t,, i<--q,j<--p)

(4.8) f(h(t+s))_f(h(t))_ cf(h(v))mh(dcdv) h__>O"

Finally, (4.6) follows from (4.8) and the weak convergence. V1

A representation of {} with martingale driving terms. We now obtain a representa-
tion for {:h} that will be very useful in obtaining the limit results in 7-11. Letting
the control sequence be {uh} and defining flh= (h _h) E h h

,+1 ,(:,+l--:h), we have

(4.9) h+ h + b(h, uh)Ath, + flh, + O(hAt),
where covfl h a()At + O(hAt), by (2.4).

We now represent {fl} in terms of "white noise." To understand the scheme, first
suppose that (x) has a uniformly bounded inverse -l(x), and define W
-l()fl. Then (cov denotes the conditional covariance, analogous to E)

cov h. W IAt + O(h"At), lw,[h O,
(4.10)

+ O(h at ).
Define Wh by

wh t) thn+<=t t Whn-l
n-1

2
o

We can now write (4.9) in terms of the "white noise" sequence {6wh}. The importance
will be seen in Theorem 4.7 and in 7-11. Now drop the invertibility assumption.

For notational simplicity we will only treat the case where tr(. is a square (r x r)
matrix, and not the general case. We follow the scheme in Chapter 6.6 of [6]. Write
a(h,) h h 2ph, h h h=P(D) where D is diagonal {dh.,’’’, d.r} and P is an orthogonal
matrix, both random. For the a (0, 1), define

I diag {dhlId2>h’, .}.

(Note that our a(.) is twice the a(.) used in [6].) Let q(.) denote an R-valued
h h h hstandard Wiener process independent of{:h, U}, and set 36 6(t,+l)- 6(t). Extend

the definition of E h" and cov h. so that they include conditioning on 3qh, i< n. Define
(D-1 denotes the pseudo-inverse)

(4.11)

Then we can write

6 wh, Dh)-II(P)’ + (I- Ia)6d/

cov h 6wh, lath,+ O(h)Ath

(4.12) Eh,h,(6wh,)’= O’(h,)Ath, + O(hat),

)6W.+e.,

where the continuous parameter interpolation e h(’) of {e} will converge weakly to
the "zero" process. In fact E h h h= O(h)Ath h.e. =0 and cov e. and sup., e.0 as
h 0. We write (4.9) as

(4.13) + b( + + +
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Let mh(") denote the relaxed control representation of the continuous parameter
interpolation of {Uh,}, with interpolation intervals {At,h}.

We can state the following theorem.
THEOREM 4.7. Assume (2.4) and (A2.1). Then {:h(.), wh(. ), eh(. ), mh(. )} is

tight in D3[0, (x3) a///(oo). If the limit of some convergent subsequence is denoted by
(x( ), w( ), e( ), m( )), then e( 0 and the rest satisfy (3.7), where m( is an
admissible relaxed control. (The filtration F is that determined by the limit processes.)

Remark on the proof The proof is very similar to that of Theorem 4.6. { Wh( )}
is tight in Dr[o, o). The fact that eh( )zero process follows from its local properties.
Then, in the arguments of h(.) in Theorem 4.6, replace h(u) by (h(u), Wh(u))
whenever it appears. Let f(. depend on : and w and note that (vector case notation)

h h h hEhf(hn+l, Wn+,)--f(hn, Wn) Wn tn+O(h Ath.)=fx(: )b(sch., Uhn)m h

l Ath[Yf,x,(e, W,)a,,(e)+Y.fw,w,(e, W)+fx,w,(e, whn)o’ij(hn)]t. - i,j i,j

Then substitute into the vector form of (4.7) and (4.8) and take weak limits. On taking
limits, ,c will be replaced by the operator of the pair (x(.), w(.)) satisfying (3.7)
under m(.).

An extension. There is an extension of Theorem 4.7 that will be needed in 8
and 9, where a(x) has the form

q

(4.14) a(x) cri(x)crl(x).

In the subsequent development we suppose that each o- is square (r x r) (but this
restriction can be dropped) and Lipschitz continuous. The associated system is

(4.15) dx b(x, c)m,(dc) dt + Z cri(x) dw’(s),
i=l

where {w( ),. , wq( )} are mutually independent standard R-valued Wiener pro-
cesses. We will construct approximations { Wa’h( ), , wq’h( )}.

We follow a procedure that is similar to the technique used in 5.2 below to
construct an approximating Markov chain. Consider the q + 1 systems

(4.16) 20= f b(x, c)mt(dc), dx’= cri(xi)dw i, 0< <= q.

The Markov chain {h,} will be constructed on the discrete state space used in 2.
^hSuppose that P (x, y c), i= 0,..., q, is the transition function for the Markov chain

approximation associated with the ith system in (4.16), with associated interpolation
times Ath(x, c), and let the consistency conditions analogous to (2.4) hold. As will be
seen in 5.2, the interpolation times take the form h2/Qih(X, C)- Ath(x, c), where Qih
is a weighted sum of the coefficients bi and a, and we assume this form here. Even
though the systems for i->__ 1 do not depend on c, we retain the original notation for
consistency.

Define Qh(X, c)= /q=o Qih(X, c), and define

q

Ph(X, Yl c) , fih(x, Yl c)Q,h(x, c)/Qh(X, c).
i=0

Then Ath(x, c)--h2/Qh(X, c). In fact, the transition probability ph for the Markov
chain approximation to (4.15) can always be decomposed into the above form.
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hNow, let Ch, X, /./h=. u, and represent the random transition from x to n+l as
^hfollows. Choose system i, 0 -< i_-< q (i.e., the transition probability Pi (x, y[ u)), with

conditional (given the past data) probability Qih(X, u)/Qh(X, u), and then use the
h h.ichosen fibs(x, y lU) to get :,+1. Let I, denote the indicator function that system is

selected. Let E h’i. denote the conditional expectation given {:, u, k <= n} and the fact
that system is selected at time n, and extend the definition of E h so that it includes
conditioning on the systems selected at times i-<_ n. We can write

(4.17)

where

q
h ’ h,i h -h.h+ =h.+At.hb(h U.)+ , fl +O(h At,,)+e

i=1

h hi

q
-h h, hn) ihn, E h h
F-’n E CEn i(hn+l n(n+,- chn)]Ihn’i

i=0

h,iThe {/3. 1, , q, n < oo} are orthogonal, and

O’i(n)Athn + O( Ath.,).
Also, the error process defined by ,.__-_t gh, converges weakly to the zero process as
h 0. By introducing q independent processes q(.), i_<- q, similar to what was done
in Theorem 4.7 above, we can define 6wh," such that

(4.8) .’= ,(.)w..’ +
and where the process defined by ,t.<=, e h’. converges weakly to the zero process.

We have the following extension of Theorem 4.7.
Define

h,iw"(t) E w._,.
tnt

Assume b(., is continuous, b(., u), o-(. is Lipschitz continuous uniformly in u U,
and let (2.4) hold for the fi for each subsystem O, ., q. Then
{sch( ), mh( ), wh’i( ), <= q} is tight. Any weak limit (x(. ), m(. ), wi( ), <= q) satisfies
(4.15). The {w (.)} are mutually independent standard t-Wiener processes and m(.) is

admissible, where fit cr{x(s), w(s), re(s), s <= t}.

5. Methods for the construction of an approximating Markov chain. Any method
of constructing the approximating Markov chain for which (2.4) holds can be used.
We discuss two methods here. The first uses a "finite-difference" technique, the second
includes the first as well as a "finite-element" method. The first method has the
advantage of being essentially automatic---an important consideration in any program.
In 6, we specialize the second approach to a deterministic problem, in which form
the general motivation for our choices becomes easy to see. The construction of the
chain is guided by two principles: satisfaction of (2.4) and ease of solution of the
optimization problem for the chain. The construction of the chain can readily be
modified to handle impulsive or singular control problems or cases where there are
"hard" reflections. In 9 and 10 modifications for cases with boundary reflections
are developed.

5.1. A finite-difference method. Let R T, denote the h-grid on R defined by R T,
{x’x =, nieh, ni integers}, where e denotes the unit vector in the ith coordinate
direction. By carefully choosing a finite-difference approximation for Cf(x) for
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arbitrary f(.), we obtain directly the transition probabilities from the coefficients of
the f(x + nieih + nejh) in the finite-difference expansion, where ni 1, 0, or -1. The
idea is to use a finite-difference method that reflects the actual direction (or probability
distribution of the direction) of motion of the dynamical system.

Following the method of [29, pp. 91 ff.], we use

(5.1)
fx,(X)-[f(x+eih)-f(x)]/h if bi(x, c)>-_O,

fx,(x)[f(x)-f(x-eih)]/h if bi(x, c)<0,

(5.2) fx,x,(X)[f(x+eih)+f(x-eih)-2f(x)]/h 2.
For ij and ao(x)>=0, we use

fx,x(X) - [2f(x) +f(x + eih + ejh +f(x eih eh )]/2h 2

(5.3)
[f(x + eih +f(x eih +f(x + eh +f(x eh ]/2h 2.

For ij and aq(x)<0, we use

fx,x.,(x) -[2f(x) +f(x + eih eh) +f(x eih + ejh)]/2h2

(5.4)
+ [f(x + e,h +f(x e,h +f(x + ejh +f(x ejh)]/2h 2.

Apart from allowing the choices to depend on the signs of the dynamical terms, the
finite-difference schemes are standard. The reasons for the choices will be clear below.

Assume that

(5.5)

and define

a,(x) Y laq(x)[ >= O, for all i, x,
j:ji

Qh(X, c)= E aii(x)-- 2 lai(x)’---t-h , Ibi(x, c)[.
ij 2
i,j

Condition (5.5) will be weakened below. Define the interpolation interval

(5.6) Ath(x, C)= h2/ Qh(X, c)

and the transition probabilities (5.7)

ph(x,x:t:eihlc)= [ aii(X) [aij(x)----l--hb(x, c)]/Qh(X, C),
2 :i 2

(5.7) ph(x,x+eh+ehlc)=p(x,x-eh-ehlc)=a(x)/2Qh(x, c),

pa(x, x- eih + ejh c) p(x, x + eih eyh c) a(x)/2Qh(x, c).

The ph(x, y lc) are zero for all nonlisted values of y.
The p(x, ylc) and Ath(x, c) were obtained as follows. Substitute the finite-

difference expressions (5.1)-(5.4) for the partial derivatives in Cf(x)+k(x, c)=O,
multiply all terms by h (to clear the denominator), and then divide all terms in the
resulting expression by the coefficient of f(x) (which is, in fact, Qh(x, c)) to get the
expression

(5.8) f(x) E ph(x, yl c)f(y)+ Ath(x, c)k(x, c).
y

Equation (5.8) suggests that the chain with transition probabilities p h(x, y] C) and
interpolation intervals Ath(x, C) provides an approximation to x(. ). In fact, if {h,} is
the chain with transition probabilities (5.7), and Ath(X, C) is defined by (5.6) then it
is readily verified that (2.4) holds.
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On the choice (5.1)-(5.4). The form (5.1) was used to ensure that the bi(x, c)
contribute the correct bias to the mean direction of "flow" of {h,}, and similarly for
the other choices.

On (5.5). The condition (5.5) is used to ensure that the ph(x,x+eihlc) are all
=0, but it fails if some of the % are large compared to a,. In that case, there are
several alternatives. We can rotate the grid R, so that the coordinate lines are more
closely aligned with the eigendirections of the a(x). If these directions change substan-
tially as x varies, curvilinear coordinates can be used. A third method allows the value
of h to depend on the coordinate direction. Refer to Fig. 5.1. For illustrative purposes,
let all 1, a12 2, a22 5. Then (5.5) fails. But if we use hi, 1, 2, for the difference
intervals in the coordinate directions el, ea, respectively, and use the appropriate finite
differences (exactly as (5.1)-(5.4), but with hie replacing hei), then instead of (5.5),
we require that

a22 12(5.9) all ala => 0, > 0.
hal hh2 h [i-h-2

Any ratio 2 <_- ha hi <-- 21/2 will work.
Another alternative is illustrated in Fig. 5.2, and is also a special case of the

method of the next subsection. The transitions in (5.7) are only to the nearest neighbors.
Greater versatility is obtained if we can also go to the "next to the nearest neighbors."

On simplifying the ,th(x, c), ph(x, y c). For computational purposes, the fact that
Ath(x, C) depends on c might be troubling. As seen below, we can often just drop the
c-dependence. Assume

(5.10a) inf [ a.(x)-Y [aij(x)[] > 0
i, 2

h

FIG. 5.1. The connections when (h,, communicates only to nearest neighbors and hi h2.
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qF qF F

F F F F 5 F

X

P q F 5F ’’q

FIG. 5.2. The points to which x communicates, if next-to-nearest neighbors are included.

and define

i,j 2
ij

Then Ath(x)--Ath(x, C)- O(h)Ath(x) and (2.4) still holds with Ath(x) used in lieu of
Ath(x, C). Then, we can minimize in (2.10) using Ath(x) and still get the correct limits
as h-O.

Similarly, the dependence of the denominator of the expression for ph(x, Yl c) on
c might be troubling from a numerical point of view. This dependence can be removed
by modifying the transition probabilities as follows. Define

Qh(X) =sup Qh(X, c)
cU

and define ph(x, Yl C) for y x, as in (5.7) but with Oh(X) replacing Qh(X, c), and set
Ath(x)-- h2/Qh(X). With the new values of ph(x, ylc) (for x y) used, define

ph(x, X[ C) 1 . ph(x, yI c).
yx

The new zth(x) and transition probabilities also satisfy (2.4). Under (5.10a) this yields
ph(x, X] C) O(h). The numerical methods for getting Vh(x) in (2.10) usually converge
faster as the "mass spreads faster." Then,the larger ph(x, X IC is, the slower the
convergence rate would be. Similar remarks apply to the constant zth(x, C) A interval
case discussed next.

Constant interpolation intervals zith(x, c). For problems where control is only over
a fixed finite interval or where the actual evolution of estimates over time is of interest
(such as for nonlinear filtering problems), it is often convenient to use constant



NUMERICAL METHODS 1015

interpolation intervals. Some relevant schemes are discussed in Chapter 7 of [29]. The
general idea is very similar to what was done abovemor will be done in the next
subsection. One quick method is to replace Qh(X, c) by its maximum (over x and c)
and define a new ph(x, X ) by the difference between unity and the sum over y of
the new ph(x, y[ c), y x. Then Ath(x) h2/supx, Qh(x, C).

5.2. A finite-element method. We now illustrate a method that covers both the
finite-element (see 6) and finite-difference methods. The scheme can easily be adjusted
to accommodate "nonlocal" movements of the chain, as might occur (for example) in
singular or impulsive control. For illustrative purposes, we describe it in R2 only. For
a small scalar h, let Gh denote a given set of discrete points in R2 and for each x E Gh,
let {vi(x), i, x Gh} be a given collection ofvectors. The collection ofvectors {x + hvi(x),
all i, x Gh} "triangulate" R2 as in Fig. 5.3, where the "arms" emanating from x are
{x+hvi(x)}.

v (x)

vs(’x) v (x)
x

FIG. 5.3. Triangulation via the {vi(x)}.

Suppose that there are phi(x, C)>=O and Ath(x, C))’O such that ,iphi(x, C)= 1 and
for some a > 0

(5.11)

h . phi(x, C)Vi(X)= b(x, C)Ath(x, C)+ O(hAth(x, c)),

h2phi(x, C)Vi(X)VI(X)=a(x)Ath(x, c)+O(hAth(x, c)).

The transition probabilities defined by ph(x, yl c) =phi (x, c) for y= x+ hvi(x), x Gh,
and the associated chain {:h} and interpolation intervals Ath (x, c) satisfy the consistency
condition (2.4).

The phi(x, C) and At(x, c) can often be conveniently found in the following way.
Let the vi(x) occur in opposite pairs. That is, for each vi(x), there is vj(x)=-vi(x).
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If possible, choose q(x, c) >= O, q(x) >- 0 such that

b(x, c)= Z q(x, c)v,(x),

’(x, c)v,(x)v’(x),(5.12) a(x)=Yqi

l(x) q(x) if vi(x)= -v(x).qi

Then set

[hq(x, c)+q(x)]
h(x,x+hvi(x)lcphi(x, C)=j [hq.(x, e)+ qJ(x)] =p

(5.13)
h2Ath(x, C)

L [hq(x, c)+ ql.(x,j c)]

Note that (5.13) reduces to the values obtained in 5.1 when Gh is the h-grid in e2

and {v(x)} {+e, e +/- e, -e e, i,j, C j} and q(x, c) b(x, c) for v(x) e, and
are zero otherwise, and the q(x) are chosen in the obvious way.

In 6, we will see how this greatly simplifies for the deterministic problem, and
the relationship to a finite-element method will be discussed.

6. The deterministic discounted problem. In order to illustrate the main ideas of
the approximation methods, we now treat a discounted deterministic case where the
system and cost are

(6.1) g= f b(x, c)m,(dc),
J

(6.2) V(x,m)= c-t’k(x(t), c)m,(dc) dt,

and b(. and k(. are bounded and continuous, with b(., c) Lipschitz continuous in
x, uniformly in e. Let Ath(x, c) be continuous and satisfy kzh>-Ath(x, c), k2>0, and
Ath(x, C) h__> O. Refer to Fig. 6.1, where the sides of the triangle are O(h). The dynamic

z

Y4

)/2
FIG. 6.1. A finite-element approximation, z2-- b(x, c2)Ath(x, C2)’ X-- Z(X, C2). Z 1-" b(x, Cl)Atl’(x, cl)+

x=z(x,c).
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programming equation for the discrete approximation is (6.3):

(6.3) Vh(x)=min[e-t3ath()c’c)Vh(x+b(x, c)Ath(x, C))+Ath(x, c)k(x, c)].
cU

Now suppose that we approximate vh(") by a piecewise linear function--with
the approximation in each triangle of Fig. 6.1 being linear. With use of control value
c at node x, we use z(x, c) to denote the canonical point x + b(x, c)/xt h (x, c) reachable
from x in time Ath(x, C), e.g., z or z in Fig. 6.1, where c c or 2, respectively. Let
yh(x, c) denote the corners of the triangle in which z(x, ) lies, e.g., yh(x, C2)
{X, y, Y2} in Fig. 6.1. For y yh(x, C), let ph(x, y[c) denote the weights that yield
z(x, c) (e.g., the weights yielding z2 in Fig. 6.1 as a convex combination of (x, Yl, Y2)).
Clearly ph(x,y]c)>=O and ’.yYh(x,c) ph(x, ylc)=l. Let {:h,} denote the controlled
Markov chain whose transition function is ph(x, Yl C), y yh(x, C). With the "piecewise
linear" approximation to Vh (.) used, we can rewrite (6.3) as (for x a vertex of a triangle)

(6.4) Vh(x)=min [e-t3’x’c) ph(x, y,c)V(y)+At(x, c)k(x, c)].U y yh(x,c

It is Clear that (6.4) represents a finite-element approximation.
Calculating the local "statistics" of {:,}, we have (where E h denotes the expecta-

tion given :, u, =< n, and u h,, e)

E n.,.+n h b(h,,, c)Ath(x, c) O(h),
(6.5)

COV
h (:hn+ :hn) O(h2).

h Uh h h m hLet uh(x) minimize in (6.4), and let u- (h,), Ath _/X (:h,, U). Let (.) denote
the relaxed control representation of the continuous parameter interpolation (intervals
/xth) of {uh}. Then, as in 4, {:h(. ), mh(. )} is tight, and if (x(.), n(. )) is the limit
of any weakly convergent subsequence, then

2 f b(x, c)rfi,(dc).

Also, if :on x, then for that subsequence (indexed by

Vn"(x)- e-’ k(x(t), c)rt(dc) dt= V(x, rfi).

The probabilistic interpretation is just a device used to study the finite-element
approximation for this originally deterministic problem.

Clearly V(x, n) >- V(x) inf,, aam. V(x, m).
Next, we wish to show that V(x, rh) V(x). Let r(. denote the optimal admissible

(deterministic) relaxed control for (6.1), (6.2). For each
as 6->0, there is a h>0 and an admissible ordinary (deterministic) control t(.),
which is constant on the intervals [iA, iA + A), i= 0, 1," , and is such that for 2(.
and 2(. corresponding to fi(.) and r(. ), respectively, we have

sup [g(t) g(t)l < 6,
t<--_ Ta

(x( ), rn( )) (x(.), rn(. )).

We let rh 8(. denote the relaxed control representation of (. ). Thus, to get V(x, rh)
V(x), we need only show that V(x, th)<= V(x, r) V(x, ), for each 6>0.

We now apply fi(. to {:h,}, as follows. Define a control sequence {-hu,} for the
controlled Markov chain {:h,} in the following way. Let h be small enough so that
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-h 6A >> infx, zth(x, C). Define a sequence {tih.} recursively by u. (0) for n such that
hn < A. Use ti hn ti (iA) for all n such that th. iA, iA + A). Let {(h.} denote the associated
Markov chain (instead of {:h.}), with interpolation (h(.), and let a’h(") denote the
continuous parameter interpolation (intervals At.h) of {a.h}. Then {h(.), ti,h(.)}
()("), ti( )). Also Vh(x, i’h)- V(x, f). Since, by optimality of mh( ), Vh(x, ti ’h) =>
Vh(x, mh)= Vh(x)- V(x, rfi), we conclude that Vh(x)- V(x), as desired.

A finite-element method for the deterministic problem is discussed in [16] and
[21]. The scheme in these papers is essentially that given above, and the probabilistic
approach gives a substantially simpler convergence proof. For the stochastic problem,
a form of finite-element method is discussed in [43].

7. Convergence of the numerical method for a discounted cost problem. In this
section we prove the convergence Vh(x) V(x) for system (2.1) or (in the relaxed
control form) (3.7) and cost function (2.2), with the approximating chain satisfying
(2.4). The stopping or boundary set G is used since, for any practical numerical method,
the state space needs to be bounded. The existence of the boundary poses some
problems for the convergence and these are discussed below, together with conditions
(A7.1), (A7.2), which guarantee the convergence. The discounted problem with stopping
on first hitting the boundary of a given set was selected as a canonical problem--with
which the basic technique could be readily illustrated.

The dynamic programming equation for Vh(x) is

(7.1)
Vh (x) mincu [ e

=g(x),

-a’(x’c , ph(x, yl c) Vh(y)+ Ath(x c)k(x, c)],y

X Gh.

X Gh,

Let tih( denote the minimizing control in (7.1) and define ti h=n/h(hn)" Let m hn and
mh( denote the relaxed control representations" that is, m h,,(dc) is the measure
concentrated at the point i h (h) and m h h h hm, on [t,, t+). Let Nh and ’h denote the
first exit times of {:h} and h(.), respectively from Gh.

Discussion of -=lim ’h. By the results of 4, the sequence {:h(.), mh(.),
wh( ), ’h} is tight. Let (x(.), m(. ), w(. ), -) denote the limit of a weakly convergent
subsequence, also indexed by h. Then (x( ), m( ), w(.)) satisfy (3.7), where
(m(.), w(. )) is an admissible pair, and rI,=<./is nonanticipative with respect to w(. ).
We always have

(7.2)

(7.3)

E
h

e-’k(h (t), c)mt(dc)h dt Ex’ e-’k(x(t), c)mt(dc) dr,

e-’g( (rh))- E e-’g(x(’)).
But it is not always true that r is the first hitting time of OG for the limit process x(. ).
An example can be seen in the deterministic case illustrated in Fig. 7.1, where
Ch(. ). X(" ), but rh does not go to the first exit time of limit. The problem with the
case depicted in Fig. 7.1 is that x(.) is tangent to the boundary 0G at the point of
first contact. Such a situation must be avoided, at least w.p.1, if - is to equal the first
exit time. For an arbitrary continuous function b(. )with b(0) G, let ,(b(. ))denote
the first time that b(. hits 0G (set -(b(. ))= o, if (t)C:OG, all t< c). As illustrated
in Fig. 7.1, the function r(b( )) is not continuous at all b(. (in the topology determined
by the sup norm over each interval [0, T]). If the function x(. drawn in Fig. 7.1 were
a sample path of a Wiener process or a solution tO a (scalar-valued in the example)
stochastic differential equation with a nondegenerate covariance, then the law of the
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aG "r(x(.)) im "r( "i .))
/ ,,,

6
FIG. 7.1. An example of noncontinuity of z(. ). h(. )_ X(" ),

iterated logarithm for such processes implies that if x(. hits gG at -, then on any set
[-, -+ 8], 8 > 0, it crosses cG infinitely often w.p.1. This implies that - "(x(. )) w.p.1
and, hence, that

(7.4) Vh(x) vh(x, mh)-- V(x, m).

Note that V(x, m)>-_ V(x).
We use the following two conditions concerning the boundary

(A7.1) The compact set G is the closure of its interior and aG is piecewise
continuously differentiable.

(A7.2) ,(. is continuous (in the topology described in the last paragraph) w.p.1
relative to the measures induced by the limit processes x(.), under all
admissible controls.

Discussion of (A7.2). First, let a(x) be uniformly positive definite in G. Suppose
that there is an open cone C and an e>0 such that for each ygG, we have
{x" x y C, Ix yl < e } fq GO empty set. Then we say that OG satisfies the open cone
condition, and (via [13, Thin. 13.8]) (A7.2) holds.

Verifying (A7.2) for the degenerate case is more difficult, and we usually check
it in each case. Further discussion appears in [29, pp. 64-66]. Define -’=
inf{t’x(t)_ G}, and let S denote the set of points yOG such that Py{r’> 0} 0 for
some limit process x(. satisfying (3.7). Frequently, the boundary OG can be broken
into several pieces, each considered separately; e.g., (a) a section where the orientation
and noise is such that the considerations for the nondegenerate problem above work;
(b) a section where the dynamics either guarantee (A7.2) or where escape is impossible
(due, say, to the sign of the "velocity"), and (c) the remaining section. In many cases,
the "remaining section" consists of a finite set of isolated points that are either not
accessible or are in S. Consider, for example, the case depicted in Fig. 7.2, where
dx xdt, dx2-" U dt + dw. The only questionable points are (a) and (/3), and these
can be shown not to be in S by means of tests such as Theorem 6.1 of [48] (see also
[29, p. 66]).

If the set G is not precisely given or can be altered slightly without losing the
meaning of the problem, then a slight alteration to the stopping rule yields (A7.2).
This is usually the case when G is chosen largely for numerical reasons---to guarantee
a bounded state space and a "finite" numerical algorithm. The alternative stopping
rule is randomized stopping.

Randomized stopping. Recall the definition of S given in the above discussion.
Let q(x)>-_ 0 denote a continuous function on GO that is nonzero only on N(S)0 G,
where N(S) is the e-neighborhood of S, and that goes to infinity as x OS. Then stop
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2

FIG. 7.2. A degenerate case. dxl x2dt, dx u dt + dw.

sch, at time n w.p.1 if :,h GO and with probability 1 (exp- [q(:h,)At,h]) if Ch Go. The
stopping cost is g(:h,). The analogous situation for the diffusion (3.7) is to stop either
on hitting OG or with "stopping rate" q(x(t)) at time t, with stopping cost g(x(t)).
Letting ’h and " continue to denote the stopping times, Theorem 7.1 below holds
without using (A7.2) under this randomized stopping rule. Although we continue to
use (A7.2), the above variations should be kept in mind.

The convergence theorem.
THEOREM 7.1. Assume (2.4), i(A2.1), (A2.2), (A7.1), (A7.2). Then Vh(x) V(x).
Proof In the proof, entities such as (h(.), Wh(. ), mh(. ), rh) or

(x(’), w(. ), m(. ), ’) that are grouped together are related via the dynamical equations,
and the controls will be admissible. Let h index a weakly convergent subsequence with
{sch( ), wh( ), mh( ), ’h}==>(X(" ), W(" ), m(. ), r), where mh( is optimal for sch( ).
Then (7.4) holds. Thus we need only prove that for this (or any) weakly convergent
subsequence

(7.5) lim Vh (x,) V(x).
h

We will do this by a procedure which is analogous to that used for the deterministic
problem at the end of 6. Let rh(. be admissible with respect to w(. and such that
:(.) and ? are the associated solution and stopping time and V(x, r)- V(x). We
need to approximate rh(. in such a way that it can be applied to {:h,}. First note the
following fact. Let rfi( be admissible with respect to w(. ), and let Y(. and 78 be
the associated solution and stopping time. Then if (rfi( ), w(. ))3(rfi(" ), w(. )), we
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also have (rfi( ), w(. ), Y(. ), 5)(rfi(. ), w(. ), Y(. ), ), where (3.7) holds for the
limit, and ,7 is the associated stopping time. Also V(x, rfi8) V(x, rh). We will use this
fact to help approximate the r(. policy so that it can be applied to :h(. ).

Next, given any p > 0, there is 6 > 0 such that we can approximate r(. by an
ordinary admissible control fi"(. with the following properties: (a) fi"(.) takes only
finitely many values (denoted by Uo); (b) it is constant on the intervals [i6, i6+6),
i= 0, 1,. (c) letting r’( denote the relaxed control representation of tTo( ), we
have

(rO(. ), g"( ), w( ), o)(r( ), g( ), w(. ), ) asps0,

where go(.) and T correspond to (r(.), w(.)); (d) V(x,rO) <- V(x)+p. See [17]
and [37] for the construction of such approximations. (Note that, under (A7.2) and
the weak convergence, the hitting times of g"(. on OG converge to those of g(. as
p0.)

We now prepare to choose a more appropriate control with properties (a)-(d),
with possibly replacing p by 3p in (d). For each p > 0 and the 6 of the last paragraph,
consider an optimization problem for (3.7), (2.2), but where the controls are to be
constant over the intervals [p6, p6 + 6), p =0, 1,. ., and take values in Uo. That is,
a single value in Uo is used on each [p6, p6 + 6). The optimization is not over the
relaxed controls. This corresponds to controlling the discrete parameter Markov process
obtained by sampling x(. at times p6, p 0, 1, 2,. .. (The optimal control for this
"sampled" problem is an ordinary feedback control.) Let t(.) denote the optimal
control and trio( its relaxed control representation, and let :"(.) be the associated
solution process. Since rfi( is optimal in the chosen class of controls, we must have

(7.6) V(x, rh) <- V(x)+p.

We next approximate (.) by a suitable function of w(.).
We note that for each given integer p, there is a measurable function F(. such

that ao(t) F(w(s), s<=p6) on [p6, p6+ 6). We next approximate F(. by a function
that depends only on the samples of w(. at a finite number of time points. Let 0 < 6

o(such that 6/0 is an integer. There are U,-valued measurable functions Fv"’ .) (of
w(iO), iO <-p6) such that for each 6, p,

p,O pF,’(w(iO), iO<p6) =- up --> (p6)

w.p.1 as 0-->0. Let too’(.) denote the relaxed control representation of the ordinary
control uO’( ), which takes values u’ on [p6, p6 + 6), and let x( and .,o denote
the associated solution and stopping time. Then, for small enough 0, we have

(7.7) V(x, m’) <- V(x, rfi) + p.

In fact, we can select F’( such that there are a finite number of disjoint
hyper-rectangles (open, closed, or partly open) that cover the range of its arguments
such that F’( is constant on each hyper-rectangle. Let us assume this form, and
note that the probability is zero that the values of the random variable {w(iO), iO <-p6}
fall on the boundary of any hyper-rectangle.

We now adapt F’(.) such that it can be applied to {h,}. Recall the definition
of Wh( given above Theorem 4.7. For n such that p6 <-_ th, < p6 + 6, use the control
F’(Wt’(iO), iO<p6) " ffthu,. Let (.) denote the relaxed control representation of the
continuous parameter interpolation of {t,h} (interpolation intervals Ath Ath(h.,u.)).~h
Then

((.), rfi(.), Wh(.), ’,F’(Wh(iO), iO<-p6),p=O, 1,...)

:=>(x’(.),mO’(.),w(.),zO,F," (w(iO),iO<=p6), p=0, 1,. .).
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By the optimality of Vh(x) and the above weak convergence,

V(x)<-_ V(x, ,)- V(x, m’).

VhThe above inequalities and convergence yield that limn (x) <- V(x)+2p for the
chosen subsequence. Since p is arbitrary and any subsequence of {h(.), Wh(.),
mh( ), 7"h} has a subsequence that converges weakly, (7.5) holds.

8. Controlled variance and drift. If o-(x) is replaced by the controlled o’(x, c) in
(2.1) or (3.7), then the operator of the controlled diffusion is given by

(8.1)
,f(x)= f’x(x)b(x, c)m,(dc)+ E fx,x(X)aq(x, c)mt(dc)

i,j

I f(x)m,(dc).

Suppose for the moment that U {cl," , cN}, a finite set of points, Then there are
Pi(t) _-> 0, Y’-i Pi(t) 1, such that I a(x, c)mt(dc) N a(x, ci)Pi(t). We can then represent
some process x(. with operator (8.1) as follows. Let wl(. ),..., wN(. be mutually
independent standard vector-valued Wiener processes and for B e U define

M(B x [0, t])= (pi(s)) ’/2 dwi (s)Iqs)= M(B, t).

Then, the process x(.) defined by

(8.2) dx= , b(x, ci)Pi(t) dt+ tr(x, c)M(dcdt)
i=l

has the differential operator (8.1). The process M(. can be viewed as a measure-valued
martingale, and such processes provide a very useful basis for the representation and
study of processes with operators (8.1). We now discuss (8.2) in a somewhat more
general setting. For convenience in the notation we write M(B x [0, t])= M(B, t).

Martingale measures. More detail as well as proofs of the assertions below con-
cerning martingale measures and associated stochastic differential equations can be
found in [14] and [51]. Let ot be a filtration on some probability space, and let
denote the Borel sets of U. Let M(. be a real-valued random function on x [0, oo) x .
We say that M(. is a measure-valued t-martingale or an -martingale measure with
values M(B, t) if M(B,. is an -martingale for each Be 0-//, and for each t, the
following hold: supBu EM2(B, t)< oe, M(AU B, t)= M(A, t)+M(B, t) w.p.1 for all
disjoint A, Bell and EM2(Bn, t)O if Bn, the empty set. Under (AS.l) below,
supBou EM2(B, t) <-_ EM2( U, t). If the t is unimportant or obvious, we omit it. M(.
is said to be continuous (respectively, square integrable) if each M(B,.) is. We say
that M(. is orthogonal if M(A,. )M(B,. is an 9t-martingale whenever Af3 B =.
If M(. and N(. are t-martingale measures and M(A,. )N(B,. is an ,-martingale
for all Borel A, B, then M(. and N(. are said to be strongly orthogonal.

Let M(. (MI(.)," , Md ("))’, a vector-valued martingale measure. We hence-
forth suppose that

(A8.1) M(.) (MI(’),. ., Md(’))’ is square integrable and continuous, each
component is orthogonal, and the pairs are strongly orthogonal.
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By (A8.1), there are measure-valued (the values are measures on the Borel subsets
of U x [0, oo)) random processes rni(" such that the quadratic variation processes
satisfy, for each and B

(Mi(B, ), M(A, ))(t)= 3ijtn,(A V1 B, t)

where we write m(A, t) for m(A x [0, t]), the measure of A x [0, t].
We henceforth assume that (this will be the case in our application, anyway)

(A8.2) The mi do not depend on (we refer to it as m(.)) and m(U, t)= t, for
all t.

Under (A8.1) and (A8.2), for each Borel B, we have a predictable "derivative"
process rn.(B) such that m,(.) is a random measure on OR and rn(dcdt)= mr(de)dt.

Stochastic integrals. The stochastic integral with respect to a real-valued martingale
measure M(.) is defined essentially as for real-valued martingales. Let denote the
or-algebra of predictable sets in x [0, c) [25], [14], and R the r-algebra over
the product sets. For f(.) being x measurable, define

[[fllT, E f2(c, t)m(dcdt)
for all T<.

t {f" ]f][ w, <}
For a bounded f(. ) L taking constant values f(c) on the intervals [0, t], (t, ti+],
i> 0, where tg+l > t, we define the stochastic integral by

Note that E](T)z= I[f[. Now extend the definition to all f(.) L in the usual
way [14], [25], [51].

The martingale problem. Let b(.,.), or(.,.) be bounded and continuous and
define a mr’. Let there be a continuous process x(. and a measure tn(. satisfying
(A8.2) and such that for each bounded and smooth function f(.),

f(x(t))-f(x(O))- f(x)m,(dc) ds- Oz(t)

is an :-martingale, where t measures at least {x(s), ins(" ), s_-< t}. Then we say that
(x(,), rn(. )) solves the martingale problem for operator wc. Also 14] (possibly having
to augment the probability space via the addition of Wiener processes or a martingale
measure, which are independent of rn(. ), x(. )), there is a martingale measure M(.
with quadratic variation m(.)I and satisfying (A8.1), (A8.2), and such that

(8.3) dx | b(x, c)mt(dc) dt + [ or(x, c)M(dc dr).

Under a Lipschitz condition, we can say more. Suppose that

(A8.3) b(.), r(.) are continuous, b(., ), r(., c) are Lipschitz continuous uni-
formly in c and are bounded..

Assume (A8.3). Given (M( ), m( )) satisfying (A8.1), (A8.2), with (M(.))=
m(. )/, there is a unique strong-sense solution to (8.3) (which can be constructed by
the classical "Picard iteration" technique). There is also a unique weak-sense solution
in the sense that if (M’(.), m’(. )) and (m(.), rn (.)) satisfy (A8.1), (A8.2), and have
the same probability law, then the solution triples (x’(.),M’(.), m’(.)),
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(x(’), M(’), m(.)) also have the same probability law. If a(x, c) is uniformly (in
x G, c U) positive definite, then (A7.2) holds under the "cone condition" described
below it.

Admissible relaxed control. The system (8.3) represents our control system. It will
be the representation of the limits of {sch( )} when the variance is also controlled. We
say that (M(.), m(.)) is an admissible relaxed control for (8.3) if (AS.l) and (A8.2)
hold and (M(.))= m(. )I. We continue to write the cost (3.9) as V(x, m), even though
its value depends on the joint distribution of m(. and M(. ).

Approximation of (x(.), M(.), m(.)). Under (AS.1)-(AS.3), any such triple can
be approximated by a triple satisfying

(8.4) x(t)=x+ b(x(s), c)ms(dc) ds+ o’(x(s), c)M(dcds),

where MS( is representable in terms of a finite number of Wiener processes. To get
the approximation, let 8>0 and let {C, i<=k} be a finite partition of U such that
the diameters of C0 as 0. Let c e C. Then {M(C,. ), iN k} are ohogonal
continuous maingales with (M(C,.))= m(C,. ). There are mutually independent
,-standard Wiener processes w(. ), N k, such that

M(C, t)= f/[ms(C)] 1/2 dw(s).

Let M(.) and m(.) be the restrictions of the measures M(.) and m(.),
respectively, to the sets {C, k}. Define b(x, c) b(x, c) and (x, c) (x, c),
for c C, and define x( by

x(t)=x+ b,(x(s), c)m(dc) as+ (x(s), c)M(dcds)
(8.)

=x+ } b(x(s), c)m(C) ds+ (x(s), c)[m(C)l/d (s).

The (x(.), M(.), m(.)) in (8.5) is the desired approximation, as shown by the
following theorem.
To 8.1. Assume (A8.1)-(A8.3), and define x(.) by (8.5). en

(x( ), M( ), m( ))(x(. ), M(. ), m(. )). Also V(x, m) V(x, m), under (A7.2)
or the random stopping rule of 7. We can suppose that the m(. is constant on intervals
[p, p + ).

Proo First, use the construction leading to (8.5), and ignore the last sentence of
the theorem. By the construction, (M( ), m( ))(M(. ), m(. )). We illustrate the
proof of the convergence x( ) x(. only for a scalar case.

We have

x(t) -x() [b(x(s), c)-b(x(s), c)]m(c) s

+ [(x(s, c-(x(s, c]M(cs

+ [b(x(s), c)-b(x(s), c)]ms(dc) ds
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+ [o’(x(s), c)- o’(x(s), c)]M(dc ds).

Now, use the facts that Ib(x, c)- b(x, c)l +let(x, c)-r(x, c)[ are bounded and go to
zero as 640 for each (x, c), together with the Lipschitz condition and the fact that
ms(U) 1 and the properties of the martingales, to get that there is a K < oe such that

sup

[x(x)-x(s)12<=K Ix(s)-x(s)l ds+e(t),

E sup[x(s)-x(s)[2<-_g Elx(s)-x(s)l2 ds+.(t),

where e( and (.)40 as 640 on each bounded interval. Thus E maxs__<r Ix(s)-
x(s)1240 as 64->0.

To get the last sentence of the theorem, we apply Theorem 3.1 to the system
(8.5).

The limit of the costs V(x). The transition probabilities for the approximating
chain can be calculated by the methods of 5, simply by taking the control dependence
of a(x, c) into account. Define Vh(x) by (7.1) again. We now proceed to characterize
the limits.

THEOREM 8.2. Assume (2.4), (A2.2), and (A8.3). Then {h(. ), mh(. )} is 2 tight. If
(x(.), m(. )) is the limit of a weakly convergent subsequence, then (x(.), m(. )) solves
the martingale problem for operator c. There is a martingale measure M(. such that
M m(.)) satisfy A8.1) (A8.2) and (8.3) holds. Under the additional condition
(A7.2) or the random stopping rule of 7, Vh(X)4 V(x, m)>--_ V(x}.

Remarks on the proof The tightness proof is the same as in Theorem 4.5 or 4.6.
The existence of M(.) was commented on above, and the use of (A7.2) is the same
here as in 7, to get convergence of the stopping times. We comment further only on
the identification of the limit operator. The idea is to show (4.6) but with the definition
ofc incuding the c-dependence of tr(x, c). But this follows from the proof of Theorem
4.6, once we note that all the expressions remain the same with control dependence
added--provided that we write (we do the scalar case here, as in Theorem 4.6, for
notational simplicity)

E h h f,f(,+l)-f(h,) f()b(h,,, c)mh,(dc)Ath

+fxx(h") I tr(h"’ c)mh"(dc)Ath" + O(hAth")

I gcf(h)mh(dc)Athh’ + O(hAth")"

The convergence of the costs. By Theorem 8.1, we can approximate any admissible
pair (M(.), m(. )) by a pair (/Q(.), rfi(. )), where rh(. is piecewise constant and takes
finitely many values and where M(.) is represented in terms of a finite number of

We use the terminology of 7, where mh( is the relaxed control representation of the continuous
parameter interpolation (interpolation intervals {Atn A (:,,, uh)}) of {U,}, the optimal control for
under :o x.
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Wiener processes. Thus, to prove that Vh(x)-’ V(x), we need only show that for any
such pair

(8.6) lim Vh(x) <--_ V(x, rfi).
h

THEOREM 8.3. Under all the conditions of Theorem 8.2, Vh(x)- V(x).
Proof By the discussion above the theorem, we can suppose that (//(.), rh(. ))

is used and takes the following form. The rfi,(. are ,-adapted and.piecewise constant,
and are concentrated on the points cl,’", Cq, for all t. They are concentrated on one
value of ci on each interval [p6, p6 + 6). The wi(.), i_-< q, are mutually independent
o%t-Wiener processes. Thus n(. corresponds to an ordinary control (. ), where (.
is constant on the intervals [p6, p8 + 3) and takes values in the set (ci,’", Cq). The
model is

(8.7)

dx= b(x, ) dt+Y’, o’(x, ci)ll,=c,idwi

Z b(x, ci)rfit(ci) dt +Z or(x, ci)rfi/2(ci) dwi,

Analogously to what was done in Theorem 7.1, we need only consider (.), which
are given by the functions F(.) introduced below (7.7) in that theorem. Here the
arguments of these functions are the samples of all the Wiener processes
w(. ),. , Wq(. ). We now construct the appropriate analogues of the wh( used in
Theorems 4.7 and 7.1.

~hAs in Theorem 7.1, for convenience we suppose that tr is an r x r-matrix. Let u,
denote the ordinary admissible control to be used for the approximating chain {,h}
(to be specified below). Let 0i(" ), i--< q, be R r-valued standard and mutually indepen-
dent vector-valued Wiener processes, which are also independent of {h,, u,},~h and

h h ~h /hdefine qi,, qi(t,+l) qi(th). Let m. and (.) denote the relaxed control representa-
~htion of u, and, respectively, the continuous parameter interpolation with derivative

defined by rfi h h h hm, on [t,, t,+). Recall the definition of 6wh, above Theorem 4.7.
Define the random variables

6 h(8.8) a, i.. ou. =ci}

and define W(t) E,.+,__<, 6Wh

Then we can write (where the Process Y,.<_, e h= eh(t) goes to the zero process
weakly as h 0)"

(8.9)

h hso.+, so.h+b(,h)At.+Etr(h., ~h Wh hu.)I{c,=,}6 ,..+e,,

hn q-E b(hn Ci)thn(Ci) Athn q-E O’(hn Ci)lrh(ci)l i..q_e.,h

r(c,) ,n---

We continue to follow the procedure of Theorem ?.1. For n such that t < use
any control. For p 1, 2, and n such that h. [p6, p6 + 6), use the control defined
by "h pOu, Fp W(jO),j p6/O, q). As in Theorem 7.1, this yields

(h(. ), W(" ), q, h(. ), h)((" ), Wi(" ), q, (" ), ),

where the limit satisfies (8.7) and ,7 and -7h are the escape times from G. Hence, since
Vh(x) is the infimum cost, we have

(8.10) Vh(x) <- Vh(x, rfih)--> V(x, rfi). a
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9. Control of queueing and production systems in heavy traffic. There has been a
considerable amount of work done on the heavy traffic modeling of queueing and
production systems 22], [31], [39], [44], but rather little on the use of such modeling
for control purposes [31]. Since this class of problems is of increasing importance and
little is available concerning the numerical problem, this section is particularly timely.
It also gives us an illustration of how to treat an important class of reflection problems
where the reflection is defined in terms of a discrete physical problem, and is discon-
tinuous. In this section, we discuss one simple case in order to illustrate the applicability
of the "Markov chain" approximation for computational purposes for such problems.
We concentrate on the two-dimensional process illustrated in Fig. 9.1, although the
technique and results hold true, in general, and the procedure that we follow should
indicate further possibilities. A somewhat different control problem is developed and
a Markov chain approximation discussed in [31]. Further work on other formulations
involving controlled routing and singular controls will appear in a forthcoming paper.

2 P2o

FIG. 9.1. The system model.

By heavy traffic, we mean essentially that the processors have little idle time. e is
a measure of the idle time (made more precise in (A9.1), (A9.2)). As e->0, the idle
time goes to zero and the traffic intensity goes to one. The scaling used below allows
the physical system to be approximated by a reflected diffusion, and allows a very
complicated system to have a relatively simple approximation.

In this section the development is somewhat different from that in other sections.
Here the physical model is not given a priori as some sort of controlled diffusion as
it was in the previous sections, but it is given in the "physical" form as a pair of
interacting processors with various (discrete parameter and asynchronized) inputs and
outputs. We need first to find the proper (heavy traffic) limit model, and then apply
a Markov chain numerical approximation method to this limit model. Generally, the
physical model is much too complicated for us to have any reasonable hope of solving
an optimization problem for it directly. But for the numerical approximation to be
valid, we must show that. (a) the limit of the optimal costs for the Markov chain
approximation is the optimal cost for the controlled heavy traffic limit and (b), the
optimal cost for the latter problem is the limit of the optimal costs for the physical
models as e --> 0. Thus, we are obliged first to find the correct limit controlled modelwfor
it is not a priori obvious. (The precise control problem will be specified below.) Part
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of the development of the limit of the "physical" model parallels work that would be
necessary to obtain convergence of the Markov chain approximation to the limit model.

For our problem, there are two interconnected processors P1 and P2. The outputs
of the processors are routed according to the arrows in Fig. 9.1, with Pij denoting the
probability that an output of processor goes to processor j; Pio denotes the probability
that the serviced object leaves the system. Both processors have external inputs. We
will "marginally" control the distribution of the interarrival and service intervals. This
"marginal" control will have a substantial effect in the heavy traffic case. Since we are
working with a "physical" system, which is described in terms of inputs and outputs
(or service and interarrival intervals and routing), we must introduce some notation,
which allows us to describe the physical system in a way that allows a convenient
derivation of the limit. Owing to the control and the state dependencies, we are forced
to deviate from the classical approach, which might be best represented by [44].

i,e 00}, i’ OO} respectively,DEFINITIONS. For e > 0 and 1, 2, let {c, n < {A, n <
denote the sequence of interarrival intervals for the external inputs to Pi and the service
intervals of Pi, respectively. For notational convenience, we let the physical model
evolve in discrete time. The buffer size of Pi is Bi/’v/-, assumed to be an integer. Define

si,ei, i,e-i,a,n Otj Sd, mj

Let o%i.n be the o--algebra determined by all service and arrival intervals and routings
that are completed by (discrete) time S;,n, the time of the nth external arrival to P,
as well as all the intervals other than a.+ that start at or before S Let E’ be the

i,e i,eexpectation conditioned on ’.. Define a., and a., analogously, and analogously
define the conditional variances ’ ’var, and vara., We use E to denote the conditionala,n,c

expectation given (in addition to the data used above) that control value c was applied
to the (n + 1)st interarrival interval, and analogously define E a,,,. Let , (respectively,
i) denote the indicator function of an external arrival to Pi (respectively, a service
completion at Pi) at time n, and let I’ denote the indicator function of a routing
from Pi to if a service is completed at time n. Ii’: 1 denotes that the routing was
to the "exterior."

Let oi’, denote the number of items in or waiting for service at at time n.
Following the usual scaling used in heavy traffic limit theorems [31], [44], [39], set

X , xi, i,Q,, (t)=Q/. The ratio t/e is always used to denote the integer
part. With this notation, we have xi’(eS,)=X%. Write X =(X, X). Thus 0 <=
XeBi

We next state some of the heavy traffic assumptions. "Heavy traffic" means that
the processors have very little idle time; i.e., the mean rates of arrival and service are
very close for each server. We quantify this difference by a factor of order in the
mean rates. It is also supposed that the mean arrival or mean service intervals can be
controlled. But the control here will have only a marginal effect on the rates, although
a major effect on the limit controlled diffusion. In situations where heavy traffic
modeling is appropriate, these marginal effects on the rates have substantial effects on
system variables such as mean queue lengths and the probability of a full buffer (thus
denying entrance to a new arrival).

We suppose that the control takes values in a set U Uo x U x U,2 x Uaz, where
the U are compact; the set of control values to be applied to control the interarrival
time to Pi is Uoi, etc. Thus each "activity" can be controlled separately. We will use
the following assumptions. They are simply the "control" forms of analogous assump-
tions in, e.g., [44].
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(A9.0) The sequence of routings are mutually independent and independent of
(ai,;, A). The spectral radius of P-(pq is less than unity. Completed
services at Pi, which are routed back to Pi, have priority.

(A9.1) There are constants (g and bounded and continuous real-valued functions
a( ), d( ), o-(. ), Crd(" ), 1, 2, and 6, 6’- O, such that for all x, if
Xs., x, then

E i,e i,e i,ea,,,can+=__n+__[gai+X/-ai(x, C)+O(x/r-)] 1,
i,evar,,,a,+ [o-,(x)]2 + 6.

Also, for all x, if X: x, then
i,e A i,e i,eEd,,,,,.,,,+l=--A,,+,=[gd,+x/d (x, C)-" 0(%/-’)] -1,

i,e ]2var),,,A,+l [trd(X) + 6.
Define g=(g, g)_)’, gd =(gall, gd)’. Assumption (A9.2) says that the mean

arrival and departure rates for each Pi are equal (modulo O(x/-/)), and is the commonly
used heavy traffic assumption [22], [31], [44], [39].

(A9.2) g=(I--P’)gd.

(A9.3) {[,12, [Ai,;l, i, n, small e, all controls} is uniformly integrable.

Admissible controls. The admissible controls for the nth service or interarrival
intervals at each P, are (Ud or U-valued) functions only of the data available up to
the start of those intervals.

We will use the following terminology for the controls. As in the previous sections,
the actual control used on the physical process (or on the Markov chain approximation)
will be an ordinary and not a relaxed control. But, as before, the relaxed control
terminology is useful for getting the appropriate limits. Let U,k denote the actual
ordinary control used to control the kth interarrival interval for the external inputs to

P. For discrete time n, define Ua, Ua.k for n [Sa,k, Sa,k+l). Let ma,n(’) denote the
relaxed control representation of i ’ ’u,. (i.e., ma,.(C)= I.’:c). Let ma (.) denote the
continuous parameter piecewise constant interpolation defined by the derivative"
m,,(.)= m,,(.) for t [en, en + e). Define u a,, and m .) analogously, Let u and
m(.) denote the vectors composed (each) of the four components {u i’ 1 2, c
a, d}, {m( ), i= 1, 2, c a, d}, respectively.

The cost criterion. In order to illustrate the possibilities, we choose a discounted
cost of the following form. We wish to penalize both the cost of control, the holding
or inventory cost, and the "opportunity cost" due to nonadmission of an arrival to
the Pi due to a full buffer.

The (scaled by ,v-) number of lost inputs due to a full buffer at P can be written
as (j # i)

(9.1) L I,x,. ,,+x/- ri,,= . d/Ixlo.x=,l.
k=0 k =0

Define Li’(t)= LI’/. For fl > O, the cost function is

V(x, m)= Em e-’ k(X(t), c)mt(dc) dt

(9.2)
+ E7 e-3t[kldLl’(t)+ k2dL2"(t)].
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We assume

(A9.4) k(.,. is bounded and continuous and ki > 0.

The system equations. A classical problem in getting heavy traffic limit theorems
concerns the situation when the buffers are empty. A common way of handling this is
to assume that the processors keep processing, even if there is nothing to process. The
consequent sequence of "phantom" outputs must be compensated for by suitable
reflection terms. If an arrival occurs in the midst of a service interval in which a
"phantom" object is being processed, then the actual service time for that arrival is
taken to be the residual time of the current service interval [24], [44]. In classical cases
[24], it can be proved that the modification of the X(.) process is asymptotically
insignificant. We use this "residual time" assumption here also, and (although we omit
the proof), the asymptotic insignificance can also be shown. (See also the appendix
of [31] for a related argument for another heavy traffic control problem.)

Define the "reflection" terms for j # 0,

L i’I’IlxL(9.3) Y’ x/- Pk :o}
k=l

and set yij’(t)= vij’e vii’J’e--,/. The is just the number (scaled by x/) of ’phantom"
inputs from to j that occurred by discrete time n.

in subsequent sums, we drop the e-affix of the summands. We can write

(9.4)

X,,’=X’+x/-L -x/-L 0(I2+ I) +x/-L ,I’

A useful form for system equations. We next go through a sequence of manipula-
tions whose purpose is to put in a form that allows for a relatively straightforward
weak convergence proof, although it does require some new definitions. The idea is
to write the terms involving or : as sums of scaled "martingales" and "drift" terms,
which can be handled more easily than (9.4) can. We now center the second to fourth
terms on the right of each equation in (9.4) so that they can be written as a sum of a
martingale and a drift term. Define the random variables and processes:

8M,, [ ala,k 1-- -i,----7akJ
/tU, tq, Ak

d,k k --Pu i,--7A k

t/e t/

a,k d,k

/j,The subscript k in I k should have been S},k, the time of the kth departure, but the
replacement used yields the same results owing to the independence assumption on
the routing variables. The 6M. and 6M2;, are martingale differences with respect to

oi,e i,ethe filtrations d,, and a,,, respectively.
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By a straightforward evaluation using the representation of the 8 and A in (A9.1),
we get (letting x Xs2 or Xs:, as appropriate)

var:.k i,e 2 )26M,k+, g,(r(X) + O(x/7)+ O(a),(9.5)

(9.6)
i,e iO,e R lt,4iJ,Ed,k[Md,k+l ,-,,’,d.k+a]= --pqPio+PijPiogaa,(O’,(X))2+ O(x/)+ O(6), j # O, i,

i,e ij, 2 2
vard.g [6Md.g+,] p(1--pj) + gdptd(X))2+ 0() + 0(6).

2Define (x)= g](g(x))2, and define the random vectors and processes

12,e 12,et6M:; (-(6M, + 6Me,g ,, 6M
M: ’, -(My+ ’’"

M](t)=Md,,/.

From (9.6) we can calculate the matrix di(X) defined by COV’f.k6Md,k+a
2, (x) + o(C) + o(& ).

Although the nondegeneracy in the next assumption (A9.5) is not needed for the
validity of Theorem 9.1, it simplifies the notation a bit.

2(A9.5) Edi (x) > 0, inf,, O’ai(X > 0 and there are continuous O’di(X such that Zd (x)
O’di(X)O"d(X) and o-i(x) is uniformly bounded.

Let si’( t) i,eeS,t/ for a a, d, and define the process q(t) =max {ek" eS, <- t}
and analogously define Sa (t). The function S;(t) is an inverse of the function Si,;(t),
and is just e times the number of external inputs to P, which arrive by discrete time
t/e (or interpolated time t).

We now rewrite (9.4) in a continuous parameter form from which it is easier to
get the heavy traffic limit. By the definition of q’(’a and 6M,, we can write

t/ -.(t) -q,(t)
Ol a,k

k=l k=l l,a,k

etc. Thus we can write

(9.7)
xl’e (t) X1’ (0)+ M’(’(t))- [M’(’(t))+ M2’(q’(t))]

+ Bl’(t) + M2dl,(2d,(t))+(yl,(t)+ y12,(t))-- y21,(t)-La,(t),

where

(9.8) Ba’(t) v/7 2 a )x/7 2_-7- (Po+P2 --+P21V- Z --.
k=l k k=l k=l

We get the expression for X2"e(t) by just interchanging 1 and 2 in (9.7) and (9.8).
Equation (9.8) is readily simplified. Note that

4 E =+o(q),
k--1

with a similar expression for the other "bad l/x/7" terms in (9.8) involving the A.
The heavy traffic assumption (A9.2) and the expansion of d and A in (A9.1) allows
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the "bad 1/v" terms in (9.8) to sum to zero mod o(vr). Equation (9.8) then reduces
to

(9.9) Bl"(t)- e 2 bl(Xek, Uek) + tS b(X(s) c)m(dc) ds+ 6

where 3 0 and

b(x, c)= a(x, c)-(po+pa)dl(x, c)+pd2(x, c),

and similarly for B’ (t).
We can now write (9.7) in a better form. Define the scaled processes Md (t)=

M](g](t)) and (t)= M((t)). Define Y= OkIx,=o, and let Y(.)=
yl,e(. ), yZ,e(. )), denote the continuous parameter interpolation (interval e). Define

the "error terms" (i#j, i,j= 1,2) i,(.) and J’(.) by

i.e (t) y,O, (t) P,o Y" (t) + Y’J’ (t) p,jY" (t) ,o, + ij, ).

Define (. )= ("(.), 2,(. )),. Then, finally, (9.7) can be written in the form that
will be .used in the next theorem. Let x(0)= X(0). Then

x(t)=x(0)+ .(t)

(9.10) + Y(t)+(I-P’)Y(t)-L(t)

z(t)+(1-p’) Y(,)-L(t).

In order to do a "comparison control" argument like that in Theorem 7.1, a
suitable replacement for the 8W of Theorems 4.7 and 7.1 is needed. To prepare for
that, we need the following definitions. We let x denote the value of the system state
at the time of the kth arrival to or departure from P, as appropriate.

Define (using x as above (9.5))
’, M?+,/(,(x))6W,+,

Then

var, 6W,+, e/g,+O(e3/).
i,e i,eAnalogously, define the "2-vectors" 6Wa,+, }(x)6Ma,+,/. Define W2,n

i,e i,eo 6W., a =a, d, and define W(t)= ’W,,/ and (t)= W (g(t)).

Hea trac limit theorems. We can now state the first heavy traffic limit theorem.
THEOREM 9.1. Assume (A9.0)-(A9.5). en

R(.)={X(.), Y(.), (.), (.),2(.),L(.),B(.),m(.),i=l,2, a=a,d}

is tight (all components in the Skorokhod topology on D[0, ) for the appropriate k,
except for m (.)). If

R(.)={x(.), Y(.), (.),(.),(.),L(.),B(.),m(.),i=l,2, a=a,d}

denotes the limit ofa weakly convergent subsequence, then Y(. zero process, all limits
are continuous and

(9.11) x(t)=x(O)+(t)+(t)+](t)+(I-P’)Y(t)+B(t)-L(t),
where the Y(.) (respectively, U(.)) are nonnegative, nondecreasing and can increase
only when X(t)=0 (respectively, X(t)= B). Let denote the .algebra generated by
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{R(u), u<= t}. Then the (.) are standard and mutually independent t-Wiener pro-
cesses. Furthermore (where mr(" denotes the time derivative of m(. at t),

(9.12) Bi(t) b(x(s), C)ms(dc) ds.

Define 1QIo IQI 1, f/l] ). e M(.), i= 1, 2, a a, d, are mutually orthogonal -martingales with

Mo( t) (M)( t) gi i(X(S)) ds,quadratic variation

(9.13)
quadratic variation (t)= {}(t)= gai 2 (x(s)) ds.

di

ey have the representation

(9.14) M(t)=g-/ (x(s))d#(s), -/M.( .(x(s(s

Also, m( is nonanticipative with respect to {-w(.),i=l,2,=a,d}.
Proo The details are very similar to those for an impulsively controlled heavy

trac problem in [31, 5], except that here we use a continuously acting control, the
-iw(. were not explicitly introduced in [31], and the upper bounds B were handled
there by the impulsive control and the L-terms were not needed. Many details are
similar to those in 4 and 7. We will outline the steps of the proof.

(1) B(. ), m(. are tight and any weak limit B(. is continuous. If {X(. )}
were tight in D[0, ), then (9.12) holds for any weak limit, all exactly as in theorem
4.6.

(2) {S’( .)} converges weakly to the deterministic function with values g.
(3) The { W( )} are tight owing to the fact that the {W;./} are martingale

,) and are uniformly square integrable. In addition,differences (with respect to the
the mutual ohogonality of the components for different , i, imply that the limits are
orthogonal continuous martingales with quadratic variation t/g. The (.) differ
from the W( only by the scaling (. ), which converges as in (2). Thus any weak
limit of { ’W (.), 1, 2, a, d} are mutually independent Wiener processes.

(4) Similarly to the case in (3), the {M( .)} are also tight and have continuous
limits. The limits are ohogonal maingales (with values in R or R according to
whether a or d, respectively). Since any limits M(. and M(. are related by the
scaling (. ), by (2) the quadratic variations satisfy

(5) Y (-) is also tight and its qimits" are continuous. To see this, we use Theorem
4.4 and prove it for one component only, namely, o,(.). Note that

The summands are martingale differences (with respect to the intrinsic filtration), due
to the fact tkat {io. -Po} are independently and identically distributed and zero mean
and independent of {}. Thus, for t= he,

{[(n+m-P,ogn+m)-(--m -Plogm k <=m}

’ =0](9.15) N (constant) e[k e (m, m + n]"X
N (constant) t.

This yields the tightness and the continuity of any limit process.



1034 HAROLD J. KUSHNER

(6) To handle the Y(. and L( ), we use the following slightly modified form
of very useful results of Harrison and Reiman [23, Thm. 1]: Recall that the spectral
radius of P is less than unity. Let y(. ), f(. ), and z(. be in Dr[0, ), and such that
f(t) z(t)+(I- P’)y(t) andfor all i, fi(t) >-0, yi(. is nonnegative and nondecreasing
and increases only when fi( t)= O. Then there is a continuous function (in the topology
of the sup norm on bounded time intervals) F(.) from Dr[o, c) to Dr[0, c) such that
y(.)= F(z(.)). If z(.) is continuous, so is y(. ). There is an analogous result for the
equation f(t)= z(t)-L(t), where f(t) is now confined to be <=Bi where Bi> O.

Using this result in (9.10) yields (loosely speaking), for the time intervals where
X(t) is not in some neighborhood of the corners (B1,0) or (0, B2) that Y(. ), L(
are continuous and nonanticipative functions of Z( ), and if the "sections" of Z(
on those intervals converge weakly to a continuous process, then so do the correspond-
ing sections of Y(. and L( ).

The corners present no problem (either in our two-dimensional case or in general).
To see why, note that, (e.g.), in a neighborhood of (B1,0), (9.10) reduces to

y2, Ll,e X2, Z2,e y2,eXl"e(t) zl’e(t)-P21 (t) (t), (t)= (t)+(1-p22) (t).

Thus, we get y2,(. first and then LI’( in that neighborhood.
Thus { Y (.), L (.)} is tight and hence so is {X (.)}, and they all have continuous

limits, since {Z( .)} does.
(7) Now that we know {R( .)} is tight and the weak limits are continuous, we

extract a weakly convergent subsequence and use a "martingale method" analogous
to that of Theorem 4.6, but with the dynamical equation (9.10) to show that the limit
satisfies (9.11) and that the M(.) and w(.) are (t)-martingales and Wiener
processes, respectively. To show that Y(. )= zero process, we reason as follows. Note
that Y’(t) v/- {#n’X =0 for n<= t/e}. For given t, the { Y’(t), e>0} is bounded
in probability by the weak convergence. Thus yi,(.)zero process. This and
(9.15) imply that Y(.):=>zero process.

M(. and t(. with respect to the filtration(8) The quadratic covariation of
(t) is obtained from the limit as e0 of the "discrete parameter quadratic covari-
ation":

E oi tJoi S,k)W,k+l, E W,k+ (t)
k=l

(9.16)

,t,)e E cr,,(Xs,,)g-/:.
k=l

Choosing a weakly convergent subsequence with limit x(. ), M(. ),. ., we get

(9.17)
wt)(t) - 6i/3 cr x as

ijCofli O’ai(X(S)) dS.

Similarly, we get the quadratic covariation

io(9.18) (](/I, lli)(t)= goi O’od(X(S))O’tai(X(S)) ds,

The representation (9.14) is implied by these expressions.
THEOREM 9.2. Under (A9.0)-(A9.5), if e indexes a weakly convergent subsequence

of {R( .)} with limit R(.) as in Theorem 9.1, then the costs V(x, m) converge to
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V(x, m), where x(.) satisfies (9.11) under m(.) and

;o(9.19) V(x,m)=E7 e-’k(x(t),c)m,(dc)dt+E7 e-’[kdL(t)+kdL(t)].

Proof The component of the cost involving k(. clearly converges, as asserted,
by the weak convergence. To get the convergence of the last term in (9.19), we need
only show that {Li’ (n + 1) Li’ (n), small e, 1, 2, n < c} is uniformly integrable.
We outline part of the calculation for L’( ). Let 0 < A < B. We time the excursions
of the process as it goes from the right-hand boundary x= B to the line x= Ba- A,
and (possibly) back. Fix an integer n. Define

r min {t [n, n+ 1]" X’(t) B},
=min{t[n,n+l]’t> X (t)<Bl-},k+l

z+ min {t In, n + 1], g+l" xl’(t) B1}.
The z and equal infinity, if not otherwise defined.

For any function f(.), define kf=f(g+ (n+ 1))--f(zA n). Let N denote
the.number of k such that z < (n+ 1). Then, by (9.10)
(9.20) 6kL’= --Z kxl’e +Z kzl’e --P21 kr21"e,

k k k k

(9.21) Z 6L"(N+I)B+Z Z’.
k k

Since sups,. E[Zk 6kZ’]2< and k 6kL’= L’(n+ 1)-Ll’(n), we will have the
desired result if we prove sups,. E(N)2(.

The fact that all moments of the number of excursions from B- to B1 on the
interval In, n + 1] are uniformly bounded in (n, e) follows from the inequality (9.22),
where is an arbitrary stopping time in In, n + 1] and R(.) is defined in Theorem
9.1" There are > 0 and 61> 0 such that for all , n, and small e,

(9.22) e{sup Z(r+s)-Z(r)le/2lR(u), ur}1- w.p.1.
sN

(See [38, Thm. 5.3] for more detail on a related calculation.) This ends our discussion
of the proof.

Cergeee f g(x) t te1est fr te lt rble. Given a filtration, with the #(. being -Wiener processes, the definition of admissible control that
we use for (9.11), (9.19) is the same here as in 3.

g(x, m) V(x)=infmadm. V(X, m) we use theTo show that W (x) infm adm.

following additional assumptions. Let #(.) { -w(.),i=l,2,=a,d}.(A9.6) For each admissible pair (m(.), #(. )), there is a unique weak sense solution
to (9..

(A9.7) For each constant admissible ordinary control, there is a unique strong
solution to (9.11), in the sense that x(t) is a measurable function of
{x x(0, (s, m,(. , s

Remark on (A9.6), (A9.7). The assumption (A9.7) obviously holds in the case of
It equations under the Lipschitz condition. The assumptions are useful because they
guarantee that for each 0 >0 there is a 0-optimal piecewise constant control that
depends on the #(.) only. Under only weak sense uniqueness, we need to use
randomized controls rather than just #(.)-dependent controls. The approximation
theorem is then harder, but can also be carried out. See Chapter 9.3 of [29] for a
treatment of the It6 equation case.
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We have the following approximation theorems.
THEOREM 9.3. Assume (A9.6) and the continuity of b(.,.), o’(.). Let

(raP( ), #(. ))(m(. ), #(. )), where (mP( ), #(. )) and (m(.), #(. )) are admissible
pairs. Then (with p indexing the associated processes) (xp(. ), YP(. ), Lp(. ), mp(. ),
#(.))(x(.), Y(.), L(.), m(.), #(.)), satisfying (9.11). Also for each n, {LP(n+ 1)-
LP(n), n, p < o} is uniformly integrable and V(x, mP)- V(x, m), ifk(.,. is continuous.

Remark on the proof. The {MP( ), raP( ), BP( ), #(. )} is obviously tight and has
continuous limits. Then, as in Theorem 9.1, the same result holds for
{LP( ), YP(. ), xP( )}. The limit of any weakly convergent subsequence must satisfy
(9.11) for the given (m(.), (.)). By uniqueness, the entire sequence converges as
stated. The uniform integrability of {Lp (n + 1) Lp (n), n, p < oe} is proved as in
Theorem 9.2. The convergence V(x, mP)- V(x, m) follows from this and the weak
convergence.

THEOREM 9.4. Under (A9.7) and the assumptions of Theorem 9.3, for each p > 0
there is a 6 > 0 and a p-optimal ordinary admissible piecewise constant control (constant
on the intervals i8, i8 / 8 ), i= O, 1,...) and taking only finitely many values. Further-
more, the control used on the interval [kS, kS+ 8) can be taken to be a function of
{(jO),jO <-kS} for small enough O, and where the "boundaries of the decision sets"
have zero probability (as in Theorem 7.1 or 8.3).

Remark on the proof We first use Theorem 9.3 to get a piecewise constant
p/2-optimal control. We then use (A9.7) and an argument of the sort used in Theorem
7.1 to show that on [kS, k8+8), the control can be taken to be a function of
{(s), s_-< kS}. Then, a further approximation, as in Theorem 7.1, is used to show that
we can use the "samples" for small enough 0.

Finally, we can state the following theorem.
THEOREM 9.5. Under (A9.0)-(A9.7), V(x)- V(x).
Remark on the proof The proof is very similar to those of Theorems 7.1 or 8.3.

By Theorem 9.2 and the definition of V(x), we have lim W(x)>- V(x). To get the
reverse inequality, we apply the p-optimal control described in Theorem 9.4. Let
Fk((jO),jO <- kS) denote the control used on [kS, k6+ 8). Then for controlling X(
on the time interval kS, k8 + 8), use Fk(i’ (jO), jO < kS, 1, 2, a a, d). The proof
concludes via a weak convergence argument (as in Theorem 7.1) to show that the limit
process is precisely the one (9.11) associated with the p-optimal decision functions {Fk}.

9.1. The numerical method.
The approximating Markov chain. The controlled Markov chain approximation

{h} is constructed as in the previous sections, the only variation being that we account
for the boundary reflection in a consistent way. For simplicity of presentation we use
a combination ofthe methods of 5.1 and 5.2 for the construction ofthe approximating
chain. Define Gh to be the h-grid on G--[0, B1] x [0, BE] and let the Bi be integral
multiples of h. Let G denote the h-gridpoints on I-h, B14- h] x I-h, B2+ h]. To account
for the reflection, it is convenient to compute the transition probability for x Gh in
two steps: first compute the probabilities as if there were no reflection; then, if the
transition were actually to a point y G-Gh, to immediately reflect back to Gh in
a way that is consistent with the behavior of (9.11) on the boundary. The actual state
space is G. But, since we use Ath(x, c)=0 for x G--Gh, we have instantaneous
reflection.

Part 1. Let x Gh. Ignoring the boundary reflection terms, (9.11) reduces to

+ + dMd + dMd+ dt b(x, c)m,(dc)
0 daa
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Let ph(x, ylc) denote the consistent Markov chain transition probabilities for model
(9.23), and Ath(x, c) the associated interpolation interval. These satisfy (2.4) and can
be obtained by the methods of 5, since (9.23) is just an It6 equation.

Part 2. Let x G--G. Write x (x 1, x2) ’. (a) Suppose that some xi> Bi, but
no xi< 0. Then simply reflect back instantaneously to the nearest point on Ga.

(b) Let some x <0, but no x> B. Then find a vector 3" =(6l’a, tr2’h) where
6I7i’h > 0 only if x < 0 (and is zero otherwise) and such that x +(I- P’)6" is on
the boundary of the rectangle G. Such a 6"a can be found since the spectral radius
of P is less than unity. Generally, : will not be a gridpoint. We then "randomize" the
transitions, so that the mean value remains . For example, refer to Fig. 9.2. There
(1-p)3= h and "2-- 0 SO that q=plz/(1-p) (q is shown in the figure). Let
x’ and x" denote the nearest gridpoints. Then use the (actually uncontrolled) transition
probabilities ph(x,x’lc)=q2, ph(x,x"lc)=q=l--q2. In the limit, as h-0, the ran-
domized transition has the same effect as the "mean" transition to Y, by the same logic
that allowed us to replace, (e.g.), yi0 by PioY in Theorem 9.1.

X h=(I-p==)S"

I ql h
X q = PZ / (I’p)
x" q2h

FIG. 9.2. Example of the reflection model.

(c) Let some x > B and some x < 0. Here, the choices of 6h and 6Lh "decouple"
as illustrated in part (6) of the proof of Theorem 9.1. We first calculate 6"h and
randomize as in (b), then take up any "residue" by repeating the procedure of (a).

The dynamic programming equation. The proper transition probabilities for {sa,}
are given by a concatenation of those in Parts 1 and 2. With this concatenation, the
chain cannot leave Ga. For the numerical calculations, however, it is not necessary to
combine the two steps, and the procedure that we use is for the states space G with
the transition probabilities calculated on Gh and G-Gh, as above.

For x G, under control value c the incremental cost is Ath(x, c)k(x, c) and the
discount factor is exp- ]3Ata(x, c). For x G, we use Ata(x, c)=0, and the appropriate
cost is that indicated in (9.25) below. If x= B + h and x2-> 0, then we must reduce
x by h, with a cost klhmto be consistent with (9.19). Suppose that x= B + h and
x2= -h. Then, of course, we must reflect back to the set Gh, as in (c) above. Part of
the "mean reflection" is taken up by the ’2’ term calculated above. The mean value
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of Ll’h is h(1-P21/(1-p22)), analogously to the calculation used for Fig. 9.2, and
this explains the appearance of this term in (9.25) below. With Vh(x) used to denote
the optimal cost for the Markov chain, the dynamic programming equation is, for x Gh,

(9.24) Vh x mincer [ e--aXh(X’C)ph(x, ylc)Vh(y)+Ath(x, c)k(x, C)].y

For x G--Gh, Ath(x, C)--0, the transition probabilities (actually uncontrolled) are
given in Part 2 above, and

Vh(x) [y ph(x, y] C)Vh(y)+ klhl{xl)Bl,X2>=O}

(9.25) P21 )+ klh 1 I{xl>Bl’X2<}-l- k2hI{x2>n2,x,>_o)

+ k2h 1 --/1I{x2>2,xl<0}

Equations (9.24) and (9.25) can be solved by any ofthe usual methods for the discounted
problem.

On the convergence Vh(x)-, V(x). We can state the following theorem.
TVIEOREM 9.6. Let b(.,. and or(. (cri, a a, d, i-- 1, 2) be continuous, assume

(A9.4)-(A9.7), and let each Us be compact. Let the spectral radius ofP be less than unity.
Then, for the chain {sch,} constructed above in this section, Vh(x) V(x).

Remark. The proof is quite similar to that given in 7, but with the technique of
this section used to treat the reflection terms. Since we are approximating the limit
problems (9.11), (9.19) directly, no heavy traffic analysis or assumptions are needed.

10. Controlled reflected diffusions. There are two convenient models to use for
the reflected diffusion process, the submartingale formulation of Stroock and Varadhan
[47], [34], to be discussed briefly at the end of the section, and the Skorokhod problem
formulation to which we now turn.

We will use the following assumption:

(A10.1) G is the closure of a bounded open set with a twice continuously differenti-
able boundary. Let n(x) denote the outward normal to OG at x, and let
y(x) denote the reflection direction. Suppose that y(.) is the restriction
to OG of a function that is twice continuously differentiable in a neighbor-
hood ofOG and let there be ao> 0 such that -y’(x)n(x) >= Co, for all x OG.

THE SKOROKHOD PROBLEM. Let {,} be a filtration on some probability space
and let w(. be an -standard Wiener process. We say that x(. solves the (uncon-
trolled) Skorokhod problem if it is oft-adapted, continuous, and there is continuous
ff-adapted Y(. such that for x G (var denotes variation),

X(t)=X+ b(x(s)) ds+ cr(x(s)) dw(s)+ Y(t),

(10.1) (var Y)(t) -= [Yl(t) I{x()eot d[ YI(s),

Y(t)= y(x(s)) dlY](s),x(t) G.



NUMERICAL METHODS 1039

The controlled reflected diffusion. An admissible pair (w(.), m(.)) is defined as
in 3. The associated reflected diffusion model is (10.1) but with m(. added, namely,

(10.2) x(t)=x+ b(x(s), c)ms(dc) ds+ cr(x(s)) dw(s)+ Y(t).

The solution to (10.2) is said to be a strong solution if for each t, x(t), Y(t) are
measurable on the tr-algebra induced by {w(s), m(s,. ), s <= t}. The basic results we use
are in [40]. Reference [40] does not explicitly use time or control dependence. But,
under the Lipschitz and continuity condition in (A2.1) all the derivations and results
hold when the control is added. A basic result is the following "controlled" version
of Theorem 4.3 of [40].

THEOREM 10.1. Assume (A2.1) and (A10.1), with (m(. ), w(. )) being anadmissible
pair. Then there is a unique strong solution x(. ), Y(. to (10.2).

The boundary condition (A10.1) can be weakened [40, Thm. 4.4] to include
piecewise smooth boundaries with "convex corners" and possibly multivalued reflec-
tion directions at the corners--but not including all cases dealt with in 9. The particular
restrictions on OG and on the consequent chains allow a relatively simple discussion
of the general idea. The method is extended below. The technique of the proof of
Theorem 4.3 in [40] yields the following theorem.

THEOREM 10.2. Assume (A2.1) and (A10.1). Let (mn( ), wn( )) be an admissible
pair for each n, with (m"( ), wn( ))=(m(. ), w(. )). Then there is a filtration t such
that w(. is a standard t-Wiener process and (m(.), w(. )) is an admissible pair. If
x ), Y" solve (10.2) with m ), w used, then x ), Y" ), m ),
wn( ))=(x(. ), Y(. ), m(. ), w(. )), satisfying (10.2).

In order to get the tightness for the sequence of interpolated Markov chains we
need the following theorem.

THEOREM 10.3 [40, Thm. 4.1]. Assume (A10.1) and consider the Skorokhod
problem:

(10.3) x(t) =f(t) + k(t),
where f(. and k(. are in cr[0, T] (the space of Rr-valued continuous functions on
[0, T]), f(O) G, k(. is of bounded variation on [0, T] and

k( t) y(x(s))d[kl(s), Ikl(t)

Iff(" is in a compact set in cr[0, T], then (x(. ), k(. ), Ik](. )) are in a compact set in
C2r+[0, T].

The cost functions. As in the preceding sections, we use the discounted cost

V(x, m)= E’ e-t k(x(s), c)mt(dc) dt,

(10.4)
V(x) inf V(x, m),

adm.

for illustrative purposes. All the usual forms of the cost function can be used. Also
the singular and impulsive control problems can be treated.

The Markov chain approximation. As in the previous sections, any chain that is
consistent with (2.4) in G and with the boundary reflection direction y(x), if the
process "attempts to leave G," will work. For the sake of simplicity of exposition we
illustrate one procedure for a two-dimensional problem. But it should be clear that
there are many variations ofthe method that will work in a space of any finite dimension.
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!
!

!

FIG. 10.1. The triangulation" edges O(h).

We let G be "triangulated," following the scheme outlined in 5.2. The sides of
the triangles are O(h). Of course, the triangulation might be based on a finite-difference
grid. We suppose the situation illustrated in Fig. 10.1, where the lines connecting
gridpoints in G do not leave G and the only lines leaving G start on OG. As in Fig.
10.1, we extend the triangulation outside G by including all points reachable along
the sides of the triangles emanating from points in G. Let the gridpoints not in G be
denoted by OG; the gridpoints in G are denoted by Gh.

For x Gh, let ph(x, Yl c) denote any continuous transition probability satisfying
(2.4), with continuous interpolation intervals Ath(x, ) k, h2>0. Now, let x
and let y denote the points in Gh connected to x by an edge. Let ph(x,.,y) (not depending
on c) be transition probabilities such that (Z’yph(x,y)--X)=--SY(x) points in the
"reflection direction" y(x). The interpolation times are Ath(x)=0 for such states.
Thus, they are "instantaneous." A more concrete construction is given below.

The dynamic programming equation. As in 9, the dynamic programming equation
is

Vh(x)=min[e-/"’)Zp(x, ylc)Vh(y)+Ath(x,c)k(x,c)], xGh,
cU y

Vh(x) Z ph(x, y) Vh(y), x oG-.
y
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A construction of ph(x,y) for x_OG-. Refer to Fig. 10.1. Let x= =(a). Draw
the line from x in direction 7(x), hitting the first edge in G at (e). "Randomize" (e)
by writing it as a convex combination of (f) and (g): (e)=ph(a,f)(f)+ph(a, g)(g).
This technique yields the desired ph(x, y), x e G-, in general.

Notation. Let {} denote the constructed chain, but where the instantaneous states
are ignored. Thus if : (g) - (a) -> (f), we have n/i=(f), and let :h(.) be the

hlcontinuous parameter interpolation (intervals Ath as always). Let s%’4-1 denote the
successor state to :, whether instantaneous or not. Thus if :l e Gh, :n’+lh :/1. For
hln’l instantaneous, let 8" 8(:l) denote the vector that takes sl to the nearest

direction y(sd+l); e.g., (e) (a) if 1 (a) in the figureedge in h Yn =0 if
hl h,2 h,1 ’h hl ’h:d41G. Let :n+l=Sen+l+3Yn, for seal41 instantaneous. Finally, define

nh/l nh’+2,, for h:n’4 instantaneous, with 6:0 otherwise. Thus 6:(f)-(e) or
h, =(e) Define ,h(t)=,L,<__,(g)-(e) if sen+

The dynamical equations. We can now write the dynamical equations in a way
that will be convenient for relating :h(.) to the solution of the Skorokhod problem.
Define h h h h,1(n’-;1 h) E n(n/l _h,), similarly to the definition above (4.9). Then
write

(10.6) :nh+l :nh
__

h h ~h

(10.7) hl h h h h

THEOREM 10.4. Assume (A2.1), (A2.2), (A10.1), and inf, Ate(x, c)kh for
some kl> O, and assume the Markov chain approximation selected above. Let {u} be
any admissible control for {}, and let m denote its relaxed control representation.
Define m( by its derivative" mt=m, on [t,, t,+l). en {h(’), m(.), h(.)} is

tight. If {(x(" ), m(. ), Y(. ))} is the limit of a weakly convergent subsequence, then there
is a w(. such that (m(.), w(.)) is an admissible pair and (10.2) holds. Also Vh(x)
V(x).

Proof The proof follows the lines of 7, suitably modified to account for the
reflection, and we only give the details of the pas that differ significantly from the
previous proofs. Define

Let us relate (10.7) to the Skorokhod problem. For any piecewise constant function,
let the overbar denote the piecewise linear interpolation. Let hn, tn+)h with :n,+hl
OG and write (ehn O(h A tn))h

^h h h(10.8) (h(t)=i+[b(h, uh)Ath+h+eh+](t-t)/At+6Yn(t-tn)/Atn
Due to the curvature of the boundary, (h (.) is not necessarily on OG (it is the "secant
line" in Fig. 10.1), but it is within O(h2) of OG. Add this "error" Th(t) to both sides
of (10.8). Then, for hn tn+l),h

(10.9)

Now, relate (10.9) to the Skorokhod problem, where the term in braces is the f(. in
(10.3). The 6"n(t t)/Atn is not quite the reflection term k(. in (10.3) on the interval
[th hn+l), due to the curvature of OG, but it is within O(h2) of the correct reflection

h hterm. Define yh(. by letting yh(y)_ yh(tn) 6(t- tn)/Atn + O(h2) be the correct
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reflection term in th hn+l). Then, we can write for all >-0,

(10.10) h(t)+ rib(t): Zh(t)+ yh(t),

where

Zh(t)=x+h(t)+h(t)+gh(t)+ h(t)+txh(t),
where /xh(t) collects the O(h2) terms. In particular,

(10.11) tzh(t) O(h2)[n th,, < and n,_;,h, G-],

(10.12) yh(t) O(h)[4n" th, <= and ,-lh Gh].+

Also, r/h (’) and yh (.) h (.) are of the same order as/x
h (.).

As in 7, {Bh( ), h(. ), eh(. )} is tight and the limits are continuous, hence also
for the /h(. ),.. ". Also gh(. )zero process. By (10.11) and the fact that Ath,>--_ hZkl,
{/xh( ")} is also tight and has continuous limits. We have

~hE[6Y,+ll6fzh,i<=n]=O, 6fzh=o(h),
(10.13)

~hE[I,Y+I 6fh, i_<_ n] O(h2).

Equations (10.13) imply the tightness of { h(. )} (hence of { h(. )}) and the continuity
of the limits. Thus {zh( )} is tight and has continuous limits.

By Theorem 10.3, {h(. )+ r/h(. ), yh(.)} is tight and has continuous limits. This
implies that {yh(t)} is bounded in probability. By this and (10.11) and (10.12), we
have that /xh( ):=>zero process, and similarly r/h :=>zero process. Thus, (10.10) can be
rewritten as

(10.14) h(t)=x+Bh(t)+h(t)+ rh(t)+"small" error,

where all the functions in (10.14) are tight and have continuous limits. From this point
on, the proof is almost the same as in 7, and the details are omitted. [3

An alternative approach. The framework above is useful since uniqueness of the
solution to (10.2) is known by Theorem 10.1, and Theorem 10.3 yields tightness of
{ yh(. )}. The condition (A10.1) can be weakened, at the expense of assuming unique-
ness. The following method follows a suggestion made to the author by Michael Taksar,
who is using related ideas for the study of the Skorokhod problem. Let G have a
continuous boundary and define G, Gh, and OG- as before. Let the sides of the edges
be proportional to h. Let y(. be continuous with inf,0 ]y(x)l > 0, and suppose that
there are r > 0, p > 0, such that the cone with vertex x, radius r, and centerline x + y(x)p
is in G for all xOG. For XGh, choose ph(x,y]e) as before. For xOG, choose
(uncontrolled) ph(x, y) such that 2 ph(x, Y)Y X y(x)h + o(h). The x OG- comnuni-
cate with y Gh as before, but these y need not be on OG. Suppose that for each 6 > 0,
there is a 6-optimal admissible pair (m(.), w(.)) such that the Skorokhod problem
(10.2) has a unique solution. Let b(.), or(.), and k(.) be bounded and continuous.
Then Vh (x) --) V(x).

Except for the fact that Theorem 10.3 can no longer be used to get tightness of
{ yh(. )} and that uniqueness must be assumed, the proof is essentially the same as
that of Theorem 10.4. Tightness of { yh(. )} follows from the fact that if the set were
not tight, then the "cone" condition would imply that the "reflection" terms push the
h(. "far" away from OG, which is a contradiction to the fact that the reflection terms
only act at states in OG-.
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Other approximations. The above described numerical methods are reasonably
easy to use, and are similar to any reasonable alternativemsince the appropriate
consistency is required for any one. Given small 8 > 0, we can approximate the reflected
diffusion by a process which, when hitting OG at a point x, jumps a distance 8 in
direction 7(x). As 8-0, the optimal cost V(x) for this problem converges to V(x).
Thus, we can use a numerical procedure for the optimal control problem for the altered
process for small 8.

The submartingale problem formulation. The martingale problem representation
[49] which was used in Theorem 4.6 is a very convenient way of characterizing a
diffusion process, and, in particular, of showing that the limit of a weakly convergent
sequence of processes is a diffusion process. There is an analogous characterization
of reflected diffusions which is, in some ways, more general than the Skorokhod
problem approachmin that it allows for "sticky" boundaries or "delayed reflection"
(but it does not allow for flows on boundaries). The basic paper is [47]. An approach
to using it for the uncontrolled numerical problem is in [34], but the addition of
controls is similar to what was done in this paper. Only a brief description will be
given. We assume the following.

(A10.2) There is a > 0 such that n’(x)a(x)n(x) => a > 0, for all x OG.

Let G, y(.) be as in (A10.1) and let p=>0. We say that a continuous process x(.)
solves the submartingale problem for operator Le and boundary reflection y(.) and
"stickiness" p if for each smooth f(. with compact support and satisfying pF,(x, t) +
y’(x)Fx(x) >= O, the process

Io(10.15) Sf(t)=f(x(t), t)-f(x,O)- [f(x(s),s)+f(x(s),s)]Ix()oi ds

is a submartingale. Then [47] there is a nondecreasing continuous process x(.) and
a standard Wiener process w(. such that x(. ), x (.) are nonanticipative with respect
to w(.) and

x( t) x + b(x(s))Ix(oi ds + o’(x(s))I(oi dw(s)

(10.16)
+ ),(x(s))I(,)o dl(s).

If p 0, then/(. is singular with respect to Lebesgue measure, the total time spent
on OG is zero, and the submartingale problem and the Skorokhod problem have the
same solution, under compatible conditions. If p > 0, then (.) is absolutely continuous
with respect to Lebesgue measure, and the time spent on the boundary might not be zero.

We can easily define a control problem and we can, if desired, have different costs
on OG and on Go In [34], it is proved that the time that the sequence :h(.) of
interpolated Markov chains spends in the set N(OG)-OG on any interval [0, T] goes
to zero in the mean as e- 0, uniformly in (small) h. This fact allows us to consider
separate costs for OG and Go and still get the desired weak convergence. The Markov
chain used in [34] can be replaced by any one satisfying the appropriate consistency
conditions.

11. The average cost per unit time problem. In this section, the basic system
equation wil! be either (9.11) where Y and L satisfy the conditions of Theorem 9.1
(where B and are given by (9.12) and (9.14), respectively) or (10.2), under (A10.1).
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We use the average cost per unit time:

(11.1) y(m) =li Ek(x(s), c)m,(dc) ds, ,r/-- inf y(m),

for admissible m(.). In order to do the numerical problem, we need to work in a
bounded region. For specificity, we adopt the reflected diffusion model used in either
9 or 10 via (All.l).

(A11.1) G and the boundary reflection directions satisfy the conditions of the first
sentence of this section. The approximating Markov chain {} has a single
recurrent class under each feedback control. Let Ath(x, c) not depend on
c. There is qo> 0 such that infx Ath(x) >-_ qoh2.

The "single recurrent chain" condition is not necessarymit simply saves some
additional detail in the development.

We are concerned with the average cost per unit time problem for x(.) (or for
its approximation sch( )), but not directly for the chain {h,}. If Ath(x) did not depend
on x, then we could approximate the average cost per unit time for x(.) by that for
{h,}. But, if Ath(x) is x-dependent, we need to weigh the values obtained for
according to the occupancy times used in the interpolation. Of course, as discussed
in 2, there are numerical advantages to using the appropriate x-dependence in Ath(x).

The dynamic programming equation for the Markov chain. We now show how to
get the appropriate approximation. We start by proceeding formally and ignoring the
boundary OG. If </ is the optimal cost then, under appropriate conditions [5], [10],
[36], there is a smooth function V(.) such that (, V(.)) satisfy

(11.2) /= min [eV(x) + k(x, c)].
ccU

Conversely, any solution (y, V(.)) to (11.2) implies that y=/, if E"V(x(t))/t->O
under the minimizing u(. ), as t-* . See [33] for some related formal calculations.

In order to get the appropriate dynamic programming equation for the discrete
problem, let us apply the finite-difference approximations of 5.1 to (11.2). (This will
be generalized below.) Letting yh, vh(.), denote the finite difference solution on a
grid Gh, we get

(11.3) Vh(x)=min[ph(x,y[c)Vh(y)+Ath(x)(k(x,c)-yh)], xGh.
ccU y

The ph(x, Yl c) are those from 5.1. This is, in fact, a dynamic programming equation
for a semi-Markov decision process. Equation (11.3) can be solved by the approximation
in policy space method [46], [52].

Now we reintroduce the boundary, under either set of conditions in (Al1.1). For
x Gh, use (11.3). For x G use (instantaneous reflection, Ath(x)--0 for x OG)

(11.4) Vh(x) Y p(x, Yl C) V(y),
Y

where the ph(x, ylc are those used in (9, part 2) or in the second line of (10.5),
according to the case. Now, we drop the specificity of the above ph(x, ylc) for x Gh,
and use any of the transition functions that can be used in 9 or 10, according
to the case. Equations (11.3) and (11.4) are the correct dynamic programming equations
for our approximationthey appropriately incorporate the holding times Ath(x), as
will be seen below.
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The cost function for a fixed control. For a continuous feedback control u(. ), let
vh( ", U) and 7h(u) denote the solution to the equation

Vh(x, U)=,ph(x, YlU(x))Vh(y, u)+(k(x, U(X))--yh(u))Ath(x), X Gh,
y

(11.5)
Vn(x, u) Y pn(x, y] u(x)) Vn(y, u), x OG-.

y

Under the uniqueness of the recurrent class in (All.l), (11.5) has a unique solution
yh(u). The solution vh( u) is not unique, since for any constant K, vh( u)+ K is
also a solution. But, if we restrict vh( ., u) such that Vh(Xo, U)=0 for some Xo, then
the solution will be unique. See [33] for more details on the representation of vh( U).

A representation of yh(U). By iterating (11.5), we get that for any x Gh, (use
u, u(,))

E Eo k(h u)At
(11.6) y(u) lim

E" " At/h0

The limit exists by the ergodic theorem for Markov chains [8, 1.15]. We now rewrite
(11.6) in a form that is suited to getting the limits for the cost for s( ). Let {r (x, u),
x G} denote the unique invariant measure for {:,h}, under the control u(.) and
define the measure/(., u) by

h Ath(x)’rrh(x, u)
/.t (x, u)

Zy Ath(y)rh(y, U)’
X Gh,

(11.7)
--0, X

Then by the ergodic theorem for Markov chains [8, 1.15], we can rewrite (11.6) as

(11.8) yn(u)= k(x, U(X))Ixh(x, U).

Also, by the ergodic theorem for Markov chains (the pathwise limits are w.p.1)

yh u im [o k u A / h ]
1 ,h=lim k( (s), u( (s))) ds

o
(11.9)

-li Jo k(h(s), u(h(s))) ds

1
E" k(h(s), u(h(s))) ds.=li

Throughout the above calculation, the times at which :h OG do not appear,
since the associated Ath is zero. For the purposes of the analysis to follow, it matters
little whether or not we allow these states. For specificity in the development, for
h C Gh, we let h,+1 denote the next state which is in Gh; i.e., either the next true
state--or the one obtained by the instantaneous reflection from the next true state.

Approximation to the invariant measure and average cost for x(.); fixed continuous
feedback control u(.). The above calculations suggest that/.th( U) is an approximation
to an invariant measure of x(’) under u(.), and that yh(u) is an approximation to
the average cost under u(.) and this will now be discussed.
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An alternative representation of the interpolated chain. Suppose that h(. is a
continuous parameter Markov chain with control uh(’) and transition probabilities
Ph(X, Yl Uh) and mean sojourn times Ath(x) at x. Let h. denote the time of the nth state
transition, and Ath the random variable, which is the nth sojourn time. Then (11.9)
still holds [35], /xh( ", U) is the inv.ariant measure for sch("), and

’(u) I k(x, u(x))(dx, u).

Let h(. denote the stationary continuous parameter Markov process. Then

h h I
3’ (u)=E Jo k(fh(s), un(fh(s))) ds.

Let mh( denote the relaxed control representation of uh(h( ))o We can show that
the weak limits (x(.), m(.)) of {sch(’), mh(’)} are stationary, and that x(.) is a
stationary process, which is of the type used in 9 or 10 (as appropriate) driven by
the control m(. ). It follows that the limits of 3"h(uh) (for whatever feedback sequence
Uh(" is used) are average costs per unit time for some limit stationary process.

We can state the following result.
THEOREM 11.1. Assume (A2.1), (A2.2), (All.l). Then li---h 3’h3’(/,/)for any

continuousfeedback control u(. for the system x(. satisfying (9.11) or (10.2) for which
there is a unique invariant measure.

If there is a continuous feedback control u(.) that is 6-optimal for x(.), then
limh 3’h _>_ ._ t.

Remark. The theorem does not quite duplicate the result in Theorem 7.1. The
basic reason concerns the difficulty in getting a large enough family of comparison
controls. The invariant measure can be quite sensitive to the approximation--even if
the behavior over a finite time interval is not. The class of comparison controls u(.
used in the theorem can be extended in many directionsmprovided only that there are
approximations /h(.) that can be applied to {,h}and yield limit costs 3"h(lh)"-> 3"(U).
For the unreflected problem, it is shown in [36] that, under suitable conditions, any
feedback control can be so approximated. This can also be done for the reflected
problem, since the reflection direction is not controlled.

We could also use the following class. Let u(. be discontinuous, with discontinuity
set D,. Let N(D,) denote an e-neighborhood of Du. Suppose that for arbitrary control
values used in N(D,), the fraction (per unit time) of time x(. (under u(. )) spends
in N(D,) goes to zero as e 0. Then li---h 3’h 3’(U) also.
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IDENTIFICATION OF DISCONTINUOUS PARAMETERS IN
FLOW EQUATIONS*
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Abstract. A problem of identifying possibly discontinuous diffusion coefficients in parabolic equations
is considered. General theorems on existence and convergence of Galerkin approximations are proved in
L setting. Classes of functions of bounded variation are discussed and the variation estimates are obtained.
A double-discretization method with the variations constraints is used in two- and three-dimensional problems
and the numerical experiments are presented.
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1. Introduction. Let ll be a bounded open domain in R3. Then the system

ut-V(a(x)Vu)=f(x, t), (x, t) 12x (0, T),

(1) u(x, t) O, (x, t) Ofl x (0, T),

u(x,O)=uo(x), xea,
describes a flow of a fluid through the medium with permeability a(x), x 1). We will
assume that a e L(I)) and, moreover, a e Aad,

(2)
Condition (2) reflects the fact that in a physically relevant situation the permeability
a(x) is assumed to be taken between the prescribed bounds u and /x. If Uoe L2()
and fe L2(0, T; L2(Ft)), then it is well known (see, e.g., [1, Chap. 3], [2, Chap. 3]),
that the system (1), (2) has a unique (weak) solution u(x, t) that we will also denote
as u(a) to emphasize its dependence on the coefficient a(x) Aad. This solution is an
element of C([0, T]; L2(f)).

The parameter estimation problem for (1) and (2) seeks to determine the coefficient
a(x) in such a way that the solution u(a) "matches" the observed flow z(x, t) of (1)
in a prescribed sense (see [3]-[10] for general information).

To be precise we say that the coefficient ci Kad Aad solves the parameter
estimation problem for the admissible set Kad if

(3) J()=inf {J(a)" a Kad},
where J(a) u(a)(T)- z(

Thus we must determine if there is a solution for (1)-(3) and how this solution
is related to its approximations, which are obtained in a process of numerical computa-
tions.

It can be shown (see Theorem 3.2 and 11 ]) that the mapping a u(a) is continuous
considered from Aad C L2() into C([0, T]; L2(f)). Thus (1)-(3) has a solution if the
admissible set of parameters Kad c Aad is taken to be compact in L2(I). Indeed, this
is the argument in many papers (see, e.g., [6], [8]) where it is reasonable to assume
sufficient smoothness of the involved coefficients a(x). The set Kad--
{a e Hl(l-) liallnl <=const.} is compact in L2() and the functional J(a)= Ilu(a)-zll
attains a minimum on it.

* Received by the editors May 11, 1987; accepted for publication (in revised form) October 27, 1988.
t Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019. This research was

partially supported by Department of Energy grant DE-FG01-87FE61146.
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Of course, this solution is in H1(12). However the subject of this paper is the
identification of parameters in (1)-(3) that refer to a different physical situation.
Suppose, for example, that 12 (0, 1) x (0, 1), fl (0, 1/2) x (0, 1), and 112 (1/2, 1) x (0, 1).
a(x) =/x if x 121., and a(x)= v if x 2. Thus the medium consists of two regions
with different permeabilities and we would like to develop a method for identification
of discontinuous coefficients a(x) in f. Therefore, the admissible set Kad must include
the coefficients of the type described above. However this coefficient a(x) does not
belong to H(II) and therefore a differentset Kad should be considered. Before we
begin a systematic treatment of the subject, let us mention some alternate approaches.

In [9] and [10] the assumptions imply the continuity and differentiability of the
coefficient a(x). In [12] the methods for the detection of discontinuities are not fully
developed for two- and three-dimensional problems.

In [13], Gutman and White consider an approach based on G-convergence of
parabolic operators. In this method the admissible set of parameters Kad is taken to
be Aad={aL():O<v<=a(x)<-tx, a.e. on f}. Introducing d(al,a2) on Aad by
d(a,, a2) [lu(al)- u(a2)l[L2(o), Q (0, T) f, the set mad becomes a precompacl set
(of classes) of coefficients. The theory of G-convergence [11], [14] shows that its
completion can be achieved by embedding the set Aad into the set of all second-order
elliptic operators. Thus, in this approach, we should question how appropriate is the
studied mathematical model for the interpretation of the physical reality.

2. Functions of bounded variation. Let 12 c R" be an open bounded set in R" with
a Lipschitz continuous boundary 012. By Ix[ we denote ]Xl-"(’i=l Xt2") 1/2 for x=
(x, x2," ", xn) n. Following 15] define the variation a IDf[ of a functionf Ll(f)
as

(4)
lOfl

:sup{fafdivgdx’g:(gl,...,g,) C (fl; ")and[g(x)l<-_l for x

where div g =" (Ogi/Oxi)i-----!

If the variation of f is finite, that is, a [Dfl < , we say that f has a bounded
variation. The space of all functions f Ll(f) with bounded variation is denoted by
BV(n).

Example 2.1. If f C(), then nfdiv gdx=-= (Of/Ox)g.dx for every
g C(, ") and JDfJ JgradfJ dx where gradf= (Of/Ox,, Of/ox,..., Of/Ox,)
and is assumed to satisfy the conditions of the divergence (Gauss-Green) theorem.

Example 2.2. Let B be a ball in , and let x(B) be its characteristic function.

Then. x(B) div g dx div g dx o g" ds for any g 6 C(, "), where u is the
outward unit normal to OB. Thus JDxJ [0BJthe surface area of B. (In fact, the
variation of X is equal to ]OBJ in this case.)

The most important propeies of the space BV() are the following.
PROPOSiTiON 2.3 [15, Thin. 1.9] (semicontinuity). If {}j = BV() and fas
j in L’(), then DfJlimjinf [D[.

PoposwlOy 2.4 [15, Thm. 1.12]. Under the norm ]]f[[,v []fl[’ + Df[, BV()
is a Banach space.

PROPOSITION 2.5 [15, Thin. 1.17] (approximation). Let fBV(O). en there
exists a sequence {}j C() such that limj. If-] dx 0 and lim. , IDOl
Llofi.

Finally, we have the following proposition.
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PROPOSITION 2.6 [15, Thm. 1.19] (compactness). Sets of functions uniformly
bounded in BV norm are relatively compact in LI(I)).

COROLLARY 2.7. The set Kc={f Aad: IDfI<=C} is compact in Ll(f) for any
C>0.

Proof If IDfl <- C, then Ilfllnv <- C + 11. Thus is precompact in L(O) by
the previous proposition. If f-*f in LI(O) as j-*oo and . ]Dfl-<_ C, then . ]Dfl <-C
by Proposition 2.3 and Kc is closed in L(O).

Thus to use the above theory of functions of bounded variation for numerical
computations, we must estimate variation of functions with rather general discon-
tinuities. To this end let us introduce the following hypothesis:

(H) Let f, -i, 1 _-< i<=p be open, bounded sets ofEn; fi c f, 1 _-< -< n, Oi FI fj
for j and (_J P= l)i f. Let the boundaries 0, 012i, 1 -< -< p be Lipschitz
continuous and each 12i satisfy the conditions ofthe divergence (Gauss-Green)
theorem.

To state our next theorem let 12, fi, 1-<i-< p satisfy (H), and let f be a function
from L(f) such that its restrictions f[, on each of fi, 1 <-i<=p are continuous and
can be continuously extended to fi. Let F be a common boundary of 12 and lqj. By
If(F)l we wi understand the absolute value of the difference flv-fjlv where is the
extension of f to 1 and is the extension of f to l)j.

THEOREM 2.8. Let f, , 1 <= <= p satisfy hypothesis (H), let function f L(12) be
continuously differentiable on , 1 <-i <-_p and can be continuously extended in every
fi, 1 <-i <-_ p. Let F, 1 <-_j <-m be common boundaries of the domains f, 1 <- <= p. Then

(5) IDfl <- Igradfl dx + L If(Fj)l ds.
i=1 j=l

Proof. Define f(x) =f(x) for x 12, 1 -<_ -< p and f(x) 0 for x f. We will
write f/(x) for the continuous extension of f/ to i (from fi). Thus f= /P=, f/. For
every f/we have

f div g dx (grad f) g dx + fg. v ds,
-i

where g C(f; ’) and vi is the unit outward normal to 0f. For the sum f P__ f
we obtain

f div g dx grad f. g dx + , fg. vi ds
i=1 i=1

gradf, g dx+ (ll,l--kl)k) Ads,
i=1 j=l

where F is the common boundary of the domains ’1 and 12k. Note also that /"k---

Thus Ifdiv gdxJ<-YP= , lgrad fl lgl dx+ ym=a r lf(F)l lgl ds and   lDfl<==, ,, [grad f[ dx + Em=, V If(r)l ds.

3. Galerkin approximations and the continuity results. Let {bg}a be a linearly
independent set in V H(12). Given a coefficient a(x) Aad, we define the Galerkin

Napproximation uU(x, t) (with respect to the basis {b}N=a)as uU(x, t)==, i(t)dpi(X)
where Y= {c(t)}l is determined as the solution of the matrix equation

(6) G8’+ (a)8=j7, GS(0) 8o,
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where G is the stiffness matrix

{G}ij--Ii ij dX,

{f} f(x, t)4(x) dx, {o} uo(x)4,(x) dx.

Equation (6) is obtained (see, e.g., [1]) from the conditions

(u, 4)i)+(aVuS, V4),)=(f, dp,), l<-i<-N,

(7) s s
u N o L iN /) iN l "-) Uo in L2() as S-oe,

i=1 i=1

where (.,.) is the dot product in H L2(f). Let V’ be the dual to V H(f); then
V’= H-l(f). The standard methods [1], [2] imply that if Span {bi} is dense in V,
then uS(a) u(a), strongly in L2(0, T; V) as Noo and the functions u(a), uS(a)
can be considered as elements of C([0, T]; H). Moreover (see the Appendix), u s (a) -u(a) in C([0, T]; H) as N-oe.

LEMMA 3.1. Let Z be a compact set in Ll(f) and 1QI > O. Then

sup { h dx

as -0.
Proof. Given e > O, there exists a finite set K c LI() such that [[f[[_-< C for all

fK andmin{llh-flll: fK}<-e for any hZ. LetO<8<e/C. Thenlghdxl <-

agfl dx+a[g[ If-hi dxClgl+llf-h[, for every gt’() with
andf K. If Ilglll and f K, is chosen appropriately, we get [Ia gh dxl
and the lemma is proved.

THEOREM 3.2. (a) e mappings u,u:Ll()C([O, T];H) are continuous
o Aa.

(b) e convergence uS(a) u(a) in C([0, T]; H) is uniform on any compact set
K c Ll().

Proof Let [" l, I1"11, II’ll,be the norms in H L(O), V= H(O), and V’= H-(O)
correspondingly. By [1, 3.1.4]

(8) Ilu N(X, t)][ dt c luol=+ II/(x, t)[[, dt

N 1, 2,’". The same inequality also holds for the (weak) solution u(x, t) of (1),
where the coefficient a(x) Aad.

NIf {an}l,aeAad and uS(an)=i=lCni(t)4)i(x), then, from (7) (u(an)-
uN(a), 4)i)+(an[VuS(an)-VuS(a)], V4),)=((a-an)VuS(a), Vthi), 1 <_-iN N. Multi-
plying this equality by cni(t)- c(t) and taking the sum from i= 1 to N, we get

([uS(a,,)-uS(a)],, uN(an)-uS(a))

+ (an[V(us (an)- u s (a))], V(u N (an)- u s (a)))

((a an)Vu s (a), V(us (an)- us (a))),

or writing the first term as 1/2 d/dt]uS(an)-uS(a)lz and integrating both sides from
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zero to T, we obtain

[(uN(an)-uN(a))(T)[2=-2 an(x)lV(uN(an)-uN(a))l2 dxdt

+2 (a-an)VuN(a)V(uN(an)-uN(a)) dxdt,

where we have used uN(an)(O)=u(a)(O). Thus

I(u(a)-u(a))(r)l<=2 (a-a)Vu(a)V(u(a)-u(a)) dxdt.

Finally, this inequality and (8) gives

(9) I(u(a)-u(a))(T)lC a-alVu(a)l dxdt

Similarly,

(10) I(u(a.)-u(a))(Y)]2 C la-a.llVu(a)l dxdt

Let a, a in Ll(f) as n-. Since Ilall _<-const. Ilall2 and Ilall2 =< Ilallllall, the
topologies of Ll(f) and L2(12) coincide on Aad. Thus , la.- al dx- 0 as n-.

Fix t[0, T]. Define g,L(f) and hL(f) by g,(x)=la,(x)-a(x)l2 and
h(x)=lu(x)l2, By Lemma 3.1, , gn(x)h(x) dxO as n. By the Lebesgue domi-
nated convergence theorem applied to Gn(t)--la-a, lZlVu(a)l dx, the right-hand
side in (10) goes to zero asnand u(a,) u(a) in C([0, T]; H) as nc. Similarly,
uN(a,) uN(a)in C([0, T]; H).

To prove (b) of the theorem, we note that uN(a) u(a) strongly in L2(0, T; V)
asN (see [1]). As shown in the Appendix, uU(a) u(a) in C([0, T]; H) for each
aAad, therefore it is sufficient to show that the mappings u N(a):Aao
C([0, T]; H), n 1, 2, are equicontinuous on Aad. Let a Ao and e > 0 be given.
Since u u(a) u(a), N in L(0, T; V), the set {u u(a)}=l is precompact in
L(0, T; V). Therefore, there exists a finite set Q L2(0, T; V) such that any member
g of O is a continuous function from [0, T] to V and min {llu (a)-gllo,;): g
Q} <= e for a given N. It follows from the continuity of the functions g Q that the
range Z t_J {Ivg(t)12: g Q, [0, T]} is compact in L(f). Let 6 > 0, b Aad and

From (9) we obtain

I(uN(a)--u(b))(t)l Cll(a-b)lVu(a)llto,;.
--< CIl(a b)lVu N (a)- Vgl o,;)/ C[[(a b)[V gl o.;

_-< 2Cx / C la bllgl dx d

<_ 2Cpe + C/- /rtz 6 ),

where rtz(8) is as defined in Lemma 3.1 and C is independent of N.
This lemma shows that qz(6)O as 60, and we conclude that [[uU(a)

u N (b)ll 2 < 2CMe + e for sufficiently small . Thus the functions a - u N (a)C([O,T];H)

N 1, 2, are equicontinuous, and the pointwise on Ao convergence u N (a) - u (a),
N- in C([0, T]; H) is, in fact, uniform on every compact set K LI(O) (that is,
Nu - u in C(K; C([0, T]; H))) and the theorem is proved.
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4. Existence of the optimal coefficients. Theorem 3.2 from the previous section
states that the mapping a--> u(a) is continuous from LI() to C([0, T]; L2()). The
cost functional

J(a)=
is therefore continuous on Aad c LI(). Hence it attains its minimum on any compact
set Kad C Aad. Combining this with Proposition 2.6 and Corollary 2.7, we obtain
Theorem 4.1.

THEOREM 4.1. The parameter estimation problem (1)-(3) has a solution on any
admissible set Kd of the form Kad {a Aad" Ia IDal <- const.}.

That is, this theorem states that there exists Kad such that
inf {J(a)" a Kad}.

TO find the coefficient ti numerically we use a double-discretization algorithm,
where both state and parameter variables u and a are approximated in finite-
dimensional spaces Hn and A4, respectively. Relations between the solutions of these
approximation problems and the solutions of (1)-(3) are summarized in the following
theorem.

THEOREM 4.2. Let AaMd Aad, M-o be an increasing sequence of closed in LI(-)
subsets of Aao. Let K Aad be a compact set in LI(), K fl Aa , and let
Aad) be dense in K. Let natural sequences M M(q) - and N N(q) - oe as q - o.
Also let

Jq(a) II(u N (a)- z)(T) c2(a,

where the Galerkin approximations u u are defined as in 3. Then
(a) There exists aq K (")AaMd such that Jq(aq)=inf {Jq(a) a e Aafl K}.
(b) Any cluster point a of the sequence {glq}q__ satisfies J(a)=inf {J(a)" a e K}.
(c) limqJq(aq)=inf {J(a) a e K}=limqJ(aq).
(d) If there exists e K such that z u(), then limqJq(aq) limq J(tiq) =0.
Proof Theorem 3.2 shows that the functionals Jq, J are continuous on K and the

convergence Jq(a)--> J(a), q-o is uniform on K. Since K ("lAa is compact, the
functional Jq attains its minimum on it and (a) is done. To show (b) let {bq}q= c K.
If {bq,}= is a convergent subsequence and bqi- as --> c, then limiJqi(bqi) J(),
since IJq,( bq) J( )l IJq( bq,) J( bq,)l + J(bq) J( )l. Therefore, if {aq}L { aq} q%
and limi_giqi=t then limi_Jq,(gq)=J(g). Let K be such that J(fi)=
inf{J(a)’a K}. Since U4 (g Aa is dense in K there exists a sequence {bq}
such that bq K fl AaMd M M q and bq as q - . Then jqi lqi Jq, bq ). Since

JqiJq,(bq.)= J(d) and limlimi (lqi) J(ti), we get J(i) < J() Thus J(i) J() and
part (b) is proved.

Let ’)/q Jq(lq), q 1, 2,’’’. The functions {Jq(a)}f= are equicontinuous on K,
hence the real sequence {’)/q}q=l is bounded and we have just shown that
inf {J(a)" a K} is its cluster point. To see that 2, is the unique cluster point of {’)/q}q=l
let y* limi_ yq,. Without loss of generality (passing to a subsequence) we can assume
that the correspondent sequence of the coefficients lqi is convergent. But in this case
part (b) shows that ),*=y. Since Jq(a)->J(a) uniformly on K, limqJ(aq)=
limqJq(aq) 2, and (c) is proved. Part (d) is a particular case of (c) since J(d)=0.

Remark 4.3. The above theorem remains valid if the requirements for the sets

Aa are replaced by the following. The sets Aa c Aad are closed in LI(t2). For every
K, there exists bM K fl AaMd such that bM d as M -5. Numerical implementation. Let be a polygonal domain in R with a triangular

(tetrahedral) mesh on it. Let this mesh have N internal nodes {p} and M triangles
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(tetrahedra) Ak, 1 _--< k _-< M with fI (.J -1 Ak- Let {thi}1 be piecewise linear functions
such that bi(pj) 6i. Define P4" LI(I)) - LI(I)) by (PMa)(x)- 1/IAkl ak a dw for
x int (Ak). Note that [[P4[[- 1, P4Aad Aad c A,, and P4a - a in L() as the
diameters of the triangles obtained in mesh refinements become smaller. Let C > 0
and K ={a Aao" IDa] <- C}.

The results of the previous sections show that a coefficient dq, which solves the
minimization problem

(11) Jq(l q) min {Jq(a)" a K (3 Aad},M
can be considered as an approximate solution of the parameter estimation problem
(1)-(3). Here Jq(a)=

Suppose that a aa, that is, a(x)=y_ ak’(ZXk). The variation IDa[ of a(x)
can be easily estimated by Theorem 2.8. (Note that all the conditions of this theorem
are satisfied for fk= A,, 1 N k N M.) Since [grad al =0 on , we find from (5) that

a [Da[N= [a(F)[[F[ where F, 1NjN m are the common boundaries of triangles
(tetrahedra) , 1 N k N M and [F[ are their lengths (areas). Given a coefficient a Aa,
that is, a sequence of numbers {a}, the above quantity is easily computable.

We used a gradient method to solve the problem of minimization Jq(a) over the
set K A. Note that the matrix (a), defined in (6), can be represented as follows"

G(a)= aVV dx

a.xI i,j

adxG= 2 aG,
& k=l

where G={VVdx},=1, and is the area (volume) of and a=
1/1 a dx. Therefore (6) becomes

( a’+ 2 aa= a(0 eo.
k=l

To find the gradient of [Jq] uN(a)- 11 we conclude that

+

and o[Jq]/Oa 2Jq(a)
Beginning from an initial point ao nad, ao(X) const. (Ia IDaol 0), the direction

of the gradient {o[Jq(ai)]a/Oai} is used to minimize [Jq(a)] by direct computations
of the values of [Jq(ao)] along this vector.

At each such point the sequence {a} is checked to belong to the set A and
to satisfy the condition = la(F)llFI C. The iterations of this procedure bring us
to a point of minimum q of Jq(a) over na g.
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The described algorithm was implemented in Fortran and was run on the IBM-3081
at the University of Oklahoma and on the CRAY X-MP/48 at the National Center
for Supercomputing Applications (University of Illinois, Urbana-Champaign). The
domain f was taken to be [0, 112c 2 with a mesh of 105 nodes and 252 triangles for
two-dimensional problems. We used [0, 113c 3 with a mesh of 729 nodes and 6,000
tetrahedra for three-dimensional problems. A typical program execution takes 40-
80min. CPU time on the IBM-3081 or 1-2 min. on the CRAY for two-dimensional
problems. Three-dimensional problems require 40-80 min. CPU on the CRAY. In the
later case only 1,500 (from a total of 6,000) components of grad J were found in every
iteration. Other components were found from an interpolation procedure.

Here we present an example of two-dimensional identification. The test coefficient
a(x, y) was taken to be equal to two in the circle of radius 0.25. It is equal to one
elsewhere. Figure 1 represents the graph of this test coefficient. Here the dark area
corresponds to the value two and the bright area to one. By Theorem 2.8 the variation
of this test coefficient is bounded by 27r. r. 1 7r/2. (In fact, IDal 7r/2 in this case.)

The test coefficient and the test data z(x, y, t) e -t sin 7rx. sin Try were substituted
in (1) to obtain f(x, t). This function and Uo(X, y)= z(x,y, 0) were inputs of the
identification program. The initial guess for a(x) was ao(x)=-1.

Figures 2 and 3 show the identification over the sets K2 {a Aad: var (a) _--< 2}
and K3 {a A,d var (a) --<_ 3}. The difficulties in the identification in the center of the

TEST COEFFICIENT

1.00

0.75

0.50

0.25

0.00
O0

0.96

R= IN THE CIRCLE

O. 25 0.’50 O. 75

1.22 1.8 Io7 2.00

FIG.
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ESTIMBTED COEFFICIENT

1,00

VRR=2,

0.75

0.50

0.25

0.00
0.00 0.25 0,50 0,75

o.96 z.22 gtlZZZ z.ae =lZ=lla z,Ta 2.00

FIG. 2

domain are expected since the gradient of the test data z(x, y, t) is close to zero in this
region.

Figure 4 shows that the identification can be significantly improved if several sets
of data are used. The above test coefficient and the test data

z(x, y, t) e-t sin rx sin zry,

z2(x, y, t) e-’ sin 2rx sin ry,

z3(x, y, t) e -t sin 7rx sin 2ry,

were substituted in (1) and the functions f(x, y, t), i= 1, 2, 3 were obtained. These
functions and the correspondent initial conditions were considered as inputs for the
identification with the cost functional J(a)=J+J2+J3, where Ji(a)=
II(uY(a)-z,)(T)ll,.(.). The relative L2(f).error in the coefficients in the above
examples is about one to two percent. Similar results were obtained for three-
dimensional problems. The output (coefficients atest(X, Y, Z) and aet(x, y, z)) was recor-
ded on a videotape and transferred to slides. Different colors were used to indicate
different values of the functions. This recording was done with the help of the
Visualization Group at the National Center for Supercomputing Applications.

Appendix. We review the arguments that show u N u in C([0, T]; H) as N-
(see 3). As defined in 3, (.,.) is the inner product in H. We will also write (f, v),
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ESTIMBTED COEFFICIENT

1.00

VRR=3,

0.75

0.50

0.25

0.00
0.00 0.25 0.50 0.75

1"-’---10.96 1.22 1.8 1.7 2.00

FIG. 3

fE V’, v E V for the pairing between V’ and V. Let a E Aad. Define operator A" V-* V’
by (Au, v)=(a(x)Vu, Vv) for any vE V. It is known [1,3.1.4] that uN-*u in
L2(0, T; V) as N-*oz. An estimate of the norm of uN in L2(0, T; V) is given by (8).
Let VN c V be defined as Vrv= span {(hi}N-1. Since V is an inner-product space and
uVE VV, we have

sup { \ dt
w w E V1V, w v 1

=sup{(-Au N +f, w)" wE VN, Ilwll 1}

u v w v + f v, w v,

almost everywhere in [0, T]. Therefore (IllduV/dtllv, dt)l/2<=C for N=l,2,...
where the constant C does not depend on N.

Similarly, Ilu, ll(o,;v,<-c, Let W(0, T)={y: yEL2(O, T; V),ytEL2(O, T; V’)}
(see, e.g., [1]). For functions y E W(0, T) we have

z
(y,, y) dt ly(t)l:- ly(0)



IDENTIFICATION OF DISCONTINUOUS PARAMETERS 1059

E5TIMRTED COEFFICIENT

1.00

J=Jl+J2+J3 VAA=3.

0.75

0.50

0.25

0.00 !..
O.OO 0.25 0.50 0.75 O0

F’-’---1 0.96 1.22 1.lib 1.7q 2.00

FIG. 4

Therefore

1 1 N(u,-u,u,u-u)dt--lu(t)-u (t)[ -[u(0)-u (0)l e and

;o I(u,-u,, u-u)l dt/lUo-ulV(o)l 2.

By (7) u v (0) Uo in H as N . Also

I(ut-u, u-u)l dt mlut-uTIIv, llu-u ll dt

and the result follows.

Acknowledgments. I thank the referees for their valuable comments.
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FACTORIZATION AND THE SYNTHESIS OF OPTIMAL FEEDBACK
GAINS FOR DISTRIBUTED PARAMETER SYSTEMS*

MARK H. MILMAN3- AND ROBERT E. SCHEID"

Abstract. An approach based on Volterra factorization leads to a new methodology for the analysis
and synthesis of the optimal feedback gain in the finite-time linear quadratic control problem for distributed
parameter systems. The approach circumvents the need for solving and analyzing Riccati equations and
provides a more transparent connection between the system dynamics and the optimal gain. The general
results are further extended and specialized for the case where the underlying state is characterized by
autonomous differential-delay dynamics. Numerical examples are given to illustrate the second-order
convergence rate that is derived for an approximation scheme for the optimal feedback gain in the
differential-delay problem.

Key words, factorization, Chandrasekhar equations, delay systems

AMS(MOS) subject classification. 93

1. Introduction. In this paper we develop a new synthesis methodology for the
optimal feedback control law for the following general regulator problem’

(1.1a) minJ(u,x),

(1.1b) J(u, x)= fJoT
subject to the constraint

(1.1c) x(t) S(t)x(O)+ I
Jo

(x(t), Q(t)x(t)) + lu(t)l at,

S( t- r)B(r)u(r) dr.

Here u(.) is Hi-valued, x(.) is Hz-valued (H1 and H2 are real separable Hilbert
spaces), Q(.) is a strongly measurable B(Hz)-valued function, with Q(t)>-O almost
everywhere, B(. is a strongly measurable B(H, H2)-valued function, and S(.) is a
strongly continuous semigroup of operators on H2 (cf. [9]). The general methodology
is developed in Part I of the paper, while Part II of the paper specializes and extends
the results to the case where (1.1) corresponds to an autonomous differential-delay
system.

Solutions to systems of this type have been derived by many authors (e.g., [1],
[4], [9], [23]). Although several different approaches to the problem have been
developed, the feedback law is generally characterized by means of an operator Riccati
equation, and numerical methods for its approximation are derived by discretizations
of the infinite-dimensional Riccati equation. Gibson [9] provides a general sufficient
condition for the strong operator convergence of approximating sequences of Riccati
solutions. This translates in the important case in which H is finite-dimensional to
uniform convergence of the approximating sequence of optimal gains.

By exploiting a connection between the optimization problem (1.1) and Volterra
factorization [29], we derive a new analytical characterization of the gain in terms of
classical solutions of the underlying state-space dynamics. This leads to new results

* Received by the editors October 5, 1987’ accepted for publication (in revised form) November 7, 1989.
? Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena,

California 91109.
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on the differentiability properties of the gain and the development of corresponding
approximation methodologies that exploit the underlying structure to guarantee the
stability and accuracy ofthe discretizations. (Related results regarding the Riccati-based
synthesis can be found in [13] and [14].)

To illustrate the fundamental connection between the optimization problem (1.1)
and Volterra factorization, some motivation of the approach in the context of finite-
dimensional systems will now be given. Thus we take H1 H2 R n, so that S(t)=
exp (At). We define the space U L2(0, T; R n) and the resolution of the identity E
on U by [E(w)u](t)=X(to)(t)u(t) for a Borel set to c [0, T] (X characteristic func-
tion). The operator S B(U) is given by

(1.2) Su" exp(A(t-r))u(r) dr.

And we also define B B(U) and Q e B(U) by the matrix definitions

(1.3) [Bu](t) Bu(t), [Qu](t) Qu(t).

With this notation and these identifications the optimization problem (1.1) can be
posed as

i0(1.4a) min {x, Qx}+ul ds

subject to the constraint

(1.4b) x=f+ SBu, f(t) =exp (At)x(O).

Let denote the solution to this problem. Next let , (t, T), and let ’ I N,,
and consider for each e [0, T] the optimization problem with objective (1.4a) but
with constraint

1.5) x f + SBEtu,

where f E,SBE’ + Etf
The solutions and t to these problems are easily obtained by completing the

square and are given by

1.6) -[I + B*S* QSB]-’ B*S*Qf
and

(1.7) at -[1 + E,B*S*QSBE,]-’E,B*S*Qf,

respectively. By using a principle of optimality [29] it can be shown that E, t. Thus
if we take a paition 0 to <’" < tN T of [0, T], using (1.7) we can write

N--I

(1.8) a Z E(w,){l+ E,,B*S*QSBEt,}-’B*S*Qf,,
i=0

where w (t, t+). Now since f, E,,SBE’, + E,,f it follows that for t,

() exp (A)x(0) + exp(A(-r))B(r) dr

(1.9) =exp (A(- t)) exp (Ate)x(0) + exp (A(t- r))B(r) dr

exp (A(o-- ti)):(ti),



FACTORIZATION AND OPTIMAL CONTROL 1063

where (t) denotes the optimal trajectory. From this we can write the last portion of
the expression in (1.8) as

(1.10)

with

[B*S*Qft,](t) F(t,

T

F(t, t,)= B* exp (Ar(r t))Q exp (A(r- t,)) dr.

For each the operator E,B*S*QSBEt is Hilbert-Schmidt so that the resolvent
kernel R(t; s, tr) exists for each t, i.e.,

(1.11) [I + EtB*S*QSBEt]-1= I + Rt,

where R, is the Hilbert-Schmidt operator with kernel R(t; s,
Using the expressions (1.10)-(1.11) we can return to (1.8) and write for almost

every ti, t+]

(1.12) (t) F(t, ti)(ti)+ R,(F(., ti))(t).(t,).

Next we formally let the mesh width of the partition tend to zero and deduce that for
almost every [0, T],

(1.13) (t)= {F(t, t)+[Rt(F(’, t))]( t)}( t).

If this step could be justified, the feedback gain K(t) would then have the form

(1.14) K(t)=F(t, t)+Rt(F(., t))(t).

The arguments to justify this limiting procedure are developed abstractly in [29] by
using the notion of Volterra factorization. In this paper we derive the "correct" version
of (1.14) as well as its connection with the usual Riccati solution for the optimal gain.

This connection is particularly exploited when the state x is characterized by
autonomous differential-delay dynamics (Part II). For this important special case we
obtain further connections with the Krein-Bellman-Sobolev equation for close-to-
displacement kernels 10], 16] and derive a new and relatively simple set of hyperbolic
equations that characterizes the optimal feedback kernel. Analysis of these equations
elucidates the underlying structure of the kernel and leads to the development of fast
and accurate numerical methods for its computation. Unlike traditional formulations
based on the operator Riccati equation, the gain is characterized by means of classical
solutions of the derived set of equations.

Because ofthe structure ofthe underlying factorization problem, the corresponding
algorithms for differential-delay systems are "fast" in that the operation count grows
only linearly with the dimension of the discretized kernel as opposed to a quadratic
or cubic growth rate for the Riccati-based synthesis [8], [15]. In fact, the equations
collapse directly into the finite-dimensional Chandrasekhar equations when the delay
terms are removed. However, our equations are not to be confused with the operator
generalization of the Chandrasekhar equations derived in 14]. The equations we derive
are for a set of quantities that possesses greater smoothness than the gain, and
furthermore these equations are shown to have a classical solution (it is not an operator
equation). Our new characterization of the optimal gain leads, in the case of multiple
noncommensurate pure time delays with L2 integral delay term, to a C2 structure of
the feedback kernel. For the case of a single delay with a C integral delay term, a
piecewise C structure of the kernel is obtained.
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In either case numerical methods can be developed to fully exploit the degree of
smoothness that .is available. Thus, in the general case we are able to justify methods
that are second order in accuracy, and for the single-delay case described above we
are able to justify methods with an arbitrarily high order of accuracy.

A brief summary of the paper follows. Part I consists of 2 and 3 in which the
factorization-based synthesis is developed for the system (1.1). Section 2 contains
relevant background results concerning the class of operators studied in this paper. In
3 a factorization-based representation of the optimal gain is derived, and its connec-

tion with the Riccati formalism and differentiability properties ofthe gain is established.
Part II of the paper contains the specialization to differential-delay systems. Section
4 introduces the problem and develops a preliminary synthesis of the feedback kernel
together with preliminary associated smoothness properties. In 5 the major representa-
tion theorem for the feedback kernel for differential-delay systems is proved. In 6
the representation theorem is used to further analyze smoothness properties of the
optimal kernel. And finally, in 7 a numerical approximation methodology is developed
and implemented for two representative model problems.

Part I: General Theory

In the first part of this paper we will formalize the program outlined in the
Introduction. Connections between Volterra factorizations and Riccati equations will
be developed, and the differentiability properties of the relevant Volterra factors and
the optimal gain will be established.

2. Notation and background results. For any Banach space Y, [y] will denote the
norm of an element y Y; B(Y, Z) will denote the space of bounded linear maps
from Y into Z, and for brevity we write B(Y) for B( Y, Y). Let [0, T] denote a bounded
closed interval in R and let denote the class of Borel subsets of [0, T]. Now let U
and X be real separable Hilbert spaces with resolutions of the identity Ev :;--> B(U)
and Ex:Z-* B(X). Assume Ec and E are both absolutely continuous, i.e., for each
u U and x X the measures [Ev(. )u[2 and [E(. )xl2 are absolutely continuous with
respect to Lebesgue measure. (In the sequel Lebesgue measure shall be denoted by
h.) A map K in B(U, X) is causal if Ex(O, t)KEv(O, t) Ex(O, t)K for all [0, T];
K is anticausal if K* is causal (K* is the adjoint of K); and K is said to be memoryless
if Ex (to)K Ev (to)K for all to Z. Subscripts will be suppressed whenever the context
permits. And we shall also use the notation E’= E(0, t) and E, 1-E’.

Let U and X be Hilbert spaces with resolutions of the identity Ev and Ex as
defined above, and let K B(U, X) satisfy the following hypothesis:

(H1) There exists a constant a such that
(A) [KE(to)[2<z aA(to), for all to,

(B) [E(to)K[Z<ah(to), for all to.

Operators satisfying (H1) are the focal point of our approach to the regulator problem,
and we will devote some time in this section to developing their properties. (Details
can be found in [28] and [32].) We first note the general situation in which Hilbert
spaces and operators of this form arise in the paper.

Example 2.1. Let H and H denote real separable Hilbert spaces and let U-
L(0, T; H) and X L2(0, T; H). Introduce the "truncation" resolutions of the iden-
tity Ec and Ex by [E(to)z](t) =X(to)(t)z(t) for z in U or X. Let K(t, s) be a strongly
measurable essentially bounded B(H, H2)-valued function and define the operator
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K e B( U, X) by (the Bochner integral)

Ku" K(t, s)u(s) ds.
0

A direct calculation shows that K satisfies (H1).
Now suppose K satisfies (H1) and define the space Ht= L2(0, T; U). Then K

induces a map F(K) B(H t, X) in the following way.
NLet uHu be simple, say u(t)=Yi=lX(oai)ui,(ui U). Define F(K)u by the

formula
N

F(K)u= Y E(co)Ku.
i=1

Then for the simple function u we note,

IF(K)ul- Z E(o)Ku =Z [E(oai)Kul2

(2.1)

Io
where the last norm in the chain of inequalities above is in the space H v. Since the
simple functions are dense in H v, it follows that F(K) can be extended by continuity
to an operator in B(H c, X).

The operator F(K) will figure prominently in subsequent analysis. The first
important feature of F(K) we note is that it is a memoryless map with respect to Ex
and the truncation resolution E. on H t defined [E.(w)z](t)=X(w)(t)z(t).

Interpreting the resolution structure on a Hilbert space as introducing an abstract
time structure, we would expect that a memoryless map should act "pointwise" between
spaces in some sense. In concrete settings the next two propositions show that this is
indeed the case.

PROPOSITION 2.2. In the setting ofExample 2.1, given any u H v (H tJ defined as
above),

F(u. -, (, su((s) ds.

Proof. See Proposition 3.3 of [28] for the proof.
PROPOSITION 2.3. In the setting ofxample 2.1 supposeM B( U, X) is memoryless.

Then there exists a unique strongly measurable essentially bounded B(H1, H)-valued
function M(.) such that M(t) u() Mu () almost everywhere for each u (.) U.

Proof. See Proposition 3.1 of [28] for the proof.
Note in Proposition 2.2 that if K(t, s)=0 for s< t, then only values of u(t)(s)

for s > are required for computing F(K)u. This observation holds somewhat more
generally.

PROPOSITION 2.4. Suppose K B( U, X) satisfies (HI) and is anticausal. Define
the projection P- B(H) by [P-u](t)= Etu(t). Then F(K)= F(K)P-.

Proof See Lemma 4.1 of [28] for the proof.
Now given any Hilbert space Z and operator A B(Z, U), it follows that if K

satisfies (H1) then F(KA)B(L2(O, T’,Z),X). Note that A induces an operator
A B(L2(0 T; Z), L2(0, T; U)) by [_Az](t) Az(t). By appealing to the action of F(.
on simple functions it is easy to show that

(2.2) F(KA) F(K)_A.
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Proposition 2.3 and expression (2.2) are basically technical devices that will be
useful in the derivation of the Riccati form of the optimal control in 3.

PROPOSITION 2.5. Let K satisfy (H1), and let H u be defined as above with the
truncation resolution E,. Define the maps G- and G+ B(H, Ht) by [G+u](t)- Etu
and [G-u](t)= Etu. Let p+(K)- F(K)G+ and p_(K)= F(K)G_. Then,

(i) p/(K) is causal and p_(K) is anticausal.
(ii) p/(K) and p_(K) satisfy (nl).
(iii) K=p+(K)/p_(K).
(iv) g(p+) fq R(p_) O.
Proof. See Theorem 2.4 of [32] for the proof.
The proposition asserts that p/ and p_ define projections on the vector space of

maps in B( U, X) that satisfy (HI). This class can be topologized so that it is a Banach
space, but we will have no need to do so here.

The next three results concern invertibility and factorization within the class of
operators satisfying (H1). These results form the principal components of our theory.

THEOREM 2.6. Suppose K satisfies (HI) with U X and K is causal (anticausal).
Then K is quasi-nilpotent and W (I + K)-1- I is causal (anticausal). Furthermore, W
also satisfies H1).

Proof. See Theorem 3.3 of [32] for the proof.
THEOREM 2.7. Suppose K satisfies (H1) with U X and I + K >0 is invertible.

Then there exists a unique causal X satisfying (H1) such that

(I + K) (I + X*)(I + X).

Proof See Theorem 3.5 of [32] for the proof.
A generalization of this factorization that will be used in the Riccati synthesis of

the optimal controller is given in the theorem below.
THEOREM 2.8. Let K satisfy the hypotheses of Theorem 2.7. Let Y denote a Hilbert

space with absolutely continuous resolution of the identity Ey. Suppose B B( Y, U) is

memoryless. Then there exists unique causal Z B(U) satisfying (HI) such that

K Z+ Z* + Z*BB*Z.
Proof. See Theorem 2.5 of [27] for the proof.

3. Representations of the optimal feedback gain. Using an abstract representation
of the optimal control law developed in [29], in this section we develop two feedback
representations for the optimal gain operator. The first is the standard operator Riccati
formalism. We will use factorization arguments to derive the feedback gain and prove
existence and uniqueness of the "first" integral Riccati equation derived by Gibson
[9]. This result is not new, but the approach is quite novel and we obtain the result
perhaps a bit quicker than in [9] where the "second" Riccati equation of Curtain and
Pritchard [4] served as the departure point. Next, beginning again with the same
abstract representation of [29], we will quickly derive an alternative feedback rep-
resentation that explicitly contains the open-loop semigroup and Volterra factors in
the feedback gain representation. This form of the feedback gain will be studied in
greater detail in subsequent sections where imposing a finite dimensionality constraint
on the input space allows us to sharpen the analysis considerably.

We consider the regulator problem and define the spaces U L2(0, T; H1) and
X L2(0, T; H2) with the truncation resolutions Et and Ex. Define the operator
S B(X) by

Io(3.1) Sx" t S(t-r)x(r) dr,
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and the multiplication operators Be B(U, X) and Q B(X) by [Bu](t)= B(t)u(t)
and Qx]( t) Q( t)x( t).

With these identifications we can state the main theorem from [29], which is the
departure point for the paper.

THEOREM 3.1. The optimal control for (1.1)-(1.2) has the representation

-F((I + W*)B*S*Q)z(. ),

where W (I + X)- I, X is obtained from the factorization
(3.2) (I + B*S*QSB) (I + X*)(I + X),

and z(. e C(O, T; X) with z(t) EtS(. )x(0) +
We first note that the operator B*S*QSB indeed satisfies the hypotheses of

Theorem 2.7, so that by that theorem, Theorem 2.6, and the definition of F(.), the
representation above makes sense. With this representation we now proceed to the
Riccati formalism of the optimal gain.

THEOREM 3.2. The optimal control for (1.1) has the feedback solution u(t)=
-B*(t)P(t)x(t) where P(.) is the unique self-adjoint solution to the integral Riccati
equation

P(t)x= S*(r-t){Q(r)-P(r)B(r)B*(r)P(r)}S(r-t)xdr.

Proof We begin with the representation from Theorem 3.1"

-F((I + W*)B*S*Q)z(. ).

Computing z(t) explicitly we find that

z(t)(r)=
S(r)x(O)+ S(r-a)B(a)a(a) da,

0,

Now introduce the operator r6 B(X, L2(0, T; X)),

r<t.

[crx](t)(r) S(r- t)x(t).

Note that tr is memoryless, and furthermore since

z(t)(r)=
S(r-t) S(t)x(O)+ S(t-a)B(a)()

O,

_{S(r-t)(t), r>-t,
O, r< t,

r<t,

we have z(t)=[cr;](t). Therefore,

(3.3) -F((I + W*)B*S*Q)tr.

Recalling that F(.) and cr are both memoryless, it is easily verified that their
composition is also memoryless. Hence, the operator K =F((I+ W*)B*S*Q)tr is
memoryless in B(X, U). By Proposition 2.3 there exists an essentially bounded strongly
measurable B(H,Hz)-valued function K(.) such that [Kx](t)=K(t)x(t) almost
everywhere for each x(. X. Thus,

(3.4) (t) -K(t)(t).
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Now it remains to relate K(t) to the Riccati equation in the statement of the
theorem. We use Theorem 2.8. By the theorem we have the factorization

(3.5) S*QS z + z* + z*BB*Z.
Theorem 2.6 implies Z*BB* is quasi-nilpotent so that we can write Z=
(I+Z*BB*)-I(S*QS-Z*). Thus, B’Z= B*(I+Z*BB*)-’{S*QS-Z*}. But, B*(I+
Z*BB*)- (I + B*Z*B)-B*. By uniqueness of the factorization in Theorem 2.7 (cf.
(3.2) and (3.5)), we have B*Z*B X*. Therefore, B*(I + Z*BB*)- (I + W*)B*,
and B*Z I + W*)B* S*QS Z*).

Now apply the projection p+ to this last equality to obtain (using (2.2), Proposition
2.4, and Proposition 2.5),

(3.6) B*Z F((I + W*)B*S*QS)G+ F((I + W*)B*S*Q)P-S_G+.
From the definitions of P- (Proposition 2.4) and _S (cf. (2.2)), we compute for x X,

[P-S_G+x](t) E,SE’x= S(r-a)x(ce) da, r > t,

O, r<t.

But now note that

[trSx](t)=
S(r- t) S(t-a)x(a) da, r >- t,

O, r<t.

Thus by the semigroup property of S(. it follows that P-_SG+= trS, and consequently

(3.7) B’Z= F((I + W*)B*S*Q)trS= KS,

where K is the memoryless operator in (3.3) (hence, also (3.4)). We can argue in a
similar manner to show that

(3.8) Z PS

for some memoryless operator P in B(X). Since by Proposition 2.3, P can be associated
with a strongly measurable essentially bounded B(H)-valued function P(. ), it follows
from (3.7) and (3.8) and standard arguments [34, p. 227] that

K(t)S(t-r) B*(t)P(t)S(t-r) a.e. t, r.

Then from the strong continuity of S(. at zero and the fact that S(0)= I, we obtain
the identity

(3.9) K(t) B*(t)P(t) a.e.t.

To obtain the Riccati equation we substitute (3.8) into (3.5) to obtain

PS S*{Q- P*BB*P}S- S’P*.

In terms of the kernels of these maps it then follows after applying p+ to the above
that for each x H,

P(t)S(t-r)x= S*(a-t){Q(a)-P*(a)B(a)B*(a)P(a)}S(a-t)S(t-r)xda.

Again using the strong continuity of S(. and S(0)--I, it follows that

(3.10) P(t)x= S*(a t){Q(a)-P*(a)B(a)B*(ce)P(a)}S(a t)xda.
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It is evident that P(.) is self-adjoint, and the uniqueness of the solution to the
equation above can be obtained by reversing the argument and using the uniqueness
of the factorization in Theorem 2.8. (A similar argument can be found in [28].) Thus,
the Riccati equation has unique solution and the theorem is completely proved. [

By using the first portion of the argument in the proof of the theorem, an alternative
expression for the gain that circumvents the need for solving the operator Riccati
equation will be derived. This expression, which we shall derive for the case of a
finite-dimensional input space and constant B and Q, will be the focus of subsequent
analysis.

So now let H R0. In this case note that there exists a set ofvectors {b, , b,) c
H2 such that

(3.11) Bu biui u u ., u,, 7" R m.

For notational convenience let K B*S*QSB. Note that as before K B(U), but now
U L2(0, T; R"). Hence, since S(.) is a strongly continuous semigroup, and B and
Q are bounded, it follows that K is a Hilbert-Schmidt operator with m x m matrix
kernel K (t, s), with components

Im(3.12) k,j(t, s) (QS(r- s)bj, S(r- t)b,) dr.
ax(t,s)

Thus the factorization of the operator I + K now involves factorization of a Hilbert-
Schmidt operator, and the corresponding Volterra factors are known to be Hilbert-
Schmidt 11, p. 184]. Since we are now in the setting ofthe Lebesgue space L2(0, T; R"),
Hilbert-Schmidt operators on this space are integral operators with norm-square
integrable kernel. Hence the operator W in Theorem 3.1 is itself an integral operator
with rn rn matrix kernel w(t, s), i,j 1,. ., m. Furthermore, from the Riesz theorem
it follows that the optimal gain K(t) is also composed of a set of m vectors
(k(t),. , kin(t)) in H2. Keeping these observations in mind, we can now easily derive
an alternative and useful formulation for the optimal gain.

THEOREM 3.3. The optimal control has the feedback form =-K(t)(t) where
(. denotes the optimal trajectory and K(t) denotes the optimal gain. Furthermore, in

the notation above

K(t)x=((kl(t),x),. ,(k,(t),x)) r, xH2,

where

ki(t)-- S*(r-t)QS(r-t)b, dr wji(r, t) S*(a-t)QS(rx-r)bjdadr.

Proof. The proof follows from Theorem 3.1 and Proposition 2.2. Using Theorem
3.1, we have

-F((I + W*)B*S*Q)z(. ).

Next note the following representation for (I + W*)B*S*Q. For any x(. ) X,

(I + W*)B*S*Qx" --> B*S*(r- t)Qx(r) dr

(3.13)
+ W*(r, t)B* S*(a r)Qx(a) da dr.

ax(t,r)
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If again the operator o’ B(X, L2(O, T; X)) is introduced as in the proof of
Theorem 3.2, and we make use of (3.3) together with the explicit forms for W* as a
Hilbert-Schmidt operator with m x m matrix kernel and the operator B as represented
in (3.11), the conclusion of the theorem follows from the appropriate substitutions
into (3.13) and Proposition 2.2.

Generalizations of Theorems 3.2 and 3.3 to time-varying problems, problems with
a terminal-state penalty, or problems with an infinite-dimensional input space are
possible within the framework we have established. Time-varying extensions are
straightforward, but a little care is required for rigorously incorporating a terminal
state penalty term, although the correct representations are obtained by formally
introducing delta functions into the state cost Q(.).

Thus if the state-space equation (1.1c) is replaced by

x(t) S(t, 0)x(0) / S(t, r)Bu(r) dr,

where S(t, r) is a strongly continuous evolution operator (see, for example, Gibson
[9]) and the operator S is redefined

Su S( t, r)u( r) dr,

then the corresponding generalizations also hold. In particular, we can show that the
feedback law has the form (cf. Theorem 3.3):

a(t) -K(t)(t),

K(t)x=((k(t),x),...,km(t),x)) T, xH2,

k,(t) S*(r, t)OS(r, t)b, clr+ w,(r, t) S*(,r, t)OS(,, r)b cl, dr,
j=l

where as before W(t, s) is the kernel of the operator W defined in Theorem 3.1. The
generalization of (3.12) is given by

ko(t, s)= (QS(r, s)b, S(r, t)bi) dr.
ax(t,s)

Numerical approximations to the gain based on Theorem 3.3 will be discussed
later. A matter of practical importance in this direction is the overall smoothness
properties of the gain and the smoothness of the various components that comprise
the expression for the gain in the theorem. The fundamental question in this regard
is to what extent ditterentiability properties of K(t, s) in (3.12) transfer to the kernel
W(t, s). This question is addressed in the following proposition.

PROPOSITION 3.4. Let K(t, s)= Kr(s, t). Suppose K C"(A) where A_=
{(t, s): 0 < < s < T}, A+ {(t, s): 0 < s < < T}, and A A_ U A+. Furthermore, assume
there exists a constantMsuch thatfor any pair ofnonnegative integers a, fl with a + <= n,

sup ID’3K (t, s) _-< M,
O<tsT

and

sup
dt

lim
t- O 3
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where D’ is the differential operator O+3/Ot"Os. Let K denote the integral operator
on L2(0 T; Rm) with kernel K (t, s) and suppose I + K > O. Then the Volterra factor X
of I + K (cf. Theorem 2.7), is an integral operator with kernel X(t, s) where X(.,
C (A+) and satisfies the estimate

sup ID’X(t, s)[ O(M)

for 0<s<t< T and a + fl <-_ n.

Proof. The Volterra factorization

(3.14) I + K (I + X*)(I + X)

is equivalent to the pair of equations

(3.15) X(t, s)= K(t, s)- X*(r, t)X(r, s) dr, s <- t,

(3.16) X*(s,t)=K(t,s)- X*(r,t)X(r,s)dr, s>=t.

Because of the relationship between the resolvent kernel of K (t, s) and X(t, s), X(t, s)
is continuous and (3.15)-(3.16) hold pointwise [11, p. 185].

Now let W (I + X)-- L W is Hilbert-Schmidt and has continuous kernel, say
W(t,s). Multiplying (3.14) on the left by (I+ W*) and applying the projection p/

yields the pair of identities

(3.17) X(t, s) K(t, s)+ W*(r, t)K(r, s) dr, s <- t,

(3.18) X*(s,)=g(t,s)+ K(t,r)W(r,s)dr, s>-_t.

Note that X(t, s) and X*(s, t) are n-times continuously ditterentiable in s and t,
respectively. Differentiating (3.17) with respect to s and using the assumptions on
K (t, s), we obtain the estimate

OnX(t,s)
(3.19) sup <= M(1 + tT),

t,s OS

where =suplW(t,s) [. Since 3= O(M) (see [26, Prop. 3.4]), the partial derivatives
in (3.19) are also O(M).

Now given a (smooth enough) function F on [0, T][0, T] and nonnegative
integers and tr, we define the function F,,

__d{ OF(s,t)}F,( t)
dt
lim
s_t Ot

We claim that X is continuous and IX*I O(M) for # +r=< n, where X*(s, t) is
the function in (3.16) (equivalently in (3.18)). This assertion will be proved by induction
on p =/+r.

When p 0 the assertion is certainly true since

-, K(, - X*(r, X(r, r
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is continuous. So assume the assertion holds for p < n. For any pair /x and cr with
/x + tr= p+ 1 (formally) calculate from (3.16)

lim
l Ot

X(r, s) dr

d { li O"K(t’ s)} d (I r o’X*(r’ t)
X(r, t)dr}dt ot dt Ot

Therefore it only needs to be verified that

X(r, t) dr
O"X*( r, t)

V,(t)

is g-times continuously differentiable and IV,[ O(M) when g+ =p+ 1.
Differentiating V, once we find

f{O+X*(r’t)X(r,t) +(t) -x*x+ oX*(r, t) OX(r, t)
dr.

0t+ Ot Ot

Thus, Q, involves terms with g index equal to zero and a term of the form

O"+X*(r, t)
Ot+

which is continuous by (3.18). Continuing in this manner until we have performed tr

differentiations with/z + tr p+ 1, we find that d/dt V, involves terms of the form
X* (and X) with a +/3 =< p, and an additional term involving

ov+lX*(r, t)
otP+l

which again is continuous and O(M) by (3.18) and (3.19). The assertion is proved.
Now return to (3.15) and (formally) calculate for a +/- n,

O+X(t’s) O+K(t’s)----O(f r
X*( r, t) OX(r’s)}drOt Os 0t 0s 0t OS

The right side above involves terms of the form

(3.20)
Or+X(t’s)

Ol OS1

with r < a, and X* with/x + r a. A straightforward induction argument now verifies
that (3.20) is continuous and O(M) for any nonnegative integers r and /3 with

r+<=n.
Thus it is seen that no derivatives are lost in the factorization problem. It is not

difficult to verify that the resolvent kernel W(t, s),

W(, s) -X(t, s)- X(t, r) W(r, s) dr

enjoys the same differentiability properties as X(t, s).
For future development it is also necessary to establish stability of the factorization

problem above. The following corollary to Proposition 3.4 essentially shows that the
factorization problem is "well-posed" in the space of integral operators with kernels
in C"(A), where/x A/ U A_ (cf. notation in Proposition 3.4). This result is analogous
to the one in [26].
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COROLLARY 3.5. Let K, X, W denote the operators in Proposition 3.4. Let D be a
self-adjoint integral operator with kernel D( t, s) and assume D( ) Cn(A). In addition
suppose that for any pair of nonnegative integers ce and fl with a + fl <- n that

sup D( t, s) &
O<t<zs<ZT Ot Os

Then if $ is sufficiently small, 14. K + D has the Volterra factorization

and furthermore,

I + K 4- D (I 4- XD.)(I + XD),

0+13
sup O’t {XD(t, s)-X(t, s)} 0().

O<s<t<T OS [3

Proof. The proof of this result is basically the same as in the analogous proposition
in [26]; thus we will only sketch the argument.

Since D]--> 0 as - 0, it follows from Theorem 2.7 that for 6 sufficiently small
I + (I + W*)D(I + W) has a Volterra factorization

I + (I + W*)D(I + W) (I + Z*)(I + ZD)
with ZD causal. But note that

I+ K + D=(I+X*)(I+X)+ D

(I + X*)[I + (I + W*)D(I + W)](I + X)
(i + X*)(I + Z*)(I + Z)(I + X).

Hence, X X+Zo + ZoX, since

I + K + D= (I + X)(I + Xo).

But,

XD--X=ZD(I+X).

The result then follows from Proposition 3.4. [3

With Proposition 3.4 it is possible to prescribe some regularity conditions of
the optimal gain via the representation in Theorem 3.3 and hypotheses concerning the
open-loop semigroup $(. ), the operator Q, and the vectors {bi}. However, even in the
general setting of the control problem where only continuity of the kernel K (t, s) can
be assumed (since no further assumptions are imposed on the semigroup S(t), etc.);
it is still possible to retrieve differentiability of the optimal gain. This is proved in the
theorem below.

THEOREM 3.6. Let ki(t) be defined as in Theorem 3.3. Then t--> ki(t) is strongly
dfferentiable.

Proof. For notational simplicity we will consider the scalar input case, i.e., rn 1.
We introduce the function

v(t)= S*(r)QS(r)bdr.

(Here b bl b,,.) Then we can write

k(t)=v(T-t)+I r

W(r, t)S*(r- t)v( T- r) dr.
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Making the change of variables/z --> r- in the integrand above, we obtain

k( t) v( T- t) + W( + , t)S*(l )V( T- I t) dl.

Since v(t) is strongly differentiable, it suffices to prove that t--> W(t+ I, t) is
differentiable. To this end define

f(t)=Q1/2S(T-t)b,
and let f( t) (f( t), ei>ei where {ei} is a complete orthonormal basis for H2. Next let

F(t) ’. f/(t).
i=1

Note that Dini’s theorem implies F( t)->f( t) uniformly since

Y [f(t)[- [(Q/ES(T-t)b, e,)l 2
=j =j

shows that for each t, [(t)-f(t)] converges monotonically to zero.
Associate (t) with the R-valued function ((f(t), e),. ., (f(t), e)) and denote

this function again by (t). Let K denote the integral operator with kernel

K(t,s)= Ff(r-t)(r-s) dr.
ax(t,s)

Then clearly K(g s)- K(g s) where K (g s) is defined in (3.12). Thus [26] shows that
(g s)- W(t, s) uniformly, where (t, s) denotes the corresponding Volterra factor
associated with K(t, s).

Now from [16] we have the following set of equations: For ts T

q(t, s)= q(s)+ j," W(s, r)(r) dr,

+ (s, t)= q(t)qf(t, s), (T, t)=O.

Setting s + and using the boundary conditions, we obtain

.(t+, t)=- q(r)qr(r, r+) dr

(r) qf(r+)+ (r+, )qr() d dr.

Since (r+, ) W(r+ , ) uniformly (with W( -,. continuous), it suces to
show that

()q[(r)p(, r),

uniformly to a continuous function p(, r). For then by dominated convergence we
get the relationship

W(t+, t) p(, +)+ p(,r)W(+,r)dr d,

from which it is clear that W(t + , t) is differentiable.
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So first observe that by the triangle inequality

(3.21) [q(r)q(r)-q(r)q[(r)l<-_lqf(r)[[q(r)-qg(r)l/lq(r)llq. (r)-q[(r)
Since F(. and W(.,. are both uniformly bounded, it follows that

(3.22) sup sup Iq(t)[-<_ c,

for some constant c. Furthermore,

Iqj(t)--qk(t)l<= W(cr, t)F(o")- W(o", t)F(tr)l do"

T

+ W(o", t)F(o")- Wk(o", t)F(o")l do".

Then since W(.,. )--> W(.,. uniformly and Fk(" )-->f(" uniformly,

]q(t) qk(t)]--> 0 uniformly.

Hence, by (3.21)-(3.22), Iqj(o")q.(r)-qk(o")q(r)l->O uniformly on [0, T] x[0, T] as
j, k--> , and the theorem is proved. 71

This result was proved in an entirely different manner in [14] using some recently
derived ditterentiability properties of solutions to operator Riccati equations.

The constructive nature of the techniques we have developed leads readily to the
derivation of stable and accurate difference approximations for the gain based on the
formulation given in Theorem 3.3. The approximation process essentially can be
decoupled into three stages. First we require the approximate solution of the state
equations for the space of control inputs (i {1,..., m}):

S(t)bi, 0<= <- T,
(3.23)

S*(s)QS(t)b,, 0<-_ t<= T, O<-s<__T-t.

Second, we require the approximate solution of the factorization problem (3.2) (see,
for example, [10], [25]). And finally we require approximations for the quadratures
given in Theorem 3.3.

This justifies an approximation methodology for the combined problem since each
component of the process can be treated by well-known methods that are stable and
accurate. More details are given in [31].

Part II: Application to Differential Delay Systems

In this part of the paper we will show how the general theory of Part I can be
applied to the particular problem of synthesizing control gains for the optimal regulator
problem with differential-delay dynamics. We will see that the delay problem is very
amenable to these methods and provides a very convenient framework for exploiting
connections between factorization problems, Riccati equations, and "fast" algorithms
for the solution of the Krein-Bellman-Sobolev equation [10].

4. Two solutions for the optimal gain. For the remainder of this paper we will be
concerned with the following regulator problem with dynamics

I2(t)= ._. Aix(t-ri)4r A(s)x(t+s) ds+Bu(t), t>0,
(4.1) i=0

x( t) dp( t), t I-r, 0],
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and quadratic cost criterion

io(4.2) J(u, x) (x(t), Qx(t)) + lu(t)l 2 dt.

Here we assume x(t) R n, u(t) R ’, and (. L2(-r, 0; R"), and 0 ro <" < r.
We also assume that Ai and B are matrices of compatible dimensions, A(.)
L2(-r, 0; R"") and Q >= 0. Without loss of generality we take r r.

We introduce the state space M2 Rn L:(-r, 0; R ") with the canonical inner
product and projection II" M2--> M2 defined by

n(x, x(. )) (x, 0).

We also define the maps

B" R M2, By (By, 0),

O: M M, O(x, x( )) Qx, o).

Then (4.1)-(4.2) is equivalent to the M2 state-space regulator problem

(4.1’) =Ax+Bu, x(0) (d,(0), 4,(’)) M2,

J(u, x) (x(t), Ox(t))M2 + lu(t)l = at,

where A" D(A)o ME, D(A) ((x, b)" ’ LE(-r, 0; R"), x b(0)), and

(4.3) A((4,(0), (. ))) ( ,=0 A’(-ri)+Ir A(s)d(s)ds, 4,’).
A generates a Co semigroup of operators {S(t)} on M2 (see, for example, [5]), so that
(4.1’) has solution

(4.4) x(t)=S(t)x(O)+ S(t-r)Bu(r) dr,

and Theorem 3.3 is immediately applicable.
Let Y(t) denote the fundamental matrix solution for (4.1), i.e., Y satisfies the

homogeneous equation with initial condition Y(0) I (the n x n identity matrix). Then
the relevant matrix kernel K(t, s) (cf. (3.12)) is easily shown to have the form

(4.5) K t, s) f ax(t,s)
B* Y*(r- t)QY(r- s)B dr.

Let W(t, s) denote the associated factorized kernel as in Theorem 3.3. We obtain the
following characterization of the gain.

TIqEOREM 4.1. Let the functions W and Y be defined as above. Then the optimal
control for (4.1)-(4.2) has the feedback form

min(t+r,T)

a(t)=-P(t, t)(t)- P(t, a) A(s-a)(s) dsda
.It t-

ftmin(t+ri’T) P(t, ot)Ai(a- ri) da,
i=1

where the m x n matrix kernel P( t, a) is given by

P(t, a)= L(t, a)+ W*(s, t)L(cr, s) ds



FACTORIZATION AND OPTIMAL CONTROL 1077

with
T

L(t, a)= B*Y*(s-a)QY(s-t) as.

Furthermore, P(t, a) is C on a > with bounded (Frdchet) derivative.
Proof. Given t-> 0, let xt(’ denote the translated function x,(s) x(t + s), s

I-r, 0]. Now let x M2, say x (x, x(. )). Note that IIS(/x- t)x solves the equation

dz ._
Aiz(tx ri)+ A(s)z(tx + s) ds

d/x i=o

with initial condition

x, /z t,
z(/x)

Ix(s), /z + s, s e [-r, 0).

In particular, by the variation of constants formula [12, p. 148],

(4.6)
IIS(tx-t)x= Y(lx-t)z(t)+ Y(tx-a-r,)A,z(a) da

i=1 t-r

+ Y(/x s) A(a s)z(a) ace as.
t--r

For notational convenience, in what follows we will consider the single input case
in which m 1. Thus, the matrix B of (4.1) now consists of the single vector b. With
this notation define the function L(.,. by

T

Lr(t, a)= Yr(r-t)QY(r-a)bdr.

From Theorem 3.3 the optimal gain K(t) is characterized via

(g(t),x}= (QS(r-t)b, HS(r-t)x} dr

+ W*(r, t) (QS(/x r)b, IIS(/x t)x) d/x dr.

Noting (4.6), an interchange in the order of integration above using the function L(t, a)
yields

I t+ri
(K(t),x)=(LT(t, t),x)+ , (LT(t, a),Aix(a-ri) da

i:1

+ Lr(t, a), A(s-a)x(s) ds da
t--r

+ (W(r, t)L(t, r), x) dr

+ W(r, t)LT(a, r) dr, Aix(o r,) da
i=1

+ W(r, t)Lr(a, r) dr, A(s-a)x(s) ds da,
It t--
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where x=(x,xt). Thus if we introduce P(t, o)ERln

P(t, a)= L’(t, a)+ W(r, t)Lr(a, r) dr,

the expression above may be written more compactly as

I t+r
(K(t),x)=(Pr(t, t), x)+ (Pr(t, ),A,x(a-r,)) d

i=l

+ P(t,), a(s-a)x(s) ds da.
t--r

This is precisely the representation of the theorem for the scalar (i.e., m 1) input case.
Using the fact that Y(. is absolutely continuous, it follows that L is C on a >

with bounded derivative, and also that K (t, s) (cf. (4.5)) satisfies Proposition 3.4. Thus,
that P is C on a > with bounded derivative is immediate from its definition. The
extension to the multi-input case with m > 1 is straightforward, and is omitted. The
theorem is completely proved.

The Riccati formalism of Theorem 3.2 leads to a representation of the optimal
gain K(t) as an element of B(M2, Rm). The gain in this representation can be realized
in component form as [8]

(4.7) K (t) (K(t), K(t,. )),

so that for a vector Y= (x, x(. )) M2,

K() K()x+ K’(, )x() d.

Putting this description of the gain together with Theorem 4.1 yields the identities

f
t+r

(4.9) K(t, a) 2 x[-r,O](a)P(t,a+t+r)a+ P(t,s)a(a+t-s)ds.
i=1

In addition to these identities, there is one other fundamental background connec-
tion between the factorization and Riccati based approaches that will be used in the
next section. This is contained in the following theorem.

THEORE 4.2. Let X(t, s) solve the resolvent identity

x(t, s)+ w(, s)+ x(, r) w(r, s) r=0,

and let K t) denote the optimal M state space gain as above. en
X(,s=K(S(-s).

Proo See Theorem 4.2 of [28] for the proof.

g. Reresemti tere. In this section we will combine the representations of
the previous section to derive a new set of equations for the optimal gain. The first
step toward combining the gain representations is the following observation.

PROPOSITION 5.1. -P(t, )B Wr(,
Proo Let P denote the Hilbert-Schmidt operator with kernel P(t, ), and let Y

denote the operator with kernel Y(t-). For a Hilbert-Schmidt operator M, we will
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also write [M]_ for p_(M) (cf. Proposition 2.5). In [26] it is shown that P uniquely
solves the Wiener-Hopf-type equation

(5.1) P [B* Y*QY]_ [PBB*QY]_,

where B (respectively, B* and Q) are interpreted as operators; Bu’t-->
Bu(t)(B*x’t--> BWx(t), Qx’t-> Qx(t)). Let K denote the Hilbert-Schmidt operator
with kernel K(t, s) given in (4.5). Multiplying the equation above on the right by the
(operator) B we obtain the identity

(5.2) PB=[K]_-[PBK]_,

since B* Y*QYB K.
In a manner similar to that in [26] we can show that PB is the unique Hilbert-

Schmidt operator that satisfies (5.2). However, note that

W* +[ W*K]_ W*(I + K)]_

W*(I + W*)-’(I + X)]_
=[-X*-X*X]_.

And from Theorem 2.7, K X+X*+X*X. Hence, [K]_ [X*+X*X]_ since
p_(X) 0. It then follows that W* also solves (5.2), and so by uniqueness W* -PB.
Consequently, wT(a, t)=-P(t, a)B almost everywhere on [0, T][0, T] (see, for
example, [34, p. 227]). But W(.,. and P(.,. are both continuous on {(a, t)" c -> t},
and the proposition is proved.

Thus we see that the relationship between the feedback kernel P(.,.) and the
factorized kernel W(.,. is much more direct than was indicated in Theorem 4.1. The
next theorem very nearly provides a set of differential equations with which to compute
w(., .).

THEOREM 5.2 ([10]; also [16]). Letf(t)=Q1/2Y(T-t)B and define (.)

$(t)=fT(t)+ Wr(o., t)fr(o.) do’.

Then for s >- t,

(0-+ 0--)WT" (s, t)=(t)w(t,s), w(, t)=0,

0

ot
oh(t, s) W(s, t)ch( t)

These equations arise in the solution to the Krein-Bellman-Sobolev equations for
close to displacement kernels 10], 16]. In 10] it is shown that W(t, s) can be computed
on an N N grid in O(N2) operations with O(1! N) accuracy. These equations are
the prime motivation for the main representation theorem of the paper, which is to
follow. The proof is quite long, so we will provide a brief outline before beginning.

Assume that Be R is invertible. Then Proposition 5.1 allows us to write
P(t, a)=--wT(a, t)B-. If we consider the relations in Theorem 5.2, multiplying the
equation for Wr on the right by B- and the equation for on the left by B-, it
follows that

0 O)pr T(S+ (t, s)= (t)[ t, s)B- ],

0
-[B-c(t, s)] pW(t, S)b(t).



1080 M.H. MILMAN AND R. E. SCHEID

The main bottleneck to overcome in this set of equations is having to solve for
b(t), which in turn requires W(o-, t) on the set {(or, t): t<-cr<= T}. Note that P(t,s)
itself is only required for s (t, + r). A substantial savings in computation can be
afforded by finding an alternative method for computing 4’(t).

In the development of these equations, we have yet to exploit anything of the
underlying state-space characteristics of the problem. In the theorem we do precisely
that by using the relationship between W(t, s) and the optimal gain (via the resolvent
kernel X(t, s) and Theorem 4.2). In this way a differential equation is developed for
b. Perturbation arguments, using the well posedness of the factorization and control
problem, allow us to remove the invertibility condition on B.

Without loss of generality we assume that B R below (if m < n we augment
B with n-m columns of zeros; if m > n, a change of coordinates in R" reduces B to
a matrix with m n zero columns, which can be discarded before defining the problem).

THEOREM 5.3. The following set of equations

-+ P( t, s) -B t)c t, s), 0 < < s < T,

0
o4)(t,s)=P(t,s)%(), O<t<s<r,

(5.3

i=1

()4,(t, t-o-) do-, O< < T,

with boundary conditions

P(t, T):0,

(5.4) b(s, s)= qs(s), 4(t, s) 0, s > T,

qt(T)=Q’/2, (s)--O, s> T,

has a unique solution in the class of continuous functions on the closure of their respective
domains. P is C with a uniformly continuous derivative on 0 < < s < T, /o is piecewise
C with a bounded derivative on 0 <t< T, and dp(., s) is C for each s and dp(t,. is

piecewise C with a bounded derivative for each on 0 < < s < T. Furthermore, P( t, s)
is the optimal feedback kernel for (4.1)-(4.2).

Proof We begin by assuming that the matrix B is invertible. In operator notation
the equation for 4’ in Theorem 5.2 is written

(5.5) ch f r + W,f r.
Using X*= (I + W*)-1, this is equivalent to

(5.6) q5 +X*th =f
Observe from Theorem 4.2 that the kernel of X*, say X*(t, or), is

X*(t, or)= *S*(cr- t)K*(o’),

where K(. denotes the optimal (M2 state space) gain for the control problem. Thus
(5.6) leads to

(5.7) th(t) + /*S*(cr- t)K*(o’)th(cr) do’=fr(t).
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Let {ei}, i= 1,. , n denote the standard orthonormal basis for R n, and note that
*S*(T-t)Q1/2 can be identified withfr(t) via *S*(T-t)O/2(ej, O)=fr(t)ej (the
jth column off r). Let &j(t) denote thejth column of b(t) and introduce the M2-valued
functions hi(t) and

(5.8) hi(t) S*(o-- t)K*(o-)b3(o-) do’,

(5.9) d/j( t) hi(t) + S*( T- t)Ol/2(ej, 0).

Multiplying the equation above on the left by/}* and comparing it with (the jth
column of) (5.7), we arrive at the identity

(5.10)

Let A* denote the infinitesimal generator of S*. (Hence A* is the adjoint of A.)
We note that [9]

D(A*) {(a, x(. )) M2:x is absolutely continuous except at the points {ri},
where x( ri)+ x( ri)- A a x’( L2(-ri+l -ri Rn),
i=0,. ", v- 1; and x(-r)=Ara}, and

A*(a, x(" ))= (A’ce + x(0), AT( )x(" )- x’(" )).

We now make the following two claims.
CLAIM 1. hi(" is differentiable, hi(t) D(A*) for <- T, and pointwise satisfies the

equation

d
(5.11) d-- hi(t) -A* hj(t) + K*(t) thj (t), hi(T) 0.

CLAIM 2. Let p( t) denote the R" component ofOj( t). Define the R"-valuedfunction
ckj( t, s) by

dpj t, s) dpj s + W s, o- dpj o" do’, s >= t.

(We note that ckj(’, ") is thejth column of ok(’, ") in Theorem 5.2.) Extend ckj(’) (and,
by definition qb3(t, .)) to (T, oo) by ckj(s)=O fors> T. Define .(t, ) on [0, T] x I-r, 0]
by

tj(t,o)--" ., dpf(t,t+ri+ce)x[-ri, O](ce)B-Ai + dp(t,s+t)B-1A(a-s)ds.
i-1

We claim that

(5.12) h3(t)=(O(t), ]’(t, ))-S*(T- t)Ol/2(ej, O).

These claims will be verified at the end of the proof of the theorem, and will be
accepted for now.

Write h3(t) in component form as hj(t)=(h(t),h.](t)). From (5.11) and the
definition of A* above, the following equation holds for h.;.:

d
h(t) T 0 KOOT(Ao h( t) h( t, O) + t)cfl( t),

(5.13) dt

hj( T) =O.
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Then using the explicit representation for S*(T-t)O1/2(ej, 0) (cf. (5.24)-(5.25)) we
find that

(t) Zj.( t)- ItT" exp (A(o.- t)}Z)(o., O) do.

T

+ exp {AoT(o. t)}(T(O., 0)-- Kr(o.)thj(o.)) do’.

But we observe that

( Id
zjO.(t) exp {A(o.-t)}Z)(o., O) do

dt

d
Yr( T- t)Q ’/

T

dt 2e + Z)( t’ O) +A _
-Ar Z(t)- exp {Ao(o. t)}Z)(o., O) do-

exp (A(o-- t))ZJ(o-, O) do-

Consequently,

exp {A(o-- t)}Z)(o-, 0) do- exp {A(T- t)}Q-’/Zej.

Hence,
d
O(t) r o=-AoOj(t)-f. (t,O)+Kr(t)qbj(t

dt
qo( T) Q1/2ej.

Substituting (4.8) and (5.12) into this equation with the identity hj(t)= BToy(t) (from
(5.10)) then yields

dd/y(t)=-[A-pT( t, t)BT]d/Y(t) E AB-Wch( t,
dt i=1

O

(5.14) AT(o-)B-Tda(t, t-o-) do-,

Now we use Theorem 5.2. Multiplying the equation for th(t, s) on the left by B-r

(recalling the parenthetical comment in Claim 2) and multiplying the equation for
WT (s, t) on the right by B-, we obtain, upon using Proposition 5.1 and the substitution
dp( t, s) B-Tdp( t, s),

(5.15) -+ss P(t’ s) -B t) (t, s), P(t, T) 0,

(5.16) (t, s)-- p(s)- pT(o-, s)BTd/O(o-) do-,

where 0(s) is the n n matrix with jth column equal to 0y(s). And with the same
substitution (5.14) becomes

d
dt
O(t)=-[A-pT(t’ t)BT]o(t)-- AT dp(t’ t+ ri)

(5.17) __fOr AT o- qb. t, o- do-,

O(T)=Q’/.
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Next we will show that these equations are also valid when B is not invertible.
Let ek denote a sequence of real numbers converging to zero such that B+ ekI is
invertible for each k. Let Bk denote the matrix B + ekI, and consider the sequence of
control problems defined by replacing B with Bk in (4.1). Introducing subscripts in
the obvious fashion, we first note that since (cf. (4.5))

K(k)( t, s) fm"ax(t,s)
it follows that

K(k)(t, s) K (t, s) ek j
Hence, it follows that

B yT(o._ t)QY(o’- s)Bk do’,

max(t,s)
YT(O.- t)QY(O.-s)B + BTYT(O.- t)QY(O.-s) do.

supt,. -(Kk)(t,s)-K(t,s)) --(Kk)(t,s)-K(t,s))as O(ek).

Now Proposition 3.4 of [26] implies

(5.19) sup ]W)(t,s)- W(t,s)l- O(e).
t,S

Next we consider the resolvent identities

W(t, s)= -X(t, s)- X(t, r) W(r, s) dr,

W(t, s) -X(t, s)- W(t, r)X(r, s) dr

(and their (k) subscripted counterparts). Differentiating the top resolvent equation
with respect to and the bottom equation with respect to s, we have that Corollary
3.5 together with the estimate (5.19) lead to

(5.20) supt, --(Wk)(t,S)-- W(t,s)) --(Wk)(t,S)--Os W(t,s)) =O(ek).

The above estimates and the definition of P(t, s) from Theorem 4.1 then imply

(5.21) sup IPk)( t, s) P( t, s)l O( ek),

(5.22) sup,, -(P(k)(t,s)-P(t,s)) --(P(k)(t,s)-P(t,S))as O(ek).

Now consider the (k)-subscripted equations in (5.15)-(5.17) (which are valid since

Bk is invertible)"

(5.5’
0
+ p(.(, o-4,((/(. . e(,(, r=0.

and

(5.18) sup
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(5.16’) ,(. t, s) q(s)- P(o’, s)BTq(o’) do’,

dok)(t -[A- P)(t, t)B]Ok)(t)-- A(k)(t, t+ ri)
dt i=

AT()()(t, t-- ) d,

O(r)=o’/.
From (5.5) and (5.19) it follows that &((t) &(t) uniformly on [0, T]. And since

P((t, s) P(t, s) uniformly, (5.8)-(5.9) and (4.8)-(4.9) imply that O((t) O(t) uni-
formly; and in particular #()(t) O(t) in R on [0, T]. Thus

(5.23) lim ()(t, s)= O(s) pT(, s)BToO() d.

Denote this limit by &(t, s). Next take limits on both sides of (5.23) and (5.24), and
use the convergence roperties of +), (), and (O/Ot+O/Os)P()(t, s) (from (5.22))
to obtain

e(, - (, , e(, r 0,.
o(=__e(,?o(_ (,+r_ ((,-a.

i=1

Taking derivatives in (5.23), and removing the undertilde on (.,. results in

0

0(, s e(, s%(, (s, s (s,

thereby establishing the equations of the theorem.
The differentiability properties of P are stated in Theorem 4.1, those of 0 follow

from (5.17’), (5.16’), and (5.23), and the properties of are obtained from (5.23).
To prove uniqueness of the solution, it suces to demonstrate it locally, since

global existence has already been established. This matter is facilitated by the use of
the equivalent integral equations (6.4)-(6.7) in the following section. This formulation
shows with standard arguments that P(.,. ), and (.,. are locally propagated via a
contraction map (cf. (6.26)-(6.31)); hence we obtain local (and consequently, global)
uniqueness.

Proof of Claim 1. Using the representation (4.8)-(4.9), we have

*(( (e(, (, x[-r, 01(.ae(, .++r(
i=1

+ (.+-e(, a(

From here it is straightforward to verify that K*(t)*(t) D(A*) for < T. Using the
differentiability properties of P(t, ) and the definition of A*, we then compute

(, (+**((=
i=1

t+r

+ a(t-)P(t, )(t) d, a(o)P(t, t)(t)
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-0-- Ar(s)P(t, O+ t-s) ds

Hence, t A*(t)K*(t)j(t) is seen to be an LI(0, T; M2)-valued function. The
proof of the claim then follows from [33, p. 108].

Proof of Claim 2. We will first need an explicit characterization of S*(T-
t)O/(e, 0). Define the F-structural operator [6] via the relation

i=1

for (, x(. ))e M. The following identity is easily shown to hold [6]’

S*( T- t)01/2= S*( T- t)F1/2= FST( T- t)01/2,
where

sr( r- t)O1/(e, O) Yr( r- t)Q/e, Yr( r- +. )Q/e).
Now write S*(T- t)O/(e, 0) in component form as (Z(t), ZJ(t,. )). Using the

relations above we then obtain

(5.4 z( g(r-/e,

+ Ar(s)Yr(T-t+s-) ds Q/e.

Now note that

(5.26)
fort<T,

.( T) Q1/2ej, ,(T, ) O,

p)(t, -r)= dp(t)B-1A,
dpj(t, -ri)+ j(t, --l’i)-- .B-1ji, i= 1, t, 1.

Since bj(t)= BT"d/.(t) (from (5 10))

(5.27) jT(t, r) T oA Oj( t),

(5.28) -r6j (t, -r,)+ (t, -r,) ATqb.(t),
From (5.24)-(5.25) we also compute

(5.29) Zj.(T) Ol/2ej, Z)(T, a)=0,
(5.30) Z)(t, r) ATyT(T t)Q’/ej AZj(t),T o

Z)(t, -ri)+- Z)(t, -ri)- ATi yT( T- t)Q/
(5.31)

i= 1,. ., v-1.

T oe AJ Z(t),
i=l,...,v-1.

Next define d(t) M2 to be the right side of (5.12), and let d(t) and dl(t) denote
the R and LE(--r 0; R n) components of d(t), respectively. Then (5.26)-(5.31) imply

(5.32) d(T)=d(T, a)=0,

(5.33) dl(t, r) AT od (t), t[O, T],
(5.34) dl(t,-ri)+-d(t,-ri)-=Afd(t), t[0, T), i=l,...,v-1.
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From the definition of Cj(. and the fact that W(.,. has continuous first partial
derivatives, it follows that for fixed t, <-_ T-r, Cj(t, a) has bounded a-derivatives in
each interval (-ri+l,-ri). And since Z)(t, a) also has bounded a-derivatives for
t<-T-r on each interval (-ri+l,-ri), (5.33)-(5.34) imply that d(t)D(A*) for t-<

T- r. Again referring to (5.33)-(5.34), it will be established that d(t) D(A*) for _-< T
once it is shown that for each T r, T), d (t,.) H1(_ ri/l, ri).

So fix toe(T-r, T) and consider Z(to, a). For a(-ri+,-ri),Z(to, a) has a
bounded a-derivative except possibly at poin.ts ak T- to- rk, k + 1, , v. On the
other hand, looking at the a-derivative of Cj(to, a) for a (-r+l,-r), we also find
a bounded derivative, except possibly at {ak}=i/. Thus it suffices to show that d(t,
is continuous in (-r/,-r). Since the only possible discontinuities in d(to,. occur
at the ak’S, we compute d to, ak)+ d to, ak)-:

d( to, ag)+-dl(to, ak)-= f(to, ak)+--(to, ak)--- (Z( to, ak)+ Z)( to, ak)-)

A[B-TCj(T) A[Q

=0

by (5.7). Therefore we conclude that d(t) D(A*), <- T.
Next we apply the differential operator D=O/Ot-O/Oa to d(t, a). For

(-ri+l,-r), straightforward computations using (5.12) and (5.24)-(5.25) yield

k=i+l
A[B-TW( + r + t, t)j(t).

Now (5.10) implies B-Tj(t) tp(t), so that B-TCj(t)- yT( T- t)Q’/2ej d(t). Thus
using (4.8)-(4.9) and Proposition 5.1, we arrive at

(5.35) D(d’(t, or))= -AT(a)d(t)+ K’(t, a)dpj(t).

Definition (5.9)implies d(t)= h(t) (where we have written hj(t)= (h(t), h)(t))).
Let r(t) d (t) hi(t). Then r(t) (r(t), r’(t,. )) e D(A*) with r(t) d(t) h(t) 0.
Furthermore, from (5.13), (5.32)-(5.35) it follows that

with boundary condition

rl(T, o) 0.

Hence r(t, a)=0, so that d(t, a)= h)(t, a). And indeed d(t)= hi(t). This completes
the proof of Claim 2 and the theorem. [3
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Observe that in the case of no delay terms the kernel P(t, a) needs only to be
specified on the diagonal, i.e.,

u(t)=-P(t,t)x(t).
The relevant equations (5.3)-(5.4) then collapse to

d
d--tP(t, t)------BTd/(t)d/OT(t), P(T, T)=0,

d
d_td/o(t)=_[Aro _pT(t t)BT]d/o(t), OO(T) Q1/:.

These equations are recognized as the Chandrasekhar equations for systems without
delay. Thus the full set of equations (5.3)-(5.4) can be interpreted as an explicit
generalization ofthe finite-dimensional Chandrasekhar equations to systems with delay.

6. The structure of the gain. In this section we analyze the structure of the optimal
gain subject to appropriate regularity conditions. We consider the system (5.3)-(5.4)
and introduce the following changes of variables:

(t,s)(t,t+), (t,)=(t,t+), (t,)=P(t,t+),
(6.1)

i( t) ( t, ri), O, , i( t) ( t, ri), O, .
We note that with this notation o o, where o is defined in Theorem 5.3. The
transformation of (5.3)-(5.4) becomes

(6.2a) (t, )= --Bo(t)T(t, ),
Ot

g(,

d- AT(6.2) d&O(t)=-[A-()BT]o(t)- E J,(t)- (O)(t, O) dO,

with the initial onditions and history onditions:

a) =0, T,
(6.3) T,

Now we reformulate (6.2)-(6.3) as a self-contained system of integral equations.
The equation for (t, ) is hypeboli and an be integrated by the method of
harateristis. The equations for P(t, ) and &o(t) an be explidtly integrated from
the initial onditions given by (6.3). Thus, we have

(6.4a) (t, )=- Bro(r)r(r, )
T-

o(t) 0/2- [A- (,)BT]o()+
T i=1

(6.4b)

where we have defined

(6.5a)

+ AT(o)p(%.O) dO d%

f +l’t

&(t, p,) &o(t+/)- fiT(or, t+l-tr)BTo(tr)dtr,
dt
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(6.5b) ,(t) (t, r) lim (t, Ix),
I

(6.5c) /3i(t) =/5( t, ri) lim/3(t, IX).
I

The functions P(t, Ix) and 4o(t) are, respectively, defined on the sets"

(6.6)
D= {(t, Ix)l t>O + Ix < T, 0<Ix <r},

Do {t]0< < T}.

This formulation is completed by the history condition

(6.7)
b(t, Ix) 0, (t, Ix)D’,

D’={(t, Ix)It+Ix> T,t<T,O<Ix<r}.

It will also be convenient to represent the delay interval as

(6.8) D= {Ix [0< Ix < r}.

The integral system (6.4)-(6.7) is very useful for clarifying the smoothness of the
gain. To this end, we introduce the following notation. Let N1 and N2 be given positive
integers and let f denote a subset of R ,. The interior of f is denoted by and the
closure of 12 is denoted by . Let C(f) denote the space of continuous functions from
f into R v2. If f is open and k is a positive integer, let Ck(fl) denote the space of
continuous functions possessing continuous derivatives up to order k on 12, and let
ck() denote the space of all u C(O) such that all derivatives of order k or less
extend continuously to f. And also we define

c(n) f-) c(n), c(fi) f-) c(fi).
k=l k=l

The appropriate values of N and N2 will always be clear from the context in
which this notation is used. In addition we introduce special notation for one and two
dimensions. Letf(t) and g(t, Ix) be functions of and (t, Ix), respectively, on prescribed
domains Dy and Dg in R and R2, respectively. Differentiation is denoted by

f(t)t"l=----f(t),
dt"

0nl+n2
g(t, IX) [’’’n2] g(t, Ix).Ot"’ OIx "2]

We now suppose that Dy can be subdivided into a finite number of open sets D)
where

i=1

We suppose further that f(t) is in C P(ff)) for each i {1,..., Ny} and that, for
p>O,f(t) is in CP-I(Dy). Then f(t) is said to be piecewise CP[t] in Dy. Let K be a
finite set of points that determine such a subdivision. Then f(t) is said to be piecewise
CP[t] in Dy with respect to K.
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Similarly, we first assume that D can be subdivided into a finite number of open
sets D where

We suppose that g(t, ix) is in CP(/) for each ie{1,...,N} and that, for
p>O,g(t,.,ix) is in C-(/). Then g(t, Ix) is said to be piecewise CO[t, ] in Dg. And
also let L be a finite set of line segments that determine such a subdivision. Then
g(t, Ix) is said to be piecewise C e[t, Ix] in Dg with respect to L.

The following theorem, which is illustrated in Fig. 1 for the case , 3, outlines
the structure ofthe optimal gain and leads to the development ofsecond-order difference
approximations in 7. It is convenient to define the following subdomains"

i={(t, ix)lT-ri+<t+ix<T-ri}CID, i{0,’’., ,-1},

/- {(t,/z) l0 < t//x < T-r}fqD.

THEOREM 6.1. Let the solution to the system (6.4)-(6.7) be given by P(t, Ix) and
o( t). The smoothness of the solution is characterized as follows"

(1) (t, Ix) is piecewise C2[t, Ix] in D with respect to {(t,)lt- T-ri}%,
{(t, Ix) IX = ri}i=l, and {(t, Ix)It + Ix T- ri}i-_l

T-r T
FIG. 1. Structure for multiple delays.

(2) t, Ix is piecewise C 1[ t, Ix in D with respect to { t, Ix + Ix T ri } i= 1" And,
moreover, for each {0,’’ ", ,}, (t, Ix) is piecewise C2[t, Ix] in 1 with respect to

{( t, Ix)It + tz T- r rk}j_,k:o.
Proof By Theorem 5.3 we have that o(t) is piecewise C[ t] in Do and that/3(t, Ix)

is in CI(D)o Then by the definition (6.5a) we have that (t, Ix) is piecewise CI[t, Ix]
in D. Using the integral formulation (6.4)-(6.7), we formally generate the relevant
first-order derivatives. Our formulas are recursive in that a given expression for a
derivative may depend on previously given expressions. We have

(6.9a) o(t)t]=- [Aor-ff(t)Br]po(t)+ AiPi(t)+ AT(O)b(t, O)dO
i=l

(6.9b) /3(t Ix)r,.o] __BTpo(t)pT(t Ix),
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/3(t, I)"=--BTo(T--I)bT(T--I, i)-- BTffpO(r)T(, k)’ dr

-BTo( T-I)T( T-I, l)

(6.9c) BTo()[T(, )t"]- 2(r)B#(z, )] dr
T--

=--BTo(t)T(t, )+ BTo(,)[1]T(,, ) d,
T-

T-

We note that (6.4b) was used to simplify expression (6.9c) by eliminating the -derivative of O(t, ). The subsequent integration by pas with respect to is justified
since (t, ) is piecewise C[ t, in D. We now complete the enumeration of first-order
derivatives"

(, )to,, o(+)’- #(t +)Bo(t+)
(6.9d)

r(, t+_ )tO,lBro( d,

(6.9e) (t, )t,o (t, )tO,l + r(t )Bo(t).
And finally, from (6.9d) and (6.9e) we have for i {1,..., }"

l(t) o(t + r)t-( + r)Bro( + r) + b(t)Bro( t)
(6.9f)

t+r

T(, t+r,_)to,BTo( d.

Similarly, the second-order derivatives are formally given by

o(t)t [AS-()n]o()t, o()t’Bo(
(6.10a) L ;o+ (l+ (og(. ol,eo

(.ob (,., -o(g(,. o(g(,.,,
(t, )o, _Bro(t)(t, )o,1+ Bro(r_)l/

T-

T-

-(+ ..o.o(+.
(6.10e)

t+

(6.1Of) (t, )1, (t, )o,2+ r(t )to,Bro(t),
(6.lOg) (t, )2,o (t, )1,+ r(t )tl,OBro(t)+ r(t )Bro(t)t.
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By means of recursively evaluating the formulas (6.9)-(6.10) we now proceed
sequentially to outline the differentiability of/3(t,/x) and 4(t,/z). We begin by noting
that bo(t) and P(t,/x) are bounded and continuous in Do and D, respectively. On the
other hand, for i {1,. ., v}, bi(t) is discontinuous in Do at T-ri. From this we
can derive global results. We have:

(1) [01] is piecewise C[t] in Do with respect to {T-ri}i=;
(2) /Stl,Oj and/3tO,lj are in C(Do);
(3) o,j and tl,Oj are piecewise C[t,/x] in /9 with respect to {(t, tx)lt+tx=
}T-ri i=,

(4) For i {1,. , u}, is piecewise C[t] in {tl0< t< T- ri} with respect to
{T-ri

(5) For each {0,. ., v- 1}, to is piecewise C[t] in {tl T- ri+, < < T- r}
with respect to { T- t) r}’=,=o. And also 4to= is piecewise C[ t] in { l0 < < T- r}

r v,vwith respect to { T- r :1.=o.
(6) /5=.o is piecewise C[t,/x] in D with respect to {(t,/x)[t= T-ri}i% and

{(t, .)It+/x T-
(7 /Stl,l is piecewise C[t,/x] in D with respect to {(t+/x)[ t+/x T-ri}i=l,
(8) /Sto,aj is piecewise C[t,/x] in D with respect to {(t, ix)It+ix T-ri}i=l and

{(t,/x) [/x -/’/}iLl.
(9) For each i{0,..., v}, 4t’21, 4t1’11 and t2.o are piecewise C[t,/z] in

rwith respect to {(t,/z) +/ T r :1,:o.
This enumeration completes the justification of the theorem.

The preceding theorem strengthens the differentiability properties of P(t,/x) as
derived in Theorem 4.1. We now demonstrate that the assumption of a single delay
(v 1) and a smooth integral term leads to a considerably more detailed structure for
the optimal gain. Without loss of generality we can assume that T Kr, where K is
a positive integer greater than one, since the interval Do can be translated to lie within
some interval {tl0 < < Kr} with the right endpoints aligned.

For k {0, 1, 2, , K} we define the points

(6.11) t= T-kr, plk=(t, O), p2k=(t, r).

Then for k {0, 1, 2, , K 1} we define the open line segments

L= {(t,/x)l t+, < < t,/x =0},

(6.12) L= {(t,/x)l t+/x t, 0</x < r},

L= {(t, P’)I t= t, 0</x < r},

and the open triangles

T= {(t, z)lt / < t, 0</z < r, tt,+l < < t},
(6.13)

T= {(t, z)lt / tz > tk, 0< tX < r, tk+l < < tk}.

These sets are illustrated in Fig. 2 for the case T 4r. For k {0, 1, 2, , K 1 } we
also define the functions

(6.14) /,(t) 6,-t, t"k(/X) tk -/x,

which for appropriate and define reference points along the line L,. The following
theorem, which elucidates the structure of the gain for this important special case,
leads to the development of difference methods of arbitrarily high order in 7.
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FIG. 2. Structure for a single delay.

THEOREM 6.2. Let K be some positive integer greater than one. Let the solution to

the system (6.4)-(6.7) with v= 1, A((R))E C(r), and T- Kr be given by #(t, i) and
o(t). For k { 1, 2,..., K 1} the smoothness ofthe solution is characterized asfollows"

(1) /5(t,/) and (t, t.,) are in

(2) #( t, and ( t, are in C() and C();
(3) Across the point p for k2, P(t, )’ is continuous forjl +j2k-1 and

(t, )[’J2] is continuous for jl +j2 k 2;
(4) Across the line L,(t, )t’l and (t, )tl’Jl are continuous for jl +j k;
(5) Across the point p, (t, )J’J is continuous forj+j k and (t, )t,.J is

continuous for jl +j k- 1;
(6) Across the line L, (t, )tJ’J is continuous for j +j2 k and (t, )tJ,’ is

continuous for jl +j2 k 1.

Proof First we consider the solution in T. The delay has no effect in this region
and (6.4b) becomes

o(t)=Q/- [A-[(t)BT]o(Z)+ A(O)(z, O) dO dz.
T

Then the syste of integral equations (6.4)-(6.7) can be differentiated repeatedly to

guarantee that P(t, ) and (t, ) are in C(). By our assumptions, the solution
is at least continuous across the line L, and in particular, (t) is continuous across

t. But then Po(t) must have a continuous derivative across t since by (6.4a) it is an
integral of o(t). On L the solution ((t, ), fi(t, )) must have continuous first-order
derivatives since (6.4a) and (6.5a) can be differentiated.

Now we consider the propagation of the solution. For k {1,. , K 1} we say
that the solution (&(t, ), P(t, )) has the property if:

(1) fi(t, ) and (t, ) are in
(2) Across the point p for k 2, fi(t, )[J,’] is continuous for j +j k- 1, and

(t, )[,’J] is continuous for j +j k 2;
(3) Across the line segments L, fi(t, )[J’J] and (t, )[J,’Y] are continuous for

j+jk;
(4) Across the point p, fi(t, )[Y,’Y] is continuous for j+j k and (t, )[Y,’J]

is continuous for j +j k- 1.
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First we note that from our previous discussion, the solution has the property 1. We
now argue the theorem by induction. We suppose that for some positive integer k the
solution has the property j for j e {1,. , k}. Then it will follow that:

(I1) (t,/z) and/3(t,/z) are in C() and C();
(12) Across L, P(t, )t.:3 is continuous for jl+j2k and (t, )t,: is con-

tinuous for j +j2 k- 1;
(13) The solution ((t, ), (t, )) has the propey k+l (for k < K 1).
Thus we now assume that the system has the property for j {1, , k} where

k < K, and we take steps to verify results (I1), (I2), and (13). First we consider the
system in T and T. For (t,) T we have

(6.15a) fi(t, )= fi(tk, )-- BTo(z)T(z, ) dz- BTo(z)T(z, ) dz,

For (t, ) e r we have

And for e L we have

tk
(6.17a)

+ AT(o)(z, O) dO+ AT(o)(z, O) dO d,,

(6.17b) (t) o(t, t- t+)+ r(, t+_)Bro() d,

By the inductive assumption we have that (t, ) and (t, ) are in C(O).
Then by inspection we note that the system (6.15)-(6.17) is closed for the unknowns
(t, ), (, ), o(t), o(t), and (t). Repeated differentiation is possible, and the
result (I1) is verified.

Next we consider smoothness across the line segment L. For (t, )e T (6.16b)
can be replaced by

which is identical to (6.15b) except that here the integral crosses the line segment L.
By the inductive assumption we are guaranteed that the solution has the prpperty
then o(t) has derivatives of order (k-l) continuous across t and P(t, ) has
derivatives of order k continuous across L. Thus the integral in (6.18) can be
differentiated k times continuously for (t, ) e T. Now as in (6.9) we develop recursive



1094 M.H. MILMAN AND R. E. SCHEID

formulas for derivatives of/5(t, g) and (t,/z) in T and T and for o(t), /5o(t),
l(t), and/51(t) in L,"

,(t)

dO

(6.19a)
+ A(O)(t,O)dO,
()

(6. ) o(t)= -Bo(t)(t),
(6.c) (t, )o, _o(t)(t, ),

(t, ),o P(t, )o,_o(t)(t, )+Bo(t)(t,

tk tk

(t, o, o(t +-(t+o(t+
(6.19e) + r(t, t+-)’Br() d,

(6.19f)

(6.19g)
+(o(,

(6.19h) (t)1= -Bro()(t).
These expressions can be applied repeatedly to formulate derivatives on either

side of L. The smoothness ofthe solution across t is given by the inductive hypothesis.
In paicular, we have that 4o(t) has (k- 1) continuous derivatives across t and that
o(t) has k continuous derivatives across t. It then follows that (, ) has (k-1)
continuous derivatives across L and also that (, ) has k continuous derivatives
across L. This proves result (I2).

Next we consider the evaluation of these formulas at t+. The system is closed
with respect to these values except for the influence of previously analyzed values,
which can be interpreted as forcing terms. First we consider the system (6.19) with the
assumption that values corresponding to > t+ are known. We conclude from (6.19e)-
(6.19g) and previous analysis of the solution for > t+ that (t, ) has continuous
derivatives of order (k-1) across p+ and that (t) has continuous derivatives of
order (k 1) across t+.

Next we consider the system (6.19a)-(6.19h) and assume that (t) is known. We
conclude from (6.19a), (6.19e), (6.19f) and our previous analysis that o(t) has
continuous derivatives of order k across t+ and that (t, ) has continuous derivatives
of order k across p+l.

Next we consider the system (6.19c)-(6.19f) and assume that o(t) is known. By
our previous analysis we conclude that (t, ) and P(t, ) have continuous derivatives
of order (k+ 1) across L+.

We complete our analysis atp+ and P+l by an additional examination of (6.19c),
(6.19d). By our previous analysis we conclude that (t, ) has continuous derivatives
of order k across p+ and continuous derivatives of order k+ 1 across P+l. And
finally we note that result (I 1 guarantees that (t+, and (t+1, ) are in C().
This verifies result (I3) and completes the inductive argument.
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We conclude this section with a local formulation of the system (6.4)-(6.7) defined
on a closed domain. Let a and/3 be positive real numbers such that

O_<-fl < a =< T.

As illustrated in Fig. , we define the sets

W {(t,/x)l fl -<_ <- a, O_<--/x <_-- r},

(6.20) V={(t, tx)lfl<=t<=a,O<-tz<=r,t+l<=T},

Y {tl <- t<-<_ a.}.

Now let S denote the space of functions such that

" W -> R</)",
(6.21) (t,)c(v),

(t,) w\v(t,)=o.
Then S has the structure of a Banach space with the norm

(6.22) Il sup I( t, )1, (t, ) v.
The aim now is to represent the system (6.4)-(6.7) in this framework. First we make
the identification

(6.23)
(,

whereby (t, x) and/3(t, ) are likewise extended into W\ I/.
For fie S we now define the mappings

(6.24a) /[ff(a, x)]" W

\[(c, )](t,

(.4c F[(’"](’ 4;o( (->.>_-0,

(6.24d) F2[ ff(c, x)](t,

/v --w a ,W IV a

"::.’::i:i:i:::"

13 a T-r 3 a T
F6.3. Local integral formulation.
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and

(6.25a)

((l[(t, )](, t, ))(6.25b) Gig(t, )](, t, )= e[(t, )](, t, )

-[a-)n]go)-
i=1

(6.25c) ,[(t, )](, t, ) A(O)(, O) dO} (t+),

(, t+-)Sgo(), <(t+),
(6.25d) 2[(t, )](, t, )=-So()(, ).

Using these definitions, we now give a local integral formulation that is similar
to the system (6.15)-(6.17), which was derived for the case u 1. Thus for (t,) W
we have

(. f(, [(, .](, .+ d[(, ](, , . .
In particular, for T we have

(r, (r,.

IQ/, =0,(.7)
(r,=0, 0 <

e(r, =0.
This formulation of the equations is useful for both theoretical and practical purposes.
In paicular, we note that the structure is very similar to that of a parameterized
system of ordinary differential equations (see, for example, [3]).

We can study the well posedness of the syst2m as a functional equation in S.
Thus with ff(, ) given we define the mapping T". s s,

This definition leads to the estimate

where is bounded in terms of and where we define

(6.50) max {n, IBm, I1, max IAl, le(.

and we require

(.3 I(, . < , (,
Here I" I denotes the L norm. Then for suciently small I 1, r defines a contraction
mapping within some neighborhood of z(t, ) in S (see, for example, [22, p. 128]).
Thus by the same arguments that are typically applied to systems of ordinary differential
equations [3], [22], we have justification for the local existence and uniqueness of the
solutions to the integral system (6.26). This in effect completes the uniqueness argument
of Theorem 5.3.
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As we shall demonstrate in the next section, this formulation is also convenient
as a point of departure for the development of finite-difference approximations since
the integrals in (6.26) can be replaced by quadratures very easily. Then estimates for
local accuracy follow from Theorems 6.1 and 6.2, and estimates for stability likewise
follow since the discretized system also yields a contraction mapping.

7. Finite-difference approximations. In this section we consider the development
of finite-difference approximations for the optimal gain. As noted in 6, the equations
have the structure of a parameterized system of ordinary differential equations, and
the same approximation techniques can be used (see, for example, [20]). Our intent
here is not to provide an exhaustive analysis but rather to illustrate what is possible.
We consider the general system in its integral formulation (6.4)-(6.7).

Without loss of generality we can assume as in Theorem 6.2 that T Kr for some
positive integer K since the original problem can always be embedded in such a
formulation. We focus on the local integral formulation (6.26) and consider discreti-
zations of the set W (cf. (6.20)). Thus for any positive integer N we define the grid
parameter h and the grid Gh as follows:

(7.1)
Gh {(t,/xj) 0_<- i<= KN, O<=j<= N},

h r/N, ih, txj =jh.

Such a discretization is illustrated in Fig. 4. Conceptually, the limit h- 0 corresponds
to a sequence of finer and finer resolutions of W.

We now consider a set of vectors {}NKi=o that have the form

(7.2)

I)

z= ?), Oi<-NK,

J). E R(n+m)", 0 <j.- < N,

where ?) will be determined as an approximation to Y(ih, jh) on the grid Gh. Since
we are interested in pointwise error estimates, the appropriate vector norm is defined

T-r
FIG. 4. Discretization by point values.
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as

(7.3) 13il max le$l.
(J)

To determine the ^’zi s, we introduce a one-step recursive definition that corresponds
to a quadrature approximation of the integral formulation (6.26)-(6.27)

2/-- h[i+l] + hh[Z/+l], 0<= i<= KN- 1,
(7.4) z (( Q’/, o) (o, o) (o, o))

Now it is straightforward to develop notions of accuracy and stability that are
analogous to what has been accomplished for systems of ordinary differential equations
with prescribed initial conditions (cf. [20, p. 115]). Let T be defined as in (6.30) and
let be some positive constant that bounds the solution:

(7.5) sup I(t, )1< , (t,) w.
To study the accuracy of the approximation scheme we introduce the projection

A defined for i {0,..., NK} as follows"

Ai"S R(n+m)xnx(N+l),
2(t,, o)
2(t, h)

(7.6)
a,2(t, ) 2(t, 2h

2(t,, r)

Then the approximation scheme (7.4) is said to have accuracy of order p, where p is
some positive integer, if for some positive K, which depends only on y, , and p, we
have

(7.7a) A,[2(t, )]- [A,2(t, )] 0,

(7.7b) A d[i(t,)](, t,) d -hd,[A+i(,)] <K1hp+.
+l)h

As we noted at the end of the previous section, the stability of an approximation
scheme of the form (7.4) is, in general, easy to verify since a discretization of (6.26)
can also be analyzed as a contraction mapping (cf. (6.28)-(6.31)).

Now let the approximation scheme (7.4) be stable and have accuracy of order p.
It is straightforward to show (cf. [20, p. 116]) that the discretization error can be
bounded globally. More precisely, we can prove that there exists some positive K
that depends only on , , and p such that for suciently small h we have the estimate

(7.8) max Aff(, ) z< Kh
ONiNKN

This result completes our basic justification of the difference methods we employ since
the parameter K provides a modulus of convergence for the corresponding sequence
of approximations.

To implement this theory requires approximate definitions for F[. and Gh[. ].
Thus the integral equation (6.26) must be replaced by a quadrature scheme on the grid
Gh, where the value of p in (7.7b) is determined by the order of the scheme and the
smoothness of the solution if(t, ). This latter condition is settled by an appeal to
Theorems 6.1 and 6.2.



FACTORIZATION AND OPTIMAL CONTROL 1099

For example, we consider the general problem (4.1)-(4.2) with multiple delays.
First we assume that the grid is chosen so that

(7.9) ri/ h N, {1, 2, 3,..., v}.

This ensures that, for i {0,..-, NK- 1}, the integral paths that determine

[(t,/x)](o-, t,/x) do"
ti

do not cross the line segments that define the piecewise-C2 structure of the solution
(see Theorem 6.1 and Fig. 1). This justifies a second-order method (p 2 in (7.7b)).
We also can relax the restriction (7.9) to permit more general grids. Then locally the
accuracy of the quadrature approximation is no better than first order when an integral
path crosses one of the line segments (p--1 in (7.7b)); however, we can show that
only a finite number of such errors can occur along each integral path. Thus, we have
justification for a second-order method under very general conditions.

To illustrate the approach, we consider an implementation of the trapezoidal rule
as a second-order predictor-corrector method (one forward-Euler predictor followed
by two trapezoidal-rule correctors; cf. [20, p. 85]). We consider the following scalar
system (4.1)-(4.2) with two delays:

:( t) X( t) + X( rl) + x( r2) + u( t),

(7.10) rl 0.2, r2 r 1.0,

Q=I, T= 2.0.

For any integer N let the approximation using the grid (7.1) be given as in (7.2) by

(7.11) = p],

We consider approximations for the grids corresponding to

N { 10, 20, 25, 50},

and also we consider as a reference discretization

N.= 100.

According to (4.8)-(4.9) the gain at time is determined by P(t, s)=/3(t,
( s-t; cf. (6.1)). To study the convergence of approximations to P(0,/x), which
determines the gain at 0, we define the reference value

^N(j)P.= max [Po
0<--j <= N,

Then for each N, a measure of the relative error is given by

(7.12) e max
0NjN N p

since (N*/N) is always integral. In Fig. 5(a) we plot the associated quantity

(7.13) /zrq log es/lOg h

to verify the quadratic convergence of the approximations (cf. (7.8)). And also in Fig.
5(b) we plot the N.-approximation to the integral component of the optimal gain at

0 (cf. (4.7)-(4.9))"

(7.14) K(O, c)=x(-r,O)(a)13(O, c+r)+x(-r,O)(t)ff’(O, t+r2).
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,u N
3.0-

2.5-

2.0-

1.5--

1.0--

0.5--

0.0
0

5.0

4.0

3.0

2.0

1.0

K01 (0, ct)

10 20 30 40 50 -1.0 .o.e .0.6 .,0.4 .0.2 0.0

(a) (b)

FIG. 5. Example with two delays (7.10): (a) Quadratic convergence of approximations. (b) Integral
component of optimal gain.

A second example, taken from [17] and [2, p. 44], is based on a model for the
fine tuning of the mach number in a cryogenic wind tunnel. The system, having a
single delay (, 1), has the form given by (4.1)-(4.2) with

(7.15)

-a 0

Ao 0 -2bw
0 1

0 0 ka

AI= 0 0 0

0 0 0

--(0
2

0

BT=(0, m2,0), r=.33, Q=diag(104,0,0),
where the parameters l/a, m2, k, and b have the values 1.964, 36, -.0117, and .8,
respectively. We choose for the final time

(7.16) T= 6.6,

which comprises 20 delay intervals and, according to the results of [2], is sufficiently
large to ensure that the values at 0 are nearly equal to the steady-state values.

As in the first example, we consider the convergence of the gain at 0. Since
by (4.9) the integral component of the optimal gain has the form

(7.17) KI(0, a) x(-r, 0)(a)/3(0, a + r)A,
only the first component of P(0, a + r) is relevant. Then for the same values of N and
N, as in the first example, we define

P,= max
o-jN,

eN max
ojN p#

/xN log ec/log h, e" (1, 0, 0).
And thus in Fig. 6(a) we plot the logarithmic error measure /ZN. In Fig. 6(b) we plot
the N.-approximation ofthe one nonzero entry of (7.17), which is given by eT3KI(O, a)
where el (0, 0, 1) (cf. Fig. 5.14 in [2]).
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2.5

2.0--

1.5--

1.0--

0.5-

0.0
0

K01 (0, G
O.3O

0.20

0.10

I .I N 0.00
10 20 30 40 50 "0"33 "0"22 "0"11 0"00

(a) (b)

FIG. 6. Example with one delay (7.15): (a) Quadratic convergence of approximations. (b) Integral
component of optimal gain.

In a similar fashion the results of Theorem 6.2 can be used to justify the existence
of methods of arbitrarily high order for problems with a single delay and a smooth
integral term. That is, the grid defined by (7.2) ensures that the relevant integral paths
do not cross the lines that define the piecewise-C structure of the solution (cf, Fig. 4).
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A CHARACTERIZATION OF FEEDBACK EQUIVALENCE*

J. M. GRACIAt, I. DE HOYOS’, AND I. ZABALLA"

Abstract. This paper provides a new characterization of feedback equivalence that can be applied to
controllable and noncontrollable matrix pairs (A, B). This result is based on a generalization of a theorem
of Rosenbrock describing the closed-loop invariant polynomials that are attainable by applying state feedback
to a given system Ax + Bu.

Key words, feedback equivalence, state feedback, invariant factors assignment, controllability indices
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1. Introduction and notation. Let (A, B)C"" x Cnm, where C is the complex
field. Consider the ordinary state-space model

(1) ( t) Ax( t) + Bu( t).

Let us review the definition of the state feedback group (see, e.g., [6], [3], [9,
p. 118], [8, p. 122]). We consider three types of elementary transformation on the
system (1): (i) change of basis in the state space x Pz, with P a nonsingular n x n
matrix; (ii) change of basis in the input space u Qv, with Q a nonsingular rn x rn
matrix; (iii) state feedback u Fx +v. These operations transform the matrix pair
(A, B) as follows:

(1.1) (A, B)-> (P-’AP, p-1B),

(1.2) (A, B) -> (A, BQ),

(1.3) (A, B)-,(A+ BF, B).

The transformation group generated by (1.1)-(1.3) can be conveniently represented
in the following way. Let H n, m) denote the group of all nonsingular n + rn) x n + rn)
matrices of the form

with P n x n, F m x n, Q m x m. We refer to H(n, m) as the stacefeedback group. Define
a right group action of H(n, m) on C x C by

( IN 0]) i_ -1(2) (A,B),
F Q

"> AP + P BF, P- BQ).

The transformations (1.1)-(1.3) correspond to the special cases of (2), where F 0
and Q I, P I and F 0, P I and Q I, respectively.

This action yields an equivalence relation on the set C x C called the
feedback equivalence. It is of interest to know when two matrix pairs (A1, B) and
(A, B:) are feedback equivalent, i.e., belong to the same orbit. A complete system of
invariants for this equivalence relation is given by the controllability indices and the

* Received by the editors August 10, 1988" accepted for publication (in revised form) October 25, 1989.

" Departamento de Matemfiticas, Universidad de Pats Vasco, Facultad de Farmacia, Apartado 450,
E-01080 Vitoria-Gasteiz, Spain.
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invariant polynomials ofthe pair (A, B) 10, Thm. 2.12] where the invariant polynomials
of a pair (A, B) are defined as the invariant factors of the n x (n + m) polynomial matrix

[AI-A, -B].

Our aim in this paper is to provide a new characterization o[ the feedback
equivalence. We emphasize the role played by the set (feedback set of (A, B))

associated with (A, B). This set appears significantly in the study of some problems
related to a pair (A, B). So, if Inv (A, B) denotes the set of all (A, B)-invariant
subspaces, and Inv (M) denotes the lattice of M-invariant subspaces for a square
matrix M, then

Inv (A, B)= IJ Inv (A + BF)
FC

[9, 4.2]. A complex number ho is said to be an eigenvalue (or incontrollable pole) of
(A, B) if there exists a nonzero vector x e Ker B such that

ATx hoX.

Here superscript T stands for transpose. From the spectral assignment theorem [9,
p. 50] we can prove that

or(A, B) CI o’(A + BF),
FC

where r(A, B) denotes the set of eigenvalues of (A, B), and r(M) denotes the set of
eigenvalues of a square matrix M.

Let us now consider another set of matrices (extension set of (A, B))

C D
[CeCmn’Deemxm

for a given pair (A, B) C x C"". It turns out that for each of the above properties
involving (A, B) and its feedback set there is one involving (A, B) and its extension

cc C D
DC

CC B
DC

where P’C’+o C" is the projector defined by

P(Xl,...,x+ := (x,..,,x
and

if , :,. are subspaces of C"+, [5, Thm. 6.1.1, p. 190].
This extraordinary and interesting parallelism between the feedback and the

extension sets of a given pair does not end with these properties. Theorem 5.1 of [10]
and Theorem 2.6 of [11] give characterizations of all possible invariant polynomials

set. Namely,
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of the matrices belonging to the feedback and extension sets of (A, B), respectively,
and both of them are very similar. Actually, (3) is an immediate consequence of
Corollary IV of Theorem 5.1 of [10].

On the other hand, in [5] and [10] it has been proved that two pairs of matrices
(A1, B1), (Aa, Ba)Cn" C are feedback equivalent if and only if there exists
T H(n, m) such that for any pair (C, O)( C there is a pair
(rnn X (.rnxrn satisfying

T
C D Ca

As far as we know there is no characterization of the feedback equivalence in
terms of the feedback sets of (A1, B1) and (A2, Ba), and this paper is devoted to closing
this gap.

Although we have been considering matrices of complex numbers, the previous
and the following results remain valid for any arbitrary field 1, and in the sequel we
will assume this more general setting. Thus we will use the following notation. If
M e:nn, the greatest common divisor of all minors of order k of the polynomial
matrix AI-M is called the kth determinantal divisor of M and is denoted by Dk(M),
(k 1, 2, , n). :[A will be the ring of polynomials in one variable I with coefficients
in :; the degree of c :[I] is denoted by d(), and means "divides."

If x=(xl,...,xm) and y=(y,...,y,) are two nonincreasing m-tuples of
integers, x is said to be majorized by y, and we write x < y, if

xi -< yi fork=l,2,...,m-1,
i-----1 i=1

2 x 2
i=1 i=1

If (y, ., Yn) and (x, , Xm) are two tuples of integers such that y _-<. _-< y,
xl _-<. _-< x,, then we call the union of these tuples the finite sequence zl <-- za <- --<
z+m, formed by all the components y, , y, xl, , xm rearranged in nondecreas-
ing order. We denote it by

(z ,. ., z,,+m) (yl ,’" ", y,) t (Xl, ., x).

For example, if y= (1,2, 3) and x (2, 2), then y[Ax (1, 2, 2, 2, 3).
The organization of this paper is as follows. In 2 we present the main theorem,

Theorem 1. Then in 3 we give some results that are needed for its proof, namely, a

generalization of Rosenbrock’s theorem on assignment of invariant polynomials by
state feedback to the general case of noncontrollable systems (Theorem 2), and Lemma
4, which provides a method of constructing some polynomials that .interlace some
given polynomials and of satisfying a prescribed degree condition. In this way we
solve an inverse problem for polynomials. Finally in 4 we give the proofs.

2. Main result.
THEOREM 1 (a criterion for feedback equivalence). Let (A, B1), (A2, B2)G

:" :"’ be two matrix pairs. The two following statements are equivalent"
(1) (A, B1) is feedback equivalent to (Aa,
(2) For each matrix F1 5mxn there exists a matrix Fang:’" such that A + BIF

and A2+ BzFa are similar, and conversely, for each F2:" there exists an FI
such that A2"k- BaF2 and A +BF are similar.

The proof of this theorem is in 4.
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Remark. Condition (2) in Theorem 1 would not be sufficient if only one of the
conditions in it is true, i.e., there exist matrix pairs (A1, B1), (A2, B2)0:n"
that are not feedback equivalent and such that the following conditions hold:

(a) For each FI 2mn there exists an F z,- such that A +BF and A+ BF2
are similar; and

(b) There exists an F2 :’" such that for all FI :’, A+ B2F is not similar
to A + BIF.

Proof. Let us suppose m <_-n. Let A1 0, A2 0, be matrices of IF". Let B-0,
B= ()[Fn’, where I,, denotes the m x m identity matrix. It is clear that (A, B)
and (A, B2) are not feedback equivalent. On the other hand, for each F
A / B1F --0, there exists F=0:’" such that A+BF=O, and so A + BIF and
A2 + B2F2 are similar. Finally, it suffices to take F (I,, 0):’ in order to see that

and for all F:’ we have that A2/B2F is not similar to A+BF, because
A1 / B1F1 -O.

Now we explore a possible system-theoretic implication of Theorem 1. If (A, B)
C""C"" is not controllable we can define that (A, B) is stabilizable if and only if
there exists a gain matrix feedback F C such that the system (A / BF)x is
asymptotically stable, i.e., each one of its solutions x(t)-O when t-*; a weaker
property is that x(t) is bounded when t. It is well known that this can be
characterized in terms of the real parts of the eigenvalues and of" the size of Jordan
blocks in the Jordan canonical form of A+ BF [2, Thm. 5.2, p. 178], [4, p. 398]. So,
to assess the stabilizability of a system Ax + Bu by state feedback it is sufficient to
know the Jordan part of A in the Brunovsky canonical form of the pair (A, B) [5,
Thm. 6.2.5, p. 196].

If system (1) Ax + BlU is feedback equivalent to system (2) A2x + B2u,
then for each state feedback u Fx that we can perform on (1), there exists a state
feedback u Fx on (2) such that the solutions of the systems : (At + BF)x and
: (A2 + B:F)x have the same asymptotic behavior when o.

3. State feedback. The theorem of Rosenbrock [7, Thm. 4.2, Cor. 1, pp. 190-192],
[1, Thm. 4.4, p. 278] is an important result that describes precisely the invariant
polynomials that can be assigned by performing a state feedback on a controllable
.system.

Rosenbrock’s theorem can be seen as a consequence of the following theorem,
which states a characterization of the possible invariant polynomials to be assigned
by state feedback on noncontrollable systems. (We recall that a pair (A, B) is determined
up to state feedback equivalence by its invariant polynomials and controllability
indices). Although this theorem was proved in [11] we are giving it for the reader’s
convenience.

TrtEOREM 2 (invariant polynomials assignment by feedback) [11, Thm. 2.6]. Let
(A, B) :"" x:"". Let O11 ]a be the invariantpolynomials of (A, B) and kl >=" >=
k,, >-0 its controllability indices. Let y].., lY be n monic polynomials of :[A]. Then
there exists a matrix F :" such that A + BF has T , T, as invariant polynomials
if and only if

(6) (kl, , km) < (d(trm),’", d(o-1)),
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where

r :=/T-,,
fl{:=l.c.m.(ai_s,y,_,,), i=l,...,n+j, j=O, 1,...,m,

and we agree that ai yi 1 for i< 1.
We can get Rosenbrock’s theorem by setting ai 1, 1,..., n.
For the following theorem we need some additional concepts and notation. The

controllability matrix S(A,B) of (A,B):n"x:"" is the nnm matrix
[B, AB,. ,A"-IB]. If s=rankS(A,B), then s=kl+" .+k,,, where kl,’’’ ,k,, are
the controllability indices of (A, B). If all’’" la, are the invariant polynomials of
(A, B), then s= n-d(I-Ii=l ai) (see [10] or [5, Thm. 6.2.5, p. 196]).

THEOREM 3. Let (A, B):"" :"’. Let all"" la, be the invariant polynomials
of (A, B). Then, we have for k 1,..., n,

k

I-I aj g.c.d. {Dk(A + BF) F e
j=l

where Dk(M) denotes the kth determinantal divisor of the matrix M.
The proof of this theorem is in 4.
As we said in the Introduction, in the following lemma we solve an inverse problem

for polynomials. The relation between this lemma and Theorem 2 can be seen immedi-
ately.

LEMMA 4. Let m, n, s be positive integers with n>-s. Let all’’’ loin be monic
polynomials of :[A] such that i=l d(ai) =n-s. Let (xl,’’ .,x,,) be an m-tuple of
integers such that 0 <-Xl <-" <- x,, and s= xs s. Then there exist n monic polynomials
TII’’" I% of flz[A] such that

(7) Ti_mlOgilTi (i=1,’’ .,n),

(8) d(%) xj (j=l,...,m),

where

% :=
fls-1,

fl:=l.c.m.(ai_s,y_,) fori=l,...,n+j, j=O, 1,...,m;

and we agree that ai )’i 1 for < 1.
The proof of Lemma 4 will be given in 4.
Finally, the following proposition shows the almost evident fact that two m-tuples

of numbers are equal if they have the same set of upper bounds.
PROPOSITION 5. Let m, s be positive integers. Let (kl,. kl,,,) and (k2, k2,,)

2be two m-tuples of integers with k]-->’’’>-- klm-->O, kl2>.>=k =>0, ET=l ki :Ei%l ki
s, such that for all m-tuples of integers x,, >=. >- xl >- O, with ’=l xi s, we have that
(k ll, k) < (x,,,, xl) if and only if (k, k) < (x,,,, xl). Then,

(kl,’’’, k)= (k2, k2,,).
4. Proofs.
Proof of Theorem 3. Let F elf be any matrix. If Yl[""’ y. are the invariant

polynomials of A/ BF, applying (5) we have
k k

(9) 1-I as[i] Ys, k l, n.



1108 J.M. GRACIA, I. DE HOYOS, AND I. ZABALLA

Let us define the following n polynomials"

3’I := ai, 1 =< n 1, y; := an/,

where / :[A] is any polynomial of degree s, where s =rank S(A, B). These poly-
nomials satisfy conditions (5) and (6). In fact, (5) holds trivially. Now, we will compute
the polynomials fl.

Forj<m, as in+j, we have i<n+m; thus i-m<n and then %_=a_.
Moreover, for j < m, i- m < i-j and therefore ai_ [i-j; that is to say %_ a_.
Hence, for j < m we have

fl 1.c.m. (ai_j, 7i--m) ai--j, 1 n +j.

From (5) we conclude that ai_ ]%_, and so

1.c.m. (ai_ Yi--m) Yi--m, 1 < < n + m.

Consequently, for j 1,. , m- 1

n+m--1 1 n
Since d()=s=g= kg, it is clear that (6) is satisfied. Therefore, by applying

Theorem 2, there exists F such that a,. , a, are the invariant polynomials
of A + BF. Thus, for this F, we have

k

Dk(A + BF)= ag, k=l,...,n-1,

(10)
D.(A + BF) (

Now, whichever the underlying field , we can always find two polynomials, : [A such that the g.c.d, is (, :) 1. And for each one of these polynomials
there exists a matrix F" such that A+BF has a,..., a, as its invariant
polynomials, (i= 1, 2). Consequently,

(11)

(12)

(13)

where

g.c.d. (D,,(A+ BF1), Dn(A+ BF)) fl
j--1

flS=l.c.m. (a,_j, 0i) for i= 1,..., n+j,

From (9)-(11), we conclude that
k

[I cg g.c.d. {Dk(a + BF) F e :’"}, k l, n
j=l

and the theorem follows. [3

Proof of Lemma 4. The lemma will be proved if we can find n+ m monic
polynomials 11""" IOn+m such that 0 1, 1 _-<iN m, with the following properties:

O, la,[O,+, (i=1,’’ .,n),

d(crj)=xj (j=l,.’., rn),
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In fact, if we find these polynomials and we set

")/ :’" I]lm+ 1,’’’, n

then y,..., y will satisfy (7) and (8).
First suppose that there exists an irreducible polynomial bo :[A such that ai

for 1,. , n. Let do be the degree of bo. Thus, (y,. , y,) is an n-tuple of integers
such that 0 <y<... < y, and do 7= Yi n s.

Let qj and r be the quotient and the remainder obtained from the Euclidean
division of xj by do:

x qdo+ 3, O<= rj < do (l___-j=<m).

We define

(z,..., z,+,,):= (Yl,’",Y,)I.-J (ql,’", q,,)

(yl, Yg, q, Yg+l, Yg, q2, Yg+,

Yg.,, q,,,, Yg,.+l, Y,,).
So, for 1, , m and agreeing that go := 0 and g,,+ := m, we have that

Zi Yi-t+l for gt-1 d- t, gt d- t- 1,

zi qt for gt + t,

and z < z < < Zn+m.
Since E"=lY=<n-s and =q=< s, we have that yl y=0andq

q,,_ 0. Therefore, z z,, 0.
Now let k{1,...,n}. Then there exists t{1,...,m+l} such that k

{g,_ + 1,. , g,} and by the definition of z it follows that

(14) Yk Zk+t-l"

From (14), we get

(15) zi<-_ yi<=zi+,,, l <=i<=n.

Let us define b := max (y_j, z), for 1, ., n +j, j 0, 1, , m. We agree that
y := 0 if < 1 Let us call b := "+J= b for j=0, 1,..., m. Next, we prove that

(16) q=bJ-bJ- forj=l,...,m.

For this, we must compute b for each i= 1,. ., n +j and each j 0, 1,. ., m.
If -<_ j, then b max (y_, z) z.
If i>j, then there exists an integer k, 1 _---k <- n, such that i= k+j. Then, by (14),

Yk Zk+t-1

with { 1, , rn + 1 } such that g,_ + 1 k _<- g,, and thus

b max (Yk, Zk+)= max (Zk+,_, Zk+).
Now, two different cases are possible:
(i) If j >= t- 1, then b Zk+j Z,
(ii) If j < 1, then b Zk+,- Yk Y-.
It is easy to see that (i) holds if and only if j+ 1 =< i=< g++j and that (ii) is

equivalent to g+ +j + 1 -<_ n +j. Therefore, b z for 1, , gj+ +j, and b y_
for g+ +j + 1, , n +j. Then for j 0, 1, , rn b z +. + zg++j + yg++ +
..+y,, and for j=l,...,m b-=Zl+...+Zg+j_+yg++...+y,=z+...+

Zgj+j_ "Jr- Yg+l -k "4r Ygj+q-. Ygj.++l 4r q- y,, z .dr.. .-Ji- Zgj+j_ + Zgj+j+ -Jr-.. + Zgj+l+j.dr-
yg++ +... +y,,. Thus b- bJ-= Zg+j=qj for j 1,..., rn and (16) holds.



1110 J. M. GRACIA, I. DE HOYOS, AND I. ZABALLA

Now let us put

0i := q)’, 1 _-< _-< n,

I]ln+i:= t)n+iA ’, l<i<m.

Then for j 1,. , m we have the following: If 1 _<- <- n, then/3 l.c.m. (ai_j, 0i)
b’x(Y,-"z,)’, if n + 1 < < n + m, then fl (ax(yi-J’zi), ri. Thus,

Therefore,

and consequently,

and

Moreover, by (15),

n+i1 rias ffn/ bo we have that

d(%) qjdo+ r

lfi[Oi, 1 <= <= n,

a[b zo,/., l <- <= n,"

al@+,,, 1 <= <- n.

In the general case, there exist irreducible polynomials b,. , bp IF[A such that

a ch ck Ypp l n.

Let dl be the degree of b. Let q and r the quotient and the remainder of the
Euclidean division of xj by dl"

x qjd +
In this case it suffices to take

where

0<_-r<d forj=l,-..,m.

6k:=b’’’’b" fork=l,...,n,

z’’/kArk fork=l m,o/ := 4’ ""+

(z,,,’’ ", z,,,+,):= (y,,,." ", y,,) U (q,,’" ", q,)

zh:=y,_, for h=2,3,...,p and k=l,...,n+m,

agreeing that Yhi :’- 0 for < 1.
Actually, from (15) and (16) we deduce

(17) Zi<--_yi<=Z.i+r,, (i=1," ’’,n), and

n+j n+j--1

(18) x d max (y,,_, Zli)- Y max (Yl,i-j+l, Zli) -b j
i=1 i=1

and for h =2,...,p we have that

(19) ZhiYhiZh.i+ (i= 1,-’’, n), and

(20)

(j= 1,’’’ ,m);

max (Yh,i-j, Zhi)--Yh,i-j for i= 1,.. ", n +j and j O, 1,. ., m,
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and therefore

n+j n+j--1

max (Yh,i-j, Zhi) ., max (Yh,i-j+l, Zhi) 0 for h 2,. ., p.
i=1 i=1

From (17) and (19) we get (12), and (13) follows from (18) and (20), and the
lemma is proved.

Remark. As by hypothesis i=l d(ai) n-s and = x= s, from (8) we have
that i= d (y,) n.

Proof of Theorem 1. First we will prove that (1) implies (2). In fact, this is an
immediate consequence of the definition of feedback equivalence. Actually, for each
F1 :mn we have that the pair (A/ B1F1, B1) is feedback equivalent to the pair
(A1, B1). But, on the other hand, this pair is feedback equivalent to (A2, B2). Thus
there exist matrices K :mn and P :n, p invertible, such that

A1 / B1F1 P-I(A+ BEK)P.

If we take F2 :- K we see that A+ BEE2 is similar to A / BF1.
We can prove in the same way that for each F2 F there exists F1 :n such

that A/ BEF and A1 / B1F are similar.
Now we will prove that (2) implies (1). To prove that the matrix pairs (A, B)

and (A2, BE) are feedback equivalent, it suffices to show that they have the same
invariant polynomials and the same controllability indices. Now, two matrices are
similar if and only if they have the same determinantal divisors; condition (2) implies
that for each k-1,..., n the sets of polynomials (Dk(A+BF)IFIF’ and
{Dk(A2/ BEF2)lF2[Fmxn) are equal. Hence, applying Theorem 3, we have that the
invariant polynomials of the pairs (A1, B1) and (A, BE) are the same.

Let (k,. , k) with kll 2. 2 kl 0 be the controllability indices of (A1, B1),
and (kl, k) with k122... k20 those of (A2, B). Since the sum of the
controllability indices and the degrees of the invariant polynomials of a pair is the
number n of its rows, we have that

2., ki
i=1 i=1

Let us consider any m-tuple of integers (x,, , x), x,, >=. x >= 0, such that

(21) (kl,’’’, k)< (x,,... ,Xl).

By Lemma 4, for this m-tuple (x,,..., Xl) there exist n monic polynomials
3’11" I/ of :[A satisfying (7) and (8). Then applying Theorem 2 to the pair (A, B)
there exists a matrix Fle:" such that AI+BF1 have )q,...,),n as invariant
polynomials. By (2), for this matrix F there exists a matrix F2 e :" such that A + B1F
and A+B2F_ are similar. Thus, ’1,’’’, )’ are also the invariant polynomials of
A2+ B2F. Applying again Theorem 2 it follows that 3’1," ", )’ necessarily satisfy

(k12, k2) < (d(tr,), , d(trl)).

By (8), we have that

(22) (k2, k) < (Xm, x,).

In an analogous way we prove that (2) implies (21). Therefore, by Proposition 5,
we have that

(kl,’’’, k)= (k,..., k).
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AN EXTENSION OF THE MAXIMUM PRINCIPLE FOR A CLASS OF
OPTIMAL CONTROL PROBLEMS IN INFINITE-DIMENSIONAL SPACES*

N. BASILE] AND M. MININNI

Abstract. An extension of the Pontryagin maximum principle and of the transversality conditions for
a class of optimal control problems for a system of a parabolic equation and an ordinary differential equation
in a Hilbert space are given. In particular, the time optimal problem for some of these systems is considered.
As an application the optimal control of the diffusion of a class of epidemics is studied.

Key words, optimal control problems, maximum principle, transversality conditions, parabolic equations
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1. Introduction. It is well known (see [3]) that the Pontryagin maximum principle
can be extended to optimal control problems for evolution equations in infinite-
dimensional vector spaces with free final state. However, if there is a constraint on
the final state, then the maximum principle does not hold in general (see [2, p. 251]).

Recently, Fattorini and Frankowska [12], [13], by making use of the Ekeland’s
variational principle, give some conditions on the reachable set and on the target set
in order to get an extension of the maximum principle to a large class of problems in
infinite-dimensional spaces.

On the other hand, Li and Yao [16] by making use of the Eidelheit separation
theorem and of an extension of the Uhl’s theorem extend the maximum principle and
the transversality condition for integral systems with time lags, when the target set is
convex and the final time T is fixed. In the same frame is a recent paper by Li and
Chow [15] for optimal periodic control of functional differential equations.

In this paper, by using the same arguments as Li and Yao, we extend the maximum
principle and the transversality conditions to optimal control problems for a system
of a parabolic equation and an ordinary differential equation in a Hilbert space.
Moreover, for a class of such problems we can consider the case when the final time
T is unknown; in particular, we can consider the time optimal problem for some of
these systems.

As an application we study the optimal control of the diffusion of a class of
epidemics that initially motivated this research.

The paper is organized as follows. In 2 we introduce the notation and state the
main results, in 3 we collect some remarks and prove some useful lemmata, and in
4 we prove a lemma that has a crucial role in the proof of the theorems stated in
2. Finally, in 5 we prove these theorems, and in 6 we give the mentioned application

to the study of epidemics. As an appendix to the paper we prove in 7 an existence
and uniqueness result for linear evolution equations, which is used to solve the adjoint
equations. We suspect that the result is known, but we have not been able to find it
explicitly.

2. Notation and statement of the main results. Let X1, H be real separable Hilbert
spaces such that H c X---X c H’, H dense in X, endowed, respectively, with the

* Received by the editors December 2, 1988; accepted for publication (in revised form) October 30,
1989. This work was supported by M.P.I. of Italy, "Fondi 40%: Equazioni differenziali e calcolo delle
variazioni" and "Fondi 60%: Universit/ di Bari e Universit/ della Calabria."

" Dipartimento di Matematica dell’Universita, via Guistino Fortunato, 70125, Bari, Italy.
$ Dipartimento di Matematica dell’Universit della Calabria, 87036 Arcavacata di Rende (Cosenza),

Italy.
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inner products (.,.), ((.,.)) and the norms I" and II’ll. Moreover, let us denote by
(.,.) the canonical pairing between H and H’, and obviously we have (x, y)= (x, y)
for all x X1, y H. Let W(0, T; H) be the Hilbert space of the (classes of) functions
x E L2(0, T; H) whose derivatives x’ in the sense of distributions belong to L2(0, T;
endowed with the norm

Ilxll- [[[x(t)[l / x’( t) ,] dt

Moreover, let X2 be another real separable Hilbe space whose norm is still denoted
by l" , and let us put X X x X2 endowed with the canonical norm ix[ ([x]2 + Ix2])/2.
Finally, let U be a subset of a Banach space Z, let (0, T) be the space of the strongly
measurable functions from [0, T] to Z such that u(t) U for almost all t, and let
ad(0, T) be a subset of (0, T) such that:

() If Vl, v,. ., Vk ad(0, T) and E, E2,. ., Ek is a measurable paition of
[0, T], then il Xivi ad(0, T) (where Xi is the characteristic function of E).

Now consider a linear continuous self-adjoint operator A from H to H’ such that for
some a>0, flRwehave
C2.1) (Ax, x> Ilxl[ =-  lxl2 for all x H,

let be a Frech6t differentiable mapping from R+ x X into R, and let f= (f,f2)=
f(t, x, u) be a mapping from [0, +[xX xX x U to H’x X: satisfying the following
conditions for all T> 0:

(f.1) f is Frech6t differentiable with respect to x (x, x2);
(f.2) for all (x, u) 6 C(0, T; X) x ad(0, T) we have for some q > 2:

(1) f(., x(. ), u(. )) T; H’)x T;X:),
(2) (’, x(" ), u(" ))(z(" )) is strongly measurable for all z L(0, T; X),
(3) [l( t, (x( t), u( t)))]l M( t) almost everywhere in [0, T] for some M
Lq (0, T; R);

(f.3) for all X there exist r>0, ’[0, tieR+ and L’[0, T]x UR+ such that"
(1) for all u 6 a0(0, T) the mapping L(., u(. )) belongs to L2(0, T; R),
(2) (r)=o(r) as r0,
(3) for all [0, T], u U, x, y in the ball with center and radius r we have

IIf(t, x, u) -f(t, y, u)ll L(t, )lx el, and
II(A(t, x, u)-A(t, , 1).

We are interested in the study of the following optimal control problem:

(P) Minimize the functional J( T, x, u) (T, x(T)) with (x, u), x (Xl, xz) such
that

x W(O, T; H) C(O, T; X), x: AC(O, T; X:), u a(0, T),

x(t) + Axe(t) =f(t, x(t), u(t)) a.e. in [0, T],
(2.2)

x(t) =f2(t, x(t), u(t)) a.e. in [0, T],

x,(O) x,, x,_(o) ,
satisfying the constraint on the final state

(2.3) T, x(T)) c R+ x X.
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To this end let us consider the Hamiltonian function

H(t, x, u, p)= (f(t, x, u), p)= (f(t, X1, X2, U), pl)’" (fe(t, X, X, U), p)

for all [0, T], x (x, x) X, p (Pl, P) H X, u U. Then we have the follow-
ing theorems.

TIaEOREM 2.1. Let T, x, u) be an optimal solution of (P) in the case when the final
time T isfixed, (i.e., {T} x B with B X), and assume that B is convex with nonempty
interior. Then there exist Ao {O, 1),p (W(0, T; H)+ W’q*(0, T; X))fq C(0, T; X)
L(0, T; H), q* 2q/(2+ q), and p AC(0, T; X), which satisfy the nondegeneracy
condition

(2.4) (Ao, p(T)) (0, 0),

the adjoint equations

p(t)-Apl(t)=-Hx,(t,x(t), u(t),p(t))=-B*l(t)pl(t)-B*21(t)p2(t) in [0, T],
(.)

p(t)=-Hx2(t,x(t), u(t),p(t))=-B*2(t)pl(t)-B*2(t)p(t) in [0, T]

(where Bo(t) (f)j(t, x(t), u(t)), [0, T], i,j {1, 2} and * denotes the adjoint), the
maximum principle

(2.6) H(t, x(t), u(t), p(t)) dt <= H(t, x(t), v(t), p(t)) dt for all v e 0ad(0 T),
o

and the transversality condition

(2.7) (p(T) Aox( T, x(T)), - x(T)) <- 0 for all B.

Moreover, we have pl W(O, T; H) if (f.2)(3) holds with q=+ and pie

C(0, T; H) fq wl’2(0, T; Xl) ifpl(T) H.
THEOREM 2.2. Assume now that T, x, u) is an optimal solution of (P) in the free

final time case, and assume that"
(1) dp does not depend on Xl,

(2) the target set has the form R+ x X x B and B is a convex subset ofX2

with nonempty interior,
(3) there exists lim_T- f(t, x(t), u(t))=f(T, x(T), u(T)).

Then there exist Ao {0, 1}, p (Pl, p2) (C(0, T; H) VI wl’2(0, T; X1)) x AC(O, T; X2)
satisfying (2.4), (2.5), (2.6), and the transversality conditions

(2.7a) Pl(T) 0, (P2(T) Aox2( T, x2(T)), : x2(T)) -< 0 for all 2 B2,

(2.7b) H( T, x(T), u(T), p(T)) (f-( T, x(T), u(T)), p(T)) _-< -AoC’t( T, x(T)).

THEOREM 2.3. If dp(t, x) t, (i.e., if (T, x, u) is a solution for a time optimal control
problem for (2.2)-(2.3)), then the assertion of Theorem 2.3 holds with condition (2.7b)
replaced by

(2.7b’) H( T, x(T), u(T), p(T)) (f-( T, x(T), u(T)), p(T)) -Ao.
An interesting variant of problem (P) is the following:

(P’) Minimize the functional J( T, x, u) ,I( T, x(T)), where (x, u) is a solution of
(2.2) satisfying the constraint on the final state (2.3) and a finite number of
isoperimetric constraints of the form

(2.8) hi(u(t)) dt_-< const. ci, i= 1,...,
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where hi, h2," , ht:Z- R+ LI {+} and Oad(O T) is the set of all u (0, T) such
that hi(u(. )) is summable for all j. (Note that aa(O, T) so defined satisfies condition

Then we have the following corollaries.
COROLLARY 2.4. Under the assumptions of Theorem 2.2, let T, x, u) be a solution

of (P’). Then there exist Ao {0, 1},/xl,/-2, ,/xt 6 R and p (pl, P2), which satisfy the
nondegeneracy condition

(Ao,/x,’’’ ix,, p( T) # O,

the adjoint equations (2.5), the maximum principle

H(t, x(t), u(t),p(t))+ E tx,h,(u(t)) dt
i=1

<-- H(t,x(t),v(t),p(t))+ E txihi(v(t)) dt forallvRad(O, T),
i=1

and the transversality conditions (2.7a), (2.7b), and

(2.7c) i>-O and x=O if h(u(t)) dt < c.

COROLLARY 2.5. The assertion ofCorollary 2.4 holds with (2.7b) replaced by (2.7b’)
in the case of a time optimal problem, i.e., when dp( t, x)= t.

Remark 2.6. The maximum principle (2.6) takes the more familiar form:

(2.9) H(t, x(t), u(t), p(t)) min H(t, x(t), v, p(t)) a.e. in [0, T],
vU

if we assume that 0ad(0 T) contains the constant functions v(t) v for all v U and

(2.10) there exists a subset S of [0, T] such that meas S 0 and for all v U, S
we have lim,_o 1/p tt_p (f(s, x(s), v), p(s)) ds (f( t, x( t), v), p( t)).

(Note that (2.10) holds, for example, if the mapping f(., x(. ), v) is continuous for all
v; in particular, it holds in the case where f is independent of t.)

In fact, let us fix t]0, T[\S such that is a Lebesgue point of
(f(., x(. ), u(. )), p(. )) and v U, and for p > 0 sufficiently small let us put

vp(s)=yu(s)[ for sO_It-p, t],
v for s[t-p, t].

Then we have that vo ad(0 T), and therefore

l for0<--_ (H(s, x(s), vo(s), p(s))- H(s, x(s), u(s), p(s))) as
P

=1 (f(s, x(s), v)-f(s, x(s), u(s)), p(s)) as;
P

hence by passing to the limit as p-*O+, we have O<-(f(t, x(t), v)-f(t, x(t), u(t)), p(t)),
i.e., (2.9).

In a similar way we prove that (2.6’) takes the more familiar form

(2.9’) H(t,x(t), u(t),p(t))+ E txih,(u(t))=min H(t,x(t), v,p(t))+ , tx,h,(v),
i=1 vU i=1
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if (2.10) holds. (Note that v(t) V 0ad(0 T) if and only if hi(t) < q-cX3 for all i, but
tzihi(v)=+c>H(t,x(t) u(t),p(t))+we have H(t, x(t), v, p(t)) +Z,=

h,(u(t)) if h,(v)=+ for some i.)i=1

Remark 2.7. With obvious modifications in the proof we can obtain the preceding
results also in the case when the operator A is replaced by a family (A(t)),,o.r of
linear bounded self-adjoint operators from H to H’ that are uniformly coercive with
respect to land such that []A(t)-A(s)]]c]t-s] for some c>0, a]0, 1[.

This can be used, for example, in the applications given in 6, where we can
reasonably assume that the diffusion of the epidemic is influenced by seasonal factors.

Remark 2.8. Note that (f.2) holds, for example, if
(1) f(t,x, u) and f(t, x, u)y are strongly measurable in for all (x, u, y) and

continuous in (x, u, y) for almost all t;
(2) for all compact subsets K of X there exist q > 2 and M L(0, T) such that

]]A( t, x, u)ll + lfz( t, x, u)] + lL( t, x,

for all x K, u U and for almost all [0, T].

3. Some generalities on the evolution equations and preliminary lemmata. First of
all note that withot loss of generality we can assume fl 0 in (2.1).

Remark 3.1. It is well known (see [17, p. 116]) that W(0, T; H) is contained in
C(0, T; X) in the sense that if x W(0, T; H), then there exists Y C(0, T; X) such
that Y(t)=x(t) almost everywhere. Moreover (see [17, pp. 116-124]), for every g
L2(0, T; H’), x0 X, the evolution Cauchy problem

x’( t) + Ax( t) g( t), [0, T],
(3.1)

x(0) Xo

has a unique solution x W(0, T; H) C(0, T; X1) and (for some e > 0) we have

(3.2) Ilxll c(Ixol + Ilgll).

Finally (see [18, p. 76]), -A is the infinitesimal generator of an analytic semigroup G
on X and H’ such that for some c > 0 we have

(3.3) Ia(t)XollXol, II(t)xoll.,cllXoll,, Ia(t)XolCt-’/ZllXoll.,;
moreover, the unique solution x x(t) of (3.1) can be represented in the form

(3.4), x(t)=G(t)Xo+ G(t-s)g(s) ds, t6[0, T].

From (3.4), (3.2) and the fact that

;o’Ix(t)l=-Ix(O)l== (Ix(s)12)’ds [llx(s)ll+llx’(s)ll,] dt,

it follows that

(3.5) G(t-s)g(s) ds c2 IIg(s)ll ds for all [0, T], g L2(0, T; H’).

Remark 3.2. For all [0, T] let B(t) be a linear continuous mapping from X
in H’ such that B(t)x is strongly measurable in for all x and IIB(t)ll L(t) for some
square summable function L. Then by means of the usual successive approximation
technique we easily show that for every X, g L2(O, T; H’) the Cauchy problem
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y’( t) + Ay( t) B( t)y( t) + g( t),
(3.6)

y(O)=,

tc[0, T],

has a unique solution in W(0, T; H)f) C(0, T; X1).
Remark 3.3. Under the assumptions of the preceding remark, if L c Lq(0, T),

q > 2, then we can prove (see Theorem 7.1 in the Appendix) that the linear Cauchy
problem

p’( t) + Ap( t) B*( t)p( t), tc[0, T],

p(0) r/

(where B*(t)" H- XI denotes the adjoint operator of B(t)), has a unique solution
pc C(0, T; X1) f’) L2(0, T; H) with p-G(.)rlc wI’q*(0, T; X1), q*- 2q/(2+ q).

Actually, p G(. )r/c wl’2(0, T; X1) t’] C(0, T; H) (and therefore p c W(0, T; H))
if q=+. Moreover, if r/c H then we have pc wl’2(0, T; X1) C(0, T; H), also
when q 2.

Finally note that by means of the change of variables s T-t we also have that
the problem

(3.7)
p’( t) Ap( t) -B*( t)p( t),

p(T)= ’r/

tC[0, T],

has a unique solution as described above.
Remark 3.4. Under the assumptions of Remarks 3.2 and 3.3, if y, p are solutions

of (3.6) and (3.7), respectively, then we have that

(p(T), y( T))- (p(O), y(O)) (g(s), p(s)) ds.

This easily follows from the fact that the mapping y( t) (p( t), y(t)) is absolutely
continuous and (almost everywhere in [0, T]) we have

y’(t) (y’(t), p(t)) + (p(t), y(t)) + (pi(t), y(t)),

where Po c W(0, T; H), p c L2(0, T; H) (-] Wl’q*(0, T; X1), are solutions of the Cauchy
problems p-Apo=O, po( T) =p( T), and p-Apl=-B*(.)p, p,(T) 0.

Remark 3.5. With the same arguments used in the proof of Lemma 6.2 of [14,
p. 36], we prove the following Gronwall type inequality.

Assume that O<-_q(t)<-M+oL(s)q(s)ds for all tc[0, T] where M>0, Lc
LI(0, T;R), L->_0, and q c L(0, T;R). Then we have q(t)<-Mexp(’oL(s)ds) for
all c [0, T].

The following lemma whose proof can be found in [15] has a crucial role in the
following.

LEMMA 3.6. Let A > O, Ak > 0 with ,ki= ti-- 1, let X be a Banach space, and
let gl," ", gk C Li(O, T; X). Then for all e c ]0, 1] there exists a family of measurable
mutually disjoint subsets E, ., Ek of [0, T] such that ik=l meas (Ei) eT and

e Aigi(s) ds- gi(s) ds < e 2 for all c [0, T].
i=1 i=1 EiN[O,t

LEMMA 3.7. Let A > O, Ak > 0 with E k
i= 1i--" 1, let X be a Banach space, and

let gl, gk be mappings from [0, T] [0, T] to X such that

(1) g,(t,. LI(0, T; X)
(2) lim,_., ro Ig,( t, s) g,( to, s)l ds 0 for all to c [0, T].
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Then for all e ]0, 1] there exists a family of measurable mutually disjoint subsets
El, Ek of [0, T] such that i=lmeas(Ei)=eTand

e L Aigi(t, s) ds gi(t, s) ds < 2e 2 for all [0, T].
i=1 i=l

Proof. In fact, by assumption the mappings - gi(t, are continuous (and there-
fore uniformly continuous) from [0, T] in LI(0, T; X). Hence for e >0 fixed there
exist 0 to < tl -" ti-’- T such that

T E2
(3.8) Ig,(t’, s) gi( t", s)l ds <-o

for all t’, t"6 [t_, tj], j 1,..., I.

Now let us put hi(s) (gi(to, s),. , gi(tl, S)) for all 1,. , k, s [0, T]. Then it is
evident that hi6 LI(0, T; X//I). Therefore by Lemma 3.6 there exists a family of
measurable mutually disjoint subsets El, Ek of[0, T] such thatki=1 meas (El)-- eT
and le 0.k Aihi(s) ds--ik= to, tl hi(s) as < e 2, i.e.,i=1 EiO

Ioe Aigi(tj, s) ds- L gi(t, s) ds < e 2 for all
i=1 i----1 Eif-)[O,t

Then for all t_, tj], j 1,. ., we have

e 2 Aigi t, s) ds , gi t, s) ds
i=1 i=1 Eif’l[O,t

<-- e Ailgi( t, s) gi( t, s)[ ds +
i=1 i=1 Eif-’l[O,t

-+- E A igi t s) ds
i=1 i=1 EiCl[O,t

Igi( tj, S) g,(t, s)l ds

gi( t., s) ds < 2e 2.

LEMMA 3.8. Let G be the semigroup generated by -A (see Remark 3.1), let
x Lq(o, T; H’), q > 2, and let us put

y( t, s) { Go s)x(s) for t>=s,
for t<s.

Then y LI([0, T] x [0, T], X) and for almost all to [0, T] we have

lim ly(t, s) y( to, s)l ds O.
t->

Proof The first part of the assertion follows from the fact that evidently y is
strongly measurable and we have by (3.3)

Io ;o Io ;oly(t, s)l as at IG( s)x(s) as at

<=c (t-s)-’/211x(s)llH, dsdt

where c’= c(I o..o’/2 dr) /q’ and (1/q)+(1/q’)= 1.
Now, to prove the second part of the assertion, let us fix to. Then for > to we have

[y(t,s)-y(to, S) ds= I[G(t-s)-G(to-S)]X(S) ds+ [G(t-s)x(s)[ ds.
to
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The first addend tends to zero as t- to by the Lebesgue convergence theorem, since
by (3.3) we have

[[ G( s) G( to- s)]x(s)] J( G( to)- I)( G( to- s)x(s))l <= 2IG( to- s)x(s)],

whereas the second addend tends to zero since by (3.5) we have

IG(t-s)x(s)l ds<--c (t-s)-l/llx(s)llH, dS<-cllxll, r-"’/2 &r
to to

On the other hand, for < to, we have

Io Ioly(t,s)-y(to, S)[ ds= IG(t-s)[I-G(to-t)]x(s)[ ds+ IG(to-S)X(S) ds.

Once again the second addend evidently tends to zero, whereas the first one tends to
zero by (3.3), the H61der inequality and the Lebesgue convergence theorem. (Actually
it is majorized by c’({ II[I-(to-t)]x(Oll,d)/" and [l[I-G(to-t)].
(1 + c)llx(s)[[H, by (3.3).)

4. A basic lemma. From now on let us fix a solution (x, u) of (2.2) and let us
denote by A, G(t), and B(t), respectively, the matrices

(A 0i) (G(t) Ol) and (B,(t) B12(t))0 0 ,2,(t) ,22(t)

where Bo(t)=(f);(t,x(t),u(t)), for all t[0, T], i,j{1,2}). Then by (f.2)(3) and
Remark 3.2 with A, B, , g replaced by A, B, (1, 2), g (g, g2), We have that for
all v ad(0, T) the linear problem

y() + Aye(t) ,( t)y,(t) + ",2(t)y2(t)+A( t, x(t), v(t)) -A( t, x(t), u(t)),

(4.1) y(t) "2,(t)y,(t) + "22( t)y2(t) +/2(t, x(t), v(t)) -/2( t, x(t), u(t)),

y,(O) =0, y(O) :0,

has a unique solution y= (y, y). Then we have the following lemma.
LEMMA 4.1. Let usfix v, Vk aa(0, T) and A1 >= O, Ak > 0 with k= Ai=

1, and for all let us denote by y the unique solution of (4.1) with v vi. en there
exists Co> 0 such that for all e ]0, Co[ there exists (x, u) solution of (2.2) such that

X X k

z- converges to y Aiy in C(0, T; X1 x X2) as e 0.
i=1

Proof First of all note that for all i= 1,. ., k we have

(4. (= (-s[(s(s+f(s,x(s, v(sl-f(s,x(s, u(s] s.

Now for all i= 1,. ., k let us put

hi(t,s)=G(t-s)[f(s,x(s), vi(s))-f(s,x(s), u(s))] if

0 if s> t.

By (f.2)(1) and Lemma 3.8, we have that

h L’([O, T] [0, T], X, X) and lim hi t, S) hi to, s ds O.
t-->



AN EXTENSION OF THE MAXIMUM PRINCIPLE 1121

Hence by Lemma 3.7 for all e > 0 there exists a family of mutually disjoint measurable
subsets El, Ek of [0, T] such that ki:1 meas (Ei) eT and (for all [0, T])

i=1 Eifq[O,t
)h,(t, s) ds e i h,(t, s) ds+ r(t, e)

i=1

with r(t, e)l <- 2e.

Now let us put

Vi(t) if Ei
u(t) k

u(t) ift U Ei.
i=1

Evidently, u 0ad(0 T) by condition (R); moreover, by (4.2) and (4.3) we have

G(t s)[f(s, x(s), u(s)) f(s, x(s), u(s))] ds

(4.4)

--E
i=l

G(t-s)[f(s, x(s), vi(s))-f(s, x(s), u(s)) ds]+ r(t,

E Ai yi_ G(t-s)B(s)yi(s) ds + r(t, e)
i=1

)t)- G(t-s)B(s)y(s) ds+r(t, e)

Now the proof of the assertion can be split into the following two steps:
Step 1. For e > 0 sufficiently small the Volterra integral equation

(4.5) x(t)=G(t)x+ G(t-s)f(s,x(s), u(s)) ds, t[0, T]

(and therefore problem (2.2)) has a solution x (xl, Xe2) C(0, T; X); moreover,
x x as e - 0 and z(t) (x(t) x(t))/e is uniformly bounded with respect to e and t.

Step 2. z is uniformly convergent to y as e- 0.

Proof of Step 1. By using a compactness argument it is easy to deduce from (f.3)
that there exist r>0, L:[0, T] UR+ and o :[0, r]-R+ satisfying (f.3)(1), (f.3)(2)
and

II/(t, y(t), u) -f(t, z(t), u)ll L(t, u)ly(t) z(t)l,

(t, y(t), u) -f( t, x(t), u))(y(t) x(t))ll :< L( t, u),(ly(t) x(t)l)

for all [0, T], u U, y, z in the ball with center x and radius r in C(0, T; X). From
this and from (f.2)(3) it follows that there exist r>0, o :[0, r]- R/ satisfying (f.3)(2),
f_,= L(. u(.)) +,k L(" v,(’)) L2(0, T) and M Lq(O, T), q > 2 such thati=1

(4.6) IIB(t)ll=llfx(t,x(t), u(t))ll<M(t), IIA(t,x(t), v,(t))llM(t) (i--1,.*.,k),

(4.7) Ilf(t, y(t), u(t))-f(t, z(t), u(t))ll <-_(t)ly(t)-z(t)l,

(4.8) II(f,,(t, y(t), u(t))-fx(t,x(t), u(t)))(y(t)-x(t))l[<- (t),(ly(t)-x(t)l)

for all [0, T] and for all y, z in the ball with center x and radius r in C(0, T; X).
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On the other hand, by (3.5) we have for some Cl > 0

(4.9) G(t- s)z(s) ds <-_ c, IIz(s)ll 2 ds

for all 6 [0, T], z (z, z) L2(0, T; H’x X2).
Now, for all e > 0, t, n, let us put

x(t)=x(t)=G(t)x+ G(t-s)f(s,x(s), u(s)) ds,

n+lx (t)=()x+ (-s)f(s,x(s), u(s)) s.

By (4.4), (f.3)(1), (4.6), and (4.9), for all re[0, T], e < 1, we have

lx( -x(ll (-s[f(s,x(s, (s-f(s,x(s, u(s] as

( [Io )e sup [y(t)l+Cl I[B(s)y(s)llds +2 =ec.
kOtT

Therefore, if we put c=c,[[]] and eo= min (1, r/ce), then for all e <eo we have

0[]x’-x[= sup Ix(t)-x(t) <ec <re
OtT

Now by induction it is easy to see that for such e > 0 we have (by (4.7) and (4.9))

C
Ix(-x(l

C
Ix()-2+1() ll/-/ll-

This proves that the sequence (x) converges to some x in C(0, T; X), with
llx()- x()ll eCllx -xll <= ece < r, for all e [0, T], e < eo From this it follows that
x x in C(0, T; X) as e 0, that

(4.0 (1 I(x(- x(/1 c3 ce,
and that x is a solution of the Volterra integral equation (4.5), since by (4.7) and (4.9)
we have

o
( s)[f(s, x(s, u(s f(s, x(s, u(s] s

c ((slx( x(sl as

Proof of Seep 2. By (4.4) and the fact that

f(s,x(s, u(s-f(s,x(s, u(s= fx(s,x(s+(s, u(s((s ,
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we have that

(4.11)

Now the first addend of the right-hand side of (4.11) tends to zero uniformly with
respect to t. In fact, for cr > 0 fixed, by (f.3)(2) and (4.10) there exists el > 0 such that
for all e < el, s [0, T], z e [0, 1] we have

II[Z(s, x(s) / -ez(s), u(s)) f(s, x(s), u(s))]z(s)l <-- f(s)(lez(s)l)/e
<-- ()1z(8)1--< oc3(s).

From this by (f.2)(2) and (4.9) it follows that for all e < el, [0, T] the norm of the
first addend of the last term of (4.11) is bounded by

On the other hand, by (4.6) and (4.9) the second addend of the right-hand side
of (4.11) is bounded by

c (2M(s)lz(s)[) ds 2ClC M(s) ds
E E

which tends to zero uniformly with respect to as e-* 0 since meas E e T.
Finally, the third addend of the right-hand side of (4.11) is bounded by

c (M(s)lz(s)- y(s)l) ds

Hence by (4.11) there exists tr= tr(e)>0 such that tr(e)-0 as e0 and

2[z(t)-y(t)[<-c, (M(s)lz(s) y(s)l) ds+o-(e).

From this and Remark 3.5 it follows that

Iz(t)-y(t)l<-r(e) exp c (M(s))2 ds

which proves the assertion.
Remark 4.2. If fl maps [0, T] x X1 xX x U into X1 rather than into H’, then we

use the estimate IG(t)x[ <-_ [Xll + Ix2[ rather than (4.9), and easily prove the assertion of
Lemma 4.1 under the weaker assumption that (f.2) holds with q- 1.

Remark 4.3. Assume that there exist two Banach spaces X, X that are densely
embedded in X, X:, respectively, and f= (fi,fi) is a mapping from [0, +oo] x X x
Xx U into H’xX_ satisfying conditions (f.1)-(f.3) with X1, X2 replaced by X, X.
Moreover, assume that fx(t, x, u) is continuous from X=XxX into H’x X2 for
the norm of X for all (t, x, u), and that x(t) e X almost everywhere in [0, T] for any
solution (x, u) of (2.2).
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Then the proof of Lemma 4.1 can be repeated word for word, by denoting by
fx(t, x(t), u(t)) the linear continuous extension to X of the Frech6t derivative off.

5. The proof of the theorems. First, note that from Remark 3.3, (with A and B(t)
replaced by A and B(t)), it follows that for all : (:1, :2) e X1 x X2 the adjoint equations
(2.5) with final conditions p(T)= have a unique solution (P,P2) with p2e

AC(0, T; X2), Ple C(0, T; X) f L2(0, T; H), and p- G(. ): e wI’q*(0, T; X), q*
2q/(2+q). Actually, pie WI’(0, T; X)f C(0, T; H) if :e H and pie W(0, T; H) if
(f.2)(3) holds for q= +.

Now we prove Theorems 2.1-2.3.
Proofof Theorems 2.1-2.3. Let us denote by and A the subsets ofR2x X defined

by

!,={(a,h,Y)lh<--O,y+x(T)eB}, A convex hull (A1 + A2),

where Al={(a,A,y)la=O,A=x(T,x(T))y,y=y’(T) for some /)e 0ad(0, T)} and
A F. (6, A, )7, 372) with

F=R, ti=0, ]=0, )7=0, )72=0 for Theorem 2.1,

F=R_, 6:1, A=@t(T,x(T))+CPx(T,x(T))fi2,
(5.1)

), 0, fi2 =f-(T, x(T), u(T)) for Theorem 2.2,

F=R, a=l, =1, fi,=O, fi=f( T, x( T), u( T)) for Theorem 2.3.

Evidently, and A are convex subsets of R2 X and 0e f A, since x(T)e B
and y"(T)=0. Moreover, Z has nonempty interior (actually, (t, A, y)e int (Z) if and
only if A < 0, and y / x(T)e int (B)). Let us prove that

(5.2) A int () .
In fact, assume by contradiction that there exists (c, A, y) e A int (). Then there

exist y, , Yk e F, v, , Vk e ad (0, T), and A, , Ak e R+ with k: A 1, such
that

k

(5.3) a a OitiAi,
i=1

k

(5.4) A E AI,x(T, x( T))y,( T) + aA and A < 0,
i=1

k

(5.5) Y= E Av’(T)+afi with y+x(T)eint(B).
i=1

(Note that by (5.1), (5.3), and (5.4), we have A=(T,x(T))y+a,(T,x(T)) and
a-< 0 in all cases.)

Now by Lemma 4.1 there exists eo> 0 such that for all e e ]0, eo] there exists a
solution (x u) of (2.2) such that (x x)/e ->k 0+oi=1 hiY vj uniformly in [0, T] as e ->

From this and (5.5) it follows that

lim
1
(x(T) x(T)) y in the case of Theorem 2.1,

t->0 E
(5.6)

lim +/-(x2(T+ea)-x(T))=y in the case of Theorems 2.2 and 2.3,
e-0 E
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since we have

k1
(x:z(T+ea)-x(T+ea))- hiy.’(T+ea)=O,

k k

liom+ E h,y:,(T+ ea) h,y’(T),
i=1 i=1

f2(s, x(s) u(s)) ds aft(T, x(T), u(T)).}io el (x2(T+ ea) x2(T))
e VT

From (5.6) and (5.5), by the convexity of B (respectively, B2), it follows that (for all
e >0 suciently small), x(T) (1 e)x(T)+ e(x(T)+y+ o(1)) B (respectively,
x( T+ ae) (1 e)x2(T) + e(x(T) +y+ o(1)) B).

Hence (T, x, u) (respectively, (T+ ea, x, u)) satisfies the final state constraint
(2.3); therefore bythe optimality of T, x, u) we have ( T, x(T)) ( T, x(T)) (respec-
tively, ( T, x(T)) (T+ ea, x( T+ ca))). From this, by (5.6) and the differentiability
of , it follows that Olimoo+((Zx(T))-(T,x(T)))/e=x(T,x(T))(y)=h,
(respectively, 0limoo+ 1/e((T+ ea, x(T+ ea)-(T, x(T))) at( x(T))+
( x(T))(y2) h), contradicting (5.4).

Hence A and are convex and (5.2) holds. From this, by the Eidelheit separation
theorem, it follows that there exist (ao, ho, x*) Rx X, x*= (x, x) such that

(5.7) (o, Xo, x*)0,

(5.8) aoa + hob + (x*, y) 0 in A,

(5.9) aoa + hob + (x*, y) 0 in .
From (5.9) (for a e R, h =0, y=0 and for a =0, h =-1, y=0) it follows that

ao=0 and ho0; therefore we can assume that (5.7)-(5.9) hold for ao=0, ho {0, 1}.
Now let p (p, p2) be the unique solution of the adjoint equations (2.5) with

final conditions p(T)= x*+ hoax(T, x(T)). Then by (5.7) we have the nondegeneracy
condition (2.4) and by (5.9) (for h =0) we have the transversality conditions (2.7) (for
Theorem 2.1) or (2.7a) (for Theorems 2.2 and 2,3).

On the other hand, from (5.8) it follows that ho(h -( T, x(T))y) + (p(T), y) 0
for all (a, h, y) A U A2, i.e.,

(5.10) (p(T),y(T))O for all v a(0, T),

(5.11) 7[ho-(T,x(T))y)+(p(t),p)]O for all 7F.
Then the transversality condition (2.7b) or (2.7b’) follows from (5.11) and the definition
of F, , y. Finally, the maximum principle (2.6) follows from (5.10), since by Remark
3.4 (with A and B replaced by A and B), we have

(p( r, y(r (f(s, x(s, v(s-f(s, x(s, u(sl, p(s s

(H(s, x(s), v(s, p(s)- g(s, x(sl, u(s, p(s s.
o

Remark 5.1. Evidently, a central role in the proof of Theorems 2.1-2.3 is played
by Lemma 4.1. Hence the assertions of Theorems 2.1-2.3 hold under the assumptions
of Remark 4.2 or Remark 4.3.
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Remark 5.2. Under the assumptions of Theorem 2.2, if we replace condition (3)
with the stronger assumption that (x, u) can be prolonged to an interval [0, T’], T’> T
in such a way that there exists limt_ TfE( t, x( t), u(t)), then we have the equality sign
in (2.7b).

In fact we have only to repeat word for word the above proof by replacing [0, T]
with [0, T’], and F R_ with F R in the definition of A2.

Proof of Corollaries 2.4 and 2.5. Evidently, T, , u) with (Xl,. , Xl+2) and
xg+2(t)=ohj(u(s)) ds for all j= 1,..., l, is an optimal solution of the following
modified problem.

Minimize J( T, , u) ( T, (T)) (T, xl(T), x2(T)) with (Xl ,’’’, x,+2), u
satisfying with (2.2) the additional state equations xJ+2 hg(u(.)), xj+2(0)= 0, for all
j, and the final constraint (T)/ X1 x B2 -o, cl] " -, c].

Now for all v a//ad(0, T) let 39v= (yl,..., Y+2) be the unique solution of (4.1)
and y+2 hg(v(. ))- hg(u(. )), yj+2(0)=0, for all j= 1,. , l, and let us put

: {(a, A, 33)1A =<0, 33+ ;(T) }, convex hull

where X1 ={(a, h, 33)la =0, h Cx(T, 2(T)), 33 =33V(T) for some v ad(0, T)} and
2 F. (if, , 371,372,. ., 371+)_) with F, if, , 37,, 379. defined in (5.1) and 37 =0 for j> 2.

Then the proof parallels the previous proof. In particular, (5.5) becomes

k

E A,y’(T)+ aft(T, x(T), u(T))+x2(T)int (B2),
i=1

k

E h,yj-2(T) + xj+2(T) < cj
i--1

for all j 1," ’’, 1.

kMoreover, we have that ( )/e Zi=I Aivi uniformly in [0, T]. From this it follows
that x2(T+ ea) B2 with the same argument used before, whereas from the fact that
a-<0 and hj(z)>=O for all z,j we deduce that

T+

riO
T

x,+2(T+ ea)= h(u(s)) ds < hj(u(s)) ds= x,2+2(T)
dO

( k )(1 e)x+2(T) + e c+2(T) + Z X,y%2(T) + o(1) < cj.
i=1

Hence satisfies the constraint (T+ ca) and the assertion follows as before.
Remark 5.3. If we replace the nonnegativity assumption h(z)>-_ 0 for all z,j with

the assumption’that there exists limt_T- h(u(T)) h-f(u(t)) for all j, then the assertion
of Corollary 2.4 holds with (2.7b) replaced by

H(T,x(T), u(T),p(T))+ E txh(u(T))<=-,ot(T,x(T))
j=l

Moreover, in the last condition we have the equality sign if (t, x)= or if (x, u) can
be prolonged to an interval [0, T’], T’> T, in such a way that there exist
lim,_Tf2(t, x(t), u(t)), and lim,_Th(u(t)) for all j 1,. ., I.

In fact, we need only to apply Theorems 2.2 and 2.3 to the modified optimal
control problem described in the proof of Corollaries 2.4 and 2.5.
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Remark. 5.4. Note that the assertion of Theorem 2.3 or Corollary 2.5 holds in the
case when (t, x)= y(t), with y" R+-> R increasing and left differentiable. We have
only to replace -- 1 with y’(T), in the definition of A2.

6. Two applications to the study of the diffusion of a class of epidemics.
6.1. First application. Let be an open bounded subset of R2 whose boundary

0fl is sufficiently smooth and is the union of two disjoint curves Fi, F2 and let us
consider the problem

Oyl faOt
(t’x)-Ayl(t’x)+alyl(t’x)=tl(t’x) kl(X, :)y2(t, :) d in QT,

(6.1)

Oy2
(t,x)+a2y2(t,x)=g(yl(t,x)) in QT,

Ot

rOyl
(t, or)+ ay,(t, or)= w2(t, tr) | k(o’, )y2(t, ) d on ET

09 d.

OY
t, cr) O on,

yl(0, x) y(x), y2(0, x)= y(x) in fI

where Qr=[o, T] xfI, =[0, T]xF, and E=[0, T]xF2.
This problem describes the diffusion of an epidemic of oro-fecal origin (such as

cholera, typhoid fever, and so on) that has been exhaustively studied by Capasso and
his co-workers (see [1], [7], [8] and the references therein). More precisely, yl(t,x)
and y2(t, x) represent, respectively, the density of an infectious agent and infected
persons at the time in the point x; the function g g(Yl) represents the strength of
the contagion, the Laplace operator A represents the random diffusion of the infective
agent in the habitat, whereas the integral operators

I k(x, )y2(t, :)ds and fa k_(tr, )y(t, ) d

represent the diffusive effects of the epidemic produced by the infected persons; finally,
the functions Wl Ol(t, x) and o: w(t, o-) are two factors of reductions ofthe diffusive
effects of the epidemics that are produced by suitable sanitation programs in the habitat
fI and on F. For a complete description of such a model see [1] and [5], where it is
also proved that for every T>0, o L(Qr) L(O, T; L(fI)), w2 L(,)
L(0, T; L(r’l)), and for every yo,y L(fi), there exists a unique weak solution
(Yl, Y2) of (6.1) with

y, W(0, T; Hi(o)) C(0, T; L(f)) (’1L(Qr),

y AC(O, T, L(f)) f-) CI(0, T; L(fl)).

Now the purpose of the public authorities is to choose a sanitary strategy through
a fixed time interval [0, T] that allows them to "win the diffusion of epidemic," in the
sense that at the time T the total infected population must be sufficiently small, i.e.,

(6.2) f y2(T, x) dx-<_ 72 with 2 a preassigned positive constant.
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Finally, connected with the epidemic there is a cost depending on the infected
population that has the form

Ior la f(Y2( t, x)) dx at,

and there is a cost of the sanitation program that has the form

hl(tOl(t, x)) dx + h2(to2(t, o-)) do" dt.

Obviously the purpose of the public authorities is to choose an optimal strategy, i.e.,
a sanitary strategy (producing the optimal controls tOl, to2) in such a way that the
corresponding evolution of the epidemic (yl, Y2) satisfies the final condition (5.2) and
minimizes the cost functional

J(Yl, Y2, fox, 02) f(y2(t, X)) dx q- hl(tOl(t, X)) dx + h2(to2( t, o-)) do- at.

Then we have the following theorem.
THEOREM 6.1. Assume that

kl e L(I x f), k2 e L(F1 x 1)), kl0, k20,

f, gECI(R,R) with [g(z)lc(l+lz[) forsome c>0,

yl, y E L(f), y>- O, y>- O,

hi, h2 [0, 1] [0, +oo] convex decreasing functions.

Moreover, assume that ool L(Qr), o)2e L(Er) are optimal controls in the sense that
ool, o2 and the corresponding solution Yl, Y2 of (6.1) do minimize the functional J among
all the weak solutions (Yl y2, ool 0)2) of (6.1) such that In y2(T, x) dx <-_ 2. Then there
exist Aoe {0, 1}, tZo----0, pie C(0, T;
such that (Ao,/Zo) (0, 0) and Pl, P2 satisfy in Qr the adjoint equations

(6.3)

tgp.....l t, X) alPl( t, x) nt- Apl t, X) "-g’(Yl( t, x))p2(t, x),
ot

otOP2 fa(t, x) a2p2(t, x) kl(, X)Wl(t, :)pl(t, :) dse

fr k2(" x)oE(t, o-)pl(t, o-) do--Aof’(y2(t,x)),

with boundary and final conditions

(6.4) OPl+apl=O
0v

on .r oP o on
Ov

(6.5) pl(T) 0, P2(T) const. o and Io 0 if f y2(T, x) dx <372,
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and the maximum principle

-pl(t, x) I-_ k,(x, sC)y2(t, sc) asc AoOh,(60(t, x))

(6.6)
-p(t, or) | k=(tr, )y(t, ) deAoOh:(602(t,

a.e. in Q,

a.e. in E

y(t) + Ayl(t) F,(t, y,(t), y2(t), y3(t), 60,(t), 60e(t)) a.e. in [0, T],

y(t) F2(t, y,(t), y2(t), y3(t), 60,(t), 60_(t)) a.e. in [0, T],

(6.7) y(t) F3(t, y,(t), y2(t), y3(t), to,(t), 60=(t)) a.e. in [0, T],

yl(O) yl, y=(O) y, y3(O) O,

(y,(T), Ye(T), Y3(T)) B,

where B is the set of the elements (Yl, Ye, Y3) of X X x R such that n y.(x) dx <= Ye
and , F1, Fe, F3 are operators from [0, +oo[ x XxXxR in R and from [0, +o[ x
X x X x R x U into H’, X, R, respectively, defined by

(6.8) (t, y,, Y2, Y3) Y3,

(6.9) (Fl(t, y,, Ye, Y3, 601, 602), qg> [- q(x)k,(x, )601(x)y2(:) dx d

+ [ (,)k:(,, ),o(,)y:() d, de,

(6.10) Fe(t, Yl, Y2, Y3, 60,, 602)= -a2Y2 + G(y,),

(6.11) F3(t, Yl, Ye, Y3, 01,602)--" j-of(Ye(t, x)) dx + j h,(60,(t, x)) dx

+ [- he(60e(t, or))

and G is the Nemytskij operator associated by g, i.e., G(y)(x)= g(y(x)).

and

is a solution of the following optimal control problem.
To minimize the functional J(y,, Y2, Y3, 601, 0)2) (Yl(T), Y2(T), Y3(T)) with Yl

W(O, T; H) VI C(O, T; X), Ye AC(O, T; X), Y3 AC(O, T; R), (60,, 60e) //,d(0, T),

(where Oh denotes the subdifferential of hi).
Proof Let us put X= L(I), X L2(f), H HI(-) with the usual norms and

inner products. Then evidently X and H are densely embedded in X and H c X-
X’= H’. Moreover, let us denote by A the linear continuous self-adjoint coercive
operator from H to H’ defined by

(Ap, )= { (7p7 + al)dx+a [ d.

Finally, let Z L(), Z2 L(F1), Z Z x Z, and U U1 x U2 where we have
put U={w6Z[Ow(x)l a.e.} (i= 1,2) and let us denote by ,a(0, T) the set of
elements (w, w) L(Qr) x L(E() such that 0 wg(t, x) 1 almost everywhere (i
1, 2) and the mappings n h(w(., x)) dx, r, h2(w2(., )) d are summable.

Then (y, Y2, Y3) with Y3 defined by

y3(t) f(y(t, x)) dx + hl(Wl(t, x)) dx + h2(w(t, g)) dg ds
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Now it is evident that B is convex and has nonempty interior. Moreover, every
solution y (Yi, Y2, 73) of (6.7) is such that y(t) XxXxR almost everywhere in
[0, T].

Finally, it can be easily shown that F (F1, Fa, F3) satisfies conditions (f.1)-(f.3)
(with q +oo and Xl, Xa replaced by X) and that for every (t, Yl, Ya, Y3, u) the Frech6t
derivative of F at (t, Yl, Y2,73, u) is continuous for the norm of X x X x R. Hence if
we put

H(t, y, to, p)= (Fl(t, y, to), pl)+ (Fa(t, y, to), p2) +paFa(t, y, to)

for all 6 [0, T], y (Yl, Ya, Y3) G X X R, p (Pl, P2, P3) G H x X x R, to U, then
by Theorem 2.1 and Remark 4.3 there exist Ao, Pl, Pa, t93 satisfying almost everywhere
in [0, T] the adjoint equations

p(t)-Apl(t) -Hy,(t, y(t), to(t), p(t)),

(6.12) p( t) -Hy2( t, y( t), to(t), p(t)),

p3(t) -Hy3(t, y(t), to(t), p(t))=0,

the transversality condition

(6.13) (p( T)- Aody( T, y(T)), y-y(T))<-O for all y B,

the maximum principle

(6.14) H(t, y(t), to(t),p(t)) dt<= H(t, y(t), rS(t),p(t)) dt
o

for all th ad(0 T), and the nondegeneracy condition

(6.15) (Ao, p(T)) # 0.

From (6.13) and the last equality of (6.12), it follows that

Pl( T, X) 0,

Pa( T, x) const. =/Xo->- 0 and /Xo 0 if Ia Ya( T, x) dx <

P3(t) const. p3(T) and p3(t) ho 0,

which proves that (Ao,/Xo) # 0 and that (6.5) holds. Moreover, by (6.12) we easily have
that Pl, P2 are solutions of the adjoint equations (6.3) with boundary conditions (6.4)
and Pl C(0, T; HI(I))) f’l W1’2(0, T; La(f)), since pl(T) =0 H.

Finally, by (6.14) we have that tol minimizes in L(Qr) the functional J1 + Ja where

Jl(to
Ao h (to (t, x)) dx dt if 0 -< o (t, x) -< 1 -_< a.e. and the integral is finite,

I, +oo otherwise,

Jz(to) f (to(t,x)pl(t,x)fkl(x,)y2(t,)d)dxdt.
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Since evidently J2 is linear continuous in L2(Qr) and J1 is convex and lower semicon-
tinuous, we have that

-Pl(’," Ix kl(" :)Y2( ", :) d:-- -J(601) E aJl(60,),

i.e., (see [3, Prop. 2.7, p. 102]),

--pl(t, X) 1" kl(X :)y2(t, ) d: E AoOhl(601(t, x)) a.e. in QT.

With the same arguments we obtain

--p,(t, or) f k2(cr, :)y2(t, :) dAoOh2(602(t, r)) a.e. in E(.

6.2. Second application. In the preceding discussion the final time T, i.e., the
length of the epidemic, was pre-assigned and the aim was to choose the optimal strategy
to win the diffusion of the epidemic within the time T with a minimum cost.

Now let us consider the case where the time T is unknown, and we wish to choose
the strategy that allows us to win the diffusion of the epidemic in the minimum time
among all the strategies (Wl, 602) with "acceptable costs." In other words let us consider
the following time optimal control problem.

Minimize the functional J(T, Yl, Y2,601,0)2)= T with (Yl, Y2,601, (-02) a solution of
(6.1) such that

(6.16) Y2( T, x) dx <= .92,

(6.17)

hl(601(t, x)) dx dt <- cl,
QT

h2(602(t, x)) N c2,dx dt

f(y2(t, x)) dx dt <- C
QT

(Condition (6.16) means that the epidemic has been won at the time T, whereas
conditions (6.17) mean that the costs are acceptable.)

Such a problem can be put into the following form.
Minimize the functional J(T, y, Y2, Y3, w, 602) T where (y, Y2, Y3, 601, 602) is a

solution of (6.7), with

Fa(t, Yl, Y2, Y3,601,602)-- f f(y2(t, X)) dx

and

B=XxB’, B’ {(y2 y3) x X x R x) dx = fi2; Y3 C3},
satisfying the isoperimetric constraints

Iorjah,(60,(t,x))dxdt<=Cl, for Iv ha(602(t,x)) dxdt<-c2.

Then we have the following theorem.
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THEOREM 6.2. If T is the optimal time, (to, 092) is the optimal control, and (y, Y2)
is the corresponding optimal trajectory, then there exist A, tXo, tXl, tx2, [d,3 such that

(6,18) o{0, 1} and

(6.19)

tZo >---- O and txo O

Ixl >--- O and txl O

and tx 0

]UI, 0 and t.1,3 0

(h0, /L/0, /J’l, /"/’2, /J’3) 0,

if I. y( T, x) dx

if f hl(tOl(t, x)) dx dt < Cl,
QT

hz(to(t, x)) < c2,if dx dt

if f f(y2(t, x)) dx dt < c,

(6.20) ho+tZo I[g(y,(T,x))-a2y(T,x)] dx+tx3 If(y2(T,x)) dx=O
and there exist p C(0, T; H(f))fq wl’2(0, T; L2()), p: AC(0, T; L(f)), which
are solutions of the adjoint equations (6.3) with boundary andfinal conditions (6.4), (6.5)
and satisfy conditions

-p(t,x) k(x, )y(t, ) d Oh((t,x)) a.e. in Q
(6.6’)

--pl(t, ) k2(, )y2(t, ) d Oh(w(t, )) a.e. in E.
Proof Let us put

H(t, y, w,p)=(F(t, y, w),px)+(F2(t, y, w),p)+p3 faf(y2(x)) dx

for all R, y (Yl, yz, Y3) G X X X X R, p (Pl, P, P3) G H x X x R, w 6 U.
Evidently, B’ is convex with nonempty interior. Hence by the preceding discussion,

Corollary 2.5, and Remark 4.3, there exist ho{0, 1}, l,,pl=Pl(t), p2=P2(t),
P3 pa(t) such that

(6.21) (lo, 1, 2, P2(T), P3(T)) # 0

and (p, P2, P3) satisfy the adjoint equations

p(t)-Ap(t) -Hy,(t, y(t), w(t), p(t)) a.e. in [0, T],

p(t) -Hy(t, y(t), w(t), p(t)) a.e. in [0, T],

p;(t) -Hy(t, y(t), w(t), p(t)) 0 a.e. in [0, T],

the maximum principle

H(t, y(t), w(t),p(t))+ h(w(t,x)) dx+: h2(wa(t, )) ddt
"1

H(t,y(t),(t),p(t))+l hl((t,x))dx+ge he((t,))ddt
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for all 03 -ad(0 T), and the transversality conditions

p,(T)=--O,

(6.22)
(P2(T), Y2-Y2(T)) +pa(T)(y3-Y3(T)) <-_0 for all (Y2, Y3) B’,

[,i0, /.i--0 if hi(wi(t,x))dxdt<ci (i=1,2),

H( T, y(T), to(T), p(T)) -Ao.

Then by the same arguments used in the proof of Theorem 6.1, we have that (Pl, P2)
are solutions of the adjoint equations (6.3) with boundary conditions (6.4) and satisfy
conditions (6.6’).

Finally, from (6.21) and (6.22) we deduce the remaining assertions, since by the
second condition of (6.22) we have

pl(T,x)-O,

p( T, x) -= const. =/Zo>_- 0 and /Xo 0 if I Y2( T, x) dx <

P3(t) P3(T) --/-’/3 --> 0 and 3 0 if y3(T) | f(y2(t, x)) dx dt < c3.
Q-

Remark 6.3. If y y(t) is strictly increasing and (T, Yl, Y2, to1, to2) is a solution
of the optimal control problem: "Minimize the functional J(T, x, u) y(T) among all
the solutions of (6.1) satisfying (6.16) and (6.17)," then evidently the assertion of
Theorem 6.2 still holds. By Remark 5.4 this is also true when y is increasing and left
ditterentiable.

7. Appendix. In this Appendix we will prove the following theorem.
THEOREM 7.1. With the notation of 2, for all t[0, T] let B(t) be a linear

continuous mapping from H into X1 such that B( t)x is strongly measurable in for all x
and IlB(t)ll<=L(t) for some LLq(O, T;R), q>2. Then for every X1, the Cauchy
problem

y’(t) + Ay(t) B(t)y(t), [0, T],
(7.1)

y(0)

has a unique solution y in C(O, T; X1) L(O, T; H) with y-G(.
q*=2q/(2+q).

Actually, y- G(. ) WI’(0, T; X1) fq C(O, T; H) (and therefore y W(O, T; H))
ifq=+.

Moreover, if H then we have y wl’2(0, T; X1) f’) C(O, T; H), also when q 2.
To prove the theorem it is useful to premise the following lemma.
LEMMA 7.2. Let us fix a > 1 andfor all g L (0, T; X1) let us denote by $(g) the

unique solution of the Cauchy problem y’ + Ay g in [0, T], y(0) 0. Then we have that

(7.2) S(g) Wl’a (0, T; X1);

(7.3) S(g) t(O, T; H) for all <2a/(2-a) if a <2;
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(7.4) S(g) C(O, T; H) and [IS(g)(t)ll<-c Ig(t)12 dt for all t[O, T] if a>=2.

Proof The first part of the assertion follows from Theorem 4.1 of [9].
On the other hand, if a <2, then (for e < 1/2 fixed), by [10, Thm. 19] we have

that y6W’(O,T;DA(O-e,a)) for all 0<1 such that 0-e>l/2, and therefore
y W’"(0, T; Da(1/2, 2)) W’(O, T; H) by[9, property (3.13), p. 325]. Hence (7.3)
follows from the embedding of W’(0, T; H) into L"/(-)(O, T; H) and the fact that
e < 1/2 has been arbitrarily chosen.

Finally, (7.4) follows from Theorem II.1 and Lemma II.1 of [19].
Proof of Theorem 7.1. Existence. First, note that if z L(0, T; H), then Bz

B(. )z(. ) L"q/(+q)(O, T; X1) and therefore by Lemma 7.2, we have

S(Bz) (0, T; H)

(C(O, T; H)

for all/3 < + if a <
q q-2

2q

Now let us put

yo(t)=G(t)=Zo(t), y,+l=Yo+S(By.), z.+,=y,+,-y,=S(Bz,).

Then by (7.5) it is easy to see that there exists u such that z, C(0, T; H), for all
n >_- v. (Actually we have v 0 if : H, q -> 2, and v 1 if q +o.) Moreover, from
(7.4) we easily deduce by induction that for all n _>-v and for all [0, T] we have

(c I’o L2(s) ds) (c If L2(s) ds)
(n-v)! (n-v)!

where K supo,_r [[z(t)[[.
From this it follows that the series Y_ zn converges in C(0, T; H) to some z.

Hence y=z+zo+zl+" "+z_ belongs to C(0, T;X)C’IL2(O, T; H) and yn-y-O
in C(0, T; H) as n-oe. From this and from (7.4) it follows that S(B(y-y))-O in
C(0, T; H) and y,- y in C(0, T; X1).

By the definition of Yn this proves that y Yo+ S(By), i.e., that y is a solution of
(7.1); moreover, by (7.2) we have that y-yo=S(By) belongs to wl’q*(0, T; X),
q*=2q/(2+q), since ByeLq*(o, T; X).

Finally, note that if q +co then we have v 1; hence Y-Yo z e C(0, T; H) and
y-yo=S(By)e W’2(O, T;X) by (7.2). On the other hand, if Cell then v=0 and
therefore y= z e C(0, T; H) and y=yo+ S(By)e W’:(0, T; X).

Uniqueness. Let y, z be solutions of (7.1); then we have that y-z= S(B(y-z)).
From this by (7.5) and a bootstrap argument it follows that y-z and B(y- z) belong
to C(0, T; H). Therefore by (7.3) and the Gronwall inequality (see Remark 3.5), we
easily have y z 0.
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AN APPROXIMATION THEOREM
FOR THE ALGEBRAIC RICCATI EQUATION*

FRANZ KAPPEL AND DIETMAR SALAMON

Abstract. For an infinite-dimensional linear quadratic control problem in Hilbert space, approximation
of the solution of the algebraic Riccati operator equation in the strong operator topology is considered
under conditions weaker than uniform exponential stability of the approximating systems. As an application,
strong convergence of the approximating Riccati operators in case of a previously developed spline
approximation scheme for delay systems is established. Finally, convergence of the transfer-functions of
the approximating systems is investigated.

Key words, linear quadratic control problem in Hilbert space, algebraic Riccati equation, hereditary
control systems, spline approximation
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1. Introduction and hypotheses. Let H, U, and Y be Hilbert spaces, and consider
the linear system

,( t) Az( t) + Bu( t), z(0) o 6 H,
(1.1)

y(t)=Cz(t),

where A’dom A- H is the infinitesimal generator of a strongly continuous semigroup
S(t) (H), and B ( U, H), C ’(H, Y) are bounded linear operators. Associated
with (1.1) we consider the algebraic Riccati equation

(1.2) (Ad/, P)+(P, A)-(B*PO, B*P)+(CO, C)=0

for o, , dom A. This equation has a nonnegative operator solution P P* (H)
if and only if for every H there exists a control function u L2(0, ; U) such that
the integral

(1.3) J(u) J(u, )-- (llu(t)ll/ Ily(t)ll) dt

is finite. Under this assumption for every e H there exists a unique optimal control
that is given by the feedback law

u(t) -B*Pz(t),

where P is the minimal nonnegative solution of (1.2). A nonnegative solution of (1.2)
exists under the assumption that system (1.1) is stabilizable, meaning that there exists
an operator K (H, U) such that A+ BK generates an exponentially stable semi-
group. If (1.1) is also detectable in the sense that for some operator L (Y, H) the
operator A + LC generates an exponentially stable semigroup, then the solution P of
(1.2) is unique in the class ofnonnegative operators on H and the closed-loop semigroup
generated by A-BB*P is exponentially stable [1], [6].
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Together with (1.1) we also consider a sequence of approximating control systems

,N (t) AN2N (t) + BNttN (t), Z
N (0) ,/. N(,

(1.4) yN(t)=CNzN(t)
where zN Rk(N), U

N Rm(N), yN RP(N), and AN, BN, CN are matrices of suitable
dimensions. We assume that there exist injective linear maps

N Rk(N) N Rm(N) kN RP(N)H, j U, Y

and surjective linear maps
N Rk(N) N re(N) N RP(N)7r "H p "UR tr "Y

such that 7rN N, pNjN, trNkN are identity maps and NTrN, jNpN, kNtrN are orthogonal
projections. On the spaces Rk(s), Rre(N), and RP(N) we will always consider the induced
inner products (z, w)N (Nz, NW)H, Z, W RkN) (u, V)N (jNu, jNv)u, U, V R"N)

and (x,y)N=(kNx, kNy)y, x,yRPN). (AN)*, (BN)*, (CN)*, always denote the
adjoint matrices with respect to the induced inner products.

The purpose of this paper is to investigate the convergence properties of the
solution matrices pN= (pN). of the approximating algebraic Riccati equations

(1.5) (AN)*PN + pNAN--pNBN(BN)*PN +(CN)*CN =0.

To formulate the results we introduce the following concepts. The approximating
systems (1.4) are called strongly convergent to (1.1) if

(1.6) S(t) lim ,NeANtTI’N, S(t)*tp lim Ne(AN)*tT"I’N
Nc N-

uniformly on compact time intervals for all o H,
NBNpN B, jN(BN)*rN B*, and

(1.7) jSpN
_
idu strongly

and

kNCNTrN - C I,N(cN)*o"N C*, and
(1.8) kNo"N- idY strongly.

We will call systems (1.4) uniformly output stable if there exists a constant c > 0 such

O
IIkNCNe’rNII dt<__ cll ll =

for all H and N 1, 2,’’’. Systems (1.4) are said to be uniformly input.output
stable if the functions CNeA lN, N 1, 2, , are integrable on 0_<- < and there
exists a constant Cl > 0 such that

IIkCN ioI- AN)-BpNII-<- c,

for allweRand N=l,2,....
Remarks. (1) Uniform output stability of systems (1.4) in connection with strong

convergence to (1.1) implies that system (1.1) is output stable in the sense that

’llCS(t)!] dr_-_ const, for all H.

(2) If the approximating systems (!.4) are strongly convergent to system (1.1)
and the matrices K N e RmeNkN, L e Rkarc chosen such that the operator
sequences jK e(H, U), tL (H) and their adjoints t(K)*p
k(L)* convere strongly to K, L and K*, L*, respectively, then the feedback
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systems

(1.9)
:N(t) (AN +BNKN)zN(t)+BNvN(t), zN(0) rNp,

yN(t) CNzN(t), wN(t)= KNzN(t),
and the dynamic observers

(1.10)
.N(t)=(AN +LNCN)zN(t)-LNyN(t)+BNuN(t),

zN (0) zrNo, W
N (t) K NZN (t),

are also strongly convergent. This can be seen by using the variation of parameters
formula, Gronwall’s inequality and Lebesgue’s dominated convergence theorem.

(3) Let systems (1.4) converge strongly to system (1.1). By (1.6) and the uniform
boundedness principle we see that there exists a constant M1--> 1 such that

for [0, 1] and N 1, 2,.... By standard considerations this implies

(1.11) IINeANtcrNII<--M1 e t>__--0, N=1,2,’’’,

where a is some real constant. It follows that I[S(t)[I <-Me’, t>-O. However, the
exponential growth rate of S(t) may be strictly less than ao inf a, where the infimum
is over all a for which (1.11) holds with some constant M1 --> 1. By the Trotter-Kato
theorem we see that

lim II(AI--A)-lz--N(AI--AN)-’rNzl[=O
Nooo

for all z H uniformly for Re A >_- y for any 3’ > ao.
(4) From the definition of the norms on Rk(N), Rm(N), and Rp(N) it is obvious

that II  ll--IIj ll Ilk[[- 1 and also ZrN ]lpSll IIrN 1. Let HN =range tscrN
us rangejpN and yS range kNtrN. Then, for instance,

In 2 we will make use of these observations repeatedly.

2. The convergence result. The following theorem is the main result of this paper.
THEOREM 1. Let systems (1.4), K Nlm(s)xk(s), LsRk(s)p(s), K (H, U),

and L( Y, H) be given. Assume that
(i) Systems (1.4) are strongly convergent to (1.1);
(ii) jNKNcrN --> K, N(KN)*pN --> K*, NLo’N --> L, kN(LN)*crN --> L* strongly;
(iii) A + BK and A+ LC generate exponentially stable semigroups;
(iv) Systems (1.9) are uniformly output stable and uniformly input-output stable; and
(v) Systems (1.10) are uniformly input-output stable.

Then

P lim tNpNTI’N
Nc

for every H, where P(H) and pN Rk(N)xk(N) are the minimal nonnegative
solutions of (1.2) and (1.5), respectively.

An earlier version of this convergence theorem was proved in [3] under stronger
assumptions. In particular the following property of the approximation scheme is
assumed (see [3, Conjecture 7.1])" If the semigroup S(t) is exponentially stable, then
the approximating semigroups satisfy an estimate [[exp (ANt)[[ <= Me-tt, t_>0, N=
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1, 2,. ., with constants M => 1,/3 > 0 independent of N. This assumption is not met
by the spline approximation scheme for delay systems developed in [4] and [5]. On
the other hand, in this case convergence of the pN’s has been observed numerically
[4]. In 3 we will show that the spline scheme indeed satisfies the requirements of
Theorem 1.

The proof of Theorem 1 rests on the relationship between the algebraic Riccati
equation (1.2) and the optimal control problem (1.3). We first establish two lemmas.
For system (1.1), respectively systems (1.4), we define the operators g, g,v :H
L2(0, oo; Y) by

(qg)(t)= CS(t)p, t>=O,
(cNp)(t) kNCNeA ’Tr qo, >__ O

respectively. Then the adjoint operators g’*, (gN)* L2(0, oo; Y)-* H are given by

*y S(t)* C’y(t) dt,

and

(gS)*y Ne(AN)*t(cN)*o’Ny(t) dt.

LEMMA 1. Assume that S( t) is exponentially stable and systems (1.4) are uniformly
output stable and converge strongly to system (1.1). Then

r and N)._ .
strongly as N .

Proof For any T> 0 we get

Iocs(t) at + 3 CS(T+ t) = at

+ 3 IIkNCNeAt(eATN S(T)) dt

The estimate for is

2 II(C-kC%)S()ll de

N

For any T> 0 the right-hand side tends to zero as N , because systems (1.4) are
strongly convergent to (1.1).

For a2 we get from the exponential stability of S(t) (i.e., IIs(t)ll Me-’, tO,
for some fl > 0)

M= 3 c = e-=
2

Using uniform output stability of systems (1.4) we obtain

3 3c11 eANTN@ S( T)II =,
4 3clIS( T) I1= 3cM e-=ll =.
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These estimates together show that

as

for any H.
For the proof of (cN)*y ..> g.y it is enough to consider y with compact support.

Let supp y c [0, T], T> 0. Then
r

*’ CII*y-()*yll <= [IS(t)*C*y(t)-r% r *y(t)l dt

+ IlrNe(A)*’ N C* N s),crVI1( - (c )y(t)l[ at.

The right-hand side tends to zero by the Lebesgue dominated convergence theorem
using strong convergence of systems (1.4) to (1.1) and (1.11). El

Remark. if dim Y< oo and systems (1.4) are uniformly exponentially stable (i.e.,
I’NeANt’rrN <: Me-st, > 0, N 1, 2,. for some constants M >= 1, a > 0), then

I[e- eNlI I1*-()*11-0 as N-->c.

We only have to observe that IICS(t)-kSCNeANtrSll is exponentially decaying as
oo uniformly with respect to N.
To state the next lemma we introduce the operators q3, v :L2(0, cx3; U)->

L2(0, o; Y) by

(u)(t) CS(t-s)Bu(s) ds, teO,

(cNu)(t) kNcN eAt-s)BNpNU(S) ds,

for u e L2(O, 3; U). The adjoint operators are given by

(*y)(t) B*S(s-t)*C*y(s) as,

((N)*y)(t) jn(BV)* e(AN)*(s-t)(cN)*o’Ny(s) ds,

for y L2(0, ; Y).
LEMMA 2. Assume that S(t) is exponentially stable, systems (1.4) are strongly

convergent to system (1.1) and, furthermore, systems (1.4) are uniformly input-output
stable and uniformly output stable. Then

cN and ()* *
strongly as N --> o.

Proof. Using Parseval’s equality and uniform input-output stability we obtain the
estimate

u[[2= kNC eAS(t-s)BNpNu(s) ds dt

f_oo llkNCN(ioI--AN)-’BNPlll[a(o)ll- do
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which implies uniform boundedness of the operators N. Therefore it is enough to
consider input functions u with compact support, supp u c [0, T]. Let y u and
yN 3Nu. Then the estimate

ily(t)-yN(t)[[<= I[(C--kNCNrN)S(s)Bu(t--s)[[ ds

+sup Ilkcrll II(S(s)-NeAN’TrrV)Bu(t-s)]l ds
N

+MleaT sup I[kCrll II(B-Bl"p)u(t-s)ll ds
N

for 0 ==. T, shows that IlY(" yV (.)ii L2o,r; Y) ._> 0 as N --> (using strong convergence
of systems (1.4) to system (1.1) and the Lebesgue dominated convergence theorem).
Moreover, we have

y(th- T) ()(t)

yS(t+ T) (’vpv)(t)

with q S( T- s)Bu(s) ds,

with qn N eAN(T-s)B%Nu(s) ds

and hence it follows from Lemma 1 that y --> y in L2( T, o; y) as N--> .
For the adjoint operators we again need to consider y with compact support only,

say supp y c [0, T], T> 0. Then

II(N)*Y ,yll =

(B*S(s- t)*C*-j(Brq)* e(*(’-(CN)*o’S)y(s) ds

Using strong convergence of systems (1.4) to (1.1) (together with the estimate (1.11))
we see that we can apply the Lebesgue dominated convergence theorem twice. [3

Proof of Theorem 1. Let Sl(t) and Sl(t) denote the semigroups generated by
A+ BK and A+ LC, respectively. We first observe that J(u)< for u L2(0, ; U)
if and only if v= u-Kz L2(0, ; U), where z(t) is the mild solution of (t)=
Az(t) + Bu(t), z(0) q, i.e., z(t) S(t)q +o S(t s)Bu(s) ds. Indeed, since

z(t)=Si(t)q+ Stc(t-s)Bv(s) ds

(this is rather obvious for q dom A and u being differentiable and follows by a density
argument in the general case), z(t) is square integrable if v is. But then u v+ Kz
L2(0, ; U) and y Cz L2(O, ; Y), i.e., J(u) <. Conversely, if J(u) < then the
formula

z( t) Si( t)p + S( s)(Bu(s) Ly(s)) ds

shows that z and v u- Kz are square integrable.
Therefore the control problem of minimizing (1.3) subject to (1.1) is equivalent

to the problem of minimizing

(2.1) Jr(v) J(v, ,)- (ll v(t) + gz(t)ll=+ Ily(t)ll) dt
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subject to

(2.2) i (A + BK)z + Bv, z(O) q, y Cz.

The functional (2.1) is bounded for all v L2(0, ; U) and can be written in the form

&(v, )= I1+ rvll,
where the operators c H L2(0, ; U Y) and if: L2(0, ; U) L2(0, ; U x Y) are
defined by

()(t)=(KSr(t), CSr(t)),

(v)(t)=(v(t)+K S(t-s)Bv(s) ds, C S(t-s)Bv(s) ds

Hence the optimal control satisfies

(2.3) * +*p 0.

We define the operator : L(0, m; U x Y) L(0, m; U) by

(u,y)(t)=u(t)-K S(t-s)(Bu(s)-Ly(s)) ds.

Then straightforward computations show that, for 0,

(v)(t)=v(t)+Kz(t)-K S(t-s)(Bv(s)+BK(s)-LC(s)) ds,

where z(t)=IoS(t-s)Bu(s)ds. Let w(t) denote the integral term in the above
equation. Then w(t) is the unique mild solution of
(A + LC)w + By(t) + BKz(t) LC(t), w(0) 0. Obviously, (t) is also a mild solution
of this problem, i.e., w() z(t). Thus we have

(v)() v(l + g() g(t) v(), 0,

i.e.,

v v for all v e L(0, m; U).

This implies I11 I1111111= I111<, *> I1111 I1*11, i.e.,

I1*1 I111-1111 for all ve L(0, ; U).

Hence the operator * is boundedly inveible, and from (2.3) we get

-(*)-*.
The identity J(v ) J(, ) (, P) shows that

and hence

(.4 e= *(-g(*l-g*.
Defining the approximating operators

( L(O, ; R( x(),
L(0, ; R() L(0, ;

L(0, ;R(x() L(0, m;



THE ALGEBRAIC RICCATI EQUATION 1143

in the obvious way we get analogously as above

(2.5)

Lemma 1 applied to systems (1.9) shows that

(2.6) (jNkN)cnTrn--> and tn(n)*(pN)o’U)--> * strongly.

Here jO)k denotes the direct sum ofj and kN defined by (jO)k)(uN, y)
(jNuN, kNyN), U

s
E Ire(N), yS RP(N) etc. Moreover, in abuse of notation we define

jNu for u 6 L2(0, oo; R’()) by (jNu)(t)=jUu(t), t>--_O, etc.
By Lemma 2 applied to systems (1.9) we obtain

(2.7) (jNkN)-SpS-- and ju(-u)*(pUtru) * strongly.

By assumption (v) of Theorem 1 we have

sup
N

This and the estimate

for all vs L2(0, co; Rm(N)) show that I1((:’)*-")-111 are uniformly bounded. By
Remark (4) of 1 also IIj"((ff)*a-’)-’p"ll are uniformly bounded. Then for v
L2(0, oo; U)

j (( ),-)-lpND ff-, -)-1 D =jN((-N),-)-lpND _jNpN -,-)-1 D
((*-)-’ v _jNpN -.-)-, v).

The second term on the right-hand side converges to zero as N-. For the first term
we get

N -N)* ff-N Nv N ff-gS (( )- p -jp -)- v

which proves

(2.8) jN((r-N),-N)-lpN _.(-,-)-1 strongly.

The representations (2.4) and (2.5) together with (2.6)-(2.8) prove that

tNpNTtN " P strongly.

Remark. If the matrices e(AN+nK)t, t>0,= are uniformly exponentially stable,
then the operators NTrN converge to in the uniform operator topology (see the
remark following Lemma 1). Then it follows that the operators rnpNTrN also converge
in the uniform operator topology provided dim U < oo and dim Y< oo. It remains an
open question whether convergence of the Pu in the uniform operator topology can
be established under weaker assumptions.
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3. Spline approximation for delay equations. The system

)(t)=Aox(t)+Alx(t-h)+Bou(t), y(t)=Cox(t),
(3.1)

x(0)= x(r)=pl(z) for-hr<0,
with x(t) Rn, u(t) R", y(t)Rp and (po, pl) Rn x L2(_h, 0; R.) is equivalent
to system (1.1) in the Hilbert space

H M2= R x L2(-h, 0; R").
Operators A, B, and C are given by

dom A={q (p, q’) M21 q91 W"2(-h, 0; R"), p pl(0)},
A=(Aop+Aq(-h), () for pdomA,

Bu (Bou, 0) for u R’,
Cp Copo for p M2.

In [4] and [5] we have considered a sequence of approximating systems (1.4) where
k(N) n(N+ 2), m(N)=m, p(N)=p and the matrices As B, Cs are given by
AN (QN)-IHN with

I 0 0

The injections

h h
0 ---I ---I 0 0

3N 6N

0 0

h 2h-I 3-- I

2h h
---I ---I
3N 6N

h h
0 I I

6N 3N

Ao 0

I -1/2I -1/2I
0 1/2I 0

0

Bo

BN= i CN= (c’’’O)"

0 -1/2I
0 1/2I-1/2/.

are given by

NZ ZO, E ZijS
j=0

where z col (Zo, Zo,’’’, zs) Rn(+) and the functions s are the basis splines

so(r)=max o,g+l s(z)=max O,l-g-g
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and, for j 1,. ., N- 1,

" h h
N+j+ 1 for -(j + 1) -_<- " <= -j-,

h hsJV(r)= -N-j+I for -j--<’_-<-(j-1)-,
0 elsewhere.

The induced inner product on Rn(N+2) is given by (z, W)N zTQNw. Of course, U
UN R and Y yN Rp for all N.

The approximating systems (1.4) with these matrices are strongly convergent [4]
and if the delay system (3.1) is stable in the sense that Re A <0 for all roots of
det (AI-Ao-e-hA1)= 0, then the approximating systems (1.4) are uniformly output
stable [5]. Moreover, the approximating transfer functions are in this case given by

(3.2) CN iwI AN)-IBN Co( iwI Ao- a N iw )A,)-l Bo,

where S(,) is a sequence of rational functions converging to e-;h uniformly on
compact sets and satisfying [a N (A)I 2 on Re A >-- 0 for all N 1, 2,. [5]. This shows
that the approximating systems (1.4) are uniformly input-output stable for N sufficiently
large provided that the delay system (3.1) is stable (which is equivalent to exponential
stability of the corresponding system (1.1)).

THEOREM 2. Suppose that there exist matrices Ko Rmn and Lo Rnp such that
the delay systems

:( t) (Ao+ BoKo)x( t) + Alx( t- h),

:( t) (Ao+ LoCo)x( t) + Ax( h)

are stable and let the matrices AN, B u, CN be defined as above. Then there exist unique
nonnegative solutions

P 6 (M2) and pN Rn(N+2)xn(N+2)

of (1.2) and (1.5), respectively, and for every q m2

Pq lira NpNrNo.
Noo

Proof Define the matrices

KN--(Ko 0 0),

and apply Theorem 1.

Lo

Numerical examples for this convergence result are reported in [4].
Remark. The conditions ofTheorem 2 are stronger than stabilizability and detecta-

bility of the delay system (3.1). However, we are not aware of a stabilizable delay
system that cannot be stabilized by a feedback law of the form u(t)- Kox(t).

4. Convergence of transfer functions. In this section we give a short discussion of
the connection between strong convergence of systems (1.4) and convergence of the
corresponding transfer functions on the imaginary axis.
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If the semigroup S(t) is exponentially stable and systems (1.4) are strongly
convergent to system (1.1) and are uniformly input-output stable, then we can show that

lim kNcN(AI--AN)-IBNpN C(AI-A)-IB

uniformly on compact subsets of Re A > 0. The proof involves Vitali’s theorem on
sequences of holomorphic functions (see, for instance, [2, p. 309]). Despite the fact
that under the assumption of uniform input-output stability the functions kNcN(AI
AN)-IBNpN are uniformly bounded on Re A >-0 (and not only on compact subsets
of Re A > 0 as required in Vitali’s theorem) we cannot conclude uniform convergence
of these functions on compact subsets of the imaginary axis. This is demonstrated by
the following example.

Example. Let H 12 and U Y= R. For an element b (bl, b2,’" ")E 2 with
bj > 0 for all j we consider

(4.1) ,(t) -z(t) + bu(t), >- O, y(t) (b, z(t))l.
The solution semigroup of the homogeneous problem is S(t)= e-I, which obviously
is exponentially stable. We consider the approximating systems

,N(t)=ANzN(t)+bSu(t), t>--O, y(t)=(bN)TzN(t),(4.2)

where

AN diag (-1,. , -1, -b+l) E R(N+I)(N+I)

bN col (bl,. bN+) eRN+I.
The embedding N’RN+/2 is given by NZN=(Z,’’’,ZN+,O,’’’) for zN=
col (z,. , zN+) R+ and the "projections" rN by rNz CO1 (Z," , ZN+) for
z (z, z,. .) P.

The solutions of -z, z(0) q (ql, q2, ") 12, and :N AUz
are given by

N

z(t) e-’, zN(t) e-t qj + e-bZN+ltqN+l,
j=l

respectively. Therefore

z(t) NzN(t)l]2=(e- e-b+,,)21N+ 12 +e-2’

E Io1 =--> 0
N+I

as N-.

j=N+2

1
b+

Therefore

1 bv+l
IGN(i)I--[1 + itol Ilbll2+ Ibv+l + iol-Ilbll=+ 1

for all to R and N 1, 2,..., i.e., systems (4.2) are uniformly input-output stable.

It is obvious that lib *Nb N ll/2_ 0 as N -+ o0. Thus systems (4.2) are strongly convergent
to (4.1).

Obviously (bN) T eAtbN is integrable on t->_O. The transfer functions GN(A)
(bN)T(AI-AN)-IbN are given by
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For q (ql, q2, ") 12 we get
N

b T eA "rt"q e E bjqj nt- e b+ bN+ qgm +
j=l

Therefore

I(b) eAlt77-Nqg12 (e-’[I b [I,ll q II+ e-b’+l’bN+llqN+ll)2

=< 2e-2’ b if=It II/22 + 2e-2b+ltb2N+ II (N/’12
and

which proves uniform output stability of systems (4.2).
Finally, if we define

1
G(A) (b, (AI-A)-lb)l

l+A

then we immediately see that for A #-1 (note that b2+1-0 as N

for , #0,
lim G(A)

G(A)+I for A 0./’M

This example shows that even under additional assumptions we cannot obtain
uniform convergence ofthe transfer functions ofthe approximating systems on bounded
subsets of R in general. But we can prove the following proposition.

PROPOSITION 1. Under the assumptions of Lemma 1 we have

I C(ioI A)-IB- kNCN ioI AN )-IBpNI[ O

asNfor any U.
Proof Using Parseval’s identity we get

I2 IIC(ioI--A)-lqg--kNcN(i9I--AN)-ITrNNII2 dw

IICS(t)-kNCeA’rll2 dt--I1 ll=2L (o,; Y)

for , (/9
N U. Hence the result follows from Lemma 1 and (1.7) if we choose q B:

and qN ,NBNpN. [-]

In case of the spline scheme discussed in 3 we have uniform convergence of the
transfer functions (3.2) on compact intervals to the transfer function of the delay
system (1.1) 5 ].
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THE EXPONENTIAL FORMULA FOR THE REACHABLE SET OF A
LIPSCHITZ DIFFERENTIAL INCLUSION*

PETER R. WOLENSKI?

Abstract. The main goal of this paper is to prove a formula for the reachable set of a Lipschitz differential
inclusion with convex values. The formula involves a Kuratowski limit of sets that resembles a standard
approach of defining the exponential of a matrix--this explains the title. The proof of the main theorem
partially relies on a C approximation result due to Filippov, for which a new proof is given. A new approach
of characterizing the value function associated with a Mayer optimal control problem is given as an
application.

Key words, differential inclusions, exponential formula, reachable sets, time discretization of differential
inclusions

AMS(MOS) subject classifications. 34A60, 49E10, 34A45

1. Introduction. A differential inclusion generalizes an ordinary differential
equation by permitting set-valued right-hand sides. That is, an (autonomous) differen-
tial inclusion has the form

x(. absolutely continuous on [0, T] into X

(1.1) (t) F(x(t)) a.e. [0, T]

x(0) ,
where T>0, X_" is open, X, F: " -- " is a multifunction (or set-valued
map), and (t) denotes the derivative of x(. with respect to t. As is well known [cf.
2, 1.3], standard control models with feedback can be transformed into the framework
of (1.1). The main advantage of such a transformation is its mathematical simplicity,
since the control parameters do not explicitly appear. This advantage will be evident
in the present paper, in which we prove a differential inclusion analogue of Euler’s
classical technique for solving ordinary differential equations by successive approxima-
tion. The results are then applied to characterize the value function associated with a
Mayer optimal control problem.

Differential inclusions receive a broad treatment in Aubin and Cellina [1], to
which we also refer the reader for early references in this subject. See Clarke [2, 3.1]
for a concise exposition of the basic properties of multifunctions and differential
inclusions.

The main focus of our analysis of (1.1) involves the reachable set R(’)(), which
is defined by

(1.2) R(’)(:) := {x( T): x(’ solves (1.1)}.

Reachable sets seem to have better properties than the set of trajectories to (1.1). This
is illustrated in 11] where a uniqueness theorem for differential inclusions, analogous
to the classical ordinary differential equation (o.d.e.) uniqueness theorem, is proven
in terms of the semigroup properties in of the multifunction :-- R(7")(). We point
out that in o.d.e, theory, the distinction between the solutions (which are functions of
t) and the end points of these solutions (which are points of 91 ") is generally not

* Received by the editors November 4, 1988; accepted for publication (in revised form) June 21, 1989.
? Centre de Recherches Math6matiques, Universit6 de Montreal, Montreal, Quebec H3C 3J7, Canada.
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necessary. This gives a flavor to differential inclusion theory that has no meaningful
counterpart in o.d.e, theory.

The main result of this paper is that the formula

(1.3) R(7")(sc)= lirnoo I+-- F ()
N

holds under local Lipschitz and convexity assumptions on F. Here the power of
(I + (T! N)F) is that of composition of multifunctions, and the limit is a set limit in
the sense of Kuratowski. For obvious reasons, we call (1.3) the exponential formula.

An important feature of the formula (1.3) is that solutions to (1.1) need not be
invoked to determine the points in R7"(:). This was also the case in a result by Vinter
[9], where a certain condition is shown to determine whether a set intersects RT(:).
The methods employed are quite abstract and involve an auxiliary optimization problem
that resembles a Hamilton-Jacobi type inequality and tools of convex analysis.

The idea of applying a Kuratowski limit to the sequence (I+(T/N)F)N()
appears in Rockafellar [6], but only as a heuristic tool in generating one-parameter
semigroups of convex processes. Whether the heuristic argument could be formalized
was not resolved, and is still not for an arbitrary convex process (which is apparently
important in economic modeling). However we prove (1.3) under quite general assump-
tions on F.

Discretization of differential inclusions has also been explored by Taubert [8].
The assumption on F is merely upper semicontinuity, hence it is weaker than our
Lipschitz assumption. The main result is that at least one sequence of "discrete"
trajectories to the associated discrete differential inclusion converges to a solution of
(1.1); and as a partial converse, if there is a unique solution to (1.1), then every such
discretization converges to it. Under the stronger Lipschitz assumption, our result (1.3)
implies that the set of all endpoints of discrete trajectories actually converge to the
entire reachable set.

A paper by Dontchev and Farkhi [4] has recently been brought to our attention
which contains some results very similar to ours. The focus of these results is to
approximate the trajectories rather than the reachable set, and is thus of a somewhat
different flavor.

The plan for the rest of the paper is as follows: preliminaries are in 2; 3 is
devoted to a straightforward proof of a C approximation result due to Filippov (this
also has considerable independent interest); 4 contains the precise statement and
proof of the exponential formula; 5 has two related results; the time-dependent case
is stated in 6; 7 consists of simple proofs based on the exponential formula of two
well known theorems; and finally, 8 contains an application to the Mayer optimal
control problem. Further comments on this application will be given there.

2. Preliminaries. Throughout the rest of the paper, T will be a nonnegative real
number. The interval [0, T] should be thought of as a time interval.

Most of the notation is standard. The absolutely continuous functions on [0, T]
are denoted by AC[O, T], and the continuously differentiable functions by C1[0, T].
If x(. is continuous on [0, T], then Ilxll will denote its sup norm.

For a" and A", the distance from a to A is defined by dist (a,A)=
inf{[a-a’[: a’cA}. If Ao and A are two nonempty compact subsets of ,", the
Hausdorff distance is denoted by distil (Ao, A) and equals the smallest for which

The author wishes to thank V. M. Veliov for this and other helpful conversations.
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supa,eA1 dist (al, Ao) =< 6 and sUpaoeA dist (ao, A1) -< both hold. It is easy to check
that dist, (.,.) is a metric on the nonempty compact subsets of

AIn the following, we will frequently use Kuratowski limits of sets. If { }=1 is a
sequence of subsets of 91", define the lim sup and lim inf of {A} by

(2.1) lim sup A { a" lim inf dist a, A) O}
(2.2) linf Aj {a" lim sup dist (a, Aj) 0}.

j

If lim sup A equals lim inf A, we say that the limit exists and write limA for the
common value. Note that lim sup A and lim infA are always closed sets. If each of
Aj and A are nonempty and compact and are contained in a given bounded set, then
it is immediate from (2.1) and (2.2) that A limj Aj if and only if dist, (A, A) 0
as j.

Let G:" ---,n be a given multifunction. Then G is upper semicontinuous at
sCo,t if G(sCo)_ lim sup_ G() for all sequences {} satisfying -> sCo. G is lower
semicontinuous at :o if G(sCo) c_ lim inf_. G() for all {} with -* sCo. G is continuous
if it is both upper and lower semicontinuous. If G also has compact values on a subset
X of,t n, then G is Lipschitz of order >0 on X if dist,/(G(sC), G(:’)) <--,Xl:- ’1 for
all sc, sc’ X. We say G is locally Lipschitz on X if G is Lipschitz on each compact
subset of X.

Again consider the differential inclusion (1.1). We define the solution set, or set
of trajectories for F, by

(2.3) s(T)() := {x(. ): x(. satisfies (1.1) in X}.

Let X c_ ," be open and sc X. The escape time Tx () from X is defined as the smallest
T for which there exists x(.)S(r)() so that as t’ T, either [x(t)[-+c or x(t)
approaches the boundary of X. It can be shown that if F has compact values and is
locally Lipschitz on X, then

(2.4) Tx()=sup{ T’cl o<=,_<_rU R(’)() is compact}.
If F also has convex values the "cl" can be removed from the set in (2.4). A proof of
this, as well as other information regarding escape times, can be found in [11].

One of the most useful tools in the theory of differential inclusions is the following
theorem due to Filippov. Our statement assumes more than is necessary in that F has
compact values, but this will suffice for our purposes. If x(. ) AC[O, T], define

O(x) := dist (2(t), F(x( t)) dr.

TEOREM 2.1 (Filippov [5]). Let F tt--- be a compact-valued multifunction
and x(. an absolutely continuous function on [0, T]. Suppose there exists > 0 and a
set Kfor which F is Lipschitz oforder > 0 on K and {s: Is- x(t)l--< ,for some e [0, T]}
is contained in K. Ifp(x) < e-r, then there exists Y, e S(r(x(0)) satisfying IIx  zll <
p(x) er.

A proof of Theorem 2.1 is, for example, in Carke [2, p. 115].
We close this section with a simple technical lemma.
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LEMMA 2.2. Suppose a, /3, ml, m2,’’’, mN are real constants satisfying mj+l
a + flmj for j 1,. ., N, then

a +mo iffl 1
mN

Na+ mo if fl= 1.

The proof is elementary.

3. Approximation by C trajectories. This section is devoted to the proof of a
special case of Filippov [3, Thm. 6]. We first motivate the result. Suppose the values
of F in (1.1) consist of singleton sets, say F(x) {f(x)}, wheref" " 9]" is a Lipschitz
function. Then S(r)(sc {x(.)}, where x(.) satisfies (t)=f(x,(t)) for all t[0, T].
Note that x(.) is not merely absolutely continuous, but an element of C[0, T] as
well. Is there an analogue of the additional regularity of solutions when F is multi-
valued? Of course, in the more general context S(r)() will not consist entirely of C
elements, but it is reasonable to ask if clIO, T]fq S(r() is dense in S(7")(:), say in
the sup norm topology. We show that this is indeed the case when F is assumed to
have convex values and to be locally Lipschitz. Filippov’s original result is more general
in that unbounded values of F are permitted and convexity is replaced by "uniformly
locally connected." Under the simplified assumptions we provide a simpler proof.

THEOREM 3.1 (Filippov [5]). SupposeX
_
n is open and F" X - is a multifunc-

tion with nonempty, convex, and compact values. Assume F is locally Lipschitz on X. Let
T>O and suppose x(.)S(T)(x(O)). Then for each e>O there exists g(.)
S(r)(x(O)) CI[0, T] satisfying IIx- ll .

Much of the work in our proof of Theorem 3.1 is contained in the proof of the
following proposition.

PROPOSITION 3.2. Let X and F be as in the statement of Theorem 3.1. Let T>0.
Suppose y(.) C 1[0, T], 6 > 0, and K 9] is compact so that {" [ y t)[ <- 6 for some
0 <= <= T} K

_
X. Let h > 0 be a Lipschitz constant for F on K. Assume further that

p(y) < 6 e-7". Then there exists S(r)(y(0)) f-) C1[0, T] satisfying [[y-37[I < p(y) er.
One may note that Proposition 3.2 resembles the oft-quoted Theorem 2.1 of

Filippov, and those familiar with the proof of Theorem 2.1 will see that the proof of
Proposition 3.2 is basically the same. The difference here is that by assuming the given
function y(. is C 1, one may conclude that the trajectory 37 is also C .

The proof of Proposition 3.2 requires the following lemma. If A ," is a closed
convex set and a ", we denote by proj (a, A) the unique element in A closest to a.

LEMMA 3.3. Suppose G" [0, T] " is a continuous multifunction with nonempty,
closed, and convex values on [0, T]. Also suppose v’[0, T]-> t is a continuousfunction.
Then the function t->proj (v(t), G(t)) is continuous on [0, T].

Proof Set p( t) proj v( t), G(t)). Let toe[0, T] and {tj}j__>_ [0, T] with tj->to
as j->. Note that since G is continuous, the sequence {p(t)}_>_ is bounded. Let
be any cluster point of {p(t)}j__>. Passing to a subsequence if necessary, but without
renaming it, we assume p(t)->/3 as j--> . It suffices to show p(to)=

Since G is upper semicontinuous at to, we have / G(to). Since G is lower
semicontinuous at to, there exists q G(t) so that qj--> p(to). Hence we have

[t(to)--ffl lim
jx

(3.1) <-- lim lv( t) q
jc

IV(to) --p(to)].
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But now p(to) is the unique element in G(to) closest to V(to), so (3.1) implies that
p(to)=p.

Proof of Proposition 3.2. The C function y is given satisfying p(y) < 6 e-7". By
the lemma, Vo(t):= proj (3(t), F(y(t))) is continuous on [0, T]. Set

yl(t)= y(O)+ Vo(S) ds.

Then Yl(" ) C1[0, T] with 31(t) F(y(t)) for all t. Also, yi(t) is contained in K for
all because

lyl(t)-y(t)l<= Ivo(S)-(s)l as

(3.2) dist ((s), F(y(s))) ds

Set Yo(" Y(’). Inductively, suppose k-> 1 and C functions {Y}=o have been
chosen so that (3.3)-(3.6) hold for ON -< T and 1 _-<j_<-k"

(3.3) fi(t) e F(y_l(t)),

(3.4)

(3.5) lYj(t) Yj-l( t)l p(Y)

(3.6) y( t) K.

}kj- j-2

(j-2)!

(j-l)!’

When j= 1, (3.3) is obvious, (3.4) is vacuous, and (3.5) and (3.6) follow immediately
from (3.2).

We proceed by defining Vk+l(t) proj (Pk(t), F(yk(t)) and Yk+l(t) y(0) +
o vk+l(s)ds. By Lemma 3.3, vk+l is continuous and hence Yk+l(’) C1[0, T]. Let

[0, T]. It is immediate that :gk+l(t) F(yk(t)). We have

Ifk+l( t) fk( t) :dist (fk( t), F(yk( t))

(3.7) =< ly-(t)- Yk(t)[

<=p(y)
(k-l)!

(by (3.3) and Lipschitz property)

(by (3.5) ).

This shows that (3.4) holds for j k + 1. We also have

ly+l(t)- y(t)l<= I+(s)-(s)l ds

A ksk-1
(3.8) <=p(y) (fci ds (by (3.7))

(At) k

_-<p(y)
k!
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which shows that (3.5) holds for j k+ 1. Finally Yk+l(t)E K because
k

lYg+l( t) y( t)l , ly+l( t) y( t)l
j=O

(At)
(3.9) <= p(y) (by (3.5) and (3.8))

j=o j!

<- p(y) eaT <--: 3.

The induction is now complete.
We have constructed a subsequence {Yj}ja of C functions lying in K. By (3.4)

and (3.5) this sequence is Cauchy in the Sobolev norm on Ca[0, T], and hence there
exists 37 E Ca[0, T] for which/9 "-> and yj--> , both uniformly on [0, T]. Moreover,
for each 0 =< T,

fi(t) lim ))j(t) lim F(y-I(t)) F(37(t)),
j-->o j-

and so )7(.) S(r)(y(0)). From. (3.9) we obtain the desired estimate of the difference
between 37 and y"

1197 y[[ sup !im lye(t) y(t)[-<_ p(y) exT.

Proof of Theorem 3.1. We are now given x(.) s(T)(x(O)) and e >0. We must
show there exists (. s(T)(x(O)) 71 Ca[0, T] with [Ix [I < e. Without loss of general-
ity, we may assume e is sufficiently small so that there exists a compact set K satisfying
{so: 1- x(t)[- e for some 0-< <_- T}

_
K
_
X. Let h >- 1 be a Lipschitz constant for F

on K and let r=sup{[v[: vEF(K)}<. Note that [(t)[_-__ r for almost all 0=<t<= T.
By Lusin’s Theorem (cf. [7, p. 46]), there exists a continuous function z(.) on

[0, T] and a Borel set J_[0, T] so that z(t)=(t) for eJ, [[z[[ =< r, and re(J)<
e/4hr(1 + T) eaT (where m is Lebesque measure on [0, T]).

Define y(t)= x(0)+o z(s)ds. Then y(. ) Ca[0, T] and the following holds for
all 0-< -<_ T:

[Y(t)-x(t)[<- Ij Iz(s)-x(s)[ ds

(3.10) <-<_2rm(J)

E E
<--

eaT( <=-.
--2A 1+ T) 2

In particular (3.10) implies that {:l-y(t)l<=(e/2)} is contained in K. Next we
estimate p (y)"

O(Y) dist (( t), F(y( t))) dt

<_- f dist (F(x(t)), F(y(t))) dr+ f dist ())(t), F(y(t))) dt
o,r]\J

<- Ix(t) y( t)l dt + 2rm(J)

8 e_aT<- (by (3.10)).
2
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As a consequence of Proposition 3.2 applied to y(.), 6--e/2, and K, there exists
(. s(T)(x(O)) f’l C1[0, T] so that lie- ll /2. Finally, we conclude that IIx ll -<

x -Yll + lie 11 < e.

4. The exponential formula. We now come to the main result. If Go and G1 are
two multifunctions from n into n, we define the composition Go GI:R 91 of
G1 with Go by Go G(x) {z: there exists y G(x) with z Go(y)}. If Go is composed
with itself N times, we write GoN for the resulting multifunction.

THEOREM 4.1. Suppose X
_

,fit is open and F == fit is a multifunction. Assume
F has nonernpty compact values on X and is locally Lipschitz on X. Fix X.

(i) For 0 <- T < Tx(), one has

(4.1) lim sup I+-F (:) cl R<r().

(ii) If, in addition, F is assumed to have convex values, then for all T >-O, one has

(4.2) R(T)() c lim inf I + F (:).

Proof (i) Suppose O<-_T<Tx(). Let K=clUo<=t<=rR(’)(). By definition of
Tx(), K is compact, so there exists 6 > 0 so that K +B _c_ X, where B is the closed
unit ball. Set r sup {Ivl: v F(K + 6B)} and choose A > 0 to be a Lipschitz constant
forFonK+6B.

Now let e > 0. We show that for all large N satisfying

_< minN- ArTer’

the inclusion

TF () R(JT/N)()+eB(4.3) I+-
holds for all j 0, 1,. ., N. Since e is arbitrarily small, by setting j N in (4.3), we
can then immediately conclude that (4.1) holds.

Let N be as above. To simplify the notation, set h TN and tj =jh for j
0, 1, , N. We prove (4.3) by induction on j. The case j 0 is trivial. For the induction
hypothesis, suppose (4.3) holds for all i, O<-_i<-j < N. Let yj+a (1+ hF)+l(). There
exists Yo , Y, ",Yj and Uo, , uj so that for 0 _-< _-<j, we have

Ui F(yi) and Yi+l Yi + hui.

Note that when O<--i<--j, (4.3) implies yiK+(t$/2)B and thus [ui[r. Let x(.) be
defined on [0, tj+l] as the piecewise linear interpolation of {yi}{+=o equally spaced on
[0, t+l]. That is,

x(t) yi + (t ti)ui if ti <-- <-_ ti+l.
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The range of x(.) lies within K+6B because yi+(t-ti)uiK+(6/2)B+hrB_
K + 6B. Hence we have

O(x) dist (:/(t), F(x(t))) dt

_--< distil (F(yi), F(x(t))) dt
(4.4) i=o

I ti+l
<=A ly-x(t)l dt (by Lipschitz property of F on K + 6B)

=0

<= A Trh.

By the Filippov result Theorem 2.1, we may conclude from (4.4) that

R(%,) aTdistil (yj+,, (sO)) _--< p(x) e

< ATr exrh

Thus (4.3) holds for all j 0, 1,. ., N, and the proof of (i) is complete.
(ii) The values of F are now assumed to be convex, and thus Theorem 3.1 is

applicable. Let x(.) C1[0, T]VIS(r)(). A consequence of Theoren 3.1 is that to
prove (4.2), it suffices only to show x(T) lim infj_ (I+(T/N)F)S().

Denote the range of x(. by K and choose 6 > 0 so that K + 6B X. Let A > 0
be a Lipschitz constant for F on K + 6B. For each integer N, define

X(tj+l)--x(tj)
(4.5) es= sup -(t)

=o,1,...,s h

where h (T/N) and tj =jh for j 0, 1,. , N. It is immediate that es "0 as N-o
because x(. ) C1[0, T]. If N is sufficiently large so that es < (6A/eaT- 1), we claim
that

(T)s

I+ es(4.6) x(T) F (so) +-- (eT-- 1)B.

To prove the claim (4.6), we start by letting yo , Uo (to), and rno=0 .
Having chosen y, u, and rn, let Y+I Yj + huj, Uj+l proj ((tj+l), F(yj+I)) and rnj+l
(1 + Ah)rn + 1. Note that rnj =< rn+l for each j, and by Lemma 2.2 (with a 1, /3
(1 + Ah)), we have

1 )s 1 (eXT(4.7) ms -"- ((1 + Ah 1) =<-- 1).

Inductively, suppose for 0-<j < N, the estimate

(4.8) lyj x( tj)l hemj

holds. When j=0, (4.8) is trivial. We have from (4.7) that hesmj<=es(eXT-1)/A,
which by the choice of N is _-<8. Hence (4.8) implies y K + 6B. By the Lipschitz
property of F on K + 6B and the choice of u, we have

(4.9)
lu (t)l _-< ly x(

<=Ahesm (by (4.8)).
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Therefore

[Yj+I- x(tj+l)[ ]y x(t)] + hlu e(t)l + [x(t) + h:e(t) x(t/)l
<-_ heNm + Ah2

eNm + heN (by (4.8), (4.9), and (4.5))

heNmj+l.
Consequently the estimate (4.8) holds for j + 1. When j N, (4.8) and (4.7) combine
to give us

(4.10) EN[YN X( T)I--<--- (er 1).

Finally the claim (4.6) follows from (4.10) and the observation that YN
(I+(T/N)F)N(().

Now that (4.6) is verified for all large N, the conclusion (4.2) follows from (4.6)
be letting N oo. [3

We record the exponential formula in the next corollary. This is an immediate
consequence of Theorem 4.1.

COROLLARY 4.2. Suppose X 9t is open and F:":: t" is a multifunction.
Assume F has nonempty, compact, convex values on X and is locally Lipschitz on X.
Then for all X and 0 <-_ T < Tx(), we have

lim I+ F (:).R(T)()=
N_o -’

5. Related results. In this section, we state some results whose proofs require only
minor modifications of the proof of Theorem 4.1.

COROLLARY 5.1. Suppose X and F are as in Corollary 4.2, and let X and
0 <- t<-_ T< Tx(). If {NI}=I and {jl}= are a pair ofsequences ofnonnegative integers
with N! - oo, 0 <- jl <-- NI, and (jlT/ NI) - t, then

(5 1) R(’)(sC)=lim I+ F ().

Proof. The multifunction s =, R(S)() is continuous on [0, T] (for example, see
[11, Lemma 5.2]). Hence from (4.3), one deduces that

(5.2) lim_,sup I+- F (:)
_
R(t)().

A consequence of (4.8) is (with sufficiently large) that

R(J,Tr/N,)() (I+ T- )J’NI
F () + heNlmj

(5.3)

( T )’ 1
_

I +-iIF + eN -- er --1).

Letting l ee in (5.3) implies

(5.4) R(’)() c liminf I+ F ()
l-x

Combining (5.4) and (5.2) begets (5.1). [-1

The exponential formula (Corollary 4.2) is concise, but in applications it may be
desirable to have a more flexible approximation to the reachable set. For example, in
a numerical approximation to an optimization problem of the type (1.2), it may not
be practical to take a uniform discretization of the time interval. The next corollary
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indicates that one may partition [0, T] in an arbitrary manner provided the width of
the largest subinterval goes to zero. In other words, one may say that discrete approxima-
tion of Lipschitz differential inclusions is robust.

To state the result, we need a few more definitions. If P { to, , t} is a partition
/_/ Nof [0, T] (that is, 0 to < tl <" < tN T), define IPI- SUpo_j<=N-1 Itj+ tjl If { j}j=a

is a collection of multifunctions from 9]" to ", define the multifunction product by
(rI, )()= (H,o H,_I H)().

COROLLARY 5.2. Suppose X and F are as in Corollary 4.2, and let X and
0<: T< Tx(6). Then for any sequence ofpartitions Pk: {t, tk, tkN} of [0, T] with

IPI-0 as k , we have

R(r(:)= lim (I+(t+-t)F) ().

The proof is left to the reader. One needs only to mimic the steps in the proof of
Theorem 4.1 by replacing h by h := t+- t, etc.

The last result of this section will be used in 7 and 8. It says that the limit in
Corollary 5.2 is uniform" over in a compact set. For K X compact, define
Tx(K)=inf{Tx(): K}. It is shown in [11] that Tx(K)> 0. Again it is convenient
to return to paitions of [0, T] with elements of equal length, but the result easily
extends to arbitrary paitions.
Pooso 5.3. Suppose X and F are as in Corollary 4.2. Let e > 0, Ko X

compact, and 0 < T < Tx (Ko). en there exists No > 0 independent of Ko so thatfor
each N No, j O, 1, , N, and Ko, we have

(5.5) dist (R(9(), (I + hFy()) < e,

where h TN and t =jh.
Proo One needs only to check that N in the proof of Theorem 4.1 can be chosen

independent of Ko. To this end, define

K clU {R((): 0N tN T, e K0}.

Then K is compact. Choose the constants , r, and I as in the proof of Theorem 4.1
using this K. Then for all large N and 0Nj N N, one has that (4.3) holds for each e Ko.

It remains only to show that e defined in (4.6) satisfies e0 as Nm
independent of e Ko. Since x()e K and 2(t)e F(x()), the estimate

(5.6) e N sup dist (R(h()- F())K h

holds. By [11, Thm. 3.1(d)], the right side of (5.6) approaches 0 as Nm. Therefore
the term (e/1)(er-1) in (4.6) can be made small independent of eKo. This
finishes the proof of (5.5).. Tetosersm Finally, we come to the nonautonomous analogues
of the main result. We must first reset our notation. Suppose F:[0, ) x is
a multifunction with [0, ) x X dom F, where X is open. Consider the differen-
tial inclusion

(6.1) 2( t) F( t, x( t)) a.e.

X(to) :,
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where 0<_-to < tl. The reachable set is now defined by

R(to, tl, :)= {x(t): x(. satisfies (6.1)}.
Escape times now also depend on the initial time"

Tx.,o():=suplt cl U R(to, t,)is compact in X.
to=<

Assume F has compact convex values and satisfies:

for sc X, t:: F(t, sc) is continuous on [0, ), and

for T> 0, sc f(t, sc) is locally Lipschitz on X, independent of [0, T].
THEOREM 6.1. Suppose F is as above. Then for all X and to and t satisfying

0 <_-- to<_ tl < Tx,to(:), we have

(6.2) R(to, tl, so)= N-lim
The proof of Theorem 6.1 involves a routine modification of the proof of Theorem

4.1, and therefore is omitted. It is also a straightforward matter to prove nonautonomous
versions of Corollaries 5.1 and 5.2 and Proposition 5.3.

7. Two simple proofs. In this section, two well known properties of reachable sets
are deduced effortlessly from the exponential formula. Again for notational simplicity,
we return to the autonomous formulation (1.1). Throughout this section, X and F are
as in Corollary 4.2.

COROLLARY 7.1 (cf. [1, p. 106]). For allX and 0< T< Tx(), the reachable
set R T() is connected.

Proof. Observe two simple facts: (1) if G is a continuous multifunction with
compact convex values, then the image under G of a connected set is connected. (2)
the Hausdorff limit of connected sets is connected.

It follows from (1) that (I+(T/N)F)rV() is connected for all N. From (2),
connectedness is preserved in the limit. Hence, it is immediately deduced via Corollary
4.2 that R7"(sc) is connected.

COROLLARY 7.2 (cf. [1, p. 120]). Suppose K K2 are two compact subsets of X,
and suppose further that T>0 and 3>0 so that R7"() +B

_
K2 for each K1 and

0 <= <- T. Let A be a Lipschitz constant for F on K2. Then the multifunction
is Lipschitz of order e7" on KI.

Proof. Again observe two simple facts: (1) If G1 and G2 are two multifunctions
so that G is Lipschitz of order A1 on K, and G: is Lipschitz of order A: on GI(K),
then G:o G is Lipschitz of order AA: on K. (2) A pointwise limit of Lipschitz
multifunctions is again Lipschitz with order less than or equal the lim sup of the orders
of the sequence.

In view of Proposition 5.3, we have for each large N that (I + (T/N)F)J() K2
for allj 0, 1, , N and : K1. Since (I + (T/N)F) is Lipschitz of order 1 + T/N)A
on K2, applying (1) N times gives us that (I+(T/N)F)N is Lipschitz of order
(1 +(TIN)A) on K. Passing to the limit and using (2), we conclude : Rr(:) is
Lipschitz of order eAT on K 1-]

8. Application to the Mayer optimal control problem. In this final section, we apply
Proposition 5.3 with the purpose of characterizing the value function associated with
the following control problem (which is formulated as a differential inclusion):

(8.1) inff(x(T)) over x(.) satisfying (1.1).
We assume: X- 9 in (1.1); F:n 9t is as in Corollary 4.2; all escape times are
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greater than T; and f:"o ?1 is locally Lipschitz. The assumption on the escape
times holds for all T, for example, if F satisfies the growth condition IF(x)l--< rlxl + r2.

The dynamic programming approach to providing optimality conditions to (8.1)
consists of using properties of the associated value function V(t, r/), which is defined
for (t, r/) [0, T] " as the optimal value of the problem

inff(x(T)) over

x( e AC[ t, T]

:(s) F(x(s)) a.e. s t, T]

X(t) r/.

Nonsmooth analysis has had a major role here, because in general V(t, r/) will not be
differentiable at all points. Necessary and sufficient conditions for a trajectory to solve
(8.1) in terms of a solution to a generalized Hamilton-Jacobi inequality is given by
Clarke and Vinter [3]. Also see Vinter and Wolenski [10] where measurable time
dependence of F is treated. The result of this section can be interpreted that if a
uniformity condition is assumed in the limits, then the solution is unique (and, of
course, equals the value function).

A successful approach to the uniqueness problem in Hamilton-Jacobi theory has
been followed by Lions, Crandall, and others through the notion of a viscosity solution.
This approach extends far beyond the relatively simple problem (8.1) we are treating
here. Loosely speaking, in our analysis of (8.1), the viscosity supersolution corresponds
to a generalized solution of the Hamilton-Jacobi inequality used in the optimality
conditions. For our uniqueness result below, the concept of viscosity subsolution is
replaced by the uniformity condition.

THEOREM 8.1. The value function V is the uniquefunction
that satisfies:

(i) q( t, q is locally Lipschitz in t, q
(ii)
(iii) for each compact K

_
9 and e > O, there exists 6 > 0 so that

I(t+ h, rl+hv)-(t,
(8.3) inf < e

vF(7) h

holds for all q K, 0 < h < , and [0, T h ].
Proof. It is well known that the value function is locally Lipschitz, and (ii) is

trivial. We show (iii) holds for q- V.
Let K _92 be compact and e >0. Then the set M:= [_J {R7")(r/): r/ K, 0_-< t-< T}

is bounded. This can be deduced by Gronwall’s inequality (cf. [10, Lemma 3.1]) or it
can also be seen as a simple consequence of Corollary 7.2. Let A and be Lipschitz
constants for F and f, respectively, on M+ B (as usual, B denotes the closed unit ball).

Observe that V(t, 7) =inf{f(y): y, R(7"-t)(r/)}. Hence for all small h, we have
for any v

1
-lV(t+ h, rl+ hv V(t, r/)l <_- distil (R(r-t-h)(rl+ hv), R(7-’)(rl))

(8.4) =’ distil (R(T-’-h(rl + hv), RT-’-h(R(h(rl)))

eXT=<-- distil ({r/+ hv}, R(h)(’rl)).
h
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The last inequality is a simple consequence of Corollary 7.2. Hence taking the inf over
v F(r/) in (8.4) gives

(8.5) inf [V(t+h’rl+hv)-V(t’l)l<lerdistn(F(7)R(h)(rl)--q)vF,) h h

From [11, Thm. 3.1(d)], the right side of (8.5) approaches zero as h $ 0 uniformly over
r/ in a compact set. Hence (8.3) holds for q V.

We now turn to the proof of the uniqueness assertion. Suppose q [0, T] xn _. 91
satisfies (i), (ii), and (iii). Then an immediate consequence of (iii) is that

inf lim inf
o + h, rl + hv q t, rl O.(8.6)

v F(’Q) h$0 h

From 10, Thin. 2.3], it follows that V >= q. (Actually for this estimate, q needs only
to satisfy (8.6) with the inequality "->" replacing the equality.)

To obtain the reverse inequality V <_-q, we will employ Proposition 5.3. Let K be
a compact set whose interior contains (_J {RS)(7): T- t<=s<= T}+ B. Let 0< e 1, and
fix < T and r/ ,9l n. For these choices of K and e, choose 6 so that (iii) holds, and
choose No large so that Proposition 5.3 holds. We may assume (1/No)< 6.

We next define a discrete trajectory which is "e-optimal." Set h (T- t No) and

b +jh, j O, 1, , N. Let 70 r/, and suppose for some k -< N 1, r/j is chosen for
j= 1,.’., k so that

(8.7) rlj "l’]j--1 + hF(rlj_l)

and

1
(8.8) I(tj, lj)--q(tj_l, /j_l)l < e.

Note that (8.7) implies j (I + hF)J(q) for eachj 1,. , k, and hence by Proposition
5.3, lies in K. By (iii) there exists /+1 e / + hF(lg) so that (8.8) holds for j k+ 1.
At stage No, a sequence { /j}JV=o is constructed satisfying (8.7) and (8.8) for all 0<_-j <_- No.
Set /Uo. We have

(8.9)

n)l=l (Y, /)-o(t, r/) (by (ii))
No 1

h j [@(tj, j) qg( tj_l Tlj_I)[

_<-e (by (8.8)).

We can now compare o (t, r/) with V(t, 7)"

V(t, r/)=inf{f(y)" y6 R(T-t)(rl)}
<_-inf{f(y)" y (I+ hF)No(n)}+ le

<_f() + le (by construction of )

p(t, r/) + (l + /)e (by (8.9)).

Since does not depend on e, and e is arbitrarily small, we conclude

V t, rl <- q( t, rl ).

This concludes the proof of Theorem 8.1. [3

(by Proposition 5.3)
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REALIZATION OF AUTOREGRESSIVE EQUATIONS IN
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M. KUIJPER? AND J. M. SCHUMACHER:

Abstract. A linear system described by autoregressive equations with a given input/output structure
cannot be transformed to standard state-space form if the implied input/output relation is nonproper.
Instead, a realization in descriptor form must be used. In this paper, it is shown how to obtain minimal
descriptor realizations from autoregressive equations without separating finite and infinite frequencies, and
without going through a reduction process. External equivalence is used, so that even situations in which
there is no transfer matrix can be considered. The approach is based on the so-called pencil representation
of linear systems, and it is shown that there is a natural realization of autoregressive equations in pencil
form. In this way, the link between the realization theories of Willems and Fuhrmann can also be clarified.

Key words, linear systems, autoregressive equations, descriptor form, pencil representation, realization,
external equivalence
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1. Introduction and preliminaries. In this paper, we study methods for obtaining
state representations for linear systems given by higher-order equations in external
variables, with special attention to the so-called "nonproper" situation. Suppose that
relations between input variables u and output variables y are specified by equations
of the form

(1.1) Rl(Cr)y + R2(tr)u =0

where Rl(tr) and R2(cr) are polynomial matrices, cr denotes differentiation or shift
(depending on whether we work in continuous time or in discrete time), and y and u
are functions of time. Here, as well as below, the time argument is suppressed to
alleviate the notation. The argument cr will sometimes be replaced by A or s; A denotes
a formal parameter, whereas s is used as a complex parameter and serves as default.
Following the terminology ofWillems 19], we will refer to (1.1) as a set of autoregressive
equations. Inputs and outputs are jointly referred to as external variables, and (1.1)
may be rewritten as

(1.2) R(tr)w --0

where R(s)=[R(s) R2(s)] is sometimes called an AR matrix, and w =[y- u]- is
the vector of external variables. Of course, it is also possible to take (1.2) as a starting
point, without distinction between "inputs" and "outputs" in the external variables.
The behavior defined by (1.2) is the set of all time functions w that satisfy (1.2). A
behavior may also be specified by other means, for instance, by representations that
involve auxiliary (internal) variables, such as the state representations to be defined
below. Two representations will be said to be externally equivalent 18] if their induced
behaviors are the same. In this paper, we will be looking for minimal representations
under external equivalence. In comparison with the notion of transfer equivalence,
which has been used more commonly in realization theory, external equivalence is
both stronger and more generalmore general, because transfer equivalence can be
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t Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, the Netherlands
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defined only for systems with a given input/output structure that is such that a transfer
matrix exists, and stronger, because when both notions are applicable, external
equivalence implies transfer equivalence but not the other way around. To avoid
confusion, let us note that the notion of "external equivalence" as understood in [2]
is different from the notion used here; for example, the systems 3)= ti and y u are
equivalent in the sense of [2] but not in the sense of this paper.

The standard realization theory presupposes that the matrix Rl(S) is square and
nonsingular, and that R-il(s)R2(s) is proper rational. Under these assumptions, it is
well known that an equivalent representation can be found in the usual state-space form

(1.3) rx Ax + Bu, y Cx + Du.

A powerful and elegant method to obtain such a state-space realization was devised
by Fuhrmann [5] who stated his result under transfer equivalence, and a similar
procedure under external equivalence was given by Willems 19]. However, the standard
assumptions mentioned above are not always satisfied. Examples of situations in which
this occurs can be found, for instance, in circuit models 13], econometric models 11 ],
and system inversion [7]. An often used modification of (1.3), that enables us to also
cover these so-called nonproper situations, is the descriptor form [10]
(1.4) o’Ex Ax + Bu, y Cx + Du
where the matrix E is not necessarily invertible. Algorithms to go from (1.1) to (1.4),
which follow the line of [5], have been presented in [22] and [4]. Both papers work
under transfer equivalence and so there is still the assumption that the matrix Rl(s)
is invertible. The realization procedure is then based on a decomposition of the transfer
matrix R-l(s)R2(s) into a strictly proper and a polynomial part. For the strictly proper
part, a representation in standard state-space form is obtained by the usual means,
and the polynomial part is realized in special descriptor form by using a modification
of Fuhrmann’s procedure; finally, the two realizations are put together again to create
a representation in descriptor form.

One of the important uses of realization theory is the translation of properties of
and statements about linear systems from polynomial terms to state-space terms and
vice versa, as is extensively shown in [6]. The realization procedure for nonproper
systems by cutting and pasting, as just described, is somewhat indirect, and is therefore
less suitable for such translation purposes. In this paper, we will show how to obtain
a realization in descriptor form without separation of finite and infinite frequencies.
The realization will be obtained under external equivalence, and will be minimal in
the appropriate sense. As an application, we will establish the relationships between
basic indices associated with the representation (1.1) and with the representation (1.4).
The realization procedure will be motivated along the lines of 19], and our discussion
will also clarify the relationship between the realization algorithm in 19] and the one
in [5].

The development below will be based on what we call the pencil representation of
a linear system. This is a representation of the form

(1.5) trGz Fz, w Hz

where w is a vector of external variables containing both inputs and outputs, and tr

again denotes either differentiation or shift. A similar representation has been used
before in [1], and pencil techniques in general are popular tools in numerical system
theory (see, for instance, [16]). It may also be noted that the form (1.5) has been used
for systems with partial differential equations in which control is exerted through the
boundary conditions ("boundary control systems"; cf. [14]).
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Formally, a pencil representation is given by a six-tuple (Z, X, W; F, G, H) in
which W is the space of external variables, Z is the space of internal variables, X is
the equation space, F and G are linear mappings from Z to X, and H is a linear
mapping from Z to W. We shall consider only pencil representations that are finite-
dimensional in the sense that both dim Z and dim X are finite. Also, dim W will

always be finite. Two pencil representations (Z, X, W; F, G, H).and (Z, X, W;. F, G,
H) will be called isomorphic if there exist isomorphisms S" Z-* Z and T’X X such
that t TGS-1, 13 TFS-1, and/-) HS-1. The behavior given by a pencil representa-
tion is the set of all w for which there exists a z such that (1.5) holds. (One has to
select suitable function classes here; this will be discussed later.) A pencil representation
is said to be minimal (under external equivalence) if both dim Z and dim X are
minimal in the class of equivalent representations. Let us quickly review what can be
inferred about minimality of pencil representations from the existing literature.

PROPOSITION 1.1. A pencil representation (Z, X, W; F, G, H) is minimal under
external equivalence if and only if the following conditions hold:

G is surjective
(ii) G- H-r]- is injective;
(iii) the matrix [sG-r F-r Hr]- has full column rank for all s C.

Moreover, a minimal representation is unique up to isomorphism.
Proof. If G is not surjective in a representation of the form (1.5), then "Step One"

of the realization algorithm in [15] may be used to find an equivalent representation
with a smaller equation space X. So in every minimal representation the mapping G
must be surjective. By a suitable choice of bases in X and Z, a matrix representation
of G may then be given as G=[I 0]; with respect to these bases, write F =[A B],
and H--[ C’ D’]. Writing z correspondingly as a vector with components : and
the representation (1.5) takes the form

(1,6) cr A:+ Br/ w C’: + D’r/.

The variable ,/is known as the "driving variable" ([ 19]). It is known ([ 18, Thm. 4.5],
[19, 5], [15, Cor. 4.2]) that such a system is minimal if and only if V*(A, B, C’,
D’) {0} and D’ is injective. The condition on V* and the injectivity of D’ together
imply that the associated system pencil

has full column rank for all s (see [8, p. 544]), so that (iii) holds. Because D’ is
injective, the matrix

I

is injective, also; this implies (ii). Conversely, if the conditions (i)-(iii) hold, then it
follows from (ii) and (iii) that the system pencil has full column rank for all s, so that
V* in the equivalent state space form must be zero. The injectivity of D’ in the
equivalent state space form is immediate from (ii), by reversing the argument used
above.

Now consider two minimal representations (Z, X, W; F, G, H) and (, , W;
/Z-, (, /.)) of the same system. As above, both representations can be rewritten in
driving-variable f.or.m; t.he r.esulting state-space representations will be denoted by (A,
B, C’, D’) and (A, B, C’, D’), respectively. Because these are minimal representations
of the same behavior, it follows from Theorem 7.1 in [18] that there exist invertible



REALIZATION IN PENCIL AND DESCRIPTOR FORM 1165

mappings Q and R and a mapping F such that Q(A + BF)Q-1, QBR, ’=
(C’+ D’F)Q-1 and/’= DR. So we can write the following equations:

(1.8) [I O]=Q[I 0]( o-’ OR)FQ-
(1.9) [A B]=Q[A B] FQ-’ R

(1.10) [’ /’]=[C’ D’]( o-’
R0)

This shows that the two given representations are isomorphic.
Remark 1.2. It is not hard to see that if (i) of the above proposition holds and

the matrix [sG-r- F- H-r]- has full column rank (as a rational matrix), then condition
(ii) holds if and only if [sG-r- Fr H-]- has no zeros at infinity. So, items (ii) and
(iii) of the proposition may be replaced by the following two conditions:

(ii)’ the matrix [sG-r- F-r H-]-r has full column rank;
(iii)’ the matrix [sG-r- F H]r has no zeros in the extended complex plane.

2. Pencil representations from a given behavior: discrete time. In this section, we
will discuss the pencil representation for systems that are given directly through their
(discrete-time) behavior. Here our treatment is close to the development in [19];
however, we emphasize the pencil representation rather than the driving-variable
representation, and we derive some results that do not depend on the assumption that
the behavior is dosed in the topology of pointwise convergence.

Following the definition in [19], a linear, time-invariant, discrete-time behavior is
a shift-invariant subspace of the space W/ of all functions from Z+ to a vector space
W---q. The following mappings are defined on W/" the shift
(2.1) o-" (Wo, w,,... )(w,, w_,... ),

the forward shift
(2.2) o’*" (Wo, w,,... )(0, Wo, w,,... ),

and the evaluation mapping at time 0

(2.3) x ’(Wo, w,, )Wo.

Now, let be a given behavior. Following [19], we introduce the subspaces

(2.4) o= {w (O’*)kw /k >= O}
and

(2.5) ’ {w lxw o}

of G. Intuitively, o contains the trajectories that start from the zero state; so the
quotient space /G should be (isomorphic to) the state space. The quotient space
Go!1 describes the freedom that arises at each point in time because of the freedom
we have in choosing a value of the input variable (or rather, a value of the "driving
variable"). So, o/1 is the candidate for the space of driving variables. The following
facts are trivially verified"

(2.6) tr c G

(2.7) 1 c ker X.
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Because of (2.6), we can properly define a mapping MI:G/GI g/G by

(2.8) Ml:w mod Gl-+crw rood G.
Because of (2.7), there is also a mapping M2:G/GI W defined by

(2.9) M2: w mod gl--Xw.
Furthermore, we introduce the projection mapping Mo" G! G G!G, defined simply
by

(2.10) Mo: w mod Gl--w mod G.
If elements of !G are seen as "state + driving variable," then Mo deletes the driving
variable. The mappings Mo, M1, and M_ could also have been introduced by requiring
that Fig. 1 below commutes, where zr denotes projection modulo G and 7r projection
modulo 1.

W

FIG.

The discrete-time behavior described by a pencil representation such as (1.5) will
be denoted by gp(Z, X, W; F, G, H). More explicitly,

(2.11) gp(Z, X, W; F, G, H) {w: 7/+ WlEiz: 7/+ - 7/s.t. crGz= Fz and Hz= w}.
We can now formulate the following proposition.

PROPOSITION 2.1. For any linear, time-invariant, discrete-time behavior G, we have

(2.12) G c Gp(G/G l, N/3, W; M, Mo, M2).

Proof. Take w N. Define z 7/+ - G/ N by

(2.13) z
From the definitions we easily verify that oMoz Mlz and that M2z w. This proves
that w 6 Gp(// 1, //o, W; M1, Mo, M2).

The closure of a behavior (in the topology of pointwise convergence) will be
denoted by c. A sequence w belongs to if and only if for every k_-> 0 there exists
a u3 Ya such that w ff for all 0 <=j <= k.

PROPOSITION 2.2. For any linear, time-invariant, discrete-time behavior G, we have

(2.14) G, p(/1, G/o, W; M1, Mo, M).

Proof Take w Gp(G/G’, a/G, W; M1, Mo, M2), and let z :7/+ Ya / G be
such that rMoz Mlz and Mzz w. To show that w G, we will prove by induction
that for every k there exists a
be such that

(2.15)
Next, define by

(2.16)
For 0 <= _<- k,. we have

(2.17)

Zk 71.1 ]k.
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It remains to prove that 1k e for all k. For k 0, this is trivial since fro= ko e . Since

1k+l 1k (0,0, 0, 0k+l 11k wl^k+l 12k ...)
(2.18)

(,)(+,-),
the proof will follow by induction if we can show that k+_rk e G for all k. But
this follows from

(2.19) rk+l= Mocrk+= MoZk+ MZk Mcrk= 7rrk.
COROLLARY 2.3 [19]. If , then p(/, /o, W; M, Mo, M)= .
The above corollary states that every closed, linear, time-invariant behavior admits

a pencil representation. Moreover, as shown in [19, Thm. 9], the spaces / and
/o that appear in the representation p(/, /o, W; M, Mo, M2) are

finite-dimensional. For completeness, we will offer a proof of this fact which we think
is more straightforward than the two proofs that were already given for essentially the
same fact in [19]. Some notation will be needed. Let [w] denote the k-truncation of
an element w of W+; if

(2.20) w (Wo, WI," Wk, Wk+l," ),

then

(2.21) [W]k=(Wo, W," ", Wk).

For subspaces of Wz+, write

(2.22) k {[W]k [W e },

Define a sequence of subspaces of W by

(2.23) W2()={wE Wl(0 0,..., 0, w)e Nk}.

We shall let be a fixed linear time-invariant behavior, and write W rather than
W,(N). It is immediate from tr c N that Wk+ c W for all k. Because W is
finite-dimensional, the sequence of subspaces WoO = W1 =. must reach a limit after
a finite number of steps; the limit subspace will be denoted by W. We now prove the
following lemma.

LEMMA 2.4. Suppose that 1 is closed. Let ko be such that W W, and let
b" 3ko,denote the mapping Wt’-[W]ko. Under these conditions, we have

(2.24) ker c o.
Proof. Since o is by definition the largest tr*-invariant subspace of , it suffices

to show that ker is tr*-invariant. Take w e ker ; we want to show that also tr*w e
ker , which will follow if we can prove that tr*w e . For this, it is sufficient to show
that

(2.25) [tr*w]e /j-->0,

by the closedness of . For 0=<j<=ko+l, [tr*w]j=0 and so the condition (2.25) is
certainly satisfied. To proceed by induction, suppose that [tr*w] e for some i=>

ko+l. Let ffe be such that [ff]=[tr*w]. We then have [w-trff]_=0, and
therefore,

(2.26) w-+ e W= W+.
From (2.26) and the fact that [tr*w-ff] =0, it follows that

(2.27) [tr*w- ff]+ e +.
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Since [1]i+1 obviously belongs to i+1, we may conclude that [cr*w]i+l 3i+1, which
is what we wanted to prove.

Remark 2.5. From the lemma, we easily derive that W, the limit of the sequence
in (2.23), is equal to XY3.

PROPOSITION 2.6. If a linear, time-invariant behavior is closed, then 3/o is

finite-dimensional.
Proof By the lemma, we have

(2.28) dim 3/--< dim Y3/ker dim im =<dim Wk+l q(ko+ 1).

It is not hard to show directly that the pencil representation obtained above is, in fact,
minimal.

LZMMA 2.7. If (Z, X, W; F, G, H) is a pencil representation of the linear,
time-invariant behavior 3, then

(2.29) dim X >- dim 3/o

and

(2.30) dim Z ->__ dim/1o

Proof Introduce the behavior of the auxiliary variables

(2.31) Y {z: 7+Z o’Gz Fz}.

By definition of a pencil representation, we have

(2.32) H

In analogy with o, we also introduce

(2.33) yo= {z Yl (o’*) ’z Y Vk->_ 0}.

Obviously, we have

(2.34) H c 3.
It is easily verified that, in fact,

(2.35) yo= {z Y lGzo 0},

which shows that o is the kernel of the mapping which assigns the element Gzo of
X to a given z Y. As a consequence, we get

(2.36) dim (Y/o) __< dim X.

Because of (2.34), we can unambiguously define a mapping :/Lt- 5/o by

(2.37) xt" z mod Lr%->Hz mod o.

Moreover, (2.32) shows that this map is surjective. Therefore,

(2.38) dim Y3/Y3 =< dim /o=< dim X.
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For the proof of the second inequality, we introduce

(2.39) ’ {z yo[ z0 0} {z 1Zo 0}

and proceed analogously, noting that HYlc 1 and that dim (/Lr1) =<dim Z.
We summarize the main results in the following theorem.
TI-IEOREM 2.8. Let be a closed, linear, time-invariant, discrete-time behavior. Then

a finite-dimensional minimal pencil representation of is given by (/, /o, W;
M, Mo, M2), where G and 3 are defined by (2.4) and (2.5), respectively, and the
mappings Mo, M, and M2 are defined by requiring that Fig. 1 commutes.

A behavior will rarely be given "as such," and consequently the construction
of a pencil representation as given above is mainly of theoretical value. Two important
ways of prescribing a behavior are the following:

by data: is determined as the smallest closed, linear, shift-invariant subspace
of Wg+ that contains a given (finite) set of trajectories. This leads to realization
procedures involving generalizations of the Hankel matrix: see [20] and, for
the case of approximate modeling, [21].
by equations: Y is determined as the set of all trajectories that satisfy a certain
set of differential or difference equations. For the purpose of describing a closed,
linear, time-invariant behavior, such equations may always be rewritten in the
form R(r)w =0, where R(s) is a polynomial matrix [18, Prop. 3.3].

We shall be concerned with the second option in this paper. In the next section, we
shall consider systems given by a set of equations R(cr)w =0, and we shall construct
a pencil representation by expressing the spaces /o, etc. in terms of the polynomial
matrix R (s).

3. Pencil representations from autoregressive equations: discrete time. Let a
behavior be given by

(3.1) R(cr)w =0

where R(s) is a polynomial matrix of size k q, and tr denotes the shift. We shall
continue to work in discrete time in order to employ the results of the previous section
to give a representation in pencil form for the behavior described by (3.1). Similar
results can be obtained for systems in continuous time, but these require a different
proof technique and will be handled in the next section.

It will be convenient to use an alternative notation for time series, one that is
more adapted to the description in terms of a polynomial matrix. Via the correspondence

(3.2) (Wo, Wl," )-- WoA-l+ wA-2+ ",

we can identify W+ with the set of formal power series (with vanishing constant term)
in the parameter h -. This set, to be denoted by 12 W, is a subset of the set AW of
formal Laurent series around infinity in h, of which a typical element is

W_i_ll + W_ih i--1AI_ + W--1 + WO/.--I ._ WlA--2 ...[_

The natural projection of AW onto 12 W, effected by "deleting the polynomial part,"
will be denoted by 7r_. Elements of fW will be written as w(h) or sometimes also
simply as w.
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The action of the shift cr on Wg+ corresponds on fl W to multiplication by h
followed by projection:

(3.3) crw Tr_(hw(A )).

Consequently, the behavior given by (3.1) is represented in fl W by the set XR that
is defined by

(3.4) XR {w ll WI 7r_(R(A )w(h)) 0}.

The right shift or* is represented in fl W by multiplication by h -1. Therefore, G
corresponds to the subspace NR defined by

(3.5) N={wel2Wl’tr_(h-kR(h)w(A))=Olk>=OI={weaWlR(h)w(h)=O}.

Finally, is equal to o’*N, which corresponds to h-N.
The quotient space N/N, which plays a role in the pencil representation of the

previous section as the space in which the dynamic equation "takes place," is repre-
sented as X/N. We can consider mutiplication by R(h) as a mapping from X to
Ng[A ], the set of polynomials with coefficients in [. The space Ng

is then precisely
the kernel of this mapping, which suggests replacing the quotient space X/N by
the isomorphic space

(3.6) X {p(h) e k[x ]1 3W(h) 2W s.t. R(h)w(A) p(h)}.

The isomorphism is given, of course, by the mapping M defined as follows:

(3.7) MR:W(h)mod NR-->R(A)w(A) (w(A)xR).

With some of the notation used in Fig. 1 unchanged, we now introduce the mappings
F, G, and H by requiring that Fig. 2 below commutes. We then obtain the following
theorem.

THEOREM 3.1. The behavior given by (3.1) is equal to p(XR/A-1NR, XR, W; F,
G, H); and this pencil representation is minimal.

Proof Apart from changes of notation, all we did was replace the representation
derived in the previous section by an isomorphic one. The result is therefore immediate
from Theorem 2.8.

Bases for the vector spaces XR and xR/A-1Ng may be found by taking R(s) to
row reduced form, and then concrete matrix representations for the mappings F, G,
and H can be obtained. This is worked out in 8.

X, o > X,

W X"/,-N X"/NRM -"Mo

x
FIG. 2

XR/k- 1NR
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4. Pencil representations from autoregressive equations: continuous time. In the
discrete-time context, many system properties are conveniently expressed in terms of
the behavior itself, and we have used this fact extensively in the previous sections to
prove properties of representations; for instance, equivalence between AR and pencil
representations could be proved by reducing both to their associated behaviors. For
systems in continuous time, however, the representation of a behavior in terms of itself
is much less manageable, and we are forced to work with representations in terms of
equations. The formal definition of a continuous-time behavior requires the
specification of a function class to which the trajectories should belong. We will denote
by the function class to which the (components of the) trajectories of the external
variables belong; the class from which the components of the trajectories of internal
(auxiliary) variables are taken will be denoted by @. We will assume that @ is a linear
function space that is closed under differentiation and that contains ; differential
equations will always be considered in the sense of 9. All properties used below will
be valid when = C(R) (see for instance [15]), but other choices are also
possiblemhowever, we shall not go into the axiomatics here. Confer also the discussion
in [3, Chaps. 4, 5]. The development below may also be applied to systems in discrete
time, although the approach of the preceding two sections would seem to be preferable
for its intuitive appeal.

We begin by noting some facts concerning the elimination of auxiliary variables.
To interpret the statements in the lemma below, it is useful to remember that with any
behavior admitting an AR representation we can associate a subspace of the rational
vector space W(A) of rational W-valued functions in the formal parameter A. Indeed,
if R (s) is an AR matrix for the given behavior, then R(A) can be viewed as a mapping
between rational vector spaces, and its kernel is easily seen to be independent of the
choice of the representation. So ker R(A) is uniquely determined by the behavior. In
the interpretation of the previous section, ker R(A) is just the linear span (over R(A))
of the elements of 3. In particular, dim ker R(A) is the number of inputs in any
standard state space description of

LEMMA 4.1. Consider a behavior given by the equations

(4.1) P(o-): 0

(4.2) w Q(tr)

where P(s) and Q(s) are polynomial matrices, and contains auxiliary variables. Denote
by q the number of rows of Q(s), by n the number of rows of P(s), and by r the rank of
[Pr(s) Q-r(s)]-r. It is always possible tofindpolynomial matrices V(s) and R(s) such that

(i) V(s) has size (n + q r) n, R(s) has size (n + q- r) q;
(ii) V(s) and R(s) are left coprime, i.e., the matrix V(s) R(s)] has full row rank

for all s C;
(iii) V(s)P(s)+ R(s)Q(s)=0.

If V(s) and R(s) satisfy these properties, then an AR description of the behavior defined
by (4.1)-(4.2) is

(4.3) R(tr)w =0,

and the following relation holds, where all matrices are interpreted as matrices over the
field of rational functions:

(4.4) ker R(A Q(, )[ker P(A )].
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In particular, we have

(4.5) dimker g(A)=rank(P(A))-rankP(A).Q(A)

Proof. For instance by reduction to Hermite form [8, p. 375] we can find a
unimodular matrix U(s) of size (n + q) (n / q) such that

(4.6)
U:,(s) U::(s)/ Q(s) 0

where T(s) has full row rank. Clearly then, the number of rows of T(s) must be equal
to r, and so the dimensions of U21(s) and U22(s) are (n + q- r) x n and (n + q- r) x q,
respectively. It is easily verified also that conditions (ii) and (iii) above are satisfied
by taking V(s)= U2l(s) and R(s)= U22(s).

Suppose now that V(s) and R(s) satisfy conditions (i)-(iii). We can then find
polynomial matrices U1 (s) and U2(s) such that the matrix

( U(s) U(s))V(s) R(s)

is unimodular. If we write T(s)- U(s)P(s)+ U(s)Q(s), then we obviously have

Moreover, T(s) must be of full row rank, since its number of rows is equal to the rank
of [P-r(s) Q-r(s)]-. This implies that R(s) is an AR matrix for the behavior given by
(4.1)-(4.2) (see [15, (;or. 2.3]). The formula (4.4) is obtained by interpreting (4.7) as
a rational matrix equation and using straightforward linear algebra, and (4.5) is an
immediate consequence. This completes the proof of the lemma.

In the discrete-time context, we used quotients of sequence spaces to construct
the vector spaces that are needed in a pencil representation. It should be noted that
the end result would have been the same if we would have replaced the sequence
spaces by corresponding spaces of rational vector functions; in particular, the space
W(A) of rational functions with values in W may be substituted for A W, and
A - W[[I-]] (the space of strictly proper rational W-valued functions) for f W. For
continuous-time systems, the use of sequence spaces is less natural, and we shall use
the rational setting. This will also facilitate comparison with the results of Fuhrmann
(see, e.g., [6]). The symbol or_ will be used now for the natural projection of X(A)
(where X is any vector space) onto A-1X[[A-]]. For an element w(,) of ,- W[[A-]],
the value of sw(s) at infinity will be denoted by w in accordance with the notation
of [6], rather than by wo as would be suggested by (3.2).

The next theorem is the main result of this section. Essentially, it shows how to
solve the equations that we obtain by requiring that Fig. 2 commutes.

THEOREM 4.2. Let a system be given in AR form (1.2), with R(S) EkXq(S) offull
row rank. Consider thefollowing spaces of rational vectorfunctions in a formalparameter
A:

(4.8)

(4.9)

(4.10)

XR {w(/ E/-1W[[/-l]] 7r_R(h)w(h) =0},

XR {p(/ ( []k [1 ]l 7]W(/ i -1W[[/ -1]] s.t. p(A R(A )w(h )},

N {w(h) h-’ W[[-l]] R(h)w(h) =0}.
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The following mappings (G and Ffrom xR/A-1NR to XR, Hfrom xR/A-1NR to W)
are well defined"
(4.11) G" w(h) mod A-1NR-R(A)w(A),

(4.12) F" w(h) moO h-lSg--g(h)er_(hw(h)),

(4.13) H" w(h) mod A-NR->w_I
With these definitions, (xR/A-1NR, XR, W’, F, G, H) is a minimal pencil representation
of the behavior given by (1.2).

Proof. It is easily verified that the mappings F, G, and H are indeed well-defined.
Because A-1Ng is contained in NR, it is obvious from the definition (4.11) that G is
surjective. If, for some w(h) XR, both W_l 0 and R(A )w(h) 0, then hw(h belongs
to NR

SO w(h) belongs to A-Ng. This shows that the mapping [G- H-] is injective.
Furthermore, suppose that s C and w(h) XR are such that we have

(4.14) sR(h )w(A )- R(A r_(Aw(h )) 0

(4.15) W_l =0.

Because of (4.15), 7r_(hw(h)) is equal to hw(h), and (4.14) may be rewritten as

(4.16) (s- h)g(h)w(h) =0.

Of course, this implies that R(h)w(h) 0. Because we also have (4.15), it follows that
w(A) A-1NR. By the definitions, this shows that [sG--F- H-]- is injective for all
s C. By the criterion given in Proposition 1.1, we have now shown that the pencil
representation given by F, G, and H is minimal.

We still must show that this pencil representation describes the same behavior as
the given AR representation. For this purpose, we use the preceding lemma. Let n
denote the dimension of XR and write r for the dimension of xR/A-1NR’, then r is
also the rank of [sG-- F-r H-]-, since we have shown that this matrix has full column
rank. Because G is surjective and ker G= NR/A-NR, we can write

(4.17) r-n dim ker G=dim NR/h-lNR=dimker R(h)=q-k
since R(s) was assumed to be of full row rank. So, we have k n + q-r, and R(s)
has the size required in Lemma 4.1. It remains to find a polynomial matrix V(s) of
size k x n such that conditions (ii) and (iii) of that lemma are satisfied.

We claim that such a polynomial mapping is given by the "evaluation map" which
replaces the formal parameter h by the complex number s"

(4.18) V(s) XR p(h )-p(s) C k.

This map is polynomial because XR consists of polynomial vectors; this is evident
when we write a matrix representation of V(s). To verify that condition (ii) holds, we
compute, for w(h) XR.

V(s)(sG- F)w(h) V(s)[sg(h)w(h)- g(h)(hw(h)- w_,)]

(4.19) sR(s)w(s)- R(s)(sw(s)- W_l)

R(s)w_l R(s)Hw(A).

Finally, we must show that V(s) and R(s) are left coprime. For this purpose, it suffices
to produce polynomial mappings Ql(S) and Q_(s) such that

(4.20) V(s)Q,(s)+ U(s)Q(s)= L
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By assumption, R(s) has full row rank, so it has a rational right inverse, say T(s). We
split T(s) into a polynomial and a strictly proper part, denoted, respectively, by T/(s)
and T_(s). Obviously, we have

(4.21) g(s)T_(s)= I- g(s)T/(s),

where the right-hand side is polynomial. It follows that the columns of R(A)T_()t)
belong to XR. Consequently, there exists a constant matrix Q1 such that

(4.22) R(s) T_(s) V(s)Q,.

Writing T/(s) as Q2(s), we get

(4.23) V(s)Q,+R(s)Q2(s)=R(s)T_(s)+R(s)T+(s)=R(s)r(s)=I.

5. Realization with a causal input/output structure. In the realization procedure
of the previous section, we could replace the quotient space XR/NR by the space of
polynomials XR, because we had a natural isomorphism available between these two
spaces, given essentially by multiplication by R(A). The other space that we used,
xR/)k-INR, is isomorphic to the direct sum XR WO, where W is the subspace of
W defined by

(5.1) W--{w WlSlw(,) N s.t. w= w_}.

(In other words, we have W= HNR, in full analogy with the discrete-time casesee
Remark 2.5.) Indeed, the following holds:

(5.2) xR/}k-INR---XR/NR NR/,-INR"XR W.
Unfortunately, the first isomorphism in the formula above must be established by
selecting a complement to NR/A-NR in xR/A-NR, and so we do not have a natural
isomorphism available. This is also reflected in the nonuniqueness of"driving-variable"
representations as described in [18, Thm. 7.1]. It should be noted that the space W
itself is canonically given (i.e., it is an invariant under external equivalence), and this
space will play an important role below.

Now, suppose that we add more structure by dividing the external variables into
inputs and outputs. Such a division is given by a decomposition of the external variable
space W as the direct sum of two subspaces Y and U, corresponding to a splitting of
the defining AR matrix R (s) as

(5.3) g(s) [g,(s) R2(s)].

The projection onto U along Y will be denoted by 7rt, the complementary projection
by Try. We shall first consider the "causal" situation as described in the following
lemma, which is a formalization of remarks in 18, 6]. General input/output structures
will be discussed in the next section.

LEMMA 5.1. With the notations introduced above, the following statements are
equivalent:

(i) R(s) is invertible as a rational matrix, and R-l(s)R(s) is proper rationa,l;
(ii) the projection 7rt, taken as a mapping from W to U, is an isomorphism;
(iii) there exists a mapping D" U-- Y such that

where the vecor notation is adapted to the decomposition of W as Y@ U;
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(iv) Y is a complement of W in W.
Proof The equivalence between statements (ii), (iii), and (iv) is a matter of

straightforward linear algebra. To prove that (i) implies (iii), define

(5.5) D [-R-(l(s)R2(s)]=o.
Take w W, and let w(A) NR be such that w_l w. From R(A)w(A)=0, we have

(5.6) 7rvw(h + R]-’ (h)R2(A 7ruw(A 0,

and this implies

(5.7) 7"gyW-- DTruw_

Conversely, suppose that w 6 W is of the form

(5.8) w

Define w(A) by

(5.9) w(A) A-l (R-’(A )R2(A )u)
then w(A) NR and w_ w, so that w W.

Now, assume that (ii)-(iv) hold. Let N(A) be a basis matrix for the rational vector
space ker R(A); we may assume that N(A) is proper rational, and that its leading
coefficient matrix No= [N(s)]= has full column rank. (To see this, note that by
reducing R(A) to row reduced form one actually writes R(A)=IS(A) 0]B(A) where
S(A) is a nonsingular polynomial matrix, and B(A) is bicausal. One may then take
N(A) B-(A)[0 I]T.) Under these conditions, No is a basis matrix for W and it
follows that dim U dim W= q-k where k is the number of rows of R(A). So,
dim Y= k and it is seen that the matrix R(A) is square. To prove that RI(A) is
invertible, suppose that RI(A)y(A)=0 for some y(A) Y(A) not equal to zero. It is
no restriction of the generality to assume that y(A) is strictly proper with a nonzero
leading term y_; but then the vector [yV_l 0IT belongs to Y f) W and so should be
zero according to (iv). Finally, note that by definition we have

(5.10) R,( )TryN(A + R2(A )TruN(A O.

Moreover, the rational matrix 7rtN(A) is proper with an invertible leading coefficient
matrix, as is seen from (ii), and this implies that

(5.11) R-’(A)R_(A) -TrrN(A)(rruN(A))-’
is proper rational. This completes the proof of the lemma.

In the remainder of this section, we assume that R(s) in (5.3) is invertible, and
that R-((s)R2(s) is proper rational. To construct the parameters in a standard state-
space representation of the behavior given by R(s), define a mapping from
xR/A-NR to XR@ U by

(5.12) :w(A)mod A-XNR--(R(h)w(h))’7"I’uW_

(it is easily seen that this is well-defined). To prove that is injective, let w(A) XR

be such that R(A)w(A)=0 and 7rtw_=0. For such a w(A), we get w(A) NR so
w_ W. The condition 7rtw_ 0 implies w_l Y, so that w_l Y f’) W= {0}, which
proves that w(A) A-NR. This shows that @ is injective; the fact that @ is actually
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an isomorphism then follows easily by a dimension argument. Using the obvious facts
[! 0] G and [0 I] zrtH, we can now write down the diagram below which we
use to define the mappings A, B, C, and D that will appear in an input/state/output
representation of the given behavior.

We can give more explicit expressions for the four mappings defined by requiring
-1that Fig. 3 commutes. Note that R1 (s)p(s) is strictly proper if p(h)c XR; indeed,

suppose that p(s)= Rl(s)zryw(s)+ R2(s)Trtw(s) for w(h)cXR, then

(5.13) R-(’(s)p(s) zryw(s)+ R-(l(s)R2(s)ert(s)w(s)
and this is obviously strictly proper. With this information, it is easily seen that the
inverse of the isomorphism may be given as follows:

(5.14) dP -1 XRU(P(Au )) (R-I(A)p(A)-A-1R-I(A)R2(A)U)modA-1NRh-lu

The mapping [A B] can now be computed as MIcMI-1. Explicitly, this gives:

() (R-I(A)p(A)-A-1R-I(A)R2(A))[A B]
p(h

[RI(A Re(A
U A-lu

(5.15) Rt(A 7r_AR-’ (A)(p(A R(A )u) + R(A )Tr_u

7rR,Xp(X)- 7rR, R2(X)u,

where the notation 7rR, is used, following [6], for the projection on XR given by

(5.16) 7rR, "p(A )--RI(A )7r_R-I(A )p(A ).

In particular, we find

(5.17) A’p(A)-TrR,Ap(A)= Ap(A)-RI(A)[R;I(A)p(A)]_I
and

(5.18) u-,R(;t )u.

The expression for B may also be written in a different way if we introduce a constant
matrix D by

(5.19) D= [R-l(s)R2(s)]=;
namely,

(5.20) B" u---R2(A )u + RI(A)Du.

W < H
Xa/’-INa

YU < XU

> XR

Mi > X/N < Mo

[X l > x, < [r Ol

FIG. 3

XR IX- 1Nt

xu
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Quite similarly, we obtain explicit expressions for the mappings C and D from
the formula [C D] ,n’yH-1. We find

C’p(l )--[R71 (,.)p(. )]--1

and

(5.22) D" u--->-Du.

So, in this way we recover Fuhrmann’s realization of a transfer matrix R-1 (s) R2($)
in left matrix fractional representation. Notice that actually we proved more: it is
known from Fuhrmann’s work that the realization is minimal under transfer equivalence
if and only if the fractional representation is coprime, whereas we have shown here
that the realization is always minimal under external equivalence. The condition for
minimality under transfer equivalence can be derived from this.

It is also possible to set up diagrams to define single mappings from the quadruple
(A, B, C, D). For instance, by transforming Fig. 3 we obtain Fig. 4, which can be used
to define the mapping A. This clearly displays A as a version of the shift.

Xa o XR

X /N o X /N

A

FIG. 4

6. Realization with a general input/output structure. In the case where we have
given a not necessarily causal input/output description, our aim is to obtain a rep-
resentation in descriptor form. To arrive at this representation, it turns out to be
advantageous to use the pencil form as an intermediate step; the descriptor form can
be derived from the pencil form in a straightforward way, as will now be shown.

Let a pencil representation (Z, X, W; F, G, H) be given, along with a decomposi-
tion W= Y U and associated projections 7Yy and 7ru. Decompose the internal
variable space Z as Zo( Z1 () Z2 where Z1 ker G f-I ker 7ruH, and Z@Z2 ker G.
Accordingly, write

(6.1) G=[Go 0 0], F=[Fo F1 F2],

(6.2) yH [Hoo Ho, Ho2], uH [H.o 0 H,2].

The matrix H,2 has full column rank, and by renumbering the u-variables if necessary,
we can write

(6.3) gu=
H2o]’ H22
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where H22 is invertible (or empty, if ker G c ker ruH). The system equations take the
form (in obvious notation):

(6.4)
(6.5)
(6.6)
(6.7)

rGozo: Fozo+ Fz + Fz,
y Hoozo+ Hoaza + HozZ2,

ll Hozo+ HzZ2,

u: Hzozo + Hzzz2.
We can now solve for Z2 and obtain a description in descriptor form

(6.8) trEz Az + Bu,
(6.9) y Cz + Du
where the parameters are defined as follows:

0 Hlo-H12H;H20 B=-I
C [Hoo- HozHHzo Hol], D [0 HozH].

Remark 6.1. The essence of the above construction is that as many z-variables as
possible are replaced by u-variables. If this is not considered important, then, of course
a simpler construction is possible" just write

(6.11, o’(Go)Z=(TrtFi_i)z+(?i)u,
(6.12) y 7rvHz.
This simple solution will in general produce a nonminimal descriptor representation
even if one starts with a minimal pencil representation. The more elaborate construction
above behaves nicely with respect to minimality properties, as shown below and as
further detailed in [9].

The following lemma, which will be needed below, also sheds some light on the
role of the Uz-variables. Recall that, in the construction above, these variables serve
to parametrize the subspace 7rtH[ker G] of W.

LZMMA 6.2. Consider a pencil representation (1.5) and an equivalent AR representa-
tion (1.2); assume that G is surjective and that G-r Hv]-r is injective. Let the subspace
W of W be defined by (5.1). We then have

(6.13) W= H[ker G].

Proof It follows from Lemma 4.1 that a rational vector w(A) belongs to ker R(A)
if and only if there exists a rational vector z(A) such that

(6.14)
w(A) g z(A).

Now assume that w(1) is strictly proper; because Gn- H-r]-r is injective, it then follows
that z(1) is also strictly proper, and that its leading coecient z_ satisfies Gz_ =0.
Moreover, we have w_ H2_1. If follows that W c Hiker G]. Now, it has already
been shown in the proof of Lemma 5.1 that dim W dim ker R(1). Moreover, using
(4.5) and the assumptions, we obtain

(6.15) dimkerR(A)=rank(IGH-F)-rank(IG-F)=dimker(AG-F)=dimkerG
so that dim ker G =dim W. Since dim ker G dim H[ker G] because [Gn- H-]-r is
injective, this leads to the desired conclusion.
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Note that for minimal pencil representations, this characterization of W in pencil
terms can also be derived from the realization in 4.

7. Indices and minimality. In this section, we will discuss the minimality of descrip-
tor representations. While for standard state space systems there is only one index that
plays a role to determine the minimality (viz., the dimension of the state space), there
are three such indices for descriptor systems: the rank of E, the column defect of E
(dim ker E =the number of columns minus the rank), and the row defect of E
(codim im E the number of rows minus the rank). A minimal descriptor representa-
tion is, by definition, one in which each of these three indices is minimal within the
set of descriptor representations for a given behavior. Note that, with this definition,
even the existence of a minimal representation is not trivial. Our strategy will be to
establish first lower bounds for each of the three indices separately, and to show next
that these minima can be achieved simultaneously. The fact that this is possible also
shows that, by minimizing the three indices above, one automatically minimizes the
number of descriptor variables (= the number of columns of E rank+ column defect)
and the number of equations (= the number of rows of E rank+ row defect).

PROPOSITION 7.1. Let an input/output behavior be given by autoregressive equations

(7.1) [Rl(cr) R2(tr)] (y) =0.

Write n for the sum of the minimal row indices of R(s) (stated in other terms, n is the
maximal degree of the full-size minors ofR s) ). Suppose that a descriptor representation
of the behavior determined by (7.1) is given by

(7.2) trE A+ Bu,

(7.3) y= C+ Du.

Under these conditions, the rank of E is at least equal to n.

Proof. By a suitable choice of coordinates and introduction of new variables, the
descriptor equations (7.2)-(7.3) may be written as follows:

(7.4) o’1 Alibi + A122+ B’q,

(7.5) 0 A_I :1 d- A222 + B2

(7.6)

The algorithm of [15] may be used to reduce this to state-space (driving-variable)
form; the dimension of the state space will be at most equal to the length of the vector
:1, which in turn is equal to the rank of E. On the other hand, it is well known (see
[19, Thm. 6]) that the dimension of the state space must be at least equal to the sum
of the minimal row indices of R(s). The stated result follows.

The following two lemmas show that both observability at infinity and reachability
at infinity (see for instance 12]) are necessary conditions for minimality of descriptor
representations under external equivalence. This is unlike the situation for the finite
modes, where minimality under external equivalence requires observability but not
controllability 18, Cor. 4.7].

LEMMA 7.2. A necessary condition for (7.2)-(7.3) to be a minimal descriptor rep-
resentation is that the matrix [ET cT]T is injective.
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Proof. Suppose that the condition of the lemma is not satisfied, so that ker E and
ker C have a nontrivial intersection. By a suitable choice of coordinates, we may then
write

(7.7) E 1 0], C C 0]

where the number of the columns in the zero matrices is equal to dim (ker E f3 ker C).
The equations (7.2)-(7.3) will then appear in the form

(7.8) crEl: aal:a + A1:2 + Bu,

(7.9) y-- CI "at- Du.

Denote the "equation space" (the space into which E maps) by X. Let X’e and
T" Xo X’ be such that T is surjective and satisfies ker T =im A12. The equations
(7.8)-(7.9) are equivalent to

(7.10) o’TEI TAllY: + TBu,

(7.11) y CI:I + Du.

We want to show that this system precedes the original system in the partial ordering
determined by the three indices (rank, column defect, row defect) introduced above.
That is, we want to show that the following inequalities hold, with strict inequality in
at least one case:

(7.12) rank TEl <= rank E,

(7.13) dim ker TEl <= dim ker E,

(7.14) codim im TEl <= codim im E.

As to (7.12), we have

dim im TEl dim im E1 dim(ker T im El)
(7.15)

_<-- dim im E1 dim im E

with equality if and only if

(7.16) im Al fq im E {0}.

We next consider (7.13):

dim ker TE dim ker E + dim (im E fq im A12)
(7.17)

<-- dim ker E + dim (ker E f3 ker C) dim ker E

where we used the fact that the number of columns of A: is equal to dim (ker E fq

ker C). Here, equality holds if and only if A2 has full column rank and

(7.18) im A12 c im El.

Finally, we verify (7.14):

(7.19) codim im TE codim T [im E] _-< codim im E codim im E

with equality if and only if ker T= im El, that is, if and only if (7.18) holds. (Here
we use the following easily verified fact from linear algebra: if A is a surjective mapping
from a space X to a space Y, and X0 is a subspace of X, then codim AXo <= codim Xo;
equality holds if and only if ker A = Xo.)
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Now, assume that equality would hold in all three cases. The matrix AlE should
then have full column rank, so that the rank of A should equal the number of columns
of A12, which in its turn is equal to dim (ker C fq ker E). On the other hand, it follows
from (7.16) and (7.18) that A12 0, so that it would follow that dim (ker C f’) ker E) =0,
which contradicts our assumption that the subspaces ker C and ker E intersect non-
trivially. This completes the proof.

LEMMA 7.3. A necessary condition for (7.2)-(7.3) to be a minimal descriptor rep-
resentation is that the matrix E B] is surjective.

Proof. The proof is quite similar to the proof of the previous lemma, and we will
not work out all details. Suppose that [E B] is not surjective; then, by a suitable choice
of coordinates, we can write

where [El B] is surjective, and the number of zero rows is equal to codim [E B].
With this choice of coordinates, the equations (7.2)-(7.3) can be written as follows"

(7.21) erE=A+Bu,

(7.22) 0 A2,

(7.23) y C+ Du.

Let S be an injective mapping such that im S =ker A2. The above equations are
equivalent to"

(7.24) erE1S aS+ B u,

(7.25) y CS+ Du.

To prove the lemma, we need to show that the following three inequalities hold, with
strict inequality in at least one case:

(7.26) codim im EIS <- codim im E,

(7.27) dim ker E1S <= dim ker E,

(7.28) rank E1S <-rank E.

This proof can be conducted as above (or the statement can be derived from the one
in the previous lemma by duality).

PROPOSITION 7.4. Let (7.2)-(7.3) be a descriptor representation for the behavior
described by (7.1), and define W as in (5.1). Under these conditions, the following
inequalities hold"

(7.29) dim ker E -> dim Y fq W),
(7.30) codim im E >_- codim Y+ W).

Proof It follows from the lemmas we just proved that we may suppose that the
matrix [E- C-]T is injective and that the matrix [E B] is surjective. Note that the
descriptor equations (7.2)-(7.3) may also be written in the following form:

(7.31) [erE-A -B]()=0,
(:)
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Take w W; then there exists a proper rational W-valued function w(A) satisfying
Wo-w and R(A)w(A)-0. By Lemma 4.1 above, there must exist rational vector
functions :(A) and r/(A) such that

(7.33) [AE-A -B]
r/(h)

=0

(7.34) o

These equations may also be written as follows"

(7.35, (AEc- A) :(A) (
Since the right-hand side in this equation is proper rational and because [ET C-]-r is
injective, so(A) must also be proper rational. Moreover, the constant term in the power
series development of (A) must satisfy EsCo 0. Now, suppose that w Y fq W. Then,
again from (7.35), it follows that w C:o; so w C[ker E]. Therefore,

(7.36) dim (Y f’) W) <-dim C [ker E] dim ker E.

For the proof of the second part, we note that it suffices to show that

(7.37) {u UIBuim E} rruW.
Indeed, we easily verify that codim 7ruW (with 7ruW considered as a subspace of
U) is equal to codim (Y+ W), and we can apply the following rule which holds
generally for mappings A between vector spaces X and Y: codim A-1Yo_-< codim Yo
(Yo a subspace of Y). To show (7.37), let u U be such that Bu im E. The desired
conclusion will follow if we can exhibit proper rational functions so(A) and u(A) such
that Uo u and

(7.38) (E-A)(A)=Bu(X).

If we define y(A)= C:(A)+ Du(A), then y(A) is proper rational and

I u(A)

so that

(7.40) (yo)tl ’rru 7"ruw.
Uo

Writing u(A) Uo+ r/(A), we see that it will be sufficient to find a strictly proper solution
[(A)-r 7(A)-]-r of the equation

(7.41) [AE-A -B] r/(A)/=Bu"
Equivalently, we are looking for a proper solution of the same equation with Bu
replaced by ABu. It follows from Theorem 6.3.12 in [8] that such a solution does indeed
exist.
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Remark 7.5. Actually, it is not difficult to display an explicit strictly proper solution
to (7.41), if we rewrite this equation by a change of variables as

[()
(7.42) (AI-All-A12-Bll-B12I2(A)-(Xo)-A_ -A I -B/ I*l(h
(The identity matrix in the (2, 3) position is allowed by the assumption that [E B] is
surjective.) A strictly proper solution is

(x
ll-x

(7.43) (2( e2(/-el, Nle21)-Xo]
as can be verified immediately.

THEOREM 7.6. Let an input/output behavior be given by autoregressive equations
(7.1). Denote che sum of che minimal indices ofR(s) by n, and define W by (5.1). ere
exists an externally equivalent descriptor representaion (7.2)-(7.3) satisfying thefollowing
requirements:

(7.44) rank E n,

dim ker E dim Y f’l W),
codim im E codim Y+ W).

H[ker G f-I ker 7ruH] HZ1
(7.49) dim ker E dim Z dim (ker ruH f’l ker G) dim Y f’l W)
(because ker G f-I ker H {0}, so that the restriction of H to Z1 is injective), and

(7.50) codim im E dim U1 codim 7raW codim Y+ W).
Remark 7.7. By unimodular operations, we can take the given polynomial matrix

R(s) to row proper form (see [8, p. 386]); so, we may assume that R(s) is row proper
to start with. This means that we can write

(7.51) R(s) A(s)B(s),
where B(s) is right bicausal, and

(7.52) A(s) =diag (sK,, SKk).

It is not difficult to verify that the subspace W is characterized in these terms as

(7.53) W= ker B(oo).

(7.45)
(7.46)
Moreover, a descriptor representation of the behavior given by (7.1) is minimal if and
only if the above three equalities hold.

Proof. In view of the previous results in this section, it only remains to show that
a descriptor representation satisfying (7.44)-(7.46) exists. We claim that the representa-
tion obtained in the previous section satisfies all requirements, supposing that this
representation is formed from a minimal pencil representation (see Proposition 1.1).
Using the notation of 6, we have indeed"

(7.47) rank E dim Zo dim im G dim XR n

(7.48) Y f’l W= ker 7ru H[ker G]
={we WIZlzZ Gz=O, w=Hz, 7raw 0}
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Note that B(oo) is nothing but the "leading row coefficient matrix" of R(s). The
partitioning of R(s) as [Rl(s) R2(s)] induces a similar partitioning of B(oo)-
(7.54) B(oo) [Bx(OO) B2(oo)].
Using standard manipulations, we find the following expressions for dim (YCI W)
and codim (Y+ W)
(7.55) dim Y f3 W) dim ker Bl(oo)
(7.56) codim Y+ W) codim im Bl(OO).
So, we have easy criteria for minimality of descriptor representations of a behavior
given by a row proper AR matrix" the rank of E should be equal to the sum of the
row indices, and the row and column defects of E should be equal to the corresponding
indices of B(oo). It also follows that E in a minimal descriptor representation will be
square if and only if B(oo) is square; this happens if and only if R(s) is square, that
is if the number of y-variables is equal to the number of independent equations in an
AR representation.

8. Computation. In this section, we will show how to obtain concrete matrix
representations in pencil form and in descriptor form, starting from autoregressive
equations determined by a k q polynomial matrix R(s) of full row rank. For this
purpose, we shall construct specific bases for the spaces that appear in the abstract
realization of 4. In the procedure below, the transformation from pencil to descriptor
form is not a straightforward implementation of the abstract procedure given in 6;
one reason for this is that, in the abstract version, the crucial subspace W appears
as the image of a certain mapping, whereas in the computation below it appears as a
kernel This leads to a different (dual) method of selecting the u2-variables.

The first step is to take the given polynomial matrix R(s) to row proper form [8,
p. 386]. To alleviate the notation, the resulting equivalent AR matrix will still be
denoted by R(s). So we have

(8.1) R(s)=A(s)B(s)
where B(s) is right bicausal, and

(8.2) A(s) diag (s,, s).
Now, let /(s) be any matrix such that /(s)=[BV(s) /-(s)]v is bicausal. It will be
discussed later how to make a suitable choice for B(s). We can write R(s)=
[A(s) 0]/(s), and it is seen from this that a basis for X/A-1N is given by the
equivalence classes modulo A-N of the columns of the following matrix of size
q(n+q-k):

(8.3) -’(x) -’ x-
.-1

A basis matrix for XR is given by the following matrix of size k x n"

)K,-1 , 1 0

(8.4)
0 AK2-1

0

0 k- , 1
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With respect to these bases, we now compute the matrix forms of F, G, and H.
It is easily seen that G will take the form [I 0]. Because B(A) is bicausal, the matrix
of H will have the form

(8.5) H =/(c)-
Here, we see that we will need the inverse of/(oo). Finally, if we let G(A) denote the
matrix whose columns are the images under G in Ek[A] of the basis elements for
XR/A -NR displayed above, then we can compute a similar matrix for F by the formula

(8.6) F(A)=AG(A)-R(A)H,

which follows from the definitions of F, G, and H. This is easily transformed into a
matrix expression for F because of the simple basis we chose for XR.

Example 8.1. Let R(s) be given by

( $2 82+1 )(8.7) R(s)
1 s+2

The leading row coefficient matrix of this is

(8.8) B(oo)
0

which has full row rank, so R(s) is already row proper. The row degrees are 2 and 1,
so a polynomial basis matrix for XR is given by

We get G [I 0] e R4. We now have to choose/ to complete B(oe) to an invertible
matrix; we can take B [0 0 1], which gives

(S.10) B(c) 1

0

so that

(8.11) /(c)-’ 0 1

0 0

Therefore,

(8.12)
0 1 0 0 0

H= 1 10 0 0

0 1 0 0 0

-1

1

0
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Finally,

0 A 1 A+2

(8.13)

The matrix of F is, therefore,

(8.14)

ti -1

1

0

F= 0 0 -1

-1 0 -1

This concludes the example.
Now, suppose that a division of the external variables into inputs and outputs

has been given, and that we want to obtain a representation in descriptor form. We
start from the autoregressive equations, which appear in partitioned form"

(8.15) [Rl(O" R2(o’)](y) ---0.
\u/

Taking R(s) to row proper form as before, we get a corresponding partitioning of the
right bicausal matrix B(s):
(8.16) [RI(S) R2(s)]=A(s)[B,(s) Bz(s)].
By renumbering the inputs if necessary, we may assume that

(8.17) B2(oo) [B(oo) B(oo)]
where B() has full column rank, and the columns of B22(0) depend linearly on
those of [Ba(oo) B(oo)]. Let B(oo) have m2 columns; note that m2 -< q-k. It is easily
verified that a matrix B which completes B(oo) to an invertible matrix may be found
whose last m rows are in the form [0 I]. By the construction, a basis matrix for
ker[B(oo) B(oo)] must be of the form [N 0]-. Taking these facts together, we
conclude that B(oo)-1 is of the form

(8.18) ](00) -1 0

0

where the partitioning is (p + rnl + m2) x (k + (q k m2) q- m2) (p is the number of
y-variables, ml is the number of columns of B(oo)). We therefore obtain equations
of the following form:

(8.19) O’Zo Aozo+ BIz + B2z2

(8.20) y Hoozo+ HolZl -- Ho2Z2(8.21) u HloZo + H12z
(8.22) U2 Z2

This can obviously be rewritten as

(8.23) r
Z1 Hlo

(8.24) y [Hoo Howl(z) +[0
Z1
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We now have a representation in descriptor form; as can be verified by checking the
dimensions (using Remark 7.7), it is in fact a minimal representation. The fact that a
zero block appears in the bottom right corner of the "A-matrix" means that the system
"has no nondynamic variables" ([17]). It will be shown in [9] that the absence of
nondynamic variables is a necessary condition for minimality of descriptor representa-
tions under external equivalence.

Example 8.2. Take

(8.25) R(s)=( s+ls+2 2sO s21 s-12 )
and let the first two external variables be outputs, and the other two inputs. The leading
row coefficient matrix

has full row rank, so that the given matrix R(s) is already row reduced; also, m2 1
and the inputs need not be renumbered. We see that the sum of the row indices of
R(s) is 3 and that the row and the column defects of Bl() (formed by the first two
columns of the matrix above) are both equal to 1; so, a descriptor representation (E,
A, B, C, D) will be minimal if and only if the matrix E has size 4 x 4 and rank 3.

We can take

(8.26) B=
0 0

which leads to

(8.27) /(oo)-’

00 1 0

o - -1/2
1 0 0

0 0 0

Consequently, we get

(8.28) H

0 0 0 1 0

o o
1 0 0 0 0

10 0 0 0

The matrix of F is computed from

F(A)=(AO h 0 0

0 h 0 +2 2h 1

(8.29) x

0 0 0

i 0 0

0 0

1 0
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This gives

I 0 1 0-1 !t(8.30) = 0 0 0 --1 0 0 2

Of course, G [13 0]. Reorganizing the pencil equations as described above, we obtain

0 1 0 -1 0 0

(8.31) cr
0 Z 0 0 Z 0 1 U2

0 0 -1 0

(8.32) y=
0

9. Conclusions. In this paper, we have shown a procedure which leads from a
representation in autoregressive form (and in particular, from a left polynomial factori-
zation) to a minimal descriptor representation. This procedure does not require the
separation of finite and infinite frequencies. In fact, the transfer matrix is never
computed, and the heaviest computational load in the algorithm consists ofthe inversion
of a single constant matrix. The basic tool that we used is the pencil representation,
which appears as a natural form that can be derived from autoregressive equations by
a very simple formula. This formula also provides the link between the realization
theory of Willems and that of Fuhrmann. The direct connection between autoregressive
representations and descriptor representations which has now been established enables
us to study more closely the relations between the two representations.

REFERENCES

[1] J. D. APLEVICH, Time-domain input-output representations of linear systems, Automatica, 17 (1981),
pp. 509-522.

[2] , Minimal representations of implicit linear systems, Automatica, 21 (1985), pp. 259-269.
[3] H. BLOMBERG AND R. YLINEN, Algebraic Theory for Multivariable Linear Systems, Academic Press,

London, 1983.
[4] G. CONTE AND A. M. PERDON, Generalized state-space realizations for non-proper rational transfer

functions, Systems Control Lett., (1982), pp. 270-276.
[5] P. A. FUHRMANN, Algebraic system theory: an analyst’s point of view, J. Franklin Inst., 301 (1976),

pp. 521-540.
[6] , Linear Systems and Operators in Hilbert Space, McGraw-Hill, New York, 1981.
[7] J. GRIMM, Application de la thdorie des systbmes implicites a l’inversion des systb.mes, in Analysis and

Optimization of Systems, A. Bensoussan and J. L. Lions, eds., Proc. 6th Int. Conf., Nice, June 1984;
part 2, Lecture Notes Control Information Sciences 63, Springer-Verlag, Berlin, New York, 1984,
pp. 142-156.

[8] T. KAILATH, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[9] M. KUIJPER AND J. M. SCHUMACHER, Minimality of descriptor representations under external

equivalence, Report BS-R9002, CWI, Amsterdam, 1990.
[10] D. G. LUENBERGER, Dynamic equations in descriptor form, IEEE Trans. Automat. Control, AC-22,

(1977), pp. 312-321.
[11] D. G. LUENBERGER AND A. ARBEL, Singular dynamic Leontiefmodels, Econometrica, 45 (1978), pp.

473-481.
12] H. H. ROSENBROCK, Structural properties of linear dynamical systems, Internat. J. Control, 20 (1974),

pp. 191-202.
[13] H. H. ROSENBROCK, Non-minimal LCR multiports, Internat. J. Control, 20 (1974), pp. 1-16.
14] D. SALAMON, Infinite dimensional systems with unbounded control and observation: a functional analytic

approach, Trans. AMS, 300 (1987), pp. 383-431.



REALIZATION IN PENCIL AND DESCRIPTOR FORM 1189

[15] J. M. SCHUMACHER, Transformations of linear systems under external equivalence, Linear Algebra
Appl., 102 (1988), pp. 1-34.

16] P. VAN DOOREN, The generalized eigenstructure problem in linear system theory, IEEE Trans. Automat.
Control, AC-26 (1981), pp. 111-129.

17] G. C. VERGHESE, B. LIVY, AND T. KAILATH, A generalized state space for singular systems, IEEE
Trans. Automat. Control, AC-26 (1981), pp. 811-831.

[18] J. C. WILLEMS, Input-output and state.space representations offinite-dimensional linear time-invariant

systems, Linear Algebra Appl., 50 (1983), pp. 581-608.
[19], From time series to linear system. Part I: Finite dimensional linear time invariant systems,

Automatica, 22 (1986), pp. 561-580.
[20] From time series to linear system. Part II: Exact modelling, Automatica, 22 (1986), pp. 675-694.
[21] From time series to linear system. Part III: Approximate modelling, Automatica, 23 (1987),

pp. 87-115.
[22] H. K. WIMMER, The structure of nonsingular polynomial matrices, Math. Systems Theory, 14 (1981),

pp. 367-379.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 28, No. 5, pp. 1190-1208, September 1990

(C) 1990 Society for Industrial and Applied Mathematics

009

THE QUADRATIC MATRIX INEQUALITY IN SINGULAR Hoo CONTROL
WITH STATE FEEDBACK*
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Abstract. In this paper the standard Ho control problem using state feedback is considered. Given a
linear, time-invariant, finite-dimensional system, this problem consists of finding a static state feedback such
that the resulting closed-loop transfer matrix has H norm smaller than some a priori given upper bound.
In addition it is required that the closed-loop system is internally stable. Conditions for the existence of a
suitable state feedback are formulated in terms of a quadratic matrix inequality, reminiscent of the dissipation
inequality of singular linear quadratic optimal control. Where the direct feedthrough matrix of the control
input is injective, the results presented here specialize to known results in terms of solvability of a certain
indefinite algebraic Riccati equation.

Key words. H control, state feedback, quadratic matrix inequality, strong controllability, almost
disturbance decoupling

AMS(MOS) subject classifications. 93C05, 93C35, 93C45, 93C60, 93B27, 49B99

1. Introduction. In a series of recent papers [1], [2], [5], [8], [10], [15], [18], [23]
the by now well-known H optimal control problem was studied in a perspective of
classical linear quadratic optimal control theory. In these papers it is shown that the
existence of feedback controllers that result in a closed-loop transfer matrix with H
norm less than a given upper bound is equivalent to the existence of solutions of
certain algebraic Riccati equations. Typically, these algebraic Riccati equations are of
the type we encounter in the context of linear quadratic differential games.

The first contributions to this new approach in H optimal control theory were
reported in [8], [10], and [23]. These papers deal with the special case where the
controllers to be designed are restricted to being state feedback control laws. In later
contributions [2], [5], [18] these results were extended to the more general case of
dynamic measurement feedback.

If we take a close look at the type of conditions for the existence of suitable
controllers that are derived in the above references, we see there is a fundamental
distinction between two cases. This distinction is tied up with the question of whether
or not the direct feedthrough matrix of the control input is injective. In 10] and [23],
no assumptions are imposed on the direct feedthrough matrix. The conditions for the
existence of a suitable state feedback control law are formulated in terms of a family
of algebraic Riccati equations, parameterized by a positive real parameter e. It is shown
that there exists an internally stabilizing state feedback control law such that the
closed-loop transfer matrix has H norm less than an a priori given upper bound if
and only if there exists a parameter value e for which the corresponding Riccati
equation has a certain solution. In our opinion, a more satisfactory type of condition
is obtained in [2], [5], and 18]. In these papers it is assumed that the direct feedthrough
matrix of the control input is injective. It is then shown that a suitable state feedback
control law exists if and only if one particular algebraic Riccati equation has a solution
with certain properties.

The purpose of the present paper is to reexamine the H problem with state
feedback as studied in [2] and [18], without making the assumption that the above-
mentioned direct feedthrough matrix is injective. Our aim is to find conditions for the

* Received by the editors March 6, 1989; accepted for publication (in revised form) November 7, 1989.
f Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box

513, 5600 MB Eindhoven, the Netherlands.
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existence of suitable state feedback control laws that are of a different type from the
one derived in [8], [10], and [23]. Instead our conditions will be of the type proposed
in [2] and [18]. Stated differently: we will show how it is possible "to get rid of the
parameter e" in the conditions for the existence of suitable state feedback control
laws. Rather than in terms of a particular algebraic Riccati equation, our conditions
will be in terms of a certain "quadratic matrix inequality," reminiscent ofthe dissipation
inequality appearing in singular linear quadratic optimal control [4], [13], [19]. It will
turn out that the results from [2] and 18] on the special case that the direct feedthrough
matrix is injective can be re-obtained from our results.

The outline of this paper is as follows. In 2 we introduce the problem to be
studied and give a statement of our main result. In 3 we recall some important notions
that will be used in this paper. In 4 we give a description of a decomposition of the
input space, the state space and the output space. This decomposition will be instru-
mental in the proof of our main result. Sections 5 and 6 are devoted to a proof of our
main result. Finally, the paper closes with a brief discussion on our results in 7.

2. Problem formulation and main results. We consider the finite-dimensional,
linear, time-invariant system

(2.1) Ax + Bu + Ew, z Cx + Du,

where x E" is the state, u E is the control input, w E is an unknown disturbance,
and z EP is the output to be controlled. A, B, C, D, and E are real matrices of
appropriate dimensions. In this paper we are primarily interested in state feedback. If
F is a real m x n matrix, then the closed-loop transfer matrix resulting from the state
feedback control law u Fx is equal to

OF(S) C + DF)(Is- A- BF)-IE.

The influence of the disturbance w on the output z is measured by the H norm of
this transfer matrix:

Oll:- sup p[GF(kO)].

Here, p[M] denotes the largest singular value of the complex matrix M. The problem
that we will study in this paper is the following" given a positive real number 7, find
F " such that

Gv [] < y and o-(A + BF) C-.

Here, r(M) denotes the set of eigenvalues of the matrix M and

C-:= {s C[Re s <0}.

A central role in our study of the above problem is played by what we will call
the quadratic matrix inequality. For any real number y > 0 and matrix P E"" we
define a matrix F(P) e E("+"("+" by

(2.2) Fv(P):=(PA+ATP+y-2PEETP+CTC PB+CTD]
BTp+DTC DTD ]"

Clearly, if P is symmetric, then F(P) is symmetric as well. If F(P)>-O, then we will
say that P is a solution to the quadratic matrix inequality at 3’.

In addition to (2.2), for any 3’ > 0 and P eN we define a n x (n + m) polynomial
matrix L(P, s) by

(2.3) Lv(P, s):= (sI, A- y-EETp -B).
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We note that Lv(P, s) is the controllability pencil associated with the system

2=(A+),-2EETp)x+Bu.

The transfer matrix of the system E given by the equations

(2.4) Ax + Bu, y Cx + Du

is equal to the real rational pm matrix G(s)= C(Is-A)-IB+D. The normal rank
of a real rational matrix is defined as its rank as a matrix with entries in the field of
real rational functions, The normal rank of the transfer matrix G is denoted by
normrank G.

In the formulation of our main result we need the concept of invariant zero of
the system E (A, B, C, D). For this definition we refer to 3 (see also [11]). Finally,
let CO := {s C iRe s 0} and let C+ := {s C IRe s > 0}. The following is the main result
of this paper.

TrtEOgEM 2.1. Consider the system (2.1). Assume that (A, B, C, D) has no invariant
zeros in C. Let , > O. Then the following two statements are equivalent:

(i) There exists FRmn such that iIGll< , and o-(A+ BF)c C-.
(ii) There exists a real symmetric solution P >= 0 to the quadratic matrix inequality

at / such that

rank F(P) normrank G

and

(2.6) rank(L(P’s))F(P)
n +normrank Gfor all sCUC+.

In other words, the existence of a suitable state feedback control law is equivalent
to the existence of a particular positive semidefinite solution of the quadratic matrix
inequality at ,. This solution should be such that two rank conditions are satisfied.

Before embarking on a proof of this theorem we would like to point out how the
results from [2] and [18] for the special case that D is injective can be obtained from
our theorem as a special case. First note that in this case we have

normrank G m.

Define

R,(P) := PA+ ATp + "),-2pEE Tp + CCT (PB + CTD)(DTD)-I(BTp+ DTC).

Furthermore, define a real (n + m) (n + m) matrix by

S(P) := ( I0 -(PB + CTD)(DTD)-1)I.,

Then clearly we have

S(P)F,(P)S(P) T
/
|
Rv(P)

0\
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From this we can see that the pair of conditions F(P) >- 0, rank Fv(P) rn is equivalent
to the single condition R(P) 0. We now analyze the second rank condition appearing
in our theorem, it is easily verified that for all s C we have

I. -(PB + CTD)(DTD)-’ Lv(

0 Im J Fv(P) /

sI-A-T-2EETp+ B(DTD)-(BTp+ DTc)
R(P)

BrP+DrC

Consequently, if R(P)=0 then the condition

rank (L(P, s)F(P) ]=n+m for allsCLJC+

is equivalent to

rank(sI-A-y-2EETp+B(DTD)-I(BTp+DTC))=n for all sCLJC+

or, equivalently,

cr(A + y-2EE Tp_ B(DTD)-I(BTp + DTc)) C-.

Thus, for the special case that the direct feedthrough matrix D is injective our main
result specializes to Corollary 2.2.

COROLLARY 2.2. Consider the system (2.1) with D injective. Assume that
(A, B, C, D) has no invariant zeros in C. Let y > O. Then the following two statements

are equivalent:
(i) There exists F6 such that ]]GFI]o< )’ and o’(A+BF)cC-.
(ii) There exists a real symmetric solution P >-0 to the algebraic Riccati equation

PA + ATp + y-2pEE Tp + CC T (PB + CTD)(DTD)-I(BTp + DTc) 0

such that

cr(A + T-2EETp B(DTD)-’(BTp + DTc)) C-.

A similar result was obtained in [2] and [18] for the special case that DTc =0

and DTD Ira. Our result differs slightly from those in [2] and [18] in the sense that
we only require P to be semidefinite instead of definite.

3. Preliminaries and notation. In this section we recall some important notions
that will be used in the sequel. First, we recall some facts about polynomial matrices.
Let [s] denote the ring of polynomials with real coefficients. Let "’[s] be the set
of all n x rn matrices with coefficients in [s]. An element of ""[s] is called a

polynomial matrix. A square polynomial matrix is called unimodular if it is invertible.
Two polynomial matrices P and Q are called unimodularly equivalent if there exist
unimodular matrices U and V such that Q UPV. In this paper, if P and Q are

unimodularly equivalent, then we denote P---Q. It is well known [3] that for any
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P "’[s] there exists Enxm[s] of the form

0....0 o... o

= q
.0

6 60...0
with ’i monic polynomials with the property that q,i divides q,+, such that P-q.

The polynomial matrix is called the Smith form of P (see [3]). The polynomials @
are called the invariant factors of P. Their product , := ’1’2" ’r is called the zero
polynomial of P. The roots of @ are called the zeros of P. The integer r is equal to the
normal rank of P; i.e., r normrank P. If s is a complex number then P(s) is an element
of CEm. Its rank is denoted by rank P(s). It is easy to see that normrank P rank P(s)
for all s C if and only if P is unimodularly equivalent to the constant n x m matrix

where L is the r x r identity matrix.
Next, we recall some impoant facts on the structure of the linear system given

by the equations (2.4). As before, this system is denoted by (A, B, C, D) or simply by
N. The system matrix of is defined as the polynomial matrix

P(s)=(Is-AC -2)"
The invariant factors of P are called the transmission polynomials of . The zeros of
Px are called the invariant zeros of E. Clearly, s C is an invariant zero of if and
only if rank Px(s)< normrank Px. It is easy to see that if F" and if we define
Ev := (A + BF, B, C + DF, D), then PxPx.. In paicular this implies that the trans-
mission polynomials of E and Ev coincide and a fortiori that the invariant zeros of E
and Ev coincide. An impoant role in this paper is played by the strongly controllable
subspace of E. Consider the following sequence of subspaces:

o() =0,
(3.1) W+(E)={x"[3wW(E),u s.t. Aw+Bu=x and Cw+Du=O}.
It is well known (see [7]) that W(Z) (i 1, 2,-..) is a nondecreasing sequence that
attains its limit in finitely many steps. The limiting subspace is denoted by W(E) and
is called the strongly controllable subspace of . W(E) is known to be the smallest
subspace of " with the propey that there exists a linear mapping G from P to

" such that (A+GC) and im(B+GD) . From this it is easily seen that
W(E) is (C + DF, A + BF)-invariant for every linear mapping F:" (a subspace

is called (C, A)-invariant if it satisfies A( ker C) ; see also 12]). The system
is called strongly controllable if W(Z)=". If Z is strongly controllable, then (A, B)

is controllable. It is known that is strongly controllable if and only if rank Px(s)
n+rank(C D) for every sC (see [6], [14]). Hence, by the above we find that if
(C D) is surjective, then E is strongly controllable if and only if P is unimodularly
equivalent to the constant matrix (I,+p 0), where I,+p denotes the (n +p) x (n +p)
identity matrix.
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We conclude this section by introducing some notation. We will denote N+ := [0,
2(+) denotes the space of real-valued measurable functions from N+ to such that

I+ Ilxll dt <00. For a given positive integer r we denote by ;(+) the space of
r-vectors with components in 2(N+). The notation is used for the Euclidean norm
on Nr; 112 denotes the usual norm on w;(N+); i.e., Ilx[12 := (In+ Ilxll 2 dt) 1/2.

4. A preliminary feedback transformation. In this section we show that by applying
a suitable state feedback transformation u Fox + v to the system E (A, B, C, D), it
is transformed into a system EVo := (A + BFo, B, C + DFo, D) with a very particular
structure. We will display this structure by writing down the matrices of the mappings
A + BFo, B, C + DFo, and D with respect to suitable bases in the input space N", the
state space ", and the output space Np.

First choose a basis of N as follows. Let q,. ., ql, ql+," ", q,, be a basis such
that q+l, ", qm is a basis ofker D (0=< 1 -<_ m). In other words, decompose N
9/2, with 2=ker D and 0- arbitrary. Next, choose a basis of Np as follows. Let
z, , zr, Zr+," ", Zp be an orthonormal basis such that z,. , zr is an orthonormal
basis ofim D and Zr+,’’’, Zp is an orthonormal basis of (ira D) +/- (0-< r<-p). In other
words, write NP LrLr2 with Lr=im D and Lr2= (im D)+/-. If (Zz) is the coordinate
vector of a given z [P, then because of orthonormality we have IIz[I z2)l[ (here
denotes the Euclidean norm). With respect to these decompositions the mapping D
has the form

0

with D invertible. Moreover, B and C can be partitioned as

B=(B, B2) C=(C)C2
It is easy to see that im B2 B ker D and ker C2 C- im D := {x Cx im D}.

Next, define a linear mapping Fo" N" Nm by

(-D-(a Ca)(4.1) Fo :=
0

Then we have

(0)C+DFo=
C2

We now choose a basis of ". LetXl,’’’,Xs, Xs+l,’’’,xt, xt+l,’’’,xn (0 <= s <= <--

n) be a basis such that Xs+,’",xt is a basis of -(;)(’1C- im D and xs+,’", x,
is a basis of -(E). In other words, write " @2@3 with 2 -(E) f-I C- im D,
f2@3 T(;) and arbitrary. It turns out that with respect to the bases introduced
above, A + BFo, B and C + DFo have a particular form. This is a consequence of the
following lemma.

LEMMA 4.1. Let Fo be given by (4.1). Then we have:
(i) (A + BFo)((E) f3 C- im D) 8-(;),
(ii) im B2 c__ 8-(Y),
(iii) -(E) (’1C-’ im D c_ ker Cz.
Proof (i) 8(E) is (C + DFo, A + BFo)-invariant. This implies that

(A + BFo)( -(E) 71 ker C + DFo))
_
-(E).
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Since ker (C + DFo) ker C2 C -1 im D, the result follows.
(ii) Let -i(E) be the sequence defined by (3.1). Then l(E)= B ker D=im B2.

Since ffi(E) is nondecreasing this proves our claim.
(iii) This follows immediately from the fact that C-1 im D ker C2.
By applying this lemma we find that the matrices of A+ BFo, B, C + DFo, and D

with respect to the given bases have the following form"

{a o A13t {Bll
A+BFo=IA21 A22 Aa3

\A31 A32 A33 \B31
(4.2)

C21 0 C23 0

B22
B32/

:).
If we apply the feedback transformation u Fox + v to the system E (A, B, C, D),
then the resulting system EFo is given by

(4.3) : (A + BFo)x + Bv, z (C + DFo)x + Dr.

With respect to the given decomposition, let () be the coordinate vector of a given
vem. Likewise, we use the notation (x(, xr, x)T and thel). Then equations of
the system EFo can be arranged in such a way that they have the following form:

(4.4) 2=AllX+(Bll A3) (tl),X3

(2) (A22 A23\l(x:z)+(B:zz] (B21A21](v1)(4.5)
3 -’-\A32 A33] x3 B32//v2-{ B31 A3] Xl’

(4.6) (Zl) (0) (D1 0)(Vl)Z2 C21 0 C23 x

As already suggested by the way that we have arranged these equations, the system
EFo can be considered as the interconnection of two subsystems. This is depicted as
follows:

Here,

(4.7) X:= A,a, (Bll A13),
C21 0 C23

is the system given by (4.4) and (4.6). It has input space 1 ;T3, state space 1, and
output space P. Zo is the system given by (4.5). It has input space r,T and state
space @3. The interconnection is made via xl and x3, as depicted above. Note
that and XFo have the same output equation. However, in ZFo the variable x3 is
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generated by Eo, whereas in : it is considered as an input and is flee. The systems Eo
and turn out to have a couple of nice structural properties, as shown in Lemma 4.2.

LEMMA 4.2. (i) C23 is injective,
(ii) The system

((A22 A23] (B2] (0 ’),0)(4.8) E;1 :=
\A32 A33], B32],

with input space all:, state space @3 (=if(E;)), and output space g3 is strongly
controllable.

Proof (i) Let (Xlr, xf, x3r) r be the coordinate vector of a given x R". Assume
that C23x3 0. Let E" be the vector with coordinates (O r, O r, x3r) r. Then Y 3. In
addition, -(E;) f-I ker C2 2. Thus Y 0, so x3 0.

(ii) Let -(E1) be the strongly controllable subspace of the system E; given by
G(4.8). We will prove that -(E) 3. First note that there exists G (3) such that

[Aaa A:3+ (0 I)
\A3: A33] G3

Also note that

c -(1).im
B32/_

Now assume that -(E1)C___ 2(3 with strict inclusion. Define W
_
R" by

it0tX2

X3

Clearly,

___
-(E) with strict inclusion. We claim that there exists a linear map

Go:p ...> n such that

(4.9) (A + GoC)
_

(4.10) im (B + GoD)

Indeed, let C+
23 be any left inverse of C23 and define

-A13\
Go := /B G 0

\B31 63 /]
o)

It is then straightforward to verify (4.9) and (4.10). This, however, contradicts the fact
that -(E) is the smallest subspace 7/" for which (4.9) and (4.10) hold (see 3). We
conclude that @3 (E1). ["]

Our next result states that the zero structure of the original system E; (A, B, C, D)
is completely determined by the zero structure of the subsystem ; given by (4.7). A
transmission polynomial of a system is called nontrivial if it is unequal to the constant
polynomial 1.

LEMMA 4.3. The nontrivial transmission polynomials of , and , respectively,
coincide.

Proof According to 3 the transmission polynomials of E; and EFo coincide. Thus,
to prove the lemma it suffices to show that the system matrix Po of EF is unimodularly
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equivalent to a polynomial matrix of the form

where P(s) is the system matrix of . Since E1 is strongly controllable and (0 I) is
surjective, the Smith form of Px, is equal to (11 0) (I1 denotes the identity matrix with
size equal to dim 2+ 2 dim 3). In addition, clearly we have

P.t -A32 0

0 / 32 0
A32 -B32

0

so we conclude that

sI A2_ B)_2
-A3:z

is unimodularly equivalent to (I2 0). Here I2 denotes the identity matrix of size
dim 2+ dim 3. The proof is then completed by noting that

SI-oAll
-Bll -A13 0 0

D1 0 0 0

P0" / C21 0 C23 0 0 (P S 120 0 )
-A21 -B21 -A23 sI-A22 -B22

\ -A31 -B31 sI A33 -A32 -B32
A consequence of the above lemma is that the invariant zeros of E and E, respectively,
coincide.

Our next lemma states that the normal rank of the transfer matrix G(s)=
C(sI-A)-IB+D of the system is equal to the number rank Dl/dim3 or,
equivalently, Lemma 4.4.

LEMMA 4.4. We have

normrank G rank (C23 0).0 D1
Proof. Define L(s):= sI-A. Then we have

(4.11) nrmrank( L0 )=n+normrankG.
We also have

I G0(s)) (0(C(sl-a)-’ OI)(L(So I -(sI-a)-B) I(Fo
sI All 0 -A13 -nil 0

B22
_(sI-(A+BFo) -BD) //-!21 sI A22 -A23 -B21

C + DFo 31 -A32 sI- A33 -B31 -B3:
0 0 D, 00 /\ C21 0 C23 0

Since C23 and D1 are injective, we can make the (1, 3), (1, 4), (2, 4), and (3, 4) blocks
zero by unimodular transformations. Furthermore, we can make a basis transformation
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on the output such that C23 has the form () where r=rank C23 Thus, after suitable
permutation of blocks, the normal rank of the latter matrix turns out to be equal to
the normal rank of

-A21

-A31
C211
C212
0

0 0 0

-A32 s../...A..3.3......B.3.2.
0 Ir 0

0 0 0

0 0 0

0

Here All is a given matrix Since, by Lemma 4.2, the matrix in the center has full row
rank for all s e C and since normrank (s!-/11) dim 1, we find

0 G
n + rank

Combining this with (4.11), we obtain the desired result. U
To conclude this section we want to note that if D is injective, then the subspace

2 in the decomposition of Em vanishes. Consequently, the partitioning of B reduces
to a single block and the partitioning of D reduces to (,) with D1 invertible. It is left
as an exercise to the reader to show that if(E)= 0 if and only if ker D c__ ker B. Thus,
if D is injective, then also -(E)= 0. In that case the subspaces f2 and 3 appearing
in the decomposition of T both vanish and the partitioning of A+ BFo reduces to a

single block.

5. Solvability of the quadratic matrix inequality. In this section we will establish
a proof of the implication (i)=:>(ii) in Theorem 2.1: assuming that a suitable state
feedback control law exists, we show that the quadratic matrix inequality has a solution
with the asserted properties.

Consider our control system (2.1). For given disturbance and control functions w
and u we denote by Xw, and Zw, the corresponding state trajectory and output function,
respectively, with x(0)= 0. We will first formulate a theorem that serves as a basis for
the developments in the rest of this paper. The theorem is concerned with the special
case that in the system (2.1) the direct feedthrough matrix D is injective. The result
in Theorem 5.1 is a generalization of [2, Thm. 2] and of results in [18].

THEOREM 5.1. Consider the system (2.1) and assume that D is injective. Assume
that (A, B, C, D) has no invariant zeros in C. Let y > O. Then the following statements
are equivalent:

(i) (A, B) is stabilizable and, in addition, there exists 6>0 such that for all
w (+) there exists u ’(+) for which Xw,, (R+) and Ilzw,.ll=_-<  )llwll=.

(ii) There exists a real symmetric solution P >-0 to the algebraic Riccati equation

(5.1) PA + AT"P + y-2pEET"P + CT"C -(PB + CrD)(DT"D)-I(B’P + DT"C) O

such that

o’(A + y-2EE Tp_ B(DTD)-,(BTp + DTc)) C-
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Moreover, if the latter holds, then one possible choice for u is given by u Fx, with

F= -(DT"D)-I(BrP + DrC).
For this F we have Iloo < and r(A+ BF)c C-.

Proof. A proof of this theorem can be based on the proof of [18, Thm. 2.1c]. In
the latter paper it is assumed that C is injective and that C rD 0, which implies that
(A, B, C, D) has no zeros at all. The proof of Theorem 2.1c of [18] can, however, be
modified to yield a proof of our result. In doing this the following important point
might need clarification. Since, in our context (C, A) is not necessarily detectable, we
must make a careful distinction between the
and u ’) and the H problem without stability (i.e., no restrictions on x and u).
In the proof of Theorem 2.1 of [18] a version of the maximum principle is used that
gives a sufficient condition for optimality in the case that (C, A) is detectable (for a
finite-horizon version of this result see [9, Chap. 5.2]). However, if we drop the
detectability assumption, this method can still be used for the Hoo problem with stability.
The remainder of the proof in [18] can be checked step by step and remains valid.

Since in our context (C, A) is not necessarily observable (in contrast with [2] and
[18]) our theorem involves a semidefinite solution of (5.1) rather than a definite
one.

Now, again consider the system (2.1), this time without making any assumptions
on the matrix D. Choose bases in the state space, the input space, and the output
space as in 4 and apply the feedback transformation u Fox + v, with Fo given by
(4.1). After this transformation we have

(5.3) 2 (A + BFo)x + Bv + Ew, z (C + DFo)x + Dv.

If we partition E (Er, E, E)r, then in terms of our decomposition (5.3) can be
written as follows:

(5.4) 21=allX1+(B11 al3)(Vl] +ElW,
\IX3

(:2) (A29-A:z3)(x2)(B22 (B21 A21)(Vl)+ V2 + + w,(5,5)
23 \A32 A33] X3 B32,] B31 A31] Xl E3

Xl -lt-
Z2 C21 0 C23 x

For given disturbance and control functions w and v, let Xw. and Zw. denote the state
trajectory and output, respectively, of (5.3), with x(0)=0. The idea that we want to
pursue is the following. If there exists a feedback law u Fx for (2.1) such that
IlG ll < and r(A+BF)cC-, then the feedback law v=(F-Fo)x in (5.3) yields a
closed-loop transfer matrix from w to z with Hoo norm smaller than 3’. In other words,

(5.7) /3 := sup < y.
w’+) Ilwll2

Also, Xw,, (R+). Let 6 := 3’-/3. Then, for a given w, define vl as the first component
of v (F- Fo)xw. and take x3 as the third component of Xw,. Interpret () as an input
for the subsystem defined by (5.4) and (5.6). It then follows from (5.7) that

(-)llwl12.
2
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Moreover, the "input" () and the "state trajectory" Xl. are in 2. The crucial
observation is now that the direct feedthrough matrix of E is injective (see Lemma
4.2). Thus we can apply Theorem 5.1 to establish the existence of a solution to the
algebraic Riccati equation associated with the system E. Before doing this, however,
we should make sure that (All, (Bll, A13)) is stabilizable and that ; given by (4.7)
has no invariant zeros in C. It is easily seen that if (A, B) is stabilizable, then also
(AI, (Bll, A3)) is stabilizable. Furthermore, ire (A, B, C, D) has no invariant zeros
in C, then the same holds for (see Lemma 4.3). Consequently, we have the following
corollary.

COROLLARY 5.2. Consider the system (2.1). Assume that (A, B, C, D) has no
invariant zeros in C. Let / > 0 and assume there exists F Rmn such that GFI] < 7
and tr(A + BF) c C- Then there exists a real symmetric solution Pll ->-- 0 to the algebraic
Riccati equation

(5.8)
P,,All + AP,I +CC21 + T-2pllE1ET1P,1- PllBll(DD1)-IBP,1

(A3P, + c2Tc=,) T(C3C23)-l(Ap, + CC2,) 0

such that

(5.9)
r(A,, + 7-E,ET p,,- B,,(DD,)-’BP,,

-A,3(cT3c3)-’(API, + C3C,)) C-

Our next step is to establish a connection between the algebraic Riccati equation
(5.8) and the quadratic matrix inequality.

It turns out that there is a one-to-one correspondence between the set of solutions
to (5.8) and the set of solutions to the quadratic matrix inequality at y that satisfy the
rank condition (2.5). To prove this, we need the following lemma.

LEMMA 5.3. Assume P R is a solution to the quadratic matrix inequality at
Then if(E) __. ker P.

Proofi Let Fo be given by (4.1). Let be the smallest (C + DFo, A + BFo)-invariant
subspace containing B ker D. We claim that (E). We know that 5r(E) is (C +
DF, A / BF)-invariant for all F and hence also for F Fo. Second, by Lemma 4.1(ii)
we have ’(E)_ ker D. Therefore, we have

_
f(). Conversely, we know that

3G, im (C + DFo)R" s.t. [(A+ BFo)+ GI(C / DFo)]
_ ,

3G2 im D --> " s.t. im (B + G2D) B ker D
__ .

Since Dr(C + DFo)= 0 (this can be checked easily) we can find a linear mapping G
such that Glim(C+DFo)= G1 and G]imD G2 and hence we have found a G such that
(A+GC) and im (B+GD) . Thus we find

_
ff-(Z) and hence if(Z).

Let 3’ > 0 and define

If Fr(P) _>- 0 then also

(5.11) Mv(p)=(p(A+ BFo)+(A+ BFo)7rp+ y-ZPEETp+(C + DFo)T(C + DTDPB )>-0_
We claim that B kerD ker P. Let u rn be such that Du =0. Then we find

()7Mr(P)(,)=0 and hence, since Mv(P)>=O, we find Mr(P)(,)=0. This implies
PBu =0. Next we have that ker P is (C + DFo, A+ BFo)-invariant. Assume that x
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ker P f-) ker C + DFo). Then

xT(p(A + BFo)+ (A + BFo)Tp + y--PEE Tp +(C + DFo)T(C + DFo))X O.

Hence, by applying x to one side only, we find P(A+ BFo)x =0 and therefore (A+
BFo)x ker P. Since ff() is the smallest space with these two properties, we must
have ()_ ker P. 1-1

Using the above lemma, we now obtain the following result.
THEOREM 5.4. Let ), > 0 and P n,,. Thefollowing two statements are equivalent:

(i) P is a symmetric solution to the quadratic matrix inequality at y such that
rank Fr(P) normrank G.

(ii) P 0

0

where Pl is a symmetric matrix satisfying (5.8).
Furthermore, if the above holds, then the following two statements are equivalent:

(iii) rank
F(P)

n+normrank Gfor all seCuc/.

-A13(C T23 C23) -1(APll + C3C9_1))c C-.

Proof By (5.10) we have M(P)>=O if and only if F(P)->0, and we also know
that these matrices have the same rank., Assume a symmetric P satisfies Mr(P)>_O
and rank Mr(P) =normrank G. Since Pff(E) =0 (see Lemma 5.3) we know that we
can write P as

(5.12) P= 0 0
0 0

If we also use the decompositions (4.2) for the other matrices, then we find that Mr(P)
is equal to

(5.13)

T T --2 EET1P 0PllAll + AllPll + C2C21+’Y P
0 0

T T 0AP+CC13 11 23 21

BP 0

0 0

PllA13+CflC23 PB
0 0

cc o
0 DTD
0 0

According to Lemma 4.4 the rank of this matrix equals the rank of the encircled
matrix. Thus, the Schur complement of the encircled matrix must be equal to zero.
Since this condition exactly yields the algebraic Riccati equation (5.8) we find that Pll
is a solution of (5.8).

Conversely, if Pll is a solution of (5.8), then the Schur complement ofthe encircled
matrix in (5.13) is zero. Therefore, it satisfies the matrix inequality (5.13), and the rank
of the matrix is equal to normrank G. Hence P given by (5.12) satisfies the required
properties.

Now assume that (i) or (ii) holds. We will prove the equivalence of (iii) and (iv).
Denote the matrix in (iv) by Z. We will apply the following unimodular transformation
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to the matrix in (iii)"

When we use the decompositions in (4.2), the latter turns out to be equal to

(5.14)

sI A y-EE(PI 0 -A13 -B 0

-A21 /-2E2ETPll sI A22 -A23 -B21 -B22
-A31 "y-EE3EPll -A32 sI A33 -B31 -B32

PllAII+ATllPll+CflCEI+y-2pllE1EPI1 0 PI1AI3+CflC23 PllBll 0

0 0 0 0 0

AaP + c2T3c21 0 Cf3C23 0 0

B "(P 0 0 D D 0

0 0 0 0 0

By using Schur complements, we can get the Riccati equation (5.8) in the 4,1
position and the matrix Z in the 1,1 position of the above matrix. Furthermore, since

DrlD1 is invertible, we can make the 2,4 and 3,4 blocks equal to zero by a unimodular
transformation. Since Pll is a solution of the Riccati equation, the 4,1 block becomes
zero. Thus, we find that (5.14) is unimodularly equivalent to

sI-Z
,
,
0

0

0

0

0

0 0

sI-A22 -A23
-A32 si-A33
0 0

0 0

Cf3C23
0 0

0 0

1
0 1,-B32,
0 0

0 0

DD, 0

0 0

where denotes matrices that are unimportant for this argument.
Now by Lemma 4.2 the encircled matrices together form the system matrix of a

strongly controllable system. Hence this system matrix is unimodularly equivalent to
a constant matrix (I 0), where I denotes the identity matrix of appropriate size.
Therefore, we can make the 2,1 and 3,1 blocks zero by a unimodular transformation.
Thus, after reordering we find

sI-Z
0

0

0

0

0

0

0

0 0 0
sI A22 A23 "-B22
-A32 sI-A33 "-B32

6"
0 0 0

0 0 0

0 0 0

0 0 0

o
0

0

0

DIDll
0

0

o

It follows that the matrix on the left has rank n + normrank G for all s C C+

if and only if or(Z)c C-. This proves that (iii) and (iv) are equivalent. D
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A proof of the implication (i)(ii) in Theorem 2.1 is now obtained immediately
by combining Corollary 5.2 and Theorem 5.4.

6. Existence of state feedback control laws. In this section we give a proof of the
implication (ii)(i) in Theorem 2.1. We first explain the idea of the proof,,Again, we
consider our control system (5.3) as the interconnection of the subsystem 5: given by
(5.4), (5.6) and the subsystem Eo given by (5.5). Suppose that the quadratic matrix
inequality has a positive-semidefinite solution at 2, such that the rank conditions (2.5)
and (2.6) hold. Then according to Theorem 5.4, the algebraic Riccati equation associated
with the subsystem has a positive-semidefinite solution Pll such that (iv) of Theorem
5.4 holds. Thus by applying Theorem 5.1 to the subsystem , we find that the "feedback
law"

(6.1)

(6.2)

vl -(DD,)-’BP,Xl,

x3 -(CC3)-’(AP, + C3C21)x1,

yields a closed-loop transfer matrix for with H norm smaller than y. Now we will
do the following" construct a state feedback law for the original system (5.3) in such
a way that in the subsystem the equality (6.2) holds approximately. The closed-loop
transfer matrix of the original system will then be approximately equal to that of the
subsystem and will therefore also have H norm smaller than y.

In our proof an important role will be played by a result in the context of the
problem of almost disturbance decoupling as studied in [19] and [22]. We will first
recall this result here. For the moment assume that we have the following system"

(6.3) Ax + Bu + Ew, z Cx.

For this system, the almost disturbance decoupling problem with pole placement
(ADDPPP) is formulated as follows. For all e > 0 and for all M , find Fmxn
such that IIGllo< e and cr(A+BF)c {sClRe s<M}. It is shown in [19] and [22]
that conditions for the existence of such F can be stated in terms of the strongly
controllable subspace -(E) associated with the system E (A, B, C, 0). (In fact, in

[19] and [22] this subspace is denoted by (ker C).) The exact result is as follows.
LEMMA 6.1. Consider the system (6.3). Let (E) denote the strongly controllable

subspace associated with E=(A, B, C, 0). Then the following two statements are
equivalent:

(i) For all e > 0 and for all M there exists F mn such that GF I1 < e and

or(A+ BF) c {s CIRe s < M}.
(ii) im E c -(E) and (A, B) is controllable.
As an immediate consequence of the above we obtain the following fact. If
(A, B, C, 0) is strongly controllable, then for all e > 0 and for all M there exists

F mn such that IIG < and cr(A + BF) c {s C [Re s < M}. Thus, in particular,
if Z (A, B, C, 0) is strongly controllable, then for all e > 0 there exists F E"" such
that ]1GF < e and cr(A + BF) C-.

We now formulate and prove the converse of Corollary 5.2.
TqEOREM 6.2. Consider the system (2.1). Assume that (A, B, C, D) has no invariant

zeros in C. Let y > O. Assume there exists a real symmetric solution Pa >-- 0 to the algebraic
Riccati equation (5.8) such that (5.9) holds. Then there exists Fe such that

IIGII< and cr(A+ BF) C-.
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Proof Clearly, it is sufficient to prove the existence of such a state feedback law
as v Fx for the system (5.3). Let this system be decomposed according to (5.4)-(5.6).
Choose

, -(D D,)-’B P,,Xl

and introduce a new state variable q by

q := x +(CC)-’(AP,, + CC,)x,.

Then (5.4)-(.6) an be rewritten as

(6.4)

C3) q3"

Here we use the following definitions"

:= A-Aa(CgCa)-’(Ae + CgC) B(DD)-BIPI,

:= A-A(CgC)-I(APll + CC)-B(DD)-BP,

31 := n31- Aa3(CgCa)-(AP + cCl)-B3(DD)-’BP

:=A+ CC2)-’(AP,, + CC,)A,,, := -D,(DD,)-’BP,,,
:= C, C(CC)-’(AP,, + CC,),

:= E + CC)-’(AP,, + CC,)E,

According to Theorem 5.1, if in the subsystem formed by (6.4) and (6.6) we have
q 0, then its transfer matrix from w to z has H norm smaller than . Moreover,
we have (A) C- Hence, there exist M > 0 and p > 0 such that for all w and q
in , we have

Also by the fact that A is stable, there exist M, M> 0 such that for all w and q
in , we have

(6.8) IIx, ll=
We claim that the following system is strongly controllable:

(6.9)
A3 A33] B3
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This can be seen by the following transformation:

/i A33 --/33 -A3 sI A33 "...3.2 ..’..3.2... sI- A33" .3.2

Since the first matrix on the left is unimodular and the second matrix has full row
rank for all s C (see Lemma 4.2), the matrix on the right has full row rank for all
s C. Hence the system (6.9) is strongly controllable.

Now consider the almost disturbance decoupling problem for the system (6.5)
with output q3 and "disturbance" (xd). Because of strong controllability of (6.9) there
exists a feedback law v2 F(’2o3) such that in (6.5) we have

(6.10)

for all w and xl in 2 and such that the matrix

(A22 A.23)(Bz2)A :=
A3: A33]

-F
n3:z

satisfies r()c C-. Combining (6.7), (6.8), and (6.10) gives us

for all w in 2. Summarizing, we have now shown that if in our original system (5.3)
we apply the state feedback law

V -(D(D1)-aBPXl,
(6.11) ( x )2 F

X3 + CC23)-l(APll + CC21)x
then for all w(+) we have [[z[[ < yllw[[. Thus, the H norm of the resulting
closed-loop transfer matrix is smaller than y.

It remains to be shown that the closed-loop system is internally stable. We know
that

(6.12) [[(sI-)-A3][ M2,

(6.13)
A31]

The closed-loop A-matrix resulting from the feedback law (6.11) is given by

Assume (x y zr)r is an eigenvector of A with eigenvalue I with Re i 0. It can
be seen that

(6.14) x

kA3
x.

(Note that the inverses exist due to the fact that and are stable matrices.)
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Combining (6.12) and (6.14) we find Ilxll M211zll, and combining (6.13) and (6.15)
yields Ilzll2<-1/2Mllxll2. Hence x= z=0. This, however, would imply that (y 0)
is an unstable eigenvector of . Since r()c C-, this yields a contradiction. This
proves that the closed-loop system is internally stable. [3

A proof of the implication (ii)(i) in Theorem 2.1 is now obtained by combining
Theorems 5.4 and 6.2.

Remark 6.3. In the regular case (i.e., D injective) it is quite easy to give an explicit
expression for a suitable state feedback law. Indeed, if P->_0 is a solution to the
algebraic Riccati equation (5.1) such that (5.2) holds, then the feedback law u-
-(D’D)-I(B’P+D’C)x achieves internal stability and [[GF[[o< y. In the singular
case (i.e., D not injective) a state feedback law is given by u Fox + v. Here, Fo is
given by (4.1) and v=(Vrl, vr2) " is given by (6.11). The matrix Pll is obtained by
solving the quadratic matrix inequality or, equivalently, by solving the reduced order
Riccati equation (5.8). The matrix F1 is a "state feedback" for the strongly controllable
auxiliary system (6.5). This state feedback achieves almost disturbance decoupling
between the "disturbance" (xr, wr) r and the "output" q3. The required accuracy of
decoupling is expressed by (6.10). A conceptual algorithm to construct such F1 can
be based on the proof of [19, Thm. 3.36].

7. Discussion and conclusions. In this paper we have shown that if in the
problem with state feedback no assumptions are made on the direct feedthrough matrix
of the control input, then the central role of the algebraic Riccati equation is taken
over by a quadratic matrix inequality. We note that a similar phenomenon is known
to occur in the linear quadratic regulator problem: if the weighting matrix of the control
input is singular, then the optimal cost is given in terms of a (linear) matrix inequality
rather than in terms of an algebraic Riccati equation (see [21]). However, while in the
singular LQ problem optimal inputs in general are distributions, in the H context
also in the singular case suitable state feedback laws can befound. It is well known that
in the LQ problem a special role is played by solutions of the linear matrix inequality
that minimize the rank of the dissipation matrix (see [4], [13]). It turns out that also
in our context the relevant solutions to the quadratic matrix inequality are rank
minimizing. Indeed, it follows from the proof of Theorem 5.4 that for all symmetric
matrices P we have rank F(P)>-normrank G. Thus, (2.5) can be interpreted as saying
that P minimizes the rank of Fv(P). On the other hand, once we know that rank Fv(P)
normrank G, then obviously for all s C we have

rank(L(P’s)F(P) ]
--< n + normrank G.

Thus, (ii) of Theorem 2.1 can, loosely speaking, be reformulated as follows. There
exists a solution P_->0 to F(P)>-O that minimizes rank Fv(P) and maximizes
rank (Lv(P, s) , Fv(P)7") 7" for all s Ct_J C+.

As can be expected, the quadratic matrix inequality and the rank conditions (2.5)
and (2.6) turn out to play an important role in the context of singular linear quadratic
differential games. This connection is elaborated in [16].

Needless to say, several questions remain unanswered in this paper. The most
obvious topic is the extension of the theory of this paper to the case of dynamic
measurement feedback, i.e., the singular counterpart of the problem studied in [2],
[5], and [18]. In [17] it is shown that the existence of suitable dynamic compensators
require solvability of a pair of quadratic matrix inequalities.

Finally, in [20] the ideas of the present paper are used to tackle the finite horizon
"H" control problem by measurement feedback, i.e., the problem of finding a dynamic
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compensator such that the L2[t0, tl]-induced norm (instead of the L2(N+)-induced
norm) of the closed-loop operator is smaller than an a priori given upper bound. In
[20] conditions for the existence of such a compensator are formulated in terms of
quadratic differential inequalities (the extensions of Riccati differential equations).
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ROUTING AND SINGULAR CONTROL FOR QUEUEING NETWORKS IN
HEAVY TRAFFIC*

LUIZ FELIPE MARTINSt AND HAROLD J. KUSHNER$

Abstract. The problem of routing control in an open queueing network under conditions of heavy traffic
and finite (scaled) buffers is dealt with, The operating statistics can be state dependent. The sequence of
scaled controlled state processes converges to a singularly controlled reflected diffusion (with the associated
costs), under broad conditions. Due to the nature of the controls, a "scaling" method is introduced to obtain
the convergence, since the actual sequence of processes does not necessarily converge in the Skorokhod
topology. Owing to finite buffers, an extension of the reflection mapping needs to be obtained. The optimal
value functions for the physical processes converge to the optimal value function of the limit process, under
broad conditions. Approximations to the optimal control for the limit process are obtained, as well as

properties of the sequence of physical processes. The optimal or controlled (but not necessarily optimal)
limit process can be used to approximate a large variety of functionals of the optimal or controlled (but
not necessarily optimal) physical processes.

Key words, routing control, weak convergence, singular control, queues in heavy traffic, reflected
controlled diffusions

AMS(MOS) subject classifications. 90B15, 90B22, 93E20, 93E25, 60F17

1. Introduction. We consider the problem of optimal or nearly optimal routing in
a queueing system under heavy traffic conditions. The general network model is a
"controlled routing" form of the general open network dealt with by Reiman [1],
where each customer eventually leaves the system. See also Harrison and Reiman [2]
and Harrison [10] for a discussion of models that are limits of such systems. We will
actually treat two special cases for simplicity in the development. But it should be
apparent from these cases that the general open network can be treated in the same
way. The treated cases involve all the basic techniques that are required for the general
case. In [1], there is a finite set of servers, each with an infinite buffer. We bound
(and appropriately scale) the buffers here. It is well known [1], [2], that under broad
conditions on the service and interarrival times, the vector of queue length processes
(with an appropriate amplitude normalization and time scaling) converges weakly to
a reflected diffusion, as the traffic intensity goes to unity.

The work in 1 requires that the system operating statistics not be state dependent,
and uses results for the weak convergence of a sequence of sums of mutually indepen-
dent random variables to a Wiener process, together with a clever method to treat the
boundary to get the appropriate limit. The methods that are used to identify the limit
as a reflected diffusion are not extendible to the state-dependent or to the controlled
case, where the required independence no longer holds, and the characterization of
the limit processes, as well as the proofs of tightness, require different methods. The
"martingale type" methods for getting limit theorems for wide bandwidth noise driven
systems seem to be more appropriate for characterizing the limit process. In [4] there
is a study of a heavy traffic problem under a control, and the arrival and service
processes are allowed to be state dependent. Such state dependence is natural for the
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controlled problem, since we might want to let the processing depend on what is
happening in the system. In addition, the methods that are needed to characterize the
controls in the limit problem as "nonanticipative," etc., require the use of the same
methods that the state dependence requires.

In [4], the processors and the arrival sequences can be turned on or off to control
the flows and the costs. The limit problem is an impulsively controlled reflected diffusion
of a nonclassical type, since there is the possibility of multiple "simultaneous" impulses.
It is shown in [4] that any sequence of controlled physical processes with uniformly
bounded costs converged to a well-defined controlled limit process. Also, the sequence
of optimally controlled physical processes converges to the optimally controlled limit
process, in the sense that the value functions converge. Also a control that is nearly
optimal for the limit process can be adapted to become a nearly optimal control for
the physical process under heavy traffic, under quite broad conditions. Such results
help to justify the use of heavy traffic limit theorems for optimal or other control
purposes. Because of the behavior of the physical process in [4] when the on-off
controls are used, the Skorokhod topology must be used with care, because the actual
scaled queue length processes do not converge in the Skorokhod topology as it is
usually used. Also, that reference provides convergent numerical algorithms.

In this paper, we also deal with a controlled heavy traffic problem. In the basic
model, the routing of a subset of the external arrivals could be controlled. The aims
are similar to those in [4]. The dynamical equations for the scaled queue length process
are defined. The sequence of such processes (as the traffic intensity tends to unity)
might not be tight in the Skorokhod topology, due to the nature of the routing control.
To handle this, we start by working with a rescaling of the time, with which we can
get tightness, and a characterization of the weak limits. The rescaling depends on the
control. After the limits are obtained, an "inverse" scaling (dependent on the limit
control) yields the process that actually characterizes the limit of the cost functionals.
The limit process is a controlled reflected diffusion. But the control is of the "singular"
type in the sense of [8]. The usual reflection mapping that is used to handle the problem
of nonnegativity of the queue length process must be modified here, due to the presence
of the finite buffer. We construct the proper reflection mapping from a sequence of
concatenations of the usual one.

The basic problem of interest is defined in 2. For notational simplicity we work
with a system of only two processors. Also, until 7, we do not have feedback. The
addition of feedback is straightforward, but it seems to be preferable to present the
ideas in as unencumbered a fashion as possible. The extension of the result to the
general routing controlled open network is straightforward. Some of the weak conver-
gence arguments and definitions from [4] are used, but familiarity with that reference
is not necessary. In 2, we manipulate the state equations into the "martingale plus
drift" form that will be used in the weak convergence arguments. The reflection mapping
result is stated in 3 (and proved in 8). The required rescaling is defined and the
tightness and weak convergence proved in 3. We must prove that the limit (singular)
controls are nonanticipative with respect to the Wiener processes, which "drive" the
limit process.

Section 4 is concerned with the convergence of the cost functions. We prove that
there is a routing control with a uniformly bounded cost, and show that the liminf of
the optimal cost functions for the physical processes is bounded below by the optimal
cost for the limit process. To show that the limit of the optimal costs for the physical
processes is the optimal cost for the limit process, we need to prove various existence
and approximation results for the optimal policy for the limit problem. This is done
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in 6, and uses the "limit form" of the control-dependent rescaling introduced in 3.
An interesting approach to the approximation problem is discussed. The general
rescaling and tightness methods are of much wider use for limit and approximation
problems where singular controls are involved and where there might not be conver-
gence in the Skorokhod topology. The developed approximations are then used to
prove the approximate optimality for the physical processes of an appropriate nearly
optimal policy for the limit process.

Approximations to singular control problems for wide bandwidth noise driven
systems have been discussed in [6], but the method used here is rather different and
is very natural for the kinds of problems that are being considered. Numerical methods
have been developed for the problems of this paper. The proofs of their convergence
require methods that are similar to those used here, but since there are many additional
details, they will be dealt with in a subsequent paper.

There has been considerable work done in controlled routing, including some
formal work on routing under heavy traffic 11 ]. For the types of problems considered
here, or for reasonable extensions, it seems to be nearly impossible to obtain the
optimal or nearly optimal strategies. The idea here is to use the relative simplicity of
heavy traffic limits to get an optimal control problem that can be solved numerically,
and then to use an appropriate adaptation ofthat solution for the true physical problem.
The methods are applicable to a wide variety of problems.

The problem in [4] has an impulsively controlled limit, since the costs associated
with the control actions are bounded away from zero. In the present case, the trouble-
some part of the cost is the "scaled number of customers" that are rerouted. This could
lead to an impulsively controlled limit system. But, in general, the limit has a "singular"
control component. Consider, e.g., the case where we reroute to one processor if the
buffer of another is half-full. Then the limit control will have the structure of a local
time at the "half-full" boundary.

2. Problem description. Until 7, we work with the simple system of Fig. 1. This
will enable us to develop the main ideas without an excessive notational burden. Also,
for notational convenience, we work with a discrete-time parameter. The results for
the analogous continuous-time parameter case are the same. Each of the processors
Po, P1, and P2 has its own stream of arrivals from the exterior. Po is used only as an
(instantaneous) routing node. Its service time is zero. This can readily be changed,
and the resulting network would then be a special case of the general network discussed
in 7. The Po routes to either P1 or P2, and (until 7), the completed services from
P and P2 leave the system. The routing decision is based on the events up to the time

External input

External input

-I

External Input

FIG. 1. A simple routing problem.
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of the decision. We suppose that some prior routing is assigned to each new arrival
to Po, but that the routing node can reassign, with an associated profit or loss. Next,
we give some simple examples.

Example 1. There are two classes of customers arriving (at random) at Po. P is
more efficient for class i, and a prior assignment of class to Pi is made. But Po can
reroute to the less efficient processor, depending on the system state. The cost of
rerouting might be, for example, a setup cost, or the relative cost of the less efficient
processor.

Example 2. The case of Example 1, but with three classes of customers, arriving
at random. Class (i 1 or 2) must be served by Pi. Class 3 can be served by either
processor, but one of the Pi is more efficient (cheaper) and a prior assignment to that
Pi is made. But Po can alter the assignment. For example, let the Pi represent data
bases, with some overlap of data files. A subset of the arriving jobs needs only the
"overlap" data. But one of the Pi is "faster" than the other.

Example 3. P1 is cheaper for all customers arriving at Po. But, due to the heavy
traffic conditions, the mean number of customers routed to each Pi is essentially fixed
(modulo some fraction that goes to zero as the traffic intensity goes to unity). Some
prior assignment is made, but Po can reroute at either a cost or a savings if appropriate.

In most of the development, we let the distribution of the processing time depend
only on the processor and not on the customer type. The general case is a minor
extension and is discussed at the end of 3. In general, the model can be readily
extended to handle rerouting of a customer actually in a queue as well as reneging.

In the modeling of systems under heavy traffic conditions, it has been the usual
practice to suppose that the processors "keep processing" and create departures even
if the queues are empty [1]-[4]. Whatever "fictitious" departures occur due to this
convention are compensated for by an added "reflection term" (our Y below). Thus
each Pi (i 1, 2) has associated to it a sequence of service intervals that cover all time.
This convention simplifies the analysis. Also, we suppose (as is the usual practice)
that if a customer arrives at P1 or P2 when the associated queue is empty, then the
service time for that customer is just the residual time of the current service time
interval for that processor. As in [1]-[4], this convention does not affect the limit
processes.

It is possible that multiple events can occur at the same time at P1 or P2. This
could happen even if we worked in continuous time. For the sake of precision, we
suppose that a departure (real or fictitious) from a processor always occurs "just
before" any arrival to that processor, and that if two arrivals to the same Pi occur at
the same time, then the one from Po takes precedence. Such a conflict might arise if
there is only space for one customer left in some buffer, but there are two arrivals. We
ignore these distinctions in the notation, for simplicity. It can be shown that the
precedence relations do not affect the limit.

DEFINITIONS. We use the notation of [4] whenever possible, although knowledge
of that reference is not needed for the reading of this paper. The symbol e indexes
the traffic intensity; as e 0, the intensity goes to one. For each e > 0 and 1, 2, let
{ Ai’n n 1, 2,...}, denote the sequence of service times for Pi and let Oi.n be the
indicator function of the event that a service (real or fictitious) is completed at P at
time n. For 0, 1, 2 and each e > 0, let { c,i’, n < ee} denote the sequence of interarrival
times to Pi, from the exterior of the system, and let :n, 0, 1, 2, be the indicator of
the event that there is an external arrival to Pi at time n. Write t e for t e ], the largest
integer, which is no bigger than t e. Define X;=/ (number of customers waiting
for or in service at Pi at time n), and set X (t)= X,/. In general, for a sequence
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{Z}, define the function Z(t) ZT/. The buffer of Pi, 1, 2, has size Bi/x/-d, which
we assume is always an integer. Let I denote the indicator of the event that an arrival
at Po at time n has the prior assignment to Pi, and let p’, j # be the indicator of
the event that this arrival is reassigned to P.

We usually use the convention that the superscript e is dropped whenever one of the
above terms is used as a summand. The notation would not be much simpler if we
worked in continuous time, since we would still have to keep track of the events and
their times. Define (j # i)

Ai’e=x/-n i --nAoi’e--V/" , IimOrn
=0 =0

yE..._ Oimi{Xi
rn=0

ui, %// o ijm(I, + ,.)I{x,Ix =Bi + Ip Ip

The Ai’ is the scaled total number of arrivals (by time n) at P0 that have been a priori
assigned to Pi (they might, of course, be rerouted by P0).

The J’ are the "rerouting" control terms, the scaled number of customers
originally destined for Pi but rerouted to . The Y is the scaled total number of
"fictitious" depaures due to our convention of continuing to "process" even if the
queue is empty, and U is the number of customers lost to Pi when its buffer is full.

The mass balance equations can be written as (discrete "real" time and "inter-
polated" time, respectively),

(.1) x x +A +Ai’ D + + Y U,
(2.2) xi’e(t):Xe+Ai’e(t)+Ai’e(t)-Di’e(t)+Ji’e(t)+ Yi’e(t)- ui’e(t).

The cost function. Let fl > 0, ci > O, k > O, and let k(. be a bounded and continuous
function. Define J= (J’, J’). We use the cost functional

(.3) + J,(+ c u,(+ c u,(].

By Theorem 7 below, there are routing policies j0,(. for which

(2.4) sup V(x, J) <.
Define

V(x)--ijnf V(x, J).

The k(. might be nonlinear. Such nonlinear k(. occur when we wish to model the
costs of reneging or queue switching, or if we wish to limit the possibility of leaving
the queue due to a "long" wait. The second term in (2.3) penalizes the overflows and
rerouting. One of the k can be negative and we return to this case at the end of 6.
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Definitions and heavy traffic assumptions. We take many of the definitions from
[4] so that the results of that reference can be conveniently used. DefineS Y" 10i
S, =1 A Define (. by (t) max {era" eS < t}, and define (.
analogously. Actually, (t) Ai’ (t) and analogously for (t), but the separate
terminology is useful. These functions are the "inverses" of the functions eSPY( ). Let
Ei, denote the expectation, conditioned on the arrival and departure intervals that

i,staed by S (except for a+), and the control (routing) actions taken up to S.
i,Define E d, analogously, where S], and A i’e i,e i.e

.+l replace S and respectively.a, +1

Similarly, define the conditional variances varL. a a, d. We use the notation

E i,e i,e i,e i,e i,e i,e
a,nn+l n+l Ed,nn+l n+l

i,e 2 i,e i,e 2
var.a.+l +. A.+var5. +d,n

We will use the following assumptions. Assumptions (A2.1) and (A2.4) are the
"usual" heavy traffic assumptions. Assumption (A2.4) basically says that (modulo a
term that goes to zero as e 0) the mean rate of arrivals to P equals the "capacity"
of Pi.

(A2.1) There are real gai > O, gdi>O and bounded and continuous real-valued
functions ai(. and d( such that

(/ i,en+l)-- gai -F ain -t- O V/-

(i,e.+1)- ga, + d,. + o(/-),
where

ai, a (Xs’,t), d, d (Xs:,%).
Note that X)),, is the value of the state at the beginning of the (n + 1)st interarrival

interval, and so it is the correct argument of the a (.) above, and similarly for the d (.).

(A2.2) {]ai]2, ]A i,;[2, i, n, e > 0} is uniformly integrable.

(A2.3) There are/5i such that P{I= 1]all arrival or departure intervals starting
by time n and routing actions up to time n- 1}

This assumption can be weakened in many ways, allowing for batch rerouting
and other variations, as well as correlated routings. All that is really needed is that
"loosely speaking,"/5i be a "local mean" of the conditional expectations and satisfy
(A2.4).

(A2.4) For the Pi defined in (A2.3), ffigao + gai--gdi, i= 1,2.

(A2.5) There are continuous and bounded real valued functions o-,(. ), trdi(" such
that

i,e i,e
O’a,.+l-- O’a,i(Xs,e,,) "Jr- ie, O’d,n+l O’d,i(Xs:.en)

where 8 and 8’ - 0 uniformly in all other variables.

o-,i(x) > 0 for all x, c. The resultsIn the sequel, we suppose for simplicity that all 2

are true even if this condition is violated.

A more convenient representation for X (.). The second through the fourth terms
on the right-hand side of (2.2) go to infinity as e0. For purposes of the weak
convergence analysis, it is helpful to center these terms so that we can work with
martingales and processes of bounded variation. We follow closely the procedure used
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in [4, 3] with a slightly different notation. Access to that paper is not needed. Define
the following processes"

Oi,(2.5) --o (t)= E Is;,,

(= 2 -The summands in (2.5) are all centered about their conditional expectations with
respect to the filtration that measures the "part." Hence, the sums are martingales.
Hencefoh, we simply write the indicator function that appears in the second sum as

i,eI. This is merely for the sake of notational simplicity and is justified by (A2.3).
As in [4, 3], we can write (recall that A’(t) (t)/,...)

A’(t)=((t))+ -i i=1,2,
m=l m
.)/ o

Oi, --O,e(2.6) A’(t) =o (S (t))+fi, -o,
m=l m

)/ Ai

The first terms on the right sides of (2.6) are just scaled martingales. The right-hand
terms in (2.6) "blow up" as e 0. In (2.2), the sum of the first two minus the third
term of (2.6) occurs. Subtracting the far right-hand term on the third line of (2.6) from
the sum of far right-hand terms of the first two lines of (2.6), and using the heavy
traffic assumption (A2.4), the expansion (A2.1), and the fact that

2 a’=+o)= 2 ,
m=l m=l

yields (as in [4, 3]) the expression

(2.7) 2 ’a,+ 2 pOao_ 2 ad,+’()
m=l m=l m=l

where 6’ (.) is such that sup,r ]6’ (t)] 0, for each T <.
For 1, 2, let ’(t), X’(t) and ’(t) denote the first terms on the right sides

of (2.6). Define b,(x)=a(x)+a(x)-d(x) and

,(= b(X(s &.

Then, modulo an error (which we absorb into ’(.)) of order O(e) due to the
approximation of the sum by an integral, (2.7) equals ’(t)+ B’(t) and

x,( x+[,(+o,(
(2.8)

+ n,(t) +j,(t) + y,,(t)- u,(t) + ’,(t).
3. Weak convergence. In this section, we deal with the weak convergence of the

terms in (2.8), as e 0. Let D[0, ) denote the space of RCvalued right continuous
functions with left-hand limits and C[0, ) the subspace of continuous functions.
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For all the weak convergence work, we use ok[0, oO) under the Skorokhod topology
[5, Chap. 3.5]. We will often use the Skorokhod representation [5, Thm. 3.1.8] so that
we can always assume that if a sequence of processes converges weakly, then the
convergence is (with probability 1) also pathwise in the topology of the path space.

There are two main problems. First, little is known about the control terms ji,(. ).
In general, even ifbounded, they need not converge in the Skorokhod topology. Indeed,
their behavior can be quite "wild." The pseudopath topology [7] could be used, as it
has been in [6] for some approximation and convergence questions arising from systems
with wide bandwidth noise disturbances under singular controls. For our purposes, it
is more convenient to work directly with the Skorokhod topology, but with a rescaled
set of processes. (Some comments on the relations between scaling and the pseudopath
topology are in [9].) After getting the desired weak convergence, we invert the "limit"
of the rescalings to get the result for (2.8).

The second problem concerns the treatment of the reflection terms Yi’(.) and
Ui’ (.). Owing to the presence of the upper boundary, the reflection mapping theorem
of [1] and [2] cannot be used directly. The following extension is proved in 8.

THEOREM 1. Let Q be a k k probability transition matrix whose spectral radius is

less than unity. Let z(. Dk[0, oo) and consider

(3.1) x(t)- z(t)+(I- Q’)y(t)- u(t).

There is a continuous function (in the topology of uniform convergence on bounded time

intervals) F( such that (y(. ), u(. )) F(z(. )) has thefollowing properties" F(. maps
ck[o, ) into ck[o, oo) and Dk[o, oo) into Dk[o, oO); for 1, 2, yi(. and ui( are
nondecreasing and increase only when xi( t) 0 and xi( t) B, respectively. Equation
(3.1) holds and x(t) [0, Bi].

Using the martingale properties of the sums defined in (2.5), it is not hard to
prove Theorem 2. In fact, the proof of the first paragraph is given in Lemma 5.2 of
[4], and the proof of the second paragraph is in Theorem 5.1 of [4].

THEOREM 2. Assume (A2.1)-(A2.5). Then, for a a or d, the processes with values
--i,eSa,t/ and S (t) converge weakly to the deterministic functions with values t/g and

tg, respectively. The processes

{,,(. ), ,(. ), (o,,(.), o,(.)), fi,,(. ), fi,(. ), > o}

are tight and the limit of any weakly convergent subsequence of the five sequences (we
always pair together o1, and .o2,(. )) are orthogonal continuous martingales.

The quadratic variations of the limit martingales are, respectively, the weak limits of

Z,i(X(s)) ds, i= 1, 2, 0

(3.2)
,di(X(s)) ds, i= 1, 2,

where

"ai(X) 2g,itr,i(x), 1, 2,

/ffl( 1 -/31) -/31/32 + goO’,o(X).E0(x) g,o
L -PlP e(1 -pe) PlP

Eai(x) gdidi(X), 1, 2.

PP2]1

Since the proof of an almost identical result is in the cited reference, we omit it
and comment only on how (3.2) is calculated in one case.
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The quadratic variation of the discrete parameter martingale /;(. is (recalling
trai(" is the state at the time of arrival of the mth customer)that the argument of 2

Neglecting the small terms (which go to zero, as e--> 0), we can write the quadratic
variation of ,i,(. as

e(t)/e 2 2 i’e(t)/e 2 2 Sia’fin) (l.i,e i,(3.3) e
i,e Ola,
a,m g i,e a,m Og a,m)"

The variance of the second term in (3.3) is O(et) due to the centering of the summands
about the conditional expectations. The first term in (3.3) can be written as (modulo
an error of order O(x/-))

(3.4) g3o’i(X(s)) ds.

Thus, we obtain the first line of (3.2), for i-- 1, 2.

The time rescaling. The weak convergence proofs for the terms in (2.8) are
facilitated by means of a rescaling or "stretching out" of time. Define T(.) by

21 12 21T(ne) ne+x/- [p+p,,, -p,,,p,,,],

and for (ne, ne + e), define T (t) to be the piecewise linear interpolation. Let ’(.)
denote the inverse function to T(.). For any function b(.) on [0,c), define the
function (.) by (t)= b((t)). Similarly, define ’(t)=,’(T(t)), etc.

THEOREM 3. Assume (A2.1)-(A2.5). Then

(3.5) {e(.),e(.), /e(.), i,e(.), &i,e(.),jl2,e(.),y21,e(.),E>O}

is tight and all limits are continuous processes. Also

(3.6) {1’( ), .3,z’( ), (1’ ), .2’ )),/1’ ),/2’( ), e > 0}

is tight and the limits of any weakly convergent subsequence of the set offive sequences
are orthogonal continuous martingales. Let e index a weakly convergent subsequence of
(3.5), (3.6), and denote the limits by the same letters, but with the e dropped. Then

(3.7) i(t):xi(o)-l-i(t)+[3i(t)+i(t)-Ii(t)]+ ’i(t)- ji(t)+Ji(t)-iJ(t).

i(. increases only when i(t): 0 and &i(. increases only when .i(t): Bi. AIso,

(3.8) Ji(t) bi((s)) d(s).

(3.9)

The quadratic variations of the martingales are

o
Ei(2(s)) d’(s),

.i(X(s)) dT(s),

i=0, 1,2,

i=1,2.
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For the particular chosen weakly convergent subsequence, let t denote the minimal
or-algebra that measures {P(s), s <-_ t}, where

/(S) ((S), il2(s), i21(S), ti(s), tiOi(s), J)i(S), ]"(S), i= 1, 2).

Then the martingales are all martingales.
Proof The set (3.6) is tight and has the asserted properties by Theorem 2, since

(3.6) is,, just the sequence dealt with in Theorem 2, but with a "stretched out" timescale.
The { T (.), j12, (.), j21. (.), e > 0} are tight since their increments between any t, + s
are bounded by s + O(v/--). The set {/ (.), e > 0} is obviously tight.

To treat the i.(. and i,(. ), we use the representation of the reflecting terms
of Theorem 1. Thus, there is a continuous function (in the sense of Theorem 1) Fo("
such that

The tightness of {, (.), . (.), e > 0} and the continuity of the weak limits follows
from this and the fact that the argument processes of Fo(" are tight and have continuous
weak limits. Also, the properties asserted below (3.7) hold. The representation (3.8)
follows from the equality

f(t) fo"(3.10) /"(t) b(X(s)) ds- b,(X("(s))) d(s),

as we will now see. Abusing notation, let e index a weakly convergent subsequence
of the sets in (3.5), (3.6), and suppose that the Skorokhod representation is used so
that we can assume that all weak convergences are convergences with probability 1
and are uniform on each bounded time interval (since the limit processes are continuous
with probability 1). Since the (.) satisfy [(t+s)-’(t)[=O(s), the uniform

convergence (on each [0, t]) of (.) to continuous (.) and (.) to continuous
X(. and (3.10) yield the assertion. A similar proof yields the analogous assertion for
the quadratic variation terms.

The last sentence of the theorem is proved in the same way that (5.4) in [4] is
proved, via use of the "martingale method," and we only do one case. Let h(. be an
arbitrary real-valued, bounded, and continuous function of its arguments and for
arbitrary n, let t,<-t<-t+s, i<-n. Define /5(t)=((t), ’(t), 21’e(t),
,i’(t), l’(t), (t), i=1,2). Let e index a weakly convergent subsequence of
{P(. ), e > 0}. It can be shown that

Eh((t,), i<- n)[,i’(t+ s)-.i’(t)]=O.
This last expression can be shown either by the ideas leading to (5.4) in [4], or by a
direct calculation using^t.he definition of the conditional expectation E.n and the fact
that the summands in A"( are centered about their conditional.expectations, given
the "past." By the weak convergence and the fact that sup E[A"(t)]< oo for each
< oo, we have

Eh((t,), i<= n)[,’(t + s)-,li(t)]=O.
The arbitrariness of h(. ), ti, n, t, + s, implies that

E[(t+s)-,(t)l’(u), u t]=O,

which yields the assertion.
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The inversion of J’(.). Next we deal with the inversion of the time rescaling (.
to get the appropriate "limits" of the original sets of processes in (2.8). Whether or
not this "inversion" can be done depends on the controls. Clearly, if all arrivals at Po
are rerouted, then for each > 0, T (t) -> o as e --> 0 and (t) 0, and no inversion is
possible. However, since the costs associated with this policy go to infinity as e-> 0,
such cases can be excluded. It will turn out that for the controls of practical interest,
the inversion can be done.

LEMMA 4. Assume (A2.1)-(A2.5) and that

tie
(3.11) sup x/ E Y [p+p] <

for each < c. Then ’(t)< with probability 1 for each < c and ’( t) --> o with
probability 1, as --> c.

The proof is easy and is omitted.
For each > 0, define the random variable

T(t) min {r: (z)= t}.

The set { T(s), s < c} are -.spping times, since { T(t) -<_ r} { T(r) _>- t} for all
r. Define the r-algebras r,). For any process b(. ), define the rescaled process
b(.) by dp(t)=4(T(t)), except let A( and/(.) denote (T(.)) and/(T(.)),
re,,spectively. Then is the minimal r-algebra induced by {P(s),s<-t}
{P(T(s)), s <- t}. The process T(. is left continuous. Because of this, the X( ), j0(.
in (3.12) will be left continuous. But without loss of generality we can simply take
these functions to be right continuous if we wish.

THEOREM 5. Assume (A2.1)-(A2.5) and (3.11). Then

(3.12) xi(t) xi(o)- Bi(t)+[,i(t)+.i(t)-j)i(t)]+ Y’(t)- ui(t)+JJi(t)-JiJ(t).

The yi(.) and ui(.) increase only when xi(t)--O (xi(t)-- Bi, respectively). The
martingales are all t-martingales. The quadratic variations are given by (3.9) with ’( t)
replaced by and ((. by X(. ).

The proof is just a consequence of Theorem 3, Lemma 4, and the properties of
the T(t). The details are omitted.

Remarks on the representation of the martingales. Since the five processes ,(. ),
)(.), i= 1,2, and (/o(.),,oz(.)) are mutually orthogonal martingales, we can
represent them as stochastic integrals with respect to mutually independent Wiener
processes w(.), Wdi(’). If the try, are never zero (which we have assumed for
convenience in this paper), then the w(.) are all t-Wiener processes. Otherwise,
we need to augment the probability space and filtration by adding Wiener processes
that are independent of all processes originally defined on the probability space. We
can write the martingales in the form

o (X(s wo(s, i= , ,
(3 13) )i(t)= ,..3/2 1/2

s, ,(X(s)) clw,(s)= r,, (x(s)) clw,(s),

Al( t) Io 1/2[X(s) dwao($a2(t)] ’o
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Ifthe {j12,e (.), j21,e (.), 8 > 0} is tight, then the time change --> (t) is not needed,
and we can work directly with the original processes X( ),.... We will next give a
result for this case that will be useful below. First, we define some new processes by

’Oi’e(gOa’e (t)), anda normalization of the summands in the expressions , (,(t)), ,o

/((t)) appearing in (2.6). These new processes will actually converge weakly to
the Wiener processes wo(.). Define

Se(t)/e ( OlimWi(t)
m=l

y" [i(Xsi,)]-1/ 1 cJ’ 1, 2,

’,’( t)/

Wo( t) x/ 2
m=l

1/2{ II’em plOOm/l
[EaO(Xs ]-- I 2a0../6r

THEOREM 6. Assume (A2.1)-(A2.5) and suppose that {jl:z,(.), j:z,(.), e > 0} is

tight. Then (note that we pair the two components of Wo(" ))

{x(. ), y(. ), u(. ), i,(. ), oi,(. ), 5i.(. ), w,,(. ), ws,(. ), for all i}

is tight. Let e index a weakly convergent subsequence and denote the limits by the same
letters, but without the e superscript. Let t be the minimal r-algebra that measures the
limit process for s <-_ t. Then the W(.) are mutually independent standard t-Wiener
processes, and

1/2i(t) -ai (X(s))’dWai(S),

(3.15) o( t) /o(X(s)) dWoo(S),

/i(l) //o2(X (s)) dWdo(s).

Also (3.12) holds.
Proof. It is easy to show the "Wiener process" result, owing to the centering of

the summands and the normalization by the inverse square root of the covariance. The
rest is as for Theorem 3, except for the representation (3.15). This can be obtained by
using the tightness and a discrete-time approximation, and the details are omitted. [3

Service time depending on the customer class. Suppose that the service time distribu-
tion depends on the customer type, as it might in Example 3 of 2. Then, when a
customer who was a priori scheduled to P is rerouted to Pi(j i), we need to account
for the fact that the service time of that customer at Pi might not satisfy (A2.1) and
(A2.5). Some minor adjustments are needed in (2.2) and (3.12).

Let j and let U, denote the indicator of the event that the ruth customer served
at Pi was rerouted from P. Suppose that there are constants ga.i such that

E[Ai’ ["past data," lji’e 1] gd,ji at- O(x/)
If gd,ji gdi for all i, then the results of this paper hold as stated. In general, it can be
shown that neither the O(x/) above nor the variance of the A i’m for the rerouted
customers appears in the limit equations. This is due to the fact that the fraction of
customers that are rerouted goes to zero as e --> 0, because of the cost of rerouting. The
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main problem is with the right-hand term of the third line of (2.6), and we need to
correct that term.

We have
t/e

ff- Z ---T ,,[ga, +x/-{ d (Xs:.) + O()](1- I)

t/+ E a o()]I[g,, + .
m=l

The correction term for the third line of (2.6) is
()/

[ga,i- gai
m=l

All the results of the paper continue to hold if [ga,-ga]J(t) is subtracted from the
right side of (3.12).

4. Bounfleflness and aproximation to V(x). First, we show that there is a control
for which the costs are uniformly bounded.

T.eogeM 7. Assume (A2.1)-(A2.5), and let V (x, O) denote the cost when j2, (t)
J2’(t) 0. en

sup ExV(x, O) <.
8X

Proo It is enough to prove that

sup E[U"(n+ 1)- U’(n)] < m.

Define M’ (t) [" (t) + o,, (t) "(t)]. We let 1, since the proof is the same
for 2. For an integer n, define the stopping times (omitting the n and e-dependence
in the notation)

r=min{tn" X’(t)=B},
xl,r2=min{t>r2=_ (t)B/2}(n+l),

r2+ =min {t> r2=" X’(t) B} (n+ 1).

Define N min {m" r2 n + 1}. Recall that U’ (.) can increase only on the intervals
[r_,, r2] and not on (r2=, r2=+). Then

N+I
u"(n+)- u"(n) E [(X"(m)--X"(-,))

m=l

(4.)
(M,(2)_ M,,(_,)) (,,() 1,(_,))].

By (4.1) and the square integrable maingale propey of Mg’(.) and the Lipschitz
continuity propey of B’( ), there is a constant Ko such that

(4.2) E U’e(n + 1)- ul’e (n)[ Ko+ E(N + 1)B.

Thus, to prove the theorem, we only need bound-ENd, uniformly in n and e.

Given a0> 0, there is o> 0 such that for all bounded stopping times and for
small e

sup [l’e(S)+ M’e(s)-(N’e()+ Ml’e())] data up to
r+os(4.3)
Nl-o.
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This implies that

(4.4) P{r2m- r2m-1 => 6o[data up to time ’r2,,,_1}-> no.

Consider the problem of a sequence of "Bernoulli" trials, where the conditional
probability of success, given the past data, is greater than or equal to ao and on
each success "time" advances by 60. An upper bound for our EN is just the mean
number of trials that are needed to have 1/6o-- nl (the next largest integer) successes.
Since the mean number of required trials is monotonic in the (conditional)
probability of success, we get an upper bound by assuming that (4.4) is an equality.
Then

P{k trials needed}=( k)(1--ao)k-"’ao,"’
which implies that all moments of N, are bounded, uniformly in n and e. [3

We remark that the proof and the uniform square integrability of the increments
in Me( and Be( (on unit intervals) implies that

(4.5) sup E U"e(n + 1)- U"(n)l2 < oo.

The following corollary will be useful later. It is just a consequence of Theorem
7, the structure of the cost and the discounting. Define Ve(x) =infj V(x, J).

COROLLARY 8. Assume (A2.1)-(A2.5). Given 6 > 0, there are To > 0 and a family
of 6-optimal controls J(. such that J(. do not change after time To (i.e., after To,
there is no rerouting).

A very similar proof to that of Theorem 7 yields the following.
THEOREM 9. Assume (A2.1)-(A2.5). If, for each < o

(4.6) sup E[JO’(t+ T)-J’(T)]<oo, ih i= 1,2,
e,T

then

sup E[U"(t+ T)-U"’(T)]<oo.
e, T

if

(4.7) {J’(t+T)-J’e(T),e>0, T<oo}, i#j, i=1,2,

is uniformly integrablefor each t, then so is { Ui’e + T) U’ (T), e > O, T < oo}, 1, 2.

5. The limit control problem.
DEFINITION. J(" (j12(.), j21(. )) is said to be an admissible control for the limit

controlled reflected diffusion (3.12) if it is nonanticipative with respect to the set of
Wiener processes W(. (wa(.), Wd(" ), 1, 2, Wao(" )) that "drive" the martingales
((.), .o(.), /,(.), i= 1,2) (see the representation (3.13)), and satisfies J(0) =0,
and J(.) is nondecreasing, for a 12 or 21. We often say simply that the pair
(J(.), W(. )) is admissible. The cost functional for the limit problem is

V(x,J, W)=E e-O’k(X(t)) dt+E e-’[k dJ(t)

(5.
+ k2 dj2’(t) + c, dU’(t) + c2 dU(t)].
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The W(.) appears in V(. as well as J(. ), since the value of the cost function will
depend on the joint distribution of (J(.), W(.)). Assumption (5.2) in Theorem 10
implies (3.11), and is used to get an inequality for the limit of the costs. Under (A6.2)
and without (5.2), the inequality is shown to be an equality.

THEOREM 10. Assume (A2.1)-(A2.5) and that for each n

(5.2) sup E[(J’(n+ 1)-JZ’(n))+(J2’(n+ 1)- J’(n))] < o.

Let e index a weakly convergent subsequence of (3.5), (3.6) with limit denoted by
(’(.),...). Let the retransformed processes defined above and in Theorem 5 be denoted
by (T(. ), "). Then

(5.3) lirn W(x,J)>= V(x,J, W),

where W(. w(. ), Wd(" ), 1, 2) is the Wiener process that is used to represent the
martingales (see (3.13)). If
(5.4) {JlZ’(n + 1)- J’Z’(n), JZl’(n + 1)- J21’(n), e > 0, n <

is uniformly integrable, then

(5.) V(x, J) V(x, J, w).

Proof The hypothesis (5.2) implies that inf E
Thus, the "inverse" transformation T(. is well defined. It also implies that we need
only work on a finite interval (see Corollary 8). For simplicity, we work with only a
couple of the terms of the cost functional. We have

e-’k(X(t)) dt= e-tk(2(t)) d(t),
(5.6) Io e-’dJ’2"(t)=Io e-(t) d)aZ’(t)"

By the weak convergence and the argument of Theorem 3, the right sides of (5.6)
converge in distribution to the left sides of

(5.7)

The left sides of (5.7) equal the right sides of (5.7) by the rescaling. The theorem
follows from the cited convergences (together with those for the other components of
the cost) and Fatous’ lemma.

Theorems 3 and 5 imply that every limit of a weakly convergent subsequence is
a legitimate control problem in the sense that the pair (J(.), W(. )) that occurs in the
representation of the limit is admissible. This fact and Theorem 10 imply the following
theorem.
ToM 11. Assume (A2.1)-(A2.5). Let J’(.), jl,e(.) denote the optimal

controls for the physical process. Define

W(x)=ip W(x,J), V(x)= inf V(x,Z W).
(J, W)adm

en
(5.8) lim W(x)N V(x).
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Remark. We note that (5.2) can be assumed in Theorem 11. If it does not hold
for the optimal policy, for each a > 0 it will hold for the g-optimal policy, owing to the
discounting and Corollary 8. We want to prove that (5.8) is an equality. To get the
equality, we will need to use the fact that V (x) is actually an optimal cost. To do
this, first we need to study approximations to the control problem for the limit model
(3.12), (5.1). We will show that there is an optimal policy for the limit, and that it can
be approximated by a policy that we can apply to the X( process, and that will be
"recovered" under the weak convergence. Such results will get us the desired equality
in (5.8) (Theorem 17), together with a basis for an effective computational approxima-
tion. The computational methods and associated proofs will be dealt with in a sub-
sequent paper.

6. Approximations for the limit problem, and convergence of the costs. To prove
equality in (5.8), we first establish the existence of an optimal policy for (3.12), (5.1),
and then obtain a sequence of approximations to the optimal control. We will use the
following assumption.

(A6.1) k(. ), bi(" ), Cria(" ), O’id are continuous.

TrEOREM 12. Assume (A6.1). Consider the limit controlproblem (3.12), (5.1). There
is an optimal policy J(. in the sense that there is (X(.), J(.), W(.),...) satisfying
(3.12), where if’(. {ai(" ), ai(" ), i= 1, 2} "drives" the martingales (. ),. , as
in (3.13) and the pair (J(.), W(. )) is admissible and

V(x, J, w) <= V(x, , w),

for all admissible pairs (J(. ), W(. )).
Proof. The proof is very similar to those of Theorems 3 and 5, and we make only

a few comments. Let (J"(.), Wn(.)) be an admissible pair for (3.12), and write the
corresponding form of (3.12) as (j i)

Xi’n( t) X+ Bi’n( t) + [ti’n( t) + ti’n( t)- i,n( t)]
(6.1)

+[J’n(t)-JJ’n(t)]+ Y"n(t)- ui’n(t)],
where B"n(t)=to b,(X’(s)) ds and W"(.)={w,(.), wi(.), i= 1,2} "drives" the
martingales .i.(, ),.. ", as in (3.13). Let (J(.), W( )) be a minimizing sequence in
that V(x, J", W") $ V(x).

By Theorems 7 and 10, V(x) <. Hence

sup E[Jl’n(t)+ Jl’(t)]< x3,

for each . Define the time change

Tn(t)= t+j12,n(t)+J1,n(t),

and the inverse (t) min (-: T(-) t}. Analogous to the notation used in Theorem
3, define .’n (.) X ’(.)), . Then

)i,n( t) X-Jl- i,n( t) dl-[i,n( t) -" Ai’n( t) i,n( t)]

-k. j6,n(t)-.ji,n(t)+ ,ri’n(t i’n(t).
As in Theorem 3, there is a function Fo(" that maps C[0, c) into C[0, ), for the
appropriate integer k and is continuous in the topology of uniform convergence on
bounded time intervals and is such that for all n

.rn(. ), n(. ))= Fo(Xo, i,n(. ), lio,n(. ), li,n(. ), i,n(. ), n(. ), i-’- 1, 2).
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The set { n(. ), 2n(. ), in(. ), .,.n (.), A,0.n(. ), /,.n (.), /,.n (.), i= 1, 2, n < c} is tight.
Abusing. notation, let n index a weakly co.n.vergent subsequence with limit denot.ed by
(#(.), X(. ),...). As in Theorem 3 the (AI( ), 2( *10 *20 *1),(A (.),A (.)), D (’), De(’))
are orthogonal continuous martingales, with quadratic variation defined by (3.9). Define
the inverse scaling T( t) min {r: T(r)=t}, and the rescaled processes X(t)-
X(T(t)),.... Then (3.12) holds, and the martingales have the representation (3.13)
with respect to some Wiener process W(. (wai("), Wdi(" ), 1, 2) such that the pair
(J(.), W(. )) is admissible. By an argument that is almost identical to that of Theorem
10, we have

(6.2) lim V(x, jn, W)>= V(x, J, W).

We must have the equality in (6.2) since V(x, jn,-wn) V(x). Thus, (J(.), W(. )) is
an optimal admissible pair.

The following lemma, whose proof is similar to that of Theorems 7 and 9, will
be useful later.

THEOREM 13. Assume (A6.1), and let (Jn(’), Wn(’)) be admissible, with
Xn(" ), Yn(" ), and Un(" ), the associated state and reflection process. If

{J(t+T)-jji,(T),n<o}, j#i, j= 1,2,

is uniformly integrable, then so is

{ Uin( t-] T) U’.( T), n < o}, j#i, j= 1,2.

THEOREM 14. Assume (A6.1) andfor small g>0 let (Jo(" ), Wo(" )) be a g-optimal
admissible pair, with Xo(" being the associated solution to (3.12). Define 7"N
sup { t" Je( t) <-- N, jl( t) <= N}, and let jN (.) be the policy that equals Jo( until
and is constant thereafter. Write the solution to (3.12) as

Xi’N (t) xi(o) + Bi’N (t) + [i,N (t) "F zlOi’N (t) j)i,N (t)]

+ y,,N (t) Ui’N (t) + jji,N (t) jO,N (t).
Let WoN( be the set of Wiener processes that "drives" the martingales (i,N(.),. .).
Then, as N ,
(6.3) V(x, Jy, WoN) V(x, Jo, Wo).

Proof We can suppose without loss of generality that there is a T < such that
Jo(’ is constant after T (by an argument similar to that leading to Corollary 8). Since
j,N (T) ’ J(T), and EJo(T) < o, the {J0u(T), N < c} is uniformly integrable, and so
is {Ui’N(n+I)--u’N(n), n<, N<o, i= 1,2} by Theorem 13. Since -N ’, wecan
suppose that

(x(.), (.), Wo(.))- (Xo(.), o(.), Wo(.))

pathwise. The theorem follows from this convergence, the cited uniform integrability,
and an argument similar to that in Theorem 10. [3

DEFINITION. A solution X(.) to (3.12), (3.13) is said to be unique in the weak
sense if the distribution of the admissible pair (J(.), W(.)) determines that of
(J(.), w(. ), x(. )).

To obtain our approximation results we require that for each g > 0, there is a
g-optimal control that gives a well-defined solution of (3.12), (3.13).

(A6.2) For each g > 0, there is a g-optimal control J(. for which (J(.), W(. )) is
admissible for some W(-) and the corresponding solution X(. to (3.12),
(3.13) is unique in the weak sense.
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In the next theorem, we show that there is a 6-optimal control that is bounded,
piecewise constant, and jumps "in increments."

THEOREM 15. Assume (A6.1)-(A6.2) and let (J(.), W(.)) be a g-optimal pair
satisfying (A6.2), with X(. denoting the corresponding solution process. For A > 0 and
p >0, define the control Jap(’) as the piecewise constant control satisfying dJp(t)=O
on the interval (nA, nA+ A) and on [0, A). For k >-0 and n >= 1, set dJp(nA)= kp if
JiJ(nA)-JiJ(nA-A) [kp, kp+ p). Then

(6.4) lim V(x, Jap, W)= V(x, J, W).
A,p

Proof By Theorem 13, we can suppose that J(.) is uniformly bounded. By
construction, (Jap("), W(. )) is an admissible pair. A solution to (3.12), (3.13) can be
constructed on some probability space for some pair having the same distribution as
(Jap(’), W(.)), and we use the same notation for that new probability space. Let
(Xap (’), Uap (’), Yap (")) denote the corresponding state and reflection processes. The
set

(6.5) {Xap (.), Jap (.), W(. ), Uap (.), Yap (’), A > 0, p > 0}

is tight and the weak limits all satisfy (3.12), (3.13). By the uniqueness (A6.2), the limit
of any weakly convergent subsequence of the set (6.5) satisfies (3.12), (3.13). Then
(6.4) follows from the weak convergence and the boundedness of J(.) and the
consequent uniform integrability of {Uap(n+l)-Uap(n),i n<oo, A>0, p>0,
i= 1,2}.

For A > 0, p > 0, let -ap denote the set of admissible (with respect to some given
Wiener process W(.)) controls that are bounded, are constant on each interval
[nA, nA+A), jump only at the times hA, and where J(nA)-JiJ(nA-) is an integral
multiple of p. By Theorem 15 and (A6.2), we know that for each 6 > 0 there are A > 0,
p > 0 such that there is a g-optimal control in some .3-ap. We will need to define this
control in such a way that it can be used for the physical X( process.

Write k (kl, k2), a multi-index, where k is either an integer or zero. Fix the
Wiener process W(.) and A and p. For J(.) 5rap, (J(.), W(.)) is admissible. For
y > 0 and integers k and n, define q,kr(" by

q,,kr(J(mA), m < n, W(IT), ly <= nA) P{dJ(nA)
(6.6)

kplJ(ma), m < n, W(IT), IT <- nA}.

By the martingale convergence theorem, as y--> 0

q,,kr(J(mA), m < n, W(IT), 13’<= nA) P{dJ(nA)= kplJ(mA), m < n, W(s), s<=

with probability 1 (Wiener measure) for each k, n and value of {J(mA), m < n}.
For each y > 0, we next choose a control Jr(" ff-ap recursively by means of the

following set of conditional probabilities:

P{dJr(nA) kplJr(ma), m < n, W(s), s<-_ hA}
(6.7)

q,,kr(Jr(mA), m < n, W(/y), IT <= hA).

Equation (6.7) specifies the joint law of admissible (Jr("), W(. )), and there is a solution
X(.) on some sample space that is associated with a pair with the same distribution
as (Jr("), W(. )).

We will need the following condition.
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(A6.3) The uncontrolled system (J(t) 0) has a unique (in the weak sense) solution
for each initial condition.

THEOREM 16. Assume (A6.1)-(A6.3). Let (J(. ), W(. )) be admissible with J(.
:TAp for some A > O, p > O. Define Jr(" as above. Then

(6.8) V(x, Jr, W)--> V(x, J, W).

The function q,kr(Jr(m/x), m < n,.), which is used to get Jr(’), can be chosen to be
continuous for each n, k, y, and values of the set {Jr(m A), m < n }.

Proof The proof of (6.8) follows from the weak convergence {Jr(’), W(.), T >
0}(J(. ), W(. )), as T-->0 and the uniform boundedness of the controls. By (A6.3),
the solution to (3.12), (3.13) is unique in the weak sense for any admissible J(.) in
-ap. The last sentence of the theorem follows from the fact that for each n, k, T, and
value of {Jr(m/x), m < A}, we can approximate q,kr(Jr(mA), m < n,. by a sequence
of continuous distribution functions that converge to q,kr(Jr(mA), m <n,.) with
probability 1 (Wiener measure). [3

The optimality theorem. We now return to the physical process (2.8), and prove
equality in (5.8). Let (Jr(’), W(.)) be admissible with Jr(’) chosen by (6.7), where
the q,,kr(" have the continuity property asserted in Theorem 15. Recall the definition
of W(-) given above Theorem 6.

We would like to define a control je(.) for Xe(.) such that {je(.), We(.)}
converges weakly to (Jr("), W(. )) as e- 0. First, consider the control ]e(. defined
as follows, where the q,,kr(’) are continuous in the W-arguments; je(.) is constant
on the intervals [nA, nA + A), and

P{d]e(nA)=kp]]e(mA), m<n, We(s),s<--nA}

(6.9) P{dJe(nA)= kpl.e(mA), m < n, We(iT), iT<= n/x}

q,,kr(Je(mA), m < n, We(iT), iT <- n/x).

The control law (6.9) cannot quite be realized for Xe( ), since the controls for Xe(
are the result of rerouting decisions and Xe( cannot be impulsively controlled. But
we can come close enough to realizing the above je(. ), as follows.

For notational simplicity, let the kp, 1, 2, be integral multiples of x/. Let Ae 0
as e - 0 such that/xe/x/-- c. Let Q denote the event that there are at least equal to
(B + B2)/x/ arrivals at Po on [n/x, n/x+ Ae). We have P{Q} 1 as e -*0. Define je(.
to be any control with the following properties" je (.) is constant on nA + Ae, nA / A)
and on [0, A); for n > 0, the rerouting on [n/x, nA + Ae) is such that

P{Je(nA+Ae)-Je(nA)=kp[Je(mA),m<n, We(s),s<--_nA, Q}

(6.10) =P{Je(nA+Ae)-Je(nA)=kplJe(mA),m<n, We(iT),iT<=nA, Q}

q,kr(J (m/x), m< n, W (iT), iT --<-- n/x).

The limit of the costs associated with this just constructed je(. is the same as if
the jumps of je(. are at the time nA / Ae, n 1, 2,..., only and not spreadout over
[hA, nA+A). This can be easily proved by the "time charge method." Under this
"new" je(. ), {je(. ), We(. )} clearly converges weakly to (Jr("), W(. )) as e -0. Now,
the above discussion and Theorems 6, 10, and 11 yield the following theorem, where
we use the je(. just described. Note that the rescalings are not necessary, due to the
fixed form of je(. ); we get weak convergence directly in the Skorokhod topology.
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THEOREM 17. Assume (A2.1)-(A2.5) and (A6.1)-(A6.3). Then {Xe(.), ye(.),
U(,), W(.), je(.)} converges weakly to (X(. ), Y(. ), U(. ), W(. ), J(. )), where
W(’) (wai(’), Wd,(’), i=0, 1,2) and the limit satisfies (3.12), (3.13). Also

(6.11) V(x, J)- V(x, Jr, W),

(6.12) W(x)--> V(x).

Remarks. In [4], it was shown that certain forms of nearly optimal controls for
the limit process were also nearly optimal for the physical process under heavy traffic.
A similar situation holds here, and this partly justifies the use of the heavy traffic limit,
but we reserve the comments for a future paper on numerical methods.

Suppose that k > 0 but k2 < 0 and [k21 < kl. Then a very similar analysis can be
carried out with similar results. The costs V" (x) can be bounded from below since the
profit to be made by rerouting from P to P2 is bounded, due to the limited idle time
at P2.

7. A more general network model. The general controlled routing open network
version of Fig. 1 can be treated for any number of servers. Because of the notational
burden involved in writing all the possible "rerouting terms," we give the extension
only to the model of Fig. 2, which differs from Fig. 1 only in that feedback is allowed.
We continue to use the notation of the previous sections, except for the following
additions. Let I’ be the indicator of the event that a service completed at Pg (iS 0)
at real time n is routed to P (j i) if j 0, and leaves the network if j 0. The input
from P to P is

tie
DJ"(t)=v/- qtI, j=1,2, i=0,1,2.

m=l

DJ’(t) denotes the scaled number of outputs of P that leave the system directly. The
"fictitious" outputs from P (which are due to our convention of P "processing" even
with an empty queue) that are sent to P are

t/e
yj E d/.,UI(x, o

m--1

The overflow due to a full buffer at P is

tie tie
U"(t) E m+- E E [,.(I’ +I.,p I’,,p)+OI]I(x,,=,,).

m=l j#i m=l

External input

FIG. 2. A routing problem with feedback.
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Then, for j i, j 0,

Xi,(t)=X+ai,(t)+ai,(t)-Di,(t)-DO,(t)+DJi,(t)+ yi,(t)
(7.1)

YJi’ t) ui’ t) + JJ" t) jij’ t)

Note that it is possible for a customer to be lost during processing, e.g., if a customer
from P is sent to ,j i, when the buffer of is full. If this is not desirable, then it
can be handled in several ways. We can separate out such losses from the others and
put a high cost on them. An alternative is to block P by holding the customer until
there is room at . If an "impulsive" cost is associated with this blocking, then the
limit would be a singularly and impulsively controlled system. The model could be
altered so that "external arrivals" are not admitted to if the buffer is more than
(B-A)/ full, for some A>0. The weak convergence techniques and the general
results will be quite similar to those in this paper.

We continue to use the cost functional (2.3).
Replace (A2.3) and (A2.4) by the following"

(A2.3’) There are fij < 1 such that (fio replaces the of (A2.3))

P{I"= lall arrival and service intervals and
routings starting by time n, except for I]’} .

(A2.4’) gdi g +ogo+,gdj, j i, i, j # O.

In analogy to the definitions of the centered processes (.), (.) given in
(2.5), define (j # 0)

tie
"(t)= [I5,-fij,&/].

Define the centered reflection process

t/e

Ji’(t) X

Define iJ(t) J’r’o oa (t)). By the same method that was used to get (2.8), we can
write (7.1) in the form (i # 0, j 0, j # i)

xi,e(t) xi’e(O)+ Bi’(t)+ i’(t)+ i,(t i,(t O,(t)
(7.2) + b’,’(t)+ Yi,(t)-p,Y,(t)- ’,’(t)-ui,(t)

+[Ji’(t)-ji’(t)]+ i’(t),

where "(.) is as in (2.7).
THEOREM 18. Assume (A2.1), (A2.2), (A2.3’), (A2.4’), (A2.5). en the five sets

ofprocesses (we pair (A, A2), (D, D2), (O2, D21))
{1,,(. ), ,(. ), (o1,,(.), o,,(. )), (b,o,(.), b,=,,(. )),

(7.3)
(o,,(.), b=l,,(. )), > o}

are tight. e limits are continuous martingales. eorems and Lemmas 2-16 hold, with
the obvious changes necessitated by the additional ters in (7.3). e limit reflected
diffusion is

x’( t) xi(o) + i( t) + oi( t) io( t) 0( t) + ’( t) ,’( t)
(7.4)

+J’(t)-ui(t)+ yi(t)-j, yi(t), i#j.
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Also, for #j

Io’quad var )iJ(t)] ,ao(X(s)) ds,

where

(7.5) a(X) ga’
l_ -ff,oPj /(1 -Po) P,oPi

Proof. All the details are copies of what was done in Theorems 2-16 and Lemmas
2-16, except for the treatment of the Y’J’(-) term, and some details in Theorem 7.
Define ITi’(t)= IT"i’(’(t)). The summands in the ,.i,(. are centered about their
conditional expectations, given the "past," and hence Y’J’(. is a martingale sum. Its
variance is bounded by

#(t)/e
(7.6) eE 2 I{x"=o=O(t)

m=O

Since the summands (without the included) in .ij,,(.) are uniformly square
integrable, { yo, (.), e > 0} is tight, and all weak limits are continuous processes. Write
the scaled form of (7.2) as

(7.7) zi’e(t)Xe+i’e(t)+[/i’e-ffjiJ’e(t)]- [ri’e (t)

with the obvious definition of i’ (.). {’(.), e > 0} is tight and all weak limits are
continuous processes. Thus, by Theorem 1, { ’(.), ’(.), e > 0} is tight and all
weak limits are continuous processes. This implies that for each <,

T’e(t)/e

m=0

is bounded in probability uniformly in e, for otherwise some subsequence of ,ri,e(t)
would go to infinity with a positive probability. Hence the left side of (7.6) goes to
zero as e--> 0 for each <. Thus Y’’(. ::> zero process.

Theorem 7 also continues to hold, since in the present case we write (4.1) as

U’(n + 1)+ Y-l’(n+ 1)]-[Ul’(n)+ Y2"(n)] right side of (4.1).

The left-hand side of (4.3) now becomes

P{ sup [(B"(s) + M"(s) Y2"(s))-(B"(’)+ Ml’e(7") Y21’(r))l -> to]

data up to r}.
Since y21,e(. is nondecreasing, the expression is still -<1- ao for small enough
and we can continue the proof of Theorem 7. lq

8. Proof of Theorem 1. For notational simplicity, we prove the theorem for k 2
and then comment on the general case. The proof in the general case is the same in
all essentials. The following result is proved in [1] and [2].
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LEMMA. Let P be a degenerate Markov transition matrix whose spectral radius is
less than unity. Then there is a unique "nonanticipative" function 7(. with thefollowing
properties" (.) maps Dk[o, oo) into Dk[o, o0) and ck[o, o) into ck[o, o0), and is
continuous in the topology of uniform convergence on bounded intervals. Let (. )
Dk[o, o) and define )7(.)= (’(.), <__ k) /(( )). Define Y(t)= ( t) + (I- P’)(f( t)).
The fii (.) are nondecreasing and fii (.) can increase only when the yi (t) O. Also yi >-_ O,
for all i, t.

To prove Theorem 1, we will use the lemma in a "sequential" way. Refer to Fig.
3. We can assume without loss of generality that the diagonal entries in Q in (3.1) are
zero. There are four different reflection maps that appear in (3.1), depending on which
segment of the boundary is involved. On the boundary (d, a, b) -= segment 1, our system
(3.1) is

(8.1) x(t) z(t)+ [ 1 -q21]y(t xi(t)>O.
-qi2 1

For the system (8.1), with the constraint x(t)>=O, the lemma defines a continuous
mapping z(. )--> (y(.), u(. )), where u(. -= 0. Call this mapping F(. ). On the other
segments, the system is

(8.2) x(t)= z(t)+
0 1 0

segment 2=(a, b, c),

(8.3)

(8.4)

x(t)= z(t)-(ul(t))t)u2 segment 3 (b, c, d),

x(t)= z(t)+ y(t)- 2,t, segment 4= (c, d, a).
--q12 U

The reflection maps for (8.2) to (8.4) (with the sides extended to ) are trivial,
as we will now see, since they are each just concatenations of two one-dimensional
applications of the lemma. Let F2(. denote the map associated with (8.2) that sends
z(. into (y(.), u(. )). F(. is constructed as follows. First, we have yl(. )= u2( )= 0.

(O,B 9 ,,B 9

(o,o)
f b

FIG. 3. Boundary sections for the proof of Theorem 1.

(B
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Then y2(. is defined bythe lemma for k 1; in particular, y2(t) -min {0, inf,=<, z(s)}.
Finally, the ul(.) is defined by the reflection needed to keep xl(t) -< B1; i.e., 0 -<

B1 xl(t) or

(8.5) ul( t) -min {O’ inf (B’ z’(s) + qzy2(s))}"
Similarly, we define the analogous continuous map F3(’) and F4(’) associated with
(8.3) and (8.4), respectively. The calculation of the y(.) and u(.) always decouples
into two separate calculations, first getting y(.) and then getting u(.), even for the
general k case as seen below.

Define S [0, B] [0, B]. Let z(0) S without loss of generality. Define x(. ),
Yn ("), un ("), zn ("), 6yn ("), u(’), and ’n as follows: Zo O, Zo(" z(. ), 6Uo(. )=
6yo(.)=O, zl inf { t: z( t) : S}, u( t) y( t) O on [O, rl] and x( t) Xo( t) z( t) on
[0, rl]. In general, for n => 1, given rn, x,_(" and y(. and u(. on [0, z,], define:

(8.6)

z,(t)=z(t)+[I-Q’]y(t^ r,)-u(t^

boundary segment (1, 2, 3, or 4) on which x,_l(-,) lies,

(u,(. ), y,(. ))= vo(z,(. )),

x,,(t) z,,(t)+[I-Q’]6y,(t)-gun(t),

X(t)= x.(t) for t %+,,

r,+ inf{t: x,(t)_ S},

u(t)=u(r,)+6u,(t) for t[-,,

y(t)=y(%)+6y,(t) for t[%,r,,+l].

Note that zn(t)S until at least time -, and xn(t)S until at least time "/’n+l"

Hence (6u,(t), 6y,(t)) =0 until at least r,. Also x,(t)= z,(t), <- r,, z,+(t)= zn(t) on
[0, r,+l], xn+(t) x,(t) on [0, ’,+]. The idea in constructing x,(. is that when xn(.
exits S on a certain boundary segment, we use the reflection map (Fa, F2, F3, or F4,
as appropriate) for that segment to get x,+(.), until x,/l(’) exits S. It must exit on
a "different" segment. Fs.(" can be any map associated with the boundary segment
on which the exit point X,_l(r,) lies. Except for in the corner points, there are two
such maps associated with each point on the boundary. Which map is chosen is
immaterial. For definiteness, choose FI(’) on [e, a,f], F(.) on (f, b, g], F3(’) on
(g, c, hi and F4(’ on (h, d, e). We can verify that rn-->m and (by induction using the
lemma) that the constructed x(. ), y(. ), u(. satisfy Theorem 1. To see that the choice
of the map used at the points f, g, h, e is immaterial, let x,_l(r,)=f Then F(z,(. ))=
F2(zn(’)) until the infimum of the times that xn(. leaves S through [b, c, d, a]. An
induction argument based on this observation shows that the choices at the points
f, g, h, e, are immaterial.

Remark on the general k > 2 case. There is always a decomposition of the construc-
tion of (6y,(’), 6u,(.)) into the two sequential steps: first calculate 6y,(.) via the
lemma, for a reduced system; then calculate the 6u,( individually via an appropriate
analogue of (8.5). Just to illustrate this point, consider the case where the space is
S =[0, B], and focus on the faces of S meeting in the corner (B, B, 0, 0,..., 0). On
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these faces (excluding the edges that do not touch (B, B, 0, 0,..., 0)), (3.1) is

ul(/)0 0 --q3 qkl u2(t)
0 0 --q32 qk2

x(t)=z(t)+ y(t)- 0

o
0

where - (’ is a reduced transition matrix. Then first get (y2(.),..., yk(. )) from the
lemma, and then define (for i= 1, 2)

u’(t)=-min 0, inf B-z’(t)+ qjiyJ(t)
s =3
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A ZERO-SUM DIFFERENTIAL GAME IN A FINITE
DURATION WITH SWITCHING STRATEGIES*

JIONGMIN YONG’

Abstract. A zero-sum differential game of finite horizon with both players using switching controls is
studied. Positive switching costs are associated with each player. Under some suitable conditions, it is proved
that the Elliot-Kalton upper and lower value functions of the game are the unique viscosity solution of the
same Isaacs’ equation, which turns out to be a system of evolutionary quasi-variational inequalities with
bilateral obstacles. The existence of the Elliot-Kalton value of the game then follows. Some limiting cases
are also discussed.

Key words, differential games, switching strategies, value, Isaacs equation, quasi-variational inequality,
dynamic programming
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1. Introduction. In this paper, we consider a differential game of the following
type:

(1.1) ( t) g( t, y( t), a( t), b( t)), t[0, T],
where a(. and b(.) are piecewise constant functions of the following type:

a(.)-- E ai-lX[Oi_,oi)(’),

b(.)= E bj-lXt-j_,-)(’).
j>-I

In the game, the first player uses control a(. from some class to minimize the payoff
functional

(1.2) J(a(.),b(.))= f(,y(),a(t),b())dt+ 2 k(O,a_,a)-, l(’o,b_l,b)
i>’--I jl

and the second player uses control b(.) to maximize the payoff above. In (1.2), the
integral term represents the running cost of the game and the other two summation
terms represent the switching costs for the players I and II, respectively. Here, k(.,.,
and 1(., .,. are some given nonnegative functions. The main feature of the problem
is that at each moment of changing the values of a(.) (respectively, b(.)) from one
to another, there is a strictly positive cost associated with it. Thus, k and are called
switching cost functions. Due to the appearance of these positive switching costs, our
differential game is different from the classical one ([1], [3], [4], [10], [11], [13], [20]).
In [22], we studied a similar problem, but it was of infinite horizon and autonomous.
Thus, the Isaacs equation was stationary and the uniqueness of the viscosity solution
was relatively easy to get. In this paper, however, the problem is of finite horizon and
is nonautonomous. Thus, the Isaacs equation will be of evolutionary type. On the
other hand, we allow the maps g and f to have certain growth rates (we note here
that in [22], these maps were supposed to be bounded). We adopt some techniques
provided in [12] and modify the idea we used in [16] and [22] to get the uniqueness
of the viscosity solution of the Isaacs equation, which, in turn, gives the existence of
the value for our differential game.
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2. Preliminaries. As in [22], we let A= (1, 2,..., m}, B =(1, 2,..., n}, T>0,
and X be a finite-dimensional Euclidean space. Let g’[0, T]xXxAxB-->X,
f:[O, T]xXxAxB--->,h’X, k’[O, T]xAxA+=-[O,o), 1"[0, T]xBxB-
/ be continuous functions satisfying the following hypotheses:
(H1) There exist L > 0 and a strictly increasing continuous function to(.,. )’+x

+-->+ with to(r, O)=0, for all r->O, such that for all x, e X, [0, T],
(a,b)AxB,

(2.1) Ig(t, x, a, b)-g(t, , a, b)l -< tlx-
(2.2) Ig(t, x, a, b)l--< t(1 + Ixl),

(2.3) If( t, x, a, b) -f( t,

(2.4) If( t, 0, a, b)l--< L,

(2.5) Ih(x) h()l =< o (Ixl / I1, Ix l),

(2.6) Ih(O)l_-< L.

(H2) For all a, , ti 6 A, a ti, and 0 <_- s _-< _-< T,

(2.7) k(t, a,

(2.8) k(t, a, )> O, k(t, a, a)= O,

(2.9) k(t, a, )<-k(s, a, ).

(H3) For all b, b", / B, b/ b’, and 0 <= s -< <- T,

(2.10) 1( t, b,

(2.11) l(t, b,/) > 0, l(t, b, b)=0,

(2.12) l(t, b, b)<= l(s, b, b).

Remark 2.1. The constant L in (H1) can be replaced by some function in LI(0, T).
Also, the moduli of continuity of f and h (i.e., the functions involved in (2.3) and
(2.5)) can be different. On the other hand, we take the constant in (2.4) and (2.6) the
same as L just for the later notational simplicity. Conditions (2.9) and (2.12) are
adopted from [16]. They will play important roles in the proof of the continuity of
the lower and upper value functions of the game.

Next, for s [0, T), a A, b B, we define the following control sets:

M"’s =/a(’) ai-iXto,_,.o,)(’)’[s, T]-->alao=a, Oo=s, Oil[s, T],
il

1; Oi T, a+
il

’S={b(.)= Y bj_lX[r,_,,r,)(’)’[s T]-Blbo=b, to=S, e[s, T],

Vj=> 1; r{T, bj+, bj, if r+, < T; Y l(r, bj_,, b) < oo/.
J

For anya(.)eM ,from

il
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we know that there exists an integer K Ka(.), such that
K

a(. )= E a,-1X[o,_,.oi)(" )+ anxto,,r)(" (0n < T).
i=1

The same thing holds for any b(. )e a b’s. Hereafter, we keep in mind that Yi_->l and
j_l are just finite sums. Also, we assume that there are no switchings made at time
T for both players i and II because we understand that the game is terminated as
soon as T.

The following definition is adopted from [8] (see also [9], [22]).
DEFINITION 2.2. For given s [0, T), a A (respectively, b B), an admissible

strategy a a’s (respectively, fib,s) for player I (respectively, II) on [s, T] is a mapping
b,sao’" (_ibis b,s Sgo, (respectively, fib,s. UA "+ ), such that

b(t)=)(t) (resp. a(t)=t(t)) Vt[s,],

implies

a’[b(.)](t)=a<[(.)](t) (resp.b’s[a(.)](t)=Clb’[t(.)](t)) Vt[s,].

We denote all admissible strategies for player I (respectively, II) on [s, T] by
F[s, T] (respectively, Ab[s, T]). We take the convention that

M’’T {a}, F’[ T, r] {a},

1b’r= (b}, Ab[ T, T] (b}.

It is clear that for any b(. b.s (respectively, a(" M’) and a F"[s, T] (respec-
tively, fl Ab[s, T]), we have

ce[b(. )] so’s (resp. fl[a(. )]

On the other hand, for any (a, b) A x B, x X, s 0, T), and (a (.), b (.))
by (HI), we know that there exists a unique solution y(. of the following problem:

(2.13)
3)(t) g(t, y(t), a(t), b(t)), (s, r],

y(s)=x.

Here, y(. depends on s, x, a(. ), and b(. ). We denote ys,,,(" )----Y(" to emphasize the
dependence of y(.) on (s, x) and we always keep in mind that Ys,x(" also depends
on a(. and b(, ). Then, we consider the following payoff functional:

a,b IsTJs,,(a(.),b(.))= f(t, ys,(t),a(t),b(t))dt+h(y,(T))
(2.14)

+ _, k(Oi, ai_l, ai)-- l(’, bj_l, b).
i>--_1

Above and in the following whenever terms such as the right-hand side of (2.14) appear
together, we always understand that

a(. )= E ai-,Xto,_,,o,)(" ), ao a,
il

b(. )= E b-,Xt,_,.,(" ), bo b,
jl

i.e., {0, ai} and {r, b} are associated with a(. and b(. ), respectively. Also, by our
convention,

(2.15) Jef,bx(a( ), b( )) h(x) V(a, b, x) A x B x X.
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From the above analysis, we see that for any (s, x, a, b)
and a Fa[s, T], we can find Ys.x(’), the unique solution of (2.13) corresponding to
the control pair (a[b()] b()) Thus, the payoff abJsi(a[b(.)], b(.)) is well defined.
Then, we define

vo’b(s, X)= inf sup J;b(a[b(.)], b(.))
aFa[s,r] b(.)Y b’s

(2.16)
va.b(T,x)=h(x)"

Similarly, we define

U’b (s, x) sup inf bJg;(a(. ), [a(. )]),
fleAb[s,T] a(.)Ggg

(2.17)
U,,b(T,x)=h(x).

We call the (mxn)-matrix-valued functions V(s,x) and U(s,x) lower and upper
(Elliot-Kalton) value functions of our differential game, respectively (cf. [8], [9], [22],
[23]).

Now, let us give some basic properties of the lower and upper value functions.
LEMMA 2.3. For any a, b) A x B, s, [0, T], and x, X,

(2.18) v"’b(s, x)l, ga’b(s, x)l----< (Ixl),
(2.19)

(2.20) IV’(s,x)-Va’(,x)I, IU’(s,x)-UO’b(,x)I<-(IxI)Is-I,
where (.)" + - +, ooj (., )" + x + + with ooj being continuous and wj (r, O) O,
for all r >-_ O.

Proof For any (a(.), b(. )) sg"’ x Nb,, and x, S, if we let y(. and 33(. be
the solutions of (2.13)corresponding to (a(.), b(. ), x) and (a(.), b(. ), 9), respectively,
then, by the Gronwall inequality, we have

ly(t)l<-(Ixl/l) er, t[s, T],

ly(t)-:f(t)l<-_erlx- I, t[s, T].

Thus, we have
ab abIJg;(a(" ), b(. ))-Jg(a(. ), b(. ))[

<- If(t, y(t), a(t), b(t))-f(t,.f(t), a(t), b(t))l dt+[h(y(r))-h((T))[

<- oo(ly( t)l / l.f( t)l, ly( t) -.f( t)l) at / o(ly( r)l / l( r)l, ly( r) -.f( r)l)

_-< (1 + T)w(ecr (2 + [xl + I1), e’erIx 1).
Thus, (2.19) follows for some wj. To obtain (2.18), let us first observe the following:

I If(t, y(t), a(t), b(t)) dt + Ih(y(T))l

<= [L/o)(ly(t)l, ly(t)l)]dt/L/oo(ly(r)l, ly(T)])<-_(lxl),

for some C(. ). Then, let Co e F"[s, T] such that

xo[b(.)](t)=a Vb(.) U Nb,.
bB
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We have

va’b(s, X)<-- sup Ja;bx(a, b(’))
b(.)El b’s

<_-sup [I- l(,rj, bj_l, bj)] <=([x,).
b(.)Eb, jl

On the other hand, for any a Fa[s, T], let bo(t)=-b. Then, we have

V"’b(s, X) >-- inf J(a[bo( )], bo(’))
oeFa[s,T]

-> inf [-I-I- k(Oj, ai_l, ai)] >--(Ix[).
aFa[s,T]

Similarly, we can get the same thing for ua’b(s, X). This proves (2.18). Finally, let us
prove the Lipschitz continuity of the lower and upper value functions in the time
variable s. We still concentrate on the lower value function v<b(s, X). Let 0 -< s--< g--<_ T.
Then, for any

a,ga( ao’s, t( a
b(.), (.),

with

b(. )lte,r =/(" ),

Then, we have

a[b(’)](t)={ a’

and

Js;,(a[b(. )], b(. )) f(t, ys,x(t), a[b(. )](t), b(t)) dt

ab+J:(a[/(.)],/(.))- l(rj, bj_,,
rjg

+ [f(,y.(,[b(.](,

-f(, y,x(t), [b(. )](), b(t))] de

C(Ixl(- s +J:([&. ], &. .

a(’)lt,, a(’),
and any e [g, T], we have

[y,,,x(t)-ye,x(t)l <- [g(r, y,x(z), a(r), b(r)) dr

/ Ig(r, y,x(r), a(r), b(r))- g(r, y,x(r), (r),/(r))l dr

L(+ly.(,la,+ ly,,x(,-.(,l,.

Hence, by the Gronwall inequality, we have

lys,x(t)-y,,x(t)l<-C(l+lxl)(-s) vt[g, r],

where C is some constant. Now, for any b(. ) b,s and c Fo[g, T], we define

b(t) b(t), >- g, b(g-O) b,
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Thus,

Hence,

sup J;b(a[b(’)], b(.))-< sup
b(. fJ b’s (. )e l,J b’

j:2(,[t;(. )], &. )) + C(Ixl)(g- s).

v’(s,x) < v’(, x)+C(Ixl)(e-s).

Conversely, for any/(. )e Nb., and a e Fa[s, T], we define

b(t)={b,^ te[s,g),
b( t), [g, T],

and

[(.)](t)=a[b(.)](t), t[, T],

c[/( )](g- 0) a.

Then, we see that b(. ) b,s and c Fa[g, T]. It follows that

abJ;b(a[b(.)],b(.))>= f(t, ys.x(t),a[b(’)](t),b(t))dt+J-i;;,(a[f)(’)],f)(’))

+ [f(t, ys,x(t), t[/(" )](t),/(t))

-f(t, yg,x(t), c[/(" )](t),/(t))] dt

-> C(Ixl)( s)+J "-- :;t[&.)], &.)).
Here, we have used (H2). Then, we see that

a,bsup J;b(a[b(’)],b(’))>= sup Jg,(a[f)(.)],f)(.))-C(]x])(g-s)
b(.) fd b, g(.)b,

_>- v’(, x)- C(Ixl)(- s).

Therefore,

v’(s, x) v’(, x)- C(Ixl)(- s).

We can obtain the same thing for the upper value function ua’b(s, X). Thus, (2.20)
follows and we complete the proof. [3

3. Optimality conditions, Isaacs’ equation. In this section, we use the Bellman
dynamic programming principle to derive the Isaacs equations for the lower and upper
value functions of our game.

THEOREM 3.1. The lower value function V(.,. satisfies the following optimality
condition. For any a, b) A x B, x X, and 0 <-_ s < g <- T,

v’b(s,x) inf sup f(t,y.,.,(t), a[b(.)](t), b(t)) dt
aFa[s,T] b(.)e13 b,s

(3.1) + Y k(Oi, a,_,, ai)- E /(, bj-1, bj)
Oi<=g rjg

"[- V[b(’)](g)’b(g)( e, Y,x(g))},
where {ai, Oi} and {bj, ’} are associated with a [b(. )] and b(. ), respectively, and
a[b(. )](g)= a[b(. )](g+ 0), b(g)= b(g+O).
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The proof of this theorem is very similar to that given in [9] and [22]. For the
convenience of the readers, we give a sketch of the proof.

Sketch oftheproof Let w(s, x) be the right-hand side of (3.1). For any e > 0, there
exists an ao Fa[s, T], such that

w(s, x)+ e >- sup f(t, y,,x(t), Ceo[b(" )](t), b(t)) dt
b(.) ,’

(.) + E (, ,-, ,)- E (, -, )
+ V"t(’)()’()(g, y,x(t))}.

On the other hand, we have (y,,(), o[b(" )](), b()) e F%[b(]([, r], such that

(3.3) V%(’(’b((, y,,x())+ e > sup ,j(-l(,b(([(. )] (. )).g,Ys, (g)

b,sThus, if we define F Is, T] by the following: for any b(.)b
], [,

(3.4) [b(. )](t)=
a[b(. )],(t), (, T],

then, under this strategy, we can obtain with some calculation that

sup :[b.],b(.wx,x+.
b(.) -Hence, we see that

(3.5) v’(x,x)w(,x).
Conversely, for any e 0, we have an F[s, T], such that

(3.6) V’(s, x)+ e sup J’([b(.)], b(.)).
b(.)b,s

On the other hand, by the definition of w(s, x), there exists a bl(" b,, such that

w(s,x) N f(t,y,(t),l[b,(’)](t),b(t))dt+ 2 k(Oi, a_,,a)
0

(.7

jN

Now, for any (. ) bl()’, we define

(3.8) (t) bl(/)X[s,](t) + ()[,r](l)
and define F[b(]([, r] as follows"

(3.9 [g(. ]( [(. ](, Ceil,

Then, under this , we have

(3 10) V’[b’(’](’b’(’(, s,x()) < sup j[b(.l](l,b(([(. )], (. )).
g(.)(,

Hence, there exists a (. )e Nb(,, such that

(3 11) V’[b’(’](l’b’((, ys,x()) < J[b(’](’bl()([( )] (" ))+ e.,y,()

Thus, by defining
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we have

w(s,x)-e<--_ f(t,y,(t), al[b,(’)](t), b,(t)) dt+ E k(Oi, a,-1, a,)

-5", l(’D, b_, bj) q- Ja’[b’(’>](>’b’(
,Ys,x()

rjg

v’b(s, X) + 2e.

Let e 0, and we get the conclusion.
Next, let us define the following mappings. For any (m n) matrix-valued function

W(.,. w’b(’, )) defined on 0, T] x X,

M<b[ W](s, x) min
a

M,b[ W](s, x) max ( W’(s, x) l(b, ).
b

These two mappings are called obstacle operators. From Theorem 3.1 above, we can
obtain the following theorem.

THEOREM 3.2. e lower value function V(. satisfies the following"
(i) For any (a, b,s,x)ABx[O, T]xX,

(3.12) M.b[V](s,x) v’b(s,x)M’b[V](s,x).
(ii) Suppose at a, b, s, x) A B [0, T] X,

(3.13) V’b(S, X) M’b[ V](s, x).

en, there exists an So s, such that for all [s, so],

(3.14) v’b(s, x) e f(s, Ys.x(S), a, b) ds + v’b(, y.()).

(iii) Suppose at a, b, s, x) A x B x [0, T] x X,

(3.5) v",(s, x) > ,[ V](s, x).

en, there exists an So > s, such that for all s, So],

(3.16) v’b(s,x) N f(s,y.(s),a,b)ds+V’b(g,y.()).

Proof As in [22] (see also [5]), we can obtain (i).
Now, let us prove (ii). By Theorem 3.1, we see that for any > s, e >0, and

b(. ) b B, there exists an a e F[s, T], such that

V’b(s,x)+e f(t, ys,(t),{[b](t),b)dt
(3.17)

+ 2 (0, a_, a)+ vX(,(g ys,()),

where 2[b](’)=2 ai-l[O,_l,Oi)(" )e a,s. Then, we are ready to show that for all
small e > 0 and > s with -s sufficiently small,

(3.18) 0
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Then, (3.17) becomes

(3.19) v’b(s,x)+e > f(t,y.x(t),a,b)ds+ v’b(,ys.()).

Thus, fix an $> s with -s small and let e-->0, and we obtain (ii).
To prove (iii), we let

ao[b(’)](t)=-a Vb(.)e U :b.,, te[s, r].
bB

Then we know that for any e > 0 and Is, T], there exists a b(. b. such that

v’b(s, X) e <= f(t, y,,(t), a, b(t)) dt

(3.20)
Y l(r, b-l, b)+ v"’b: *) g, y,x(g));
rj

here, b(. )= Y.__>, b-,X_,.(" ). Then, as above, we are able to prove

for all e > 0 and > s with - s small enough. Then, our conclusion (iii) follows.
Now, we can derive the Isaacs’ equation for the lower value function V(.,. ). Let

(3.21) H’b(s, x, p)=(p, g(s, x, a, b))+f(s, x, a, b).

THEOREM 3.3. Suppose V(., is a C (m x n)-matrix-valued function. Then, for
any (a, b)eAxB,

(3.22) M,b[ V]( s, x) <= V"’b S, X) <= M"’b[ V]( s, x) V(S,X) e[O, T]xX;

on the set { (s, x) [0, T] x X Mo,b V] (s, x) < V’b (s, x) },

(3.23) v’b(s,x)+ H’b(s, x, V’(s,x))>-O;

and on the set {(s, x)e [0, T]xXIM’[V](s,x)> V’b(S,X)},

(3.24) v’b(s, x)+ Ho’b(s, X, V,’(s, x)) <=O.

The terminal condition is given by

(3.25) v’b(T,x)=h(x).

Proof We can apply Theorem 3.2 directly.
We see that (3.22)-(3.25) is a system of evolutionary quasi-variational inequalities

([2]) with bilateral obstacles. This is the corresponding Isaacs equation that the lower
value function V(.,.) should satisfy (in some sense).

THEOREM 3.4. Suppose V(.,.) is a C (m x n)-matrix-valued function. Then, it
solves (3.22)-(3.25) if and only if it satisfies the following two systems:

max {min {V’’b(X)+ H’b(s, X, v’b(s, X)), Mo’b[V](s, x)- vo’b(s, X)},

Ma,b[V](s,x)- va’b(s,x)}--O,
(3.26)

(a,b,s,x)AB[O, T)X,

va’b(T,x)=h(x) l(a,b,x)ABX
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and

(3.27)

min {max {v’b(s,x)+ Ha’b(s, X, v’b(s,x)), Ma,b[V](x va’b(s, X)},

Ma’b[ V](x) va’b(s, X)} O,

(a,b,s,x)AxBx[O, T]xX,

va’b(T,x)=h(x) V(a,b,x)6axBX.

The prooffollows from some straightforward computations involving min and max.
Remark 3.5. In [22] such a simple equivalence was not pointed out. We will return

to this point in Remark 4.5.
Symmetrically, for the upper value function U(., .), we have the following

dynamic programming principle.
THEOREM 3.6. The function U(.,. satisfies the following optimality principle. For

all (a, b,s,x)AxBx[O, T]xX, g> s,

ua’b(s, X)= f(t, Ys,x(t), a(t), ilia(. )](t)) atsup inf
[EAb[s,T] a(.)EM

(3.28) + E k(O,, a,-1, ai)- E l(, bj_l, bj)
Oig

+ U"(’"(((, y,x())},
where {a,, Oi} and {b, "0} are associaced with a (.) and a(.) ], respecively.

It is important to know that from the theorem above, we can obtain exactly the
same result as in Theorem 3.2 (therefore exactly the same results as in Theorems 3.3
and 3.4) for the upper value function U(., ). Hence, we have the following proposition.

PROPOSITION 3.7. If (3.22)-(3.25) admit at most one C solution and U(., and
V(.,.) are C 1, then,

(3.29) U(.,.)= V(.,.).

That is, the game has a Elliot-Kalton) value.
Unfortunately, it is well known that the upper and the lower value functions are

not necessarily C and, in a similar manner to a usual first-order Hamilton-Jacobi-
Bellman equation, the problem (3.22)-(3.25) may have no C solutions. Thus, Proposi-
tion 3.7 actually does not tell us much. We need additional investigations.

4. Uniqueness of viscosity solutions, existence of the value. In this section, we
introduce some generalized notion of solutions to the Isaacs equations (3.22)-(3.25).
This notion was introduced by Crandall and Lions [7] (see also [6], [9], [15]-[17],
[19], [21]-[23]). Let us start with (3.26) and (3.27).

DEFINITION 4.1. Function W(., .) C([0, T]xX;m") is called a viscosity
supersolution (subsolution) of problem (3.26) if wa’b(T, x)--h(x) for all (a, b,x)
A B X and if C with W’b attains a local maximum (minimum) at (to, Xo)
[0, T) x X, then

max {min {s(x)/H’b(s,x, x(S, x)), M’b[W](s,x) w’b(s,x)},
(4.1)

Ma,b[W](s,x)- w’b(s,x)}>--O(<--O).
Here, if to 0, then, s(0, Xo) is understood as the right derivative. If W(. is both a
viscosity sub- and supersolution of (3.26), then it is called a viscosity solution of (3.26).

In the same manner, we can define the viscosity subsolutions, supersolutions, and
solutions for (3.27). It is not hard to see that [5] in the above definition, we can replace
the local maximum (respectively, minimum) by a strict local maximum (respectively,
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minimum). Also, we note that the map Ha’b(s, X, p) does not have to be of the form
(3.21). Actually, in this section, we make the following assumption concerning this
map (we call this assumption (HI’) because it is a replacement for (H1))"
(HI’) There exist a constant L> 0 and a nondecreasing function Wr(’)’[0,

[0, 00) with for(0) 0 for all r ->_ 0, such that, for all (a, b, s) A B [0, T],

(4.2) ]H’b(s,x,p)-n’b(s,x,q)l<=L(l+lx])]p-q] Vx, p,qX,

(4.3) ]H’b(S,X,p)--H’b(s,y,q)]<--w(]x--yl(l/]p])) Vx, y, peX, Ixl, lyl<-r.

It is easy to see that (H1) implies (HI’).
Next, from Theorem 3.3, it is reasonable to give the following definition.
DFIY:rxoN 4.2. A continuous function W(.,.)’[0, T]x X-N"" is called a

viscosity solution of problem (3.22)-(3.25), if it is a viscosity solution of both (3.26)
and (3.27).

THZORZM 4.3. The lower value function V(. and the upper value function U(.
are viscosity solutions of (3.22)-(3.25).

The proof immediately follows Theorem 3.2 and Definitions 4.1 and 4.2. The rest
of this section is devoted to showing the existence of the value for our differential
game. To this end, we first give the following lemma.

LMMA 4.4. Let W(.,. and W(-,. be viscosity subsolution and supersolution of
(3.26) and (3.27), respectively. Then, for all (a, b, s, x) e A x B x [0, T] x X,

(4.4) W’b(S, X) >-- M,.b[ W](s, x),

(4.5) /ra’b(s, x) <-- M’b[ V’](S, X).

The proof is almost clear by applying the argument given in [5].
Remark 4.5. We should note that if W(.,. is only a viscosity solution of (3.26)

(or (3.27)), then it is not clear whether it satisfies

(4.6) Ma,b[ W](s, x) <= wa’b(s, X) Ma’b[ W](s, x) V(a, b, s, x) a x B x [0, T] x X.

There was a careless mistake concerning this matter in [22]. Fortunately, by applying
a similar argument used in this paper, the final result of [22], i.e., the existence of the
value for the differential game, remains true.

Now, let us make a further assumption that will play a very important role in
proving the next theorem.
(H4) For any loop {(a, b)}Jj= A x B, with the properties that

(4.7) J <- ran, a+l a, b+ b;
either ai+ ai, or b+ bi V1 =< _-<j,

it holds that

(4.8) E k(s, a,, ai+)- Z l(s, b,, b,+,) 0 Vs [0, T].
i=1 i=1

Now, we can state and prove the following important result.
THZORZM 4.6. Suppose (HI’) and (H2)-(H4) hold. Let W(.,.) and I(., .) be

two viscosity solutions of (3.22)-(3.25). Then,

(4.9) W"b(s,x) I?V"’b(s,x) V(a, b,s,x)AxBx[O, T]xX.

Proof We prove the theorem by contradiction. Thus, we may assume that

(4.10) max sup [W’b(t,x) (w’b(t,x)]>--6">O,
(a,b)AB (t,x)(7
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where

:{(t,x)(T- To, T)XIIxl<Lo(t- T+ ro)},

with

1
0NTo<T, To<,

Then, by (4.2), for all (t, x) ff and p, q X,

1- LTo

(4.11) ]Ha’b(t,x,p)--Ha’b(t,X, q)l<-Lolp-q].

Let e, 6 > 0, with e + 6 < Lo To and let K > 0, ff C(R), with the properties that

(4.12) K>sup{lWa’b(t,x)-l?v’b(s,y)ll(t,x,s,y) Cff2,(a,b)eAxB},

(4.13) ’(r) { 0, r<---6’
-K, r => 0,

VrN.(4.14) sr’(r) <-_ 0

Then, for a,/3 > 0 and o--> 0, we define

(4.15) g’b(t,x)= w’b(t,x) I/’b(t,x)+2((x}-Lo(t- T+ To))+2cr(t- T)

where (x} (]x] 2 + e2) /2. As the first step of the proof, we have the following lemma.
LEMMA 4.7. There exist Co, 6o, ro, 3’o > 0, such that for any 0 < e _-< Co, 0 <

0 < o" _-< o’o, there exist (ao, bo) A x B and (to, xo) e (7, such that

(4.16) go,bo(to, xo)= max max ’b(t,x),
(a,b)eAxB (t,x) ’

(4.17) (Xo) < Lo(to- T + To),

(4.18) to -< T- To,

W’b( to, Xo) > Mao,o[ W](to, Xo),
(4.19) ]/%’b( to, X0) < M’b[ I](to,Xo).

The proof follows from the ideas of [18] (see also [14], [22], [23]) and (H4).
Next, for any a,/3 > 0, we define

(t, x, s, y)- W"’(t, x)- l’o’bo(s, y)- 1
ix_yl2

1
12---fi[t--S

(4.20) + ((x}-Lo(t- T+ To))+ ((y}-Lo(s- T+ To))+r(t+ s)-2crT

V(t, x, s, y) 2.

Here, (ao, bo) is obtained from Lemma 4.7. Thus, it depends on e, 6, cr in general. For
this function, we have the following Lemma.

LEMMA 4.8. For any g> 0, there exist c,/ > 0, such that for all 0< a <-_ and
0<-<_fi,

a,b(4.21) max(t,x,s,y)=maxo (t,x)+.

The proof is straightforward by using the ideas of [7] and [12].
Now, we are able to complete the proof of Theorem 4.6 by combining Lemmas

4.4, 4.7, and 4.8. In fact, by Lemma 4.4, we know that there exists a 6 > 0, such that

(4.22) = {(t, x) 6 (T- To, T) x Xllt- tol2+lX-Xo[2 ( g2}
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and for all (t, x) ,
Wa’b( t, X) > Mao,6o[ W]( t, x),

(4.23)
a’b( t, X) < M"’[ I](t, x).

We note that only depends on e, 6, and Yo. Then, an argument similar to that given
in [7] and [12] will give

or<_-0,

which is a contradiction because we have assumed that r > 0. This completes the proof
of the theorem. [3

Remark 4.9. In the proof of the theorem above, it is not hard to find that the
technique we used in 16] does not apply here due to the nature of the game. However,
the method we used here is applicable to the problem studied in 16]. Actually, by the
argument used here, we can simplify the proof of the relevant result in 16]. Also, the
proof will be much easier if the switching cost functions k and are independent of
the time variable t.

Now, by Theorems 4.3 and 4.6, we can obtain the following theorem.
THEOREM 4.10. Let (H1)-(H4) hold. then the Elliot-Kalton value ofour differential

game 1.1 )-( 1.2) exists.

5. A limiting case. It is interesting to investigate what happens if the switching
costs k(.,) and l(., .,. approach zero. Let us study such a situation in this section.
We let k l be two sequences of switching costs for players I and II, respectively,
with the properties that

(5.1) limk(t,a,)=0 Vt[0, T], a,A,
e--0

(5.2) lim l (t, b,/) 0 [0, T], b,/ 6 B.
0

We let (H1)-(H3) hold. From Lemma 2.3, we see that the family of the lower value
functions (denoted by) V(.,.) corresponding to switching costs (k,l)(e>O) is
uniformly bounded and equicontinuous in bounded sets. Thus, by the Arzela-Ascoli
theorem, we can find a subsequence (still denoted by) V(., .), such that

(5.3) lim va’b t, X W’b t, x ),
e--0

uniformly for e [0, T] and x in bounded sets. It is clear that w"’b(’, ") also satisfies
(2.18)-(2.20).

Next, we will discuss further properties of wa’b(’,’). To this end, let us first
define the following maps"

(5.4) H+(t,x,p)=minmax{(p,g(t,x,a,b))+f(t,x,a,b)} V(t,x,p)[O, T]XX,
aA bB

(5.5) H-(t,x,p)=maxmin{(p,g(t,x,a,b))+f(t,x,a,b)} V(t,x,p)[O, T]xXxX.
bB aA

Then, our main result of this section can be stated as follows.
THEOREM 5.1. Let (H1)-(H3) hold. Let { wa’b( (a, b) A x B} be anyfunctions

obtained through (5.3). Then, we have the following conclusions"
(i) There exists a function w(. satisfying (2.18)-(2.20), such that

(5.6) w’b(t,X)=W(t,X) V(a,b,t,x)AxBx[O, T]xX.
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(ii) Function w(.,. is a viscosity subsolution of the upper Isaacs equation

w,(t, x) + n+(t, x, wx(t, x)) 0, t, x) e [0, T) x X,
(5.7)

w(T,x)=h(x), xeX.

(iii) Function w(.," is a viscosity supersolution of the lower Isaacs equation

wt(t,x)+H-(t,x, wx(t,x))=O, (t, x)e [0, T)X,
(5.8)

w(T,x)=h(x), xX.

Proof. (i) From

Ma.b[ V]( t, x) <- v’b( t, x) <--__ Ma’b[ v]( t, x),

by letting e-->0 along the subsequence in (5.3), we obtain (5.6).
(ii) Let q e C1([0, T)x X) with w-q attain a strict local maximum at (to, Xo)e

[0, T)x X. Since the convergence in (5.3) is uniformly in e [0, t] and x in bounded
sets, we see that for any a e A, there exist t --> to and x --> Xo, such that

(5.9) max V’b t, x q t, x > max V’b t, x) q9 t, x) for t, x) near t, x ).
bB bB

We let b e B, such that

(5.10) v:’b(t, X) max v’b(t, x).
bB

Then, noting for any b B\{b:}, l(b, b) > 0, we must have

(5.11) v’b(t,x)> M.b:[V](t,x).
Thus, by the definition of viscosity solutions and (5.11), we obtain

(5.12) tpt(te, X)+Ha’b:(t,x, qgx(t,xe))>=O.

Then, by choosing a subsequence if necessary, and taking the limits, we obtain

5.13 qt to, Xo) + H"’ to, Xo, x to, Xo) ->- 0,
for some b B (depending on a, in general). Thus,

(5.14) min max {t(to, Xo)+ H’b(to, Xo, qx(to, Xo))}----> 0,
aA bB

i.e.,

(5.15) q,(to, Xo)+H+(to, Xo, qx(to, Xo)) _>- 0.

Finally, from (5.3), (2.14), and Lemma 2.3, we see that

w( T, x) h(x) Vx e X.

This proves (ii). The proof of (iii) is similar. [q

From the above theorem we can obtain the following interesting result.
COROLLARY 5.2. Let (HI) hold. Let the Isaacs condition hold"

(5.16) n+(t,x,p)=n-(t,x,p)=n(t,x,p) l(t,x,p)[O, T]xXxX.

Then, there exists a function w(., .) satisfying (2.18)-(2.20), such that for any (a, b) e
AxB,

(5.17) lim v:’b(t, x) w(t, x),
0
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uniformly for [0, T] and x in any bounded sets. Moreover, the function w(., is the
unique viscosity solution of the following Isaacs equation:

wt(t,x)+H(t,x, Wx(t,x))=O, (t, x) [0, T) xX,
(5.18)

w(T,x)=h(x), x6X.

Proof We need only note that the uniqueness of the viscosity solutions of (5.18)
[6], [7], [9] implies the whole sequence V’b converges.

It is not hard to see that w(.,.) obtained in (5.17) is exactly the Elliot-Kalton
value function of the classical two-player zero-sum differential game of fixed duration
with control sets A and B. We also see that we have the same result as Corollary 5.2
for the upper value functions u’b(’). Finally, we see that as far as the above
convergence is concerned, condition (H4) is irrelevant.

6. Approximation of classical differential games. In this section, we consider the
classical differential game

(6.1)
(t) g(t, y(t), a(t), b(t)),

y(0) x,

with the payoff functional

(6.2)

Here

and

re(0,

J(a(.), b(.)) f(t,y(t), a(t), b(t)) dt+h(y(T)).

a(.) {a(.): [0, T] A[a(.) measurable},

b(.) N {b(.):[0, T]- Bib(.) measurable}.

The sets A and B are closed subsets of some separable matric spaces (and thus they
are not necessarily finite sets). We choose two sequences of sets {An} and {Bn}, such
that each of An and Bn contains exactly n points and the following hold:

and

A A, B B Vn >= 1,

A1c A2c A3c. B1 B2c B3.

U An=A, U Bn=B.
n=l n=l

Also, we choose positive real numbers kn and ln, such that

kn, lnoO as noo

and for any n, kn/ln is an irrational number. Then, we consider the following
approximating problem. We take (6.1) as the state equation and use An, Bn as control
domains. The functional of the approximating game is taken to be

(6.3) J(a(.),b(.))= f(t,y(t),a(t),b(t))dt+h(y(T))+Na(.kn-Nb(.ln,
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where Na(.) is the total number of switchings made by a(. on [0, T], i.e.,

a(.)= a-Xro_,,o)(’),
i=1

and Nb(.) is the total number of switchings made by b(. ). Then, by the results of 4,
the value of this approximating differential game exists. We let V’b(., be the value
function corresponding to this game. It is clear that { V:’(., (a, b) e A, x B,, n -> 1}
is bounded and equicontinuous in bounded sets. Thus, for any fixed (a, b)
by choosing the appropriate subsequence (still denoted by) V:’(., ), we have

(6.4) lim V’b(t,X) v"’b(t,x),

uniformly in e [0, T] and x in any compact sets ofX for some function va’b ",. ). Since

V’b t, X) <= min (Va,’b(t, x) + k, ),
fi A, fi

it follows that for any given Am\{a}, we have

va’b(t,x)<--_va’b(t,x) V(t,x) 6[0, T]X.

Hence,

va’b(t,x)=l)a’b(t,X) V(t,x) 6[O,T]xX, gt, a6Am.

Similarly, we have

19a’b(t,x)=t)a’6(t,x) V(t,x)[O,T]xX, b-,bBm.

Thus, we may let

(6.5) v( t, X) V a’b t, X) V(t,x)6[0, T]xX, (a,b)6AmBm, m>=l.

Next, almost exactly the same as in 5, we can prove that v(.,.) is a viscosity
subsolution of the upper Isaacs equation

(6.6)
w,(t,x)+H+(t,x, Wx(t,x))=O,

w(T,x)=h(x), xX,

(t, x) [0, T) xX,

and a viscosity supersolution of the lower Isaacs equation

w,(t,x)+H-(t,x, wx(t,x))=O, (t, x)6 [0, T) xX,
(6.7)

w(T,x)=h(x), xX,

where

(6.8) H+(t,x,p)=infsup{(p,g(t,x,a,b))+f(t,x,a,b)} V(t,x,p)[O,T]xXxX,
aA bB

(6.9) H-(t,x,p)=sup inf {(p,g(t,x,a,b))+f(t,x,a,b)} V(t,x,p)[O, T]xXX.
bB aA

Hence, we finally obtain the following theorem.
THEOREM 6.1. Let (H1) and the Isaacs condition hold"

(6.10) H+(t,x,p)=H-(t,x,p) V(t,x,p)[O, T]xXxX.
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Then, the value function v(.,. exists and can be approximated by the value functions
V’’b(’, of the approximating games in the following sense"

(6.11) lim v’b(t,x) v(t,x),

uniformly in [0, T] and x in any compact sets ofX and any (a, b) A, x B, (rn >-_ 1).
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FINITE-DIMENSIONAL COMPENSATORS FOR INFINITE-DIMENSIONAL
SYSTEMS VIA GALERKIN-TYPE APPROXIMATION*

KAZUFUMI ITOf

Abstract. In this paper existence and construction of stabilizing compensators for linear time-invariant
systems defined on Hilbert spaces are discussed. An existence result is established using Galerkin-type
approximations in which independent basis elements are used instead of the complete set of eigenvectors.
A design procedure based on approximate solutions of the optimal regulator and optimal observer via
Galerkin-type approximation is given and the Schumacher approach is used to reduce the dimension of
compensators. A detailed discussion for parabolic and hereditary differential systems is included.

Key words, finite-dimensional compensators, infinite-dimensional systems, Riccati equations
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1. Introduction. Consider the evolution equation on the Hilbert space Z
d

(1.1) a-- z(t) Az(t) + Bu(t), z(0) Zo Z,

where u(t) is a m-valued control function, A is the infinitesimal generator of a strongly
continuous semigroup S(t) on Z, and B L(Em, Z). The [e-valued observation function
y is given by

(1.2) y(t)=Cz(t), t>=O.

We assume that C L(Z, RP). We interpret (1.1) in the mild sense: the solution of
(1.1) is given by

(1.3) z(t)=S(t)Zo+ S(t-s)Bu(s) ds.

In this paper, we are concerned with a finite-dimensional compensator design for
the system (1.1) and (1.2); i.e., we consider a finite-dimensional compensator ofthe form

d

(1.4) d--t w(t)=(A-BcK)w(t)+G(y-Cw),

u(t) -Kew(t),
where w(t) W =R-c and Ac, Be, Ce, Ke, Gc are the appropriate matrices. Hence, we
obtain the closed-loop system on Z x W

(1.5) d--t w(t) =He w(t)j’
where

A -BKe]HC=GcC FcJ
with G Ac-BcKc-GcCc and dom (He)=dom (A)x W. This operator generates a
strongly continuous semigroup on Z x W since it is a bounded perturbation of Ho
Eo o],

Received by the editors November 11, 1987; accepted for publication (in revised form) January 8, 1990.
t Center for Control Sciences, Division of Applied Mathematics, Brown University, Providence, Rhode

Island 02912. This research was supported in part by Air Force Office of Scientific Research grants
AFOSR-84-0398 and AFOSR-85-0303, and National Aeronautics and Space Administration grant NAG-l-
517.

1251



1252 KAZUFUM! ITO

An aim of this paper is to establish the existence result of finite-dimensional
compensators (1.4) for (1.1) and (1.2) (in 2) such that the closed-loop operator Hc
generates a uniformly exponentially stable semigroup on Z x W. The semigroup S(t)
is said to be uniformly exponentially stable if the growth constant tOo:

tOo lim
1
log IIS(t)ll as oe,

is negative. A semigroup will simply be called stable if it is uniformly exponentially
stable. Existence results have been established in [4], [16], and [19] provided that A
has a complete set of generalized eigenvectors, and their construction procedure is
based on the eigenvectors of either A [4], [16] or the closed-loop operator A-BK
19]. In this paper, we will take a different approach which uses the finite-dimensional
approximations of the system (1.1) and (1.2) via Galerkin-type approximation 1 ], [7].
The completeness assumption of eigenvectors of A can then be removed and will be
replaced by the conditions on approximations. For example, we are able to prove the
existence of a finite-dimensional compensator without the completeness assumption
of eigenvectors for the system described by hereditary differential equations. Also, we
will discuss the construction procedure that uses the approximating solutions of linear
quadratic regulator and optimal observer, and a reduction of dimension nc in (1.4) of
compensators via the Schumacher approach [19] in 3. In 4, the general result is
then applied to parabolic systems and hereditary differential systems. In [25], Bernstein
and Hyland derived the optimal projection equation for finite-dimensional, fixed-order
dynamic compensations for the system (1.1) and (1.2). The reduction procedure
described in Theorem 3.5 is similar to the optimal projection schemes in [25]. Our
procedure is not optimal in the sense of [25]. However, Theorem 3.5 provides a sufficient
condition for the existence of an optimal fixed-order compensator and our approxima-
tion framework can be used to analyze convergence of fixed-order optimal compensator
designs for approximate finite-dimensional systems to one for the original system (1.1)
and (1.2). The approach used in this paper can be extended to a class of problems in
which the input and output operators are unbounded employing the ideas in [5] and
[15]. These regards as well as numerical examples will be reported elsewhere.

The approach we will take is based on the following facts. The pair (A, B) is said
to be stabilizable if there exists an operator K L(Z, Rm) such that A- BK generates
a stable semigroup, and the pair (A, C) is detectable if there exists an operator
GL([P,Z) such that A-GC generates a stable semigroup on Z. If (A, B) is
stabilizable and (A, C) is detectable, then there exists an infinite-dimensional com-
pensator for (1.1) and (1.2); i.e., w e Z satisfies

(1.6)
d
d-" w( t) (A BK)w( t) + G(y Cw( t)),

u(t) -Kw(t),

which leads to a stable closed-loop system H. In fact, if we define the function e z- w,
then (1.1), (1.2), and (1.6) can be written as

(1.7)

d
--e=(A-GC)e,
dt

d
wz=(A-BK)z+BKe.
dt
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Thus, the stabilizability of (A, B) and the detectability of (A, C) imply the existence of
infinite-dimensional compensators and, moreover, tr(H) tr(A- BK) L3 tr(A- GC).
Next, we can construct a stabilizing feedback gain operator K by the solution of the
linear quadratic regulator problem; consider the problem of minimizing the cost
functional

(1.8) J(u) ((Qz(t), z(t))+lu(t)l2) dt

subject to (1.3) where Q is a nonnegative (definite), bounded, self-adjoint operator
on Z. Suppose (A, B) is stabilizable and (A, Q) is detectable, then the optimal solution
of (1.8) is given by the feedback form u( t) -Iz( t) where / B*H and rI is the
unique, nonnegative, self-adjoint solution of the algebraic Riccati equation

(1.9) (A*H +HA HBB*H+ Q)z 0 for all z dom (A),

and A-B/ generates a stable semigroup on Z (e.g., see [24]).
The approximation of the solution H to the Riccati equation (1.9) has been studied

(e.g., see [3], [6], 10]), whichleads to a sequence/ N of finite-dimensional operators
such that /N converges to K in norm. Let ZN be a sequence of finite-dimensional
subspaces of Z, and let pN denote the orthogonal projection of Z onto ZN. Consider
the approximating system (AN, BN, QN) where AN’zN-- ZN is continuous, BN=
pNB and QN= pNQpS. Under appropriate conditions on the triple (A, BN, QN),
which will.be stated in 3, it is shown in [10] that the unique nonnegative solution
1-IN of the approximating Riccati equation in ZN

(1.10) AN*IIN +nA-rI’BB*n’ +Q 0,

converges strongly to H, and for some constants M->_ 1 and w > 0

e(A-Zs’*mtP II--<-- M e => O.

Since B is of finite rank, /N_._ BN*I-[N converges to / in norm. Similarly, we can
apply the same procedure as above to the dual problem in order to obtain a convergent
sequence s to where the so-called Kalman filter gain is given by EC* and
the self-adjoint operator E on Z satisfies

(1.11) (AE + EA* EC*CE+ V)x 0 for all x 6 dom (A*).

If (A, C) is detectable, V is a bounded, nonnegative, self-adjoint operator on Z, and
(A, V) is stabilizable, (1.11) admits a unique nonnegative solution and A-C gener-
ates a stable semigroup on Z. Let CN= CP and VN= pNvpN. Then, S is given
by (N ENcN* where EN satisfies

(1.12) ANEN +,NAN*--ENcN*cNEN -[- VN --0.

Let us denote by A, BN NC KN, GN, the matrix representation of AN, BN,
C N, K N, GN, respectively. We obtain a design of compensator (1.4) where W=k
with kN dim (zN). Here, we may argue that for N sufficiently large, the closed-loop
operator

(1.13) HN [ A -BKN]GNC FN with FN AN BNKN GNcN

generates a stable semigroup on Z x ZN. We will give a sufficient condition for this
claim in 2 and 3.
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2. Existence result. Consider the following hypotheses:

(H1) For every z Z, eANtpNz converges strongly to S(t)z where the convergence
is uniform on bounded t-intervals.

(H2) There exists a sequence KN L(ZN,m) and K 6 L(Z,") such that IlKN-
gll-0 as N--> ,

e(AN--BNKN)tpN <= M1 e -a’lt, >-- 0

for M1-> 1 and to1 > 0, independent of N, and A-BK generates a stable
semigroup on Z with the growth constant -w3.

(H3) There exists a sequence GN L(RP, zN) such that sup IIGll< and for
m2 > 1 and to2 > 0,

e(ArV-GrVCN)tpN < M2 e-w2t, >-- O.

(H4) For any choice of the matrices Ac, Be, C, K, and G in (1.4), H satisfies
the spectrum-determined growth assumption [23]; the growth constant of the
semigroup generated by Hc equals sup{Re A: A tr(Hc)}.

Since ZN c Z, PNb b for all b Z Thus, KN can be extended to all elements
& in Z by KNb KNpNb. Throughout the paper KN will denote such an extension
(i.e., KN KNpN).

Note that (HI) implies that pN converges strongly to /, so that IIB’-BI[ and
c- c[I converge to zero as N--> . The following is the main result of the paper.

THZORZM 2.1. Assume a family (Z, AN, BN, CN) satisfies (H1)-(H3) with some
M1, M2 >= 1 and to, to, 09 > O. Then for any t > 0 there exists an integer Na such that
for N>= Na, if Re A ->_-min (wl, to:, to3)+ 8, then A p(HN). Moreover, if (H4) is

satisfied, then for N sufficiently large HN generates a stable semigroup.
Proof. First, we will show that for every z Z

e(A-BKN)tpNz "-’> T(t)z,

uniformly on bounded t-intervals, where T(t) is the semigroup generated by A-BK.
By Theorem 4.4 [14, Chap. 3] it suffices to show that for some A > 0

(2.1) (AI-(AN-EN))-IPN -->(AI-(A-E))- (strongly),

where E BK and E N BNK N. Note that

(AI -(aN E N))-,pN (AI AN)-IPN -(AI -(aN E N))-’E N (AI AN)-’PN
and similarly

(AI (a- E))- (AI- A)-a= -(AI (a- E))-IE(AI A)-.
Thus,

(2.2)

(aI- (AN EN))-IPN (aI-- (A- E))-1

-(aI (AN E N))-IE N[(AI AN)-IPN (aI A)-1]

+ (aI -(AN E N))-I(pNE E N)(AI

-[(AI-(AN EN))-IPN-(AI-(A-E))-I]E(AI-A)-
+ (AI- AN)-’PN -(aI- A)-1,
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or

[(AI-(AN EN))-IPN (AI- (A- E))-I](I + E(AI-A)-)

[I-(AI-(AN-EN))-EN]((AI-AN)-IPN_(AI_A)-1)

+ (AI(AN E N))-I(pNE E N)(AI A) -1.

Note that I+E (AI-A)-1 is continuously inveible; i.e., (I+E(AI-A)-I)-=
(AI-A)(AI-(A-E))-1 where the right-hand side is continuous by the closed graph
theorem. Hence (2.1) follows from the fact that E s E, strongly and (H1), which is
equivalent to (AI-AN)-IP (AI-A)-1 by Theorem 4.4 of [14, Chap. 3].
Next we will show that for any > 0, there exists an integer N such that if N N,

then

(2.3) Re (HN) < -min (, , 3) + &

For given ( g) Z x Zs, consider the equation

for (, ) e Z x Z that is,

(.4 -[(- +( )] =X
(2.5) I -[(A BK)+ G(C C)] g,

where we used K KP
First note that since IlK-K 0 as N , there exists an integer N such that

if NN and ReI-3+/2, then (II-(A-BK))-IL(Z). In fact, by the
variation of constants formula

TN (t) T(t) + T(t s)B(K K N) TN (s) as,

where TN(t) is the semigroup generated by A-BK, and hence for M3 1 and e > 0

It then follows from Gronwall’s lemma that

IIT(t)IIM3 e(-3++M311 IIIIK-KII)t, t>O.=

Now, for NN and Re A -3+ /2, from (2.4)

(2.6) &=(AI-(A-BKN))-’[BKN(&-)+f].

From (2.5), if Re A >-Ol

(AI-(AN BNKN))-[GNC(& )+ g].

Thus, if Re A -rain (1, 3)+ /2 := - and N N1

(& 0) (AI- (A- BKN))-I[BKN( O)+f]

-(AI-(AN BNKN))-I[GNC( 0)+ g],
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or

(AI-(AN- GNcN))(& )

(AI-(AN BNKN))[(AI-(A BKN))-IBK N

-(AI-(AN BNKN))-IBNKN]( O)

+ (AI -(AN BNK N))[(AI -(A BK

(AI (AN BNK N))-lpN.f]
+ pNf_g+ GN(CN -C)(-O).

Hence, we have for Re A >-w and N

b O) NBKN( O) -- (AI (AN GNcN))-I GN C CN)(
(2.7)

(AI -(AN GNCN))-I(pNu g) + NU
where

(2.8)
6 N [I + (AI- (AN GNcN))-I(BNK N GNcN)]

X ((AI (A- BKN))-1 (AI- (AN BNKN))-IPN).
Note that for Re A >--0)2

Thus,

II()tI- (A --oNcN))-’PI] M2
Re A + 0)2

I[I+(AI--(AN--GNcN))-I(GNCN +BNKN)II,
for some constant c independent of N and Re A->-02+ 8. Now we will show that
there exists an integer N2(->N1) such that if N-> N2, then ]],BK NII g.

For Re A -w

(a (a g))- e-"’r(t), and

(II_(A_BK))-pB= e- e(-,PBdt.

Hence, for any r > 0

I1(

e-"’e(-PB- T(t)B dt
(2.9)

+M+ M3 ReA+o ReA+wl/

Let us choose > 0 such that for Re A > -w + 6/2

( e-(ReA+o’)" e-(:= 1a M Re A + O Re A + w ] 6

where =max IIKlJ. This is possible since Re A + and Re A +o1 /2. Next, the
first term of (2.9) is bounded by

max (1, e
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Since e(AN-BNKN)tpNB and TV(t)B converge strongly to T(t)B, uniformly on [0, ’],
and the range of B is finite (= m), there exists an integer N2 such that if N_-> N2, then
the first term of (2.9) is bounded by 1/6a. It then follows that for N >_- N2 (depending
only on 6), 6NBK <-- 1/2. Since Cn C - 0 as S -> o, for S sufficiently large,
II(AI-(AU-GuCU))-IGN(C-CU)II<=- for Re A->-to2+6, so we obtain that for
any 6>0 there exists an integer Na such that if N->N and ReA->_

-min (w, to2, w3)+ 6, then

II(I-6SBK N +(AI--(AN--GNcN))-IGN(c--cN))-ll]<_3.
Therefore, it follows from (2.6) and (2.7) that if Re A ->-min (Ol, w2, 03)+ 6 and
N>=N, then Ap(HN), so that sup{ReA’Ao-(HN)}-<-min(w|,to2, w3)+&
Moreover, if (H4) is satisfied, then HN generates a stable semigroup on Z x ZN.

COROLLARY 2.2. In addition to (H1)-(H3) we assume that GN converges strongly
to G and A- GC generates a stable semigroup on Z Then for every (f g) Z x Z and
Re A >-rain (w, w2, w3, w4) as N o

(AI-HrV)-(L) - (AI-H)-(fg) strongly,

where -004 is the growth constant of the semigroup generated by A-GC.
Proofi As in the proof of Theorem 2.1, we can show that

e(AN--GvCN)tpS
_

e(A-GC)t strongly.

Since for any e > 0 there exists a constant M > 0 such that IleA-C)tll <-- M e-’4+)t,
it follows from Theorem 4.2 of 14, Chap. 3] that for Re A > -min (to2, w4)

(AI-(AN GC))-1--> (AI-(A- GC))-1 strongly.

Recall that tr(H) tr(A- BK) t_J tr(A- GC). Thus, if Re
p(H) and using the same arguments as in the proof of Theorem 2.1 we obtain

where

(2.10)
b (AI (A BK))-[BK dp + d/) +f],

th q (AI- (A- GC))-I(f g).

It follows from (2.9) that for Re A >-min (Wl, w3) 1]6NBIIoO as N- o, where 6 is
defined by (2.8). Thus, the corollary follows from (2.6), (2.7), and (2.10).

3. Construction procedure. The following results are proved in Corollary 2.2 and
Theorem 2.3 of [10].

TI-IEOREM 3.1. Assume the following:

(A1) For every z Z, eAn’PNz converges strongly to S(t)z and eA’*’PNz converges
strongly to S*(t)z where the convergence is uniform in on bounded intervals.

(A2) (A, B) is uniformly stabilizable, i.e., there exists a sequence K L(Z, m)
such that sup KN < o and for M1 > 1 and Wl > 0

IleA-"r",pNII<=M1 e-,O,, t>0
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(AN, C N) is uniformly detectable, i.e., there exists a sequence G1 L(RN, Zu
such that sup Gu < and for M2 >- 1 and > 0

e(A-c)’Ps M2 e-:’, > O.

(A3) (AN, QN) is uniformly detectable and (A, V) is uniformly stabilizable.

en, (1.10) has the unique nonnegative solution H and for 1 1 and > 0

e(A-’o*n)’Pm <1 e-’’, > 0.

Also, (1.12) has the unique nonnegative solution EN and for 2 1 and > 0

e(a-xc*c)’PN M e-’, >= O.

Moreover, A, B) is stabilizable and A, C) is detectable. If A, Q) is detectable, then
(1.9) has the unique nonnegative solution H and HsP converges strongly to H. Also,
if (A, V) is stabilizable, then (1.11) has the unique nonnegative solution E and EP
converges strongly to E.

Remark 3.2. Obviously, if Q and V are uniformly positive definite, then (A3) is
satisfied, (A, Q) is detectable, and (A, V) is stabilizable.

The following theorem follows from Theorems 2.1 and 3.1.
THEOREM 3.3. Assume that (A1)-(A3) are satisfied and that (A, Q) is detectable

and (A, V) is stabilizable. Let B*H and EC* andfor each N let = BN*H
and N EsC*. en s I, 6N 6 converge to zero as N .

NDefine an operator H defined on Z x Z by

(3.1) s [ A -B] A CdC
where -B-en for any 8>0 there exists an integer N such that for NN, {A" Re A

-min (, 2, 3) + 8} is contained in p(). Here -3 is the growth constant of the
semigroup generated by A-B. Moreover, if (H4) is satisfied, then generates a
stable semigroup on Z x Z for N suciently large.

Next, we consider the reduction of dimension of compensators. In the remainder
of this section, we assume the following"

(A4) For some Ao> o, (AoI + A)- is compact and

II(Ao-a)-P-(Ao-A)-llO asN

where A and A G(M, o).
Then (A4) holds for every A > o [8, Thm. IV-2.25] and the spectrum of A consists
entirely of isolated eigenvalues with finite multiplicities. It follows from Theorem 4.3
of [14, Chap. 3] that (A4) implies (A1).

LEMMA 3.4. Assume (A4) is satisfied. Let E be a sequence in L(Z) such that
E converges strongly to E L(Z). en for some A > o,

I(A-(A-E))-P-(A-(A-E))-IIO asN.

Proo Since E lie II, for A > o+ IIEII + , > 0, p(a Es). It has been
shown in the proof of Theorem 2.1 that (AI-(AS-ES))-IP converges strongly to
(AI-(A-E))-1. Thus, (AI-(AS-EN))-XP is uniformly bounded. It then follows
from (2.2) that

II(AZ-(AN EN))-P -(AI-(A- E))-x
I -(AI -(a Es))-E II(AI A)-IPs (AI A)-1

+ [(I -(m E))-P -(AZ -(m E))-]E (XI

+II(I-(A-E))-PII II(E-E)(I-A)-II.
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Since (hi-A)-1 and E(AI-A)-1 are compact, it follows that the second and third
terms of the right-hand side of this inequality converge to zero.

The approach of Schumacher in [19] can be used for reducing the dimension of
compensators.

THEOREM 3.5. Assume (A2)-(A4) are satisfied. Let I, , N, and N be given
as in Theorem 3.3. Assume that (i) there exists a constant 8o < 0 such that the halfplane
Re h > 8o contains only finitely many eigenvalues of A-BK, and (ii) there exists a
constant r>0 such that the eigenvalues ofA-BK and AN-BNKN with Re h > 8o are
in IAl<r.

For any i, 8o < < O, let V be the subspace of dom(A) spanned by the principal
subspaces ofA- BKfor eigenvalues h with Re h > and let G be obtained by orthogonally
projecting onto Vs. Similarly, let V be the subspace ofZN spanned by the prcipal

N N’Nsubspaces of A -B K for etgenvalues h with Reh>8 and h # O, and let G be
obtained by orthogonally projecting N onto V.

^NThenfor Nsufficiently large, dim (V) dim (V) q and G,
Moreover, iffor some A-GC generates a stable semigroup and (H4) holds, then for
N sufficiently large the closed-loop operator

AN(A(3.2)  ’ dfc
--BKNiN )N(AN BNIN dCN)iN-’

generates a stable semigroup on Z x Rq. Here vN is identified with a Euclidean space Rq

by the isomorphism N. VT-- q.
Proof. Let Fo be the boundary of the set S={Re h > 8o+e}f’l{Ih[<_-r}. Then we

can choose e > 0 so that Fo c p(A-BI) pr,,ecisely encloses the eigenvalues of A-B/
contained in Re h > 80. Since BNjN

_
BK strongly by Theorem 3.1, it follows from

Lemma 3.4 that for some h > tOo

(3.3) II(AI-(AN-BNIN))-IpN-(AI-(A-Bff2))-II[O as

This implies that (3.3) holds uniformly in h on any compact subset of p(A-BK).
Thus, it follows from Theorem IV-3.16 of [8] that for N sufficiently large, Fo C
p(AN BN/ N), the spectral projection

1 Ir (zI--(AN BNI N))-lpN dzE -27ri
exists, EY converges to Eo in norm, and dim range (Eo) =dim range (Eo) < oo where

1 Iv (zI (A- Bt))-’ dz.Eo
27ri

These results now imply that for any 8, 8o < 8 < 0, there exists a closed curve F such
that F c p(A-BI) and p(AN-BNIg2 N) and it encloses precisely the eigenvalues of
A-BK and AN- BNKN with Re h > 8 for N sufficiently large, and that if

1 f AN ))- dz, andE-27ri .r
(zI-( -BNIN ,pN

Ir (zI-(A- BI))-’ dz,E
2"rri

then E converges to E, in norm and dim (V) dim (V) where V range E
^Nand V, range E,. Thus, since m

-’ 0 as N-, oo, G, G, 0,
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Let be the isomorphism between Va and W Rq and define

(3.4) Ha
iGaC i(A-B aC)i-

Then since Ildf-11, -11, and II/’*- i*ll-,0 as N--,, it is easy to show that

(3.5) ]lHV-Hall-O as N-o.

It follows from the proof of Theorem 4.2 of [19] that r(H)=r(A-GaC)U{the
eigenvalues of A-BK contained in Ref, > 6}. Thus, if A-GaC generates a stable
semigroup on Z, then from the hypothesis (H4) Ha generates a stable semigroup. The
last statement of the theorem follows from (3.5), the variation of constant formula and
Gronwall’s lemma.

4. Examples. In this section, we apply the general results in 2 and 3 to two
specific examples: the systems described by parabolic equations, and hereditary
differential equations.

4.1. Paralolic systems. Let V and H be Hilbert spaces with V dense in H and
assume the injection i: V- H is compact. Consider a sesquilinear form or: VV- R
such that

(4.1) o’(u, v)<-_ Cllull, llvll,, for u, v V,

(4.2) r(u, u)>-_ llull -pllull forue V

for to > 0. It then follows from [22] that there exists an operator A e L( V, V*) such that

(4.3) r(u, v)=(-au, u) for u, v e V

where Vc H H*c V* and H is the pivoting space, and that A on H with

(4.4) dom (A) {x e H: Axe H}: dense in V

generates an analytic semigroup on H and V*. Let ZN be a sequence of finite-
dimensional subspaces of V and let pN be the orthogonal projection of H onto ZN.
Define AN Zr - Zu by

(4.5) (-aUz, x)= (z, x) for all z, x e ZN.
For given B L(R’, H) and C L(H, P) we define BN pNB and CN CPN. We
assume the approximation conditions"

(C1) inf I[(pI-a)-z-Xl[v<=e(N)llZllH,
xGZ

(C2) inf,
xZ

where ea(N), e(N)O as N- oe. By the Nitsche technique (e.g., see [21]), we have

C2

(4.6) II(pI-A")-PI-(pl-A)-II <= e(N)e(N)O.

Condition (4.2) shows that (pI-A)- L(V*, V). Since the injection is compact, it
follows that (pI A)-: H H is compact. Thus, in this case (A4) is satisfied. It follows
from Theorem 6.A of [20] that

II(,I-e)-’[]_-< forh-p zeC" [argzl[<-+0o
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where 0o=tan-1 (to/2C) and

1 fr eXt(AI-A)-I dA, t>0,S(t) 27r--
where F is the path consisting of the two rays [arg (z p)] 7r/2 + 0, [z p] => 1, 0 < 0 <
0o, and the semicircle {z-p =e it" It[=< 0+ 7r/2} oriented so that Im A increases along
F. Suppose (A, B) is stabilizable" there exists an operator K L(H,W) such that
A- BKgenerates a stable semigroup on H. Thus, As sup {Re A" A (A- BK)} < O.
Define the sesquilinear form crn(u, v) by

trn(u, v)=o’(u, v)+(BKu, V)H foru, v V.

Then on(u, v) >- o, llull-plul where P:0/IIBIIIIKII, and trn(u,v)=
(-(A- BK)u, v) for u, v V. If TN (t), _-> 0 is the semigroup generated by AN BNK N,
with KN= KPN, then

1 f e’t(AI-(AN-BNKN))-1 dATN (t)= --Tr/ r.
where the path Fn {z C’z =y + IIBII IlK II, Y F}. From Lemma 3.4, we have

I[(AI-(AN-BNKN))-’PN-(AI-A-BK)-I[I->O as N->c.

Thus, it again follows from Theorem IV-3.16 of [8] that we can shift the path Fn
without changing the value of the integral to the path F where for An < Ao<0
F={F {Re A < Ao}}W {A C" Re A Ao and IIm A] =< (pn-Ao) tan 0}, for N
sufficiently large. From this, we can show that for N sufficiently large there exist
constants M 1 and An < -ol < 0 such that

YN(t)PN <- M1 e-’t, > O.

Similarly, if (A, C) is detectable: A-GC generates a stable semigroup for some
G L(P, H), then for N sufficiently large

e(AN--GNCN)tpN <: M2 e-2t, >= 0
for some constants M2 >= 1 and to:>0. Hence, (A2) is satisfied. Since Ho=[Ao ]
generates an analytic semigroup on Z x W and Hc is a bounded perturbation of Ho,
it follows from [23] that the hypothesis (H4) is satisfied. Therefore, Theorems 2.1, 3.3,
and 3.5 are applied to the problem described above. Moreover, the strong version of
Theorem 3.5 holds.

THEOREM 4.1. Suppose (A, B) is stabilizable, (A, C) is detectable, and (A3) is

satisfied. Let us adopt the same notation as in Theorem 3.5. Iffor some 8 < 0 sup {Re A" h
tr(AN CN } < 0 for Nsufficiently large, then IPI defined by (3.2) generates a stable
semigroup.

Proof First we note that all the eigenvalues of A-BI and AN-BNI N are
contained in the sector {z2 larg (z Pl)l > 7r/2 + 0} where pl p + II/ll sup II/ ’ and
0 < 0 < 0o and that A- BK has a compact resolvent. So, for a,ny 8o < 0, the halfplane
Re A > 8o contains only finitely many eigenvalues of A-BK. It then follows from
Theorem 3.5 that for any 8 < 0, dim VN) dim (V) and - 0 as N-.
Here,

(-(A-tC)u, v)=tr(u, v)+(tCu, v) for u, v V,
’N(-(AN-G C)z,x)=tr(z,x)+(tCz, x)’ for z,xZN.

Thus, all the eigenvalues of A-(C and AN- tCN are contained in the sector
{z" larg (z-p2)l > r/2+ 0} where p:= p+ IICII sup I111 and A-C has a compact
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resolvent. For y <0 such that {A" Re A y}c p(A-C), let F be the closed path
consisting of

F+={A--Ye+/-i+Pz’O<r<P2-]=cos
and

F2 {Re A y: IIm A I--< (p2- y) tan 0}.

Then, F encloses only finitely many eigenvalues of A-GC. It follows from Lemma
3.4 that

[[(AI-(AN-cN))-IpN-(AI-(A-C))-I]IO as N-o

for some A > too, and hence the convergence is uniform on F. It thus follows from
Theorem IV-3.16 in [8] that if the convergence is uniform

EN 1 f (zi_(A_NC))_psdz, and

(ZI-- (A- ac))-1 d2,
2i

then F c p(A (C), dim range (E) dim range () q, and ’ -’ 0 as
N- oe. Thus F contains q eigenvalues countin,,g according to algebraic multiplicities.
Furthermore, let x be an eigenvalue of A-GC such that Re -<_ Re x for all
o’(A-GC) and let F’ be a circle centered at x with an arbitrary small radius; then
F’ contains at least one eigenvalue of A G C for N sufficiently large. Hence if
sup {ReA Aeo’(A G C)} < 0, then Re x < 0. This implies that sup {Re I" I
o-(A- GC)} < 0. Since A- GC generates an analytic semigroup, it follows from [23
that it generates a stable semigroup. Therefore,, the theorem is a consequence of
Theorem 3.5.

4.2. Hereditary differential systems. Consider the hereditary differential control

d
x(t) d(O)x(t + O) + Su(t),

(4.7) dt

X(0)=r/ and x(0)=th(0), -r_-<0<0,

with the observation that

y( t) Cx( t),

where x(t) E", u(t) Era, y(t) P, and (0) is an n x n matrix-valued function of
bounded variation which vanishes at 0 0 and is left continuous on [-r, 0]. B and C
are n x m and p x n matrices. We will denote by Z, the product space En La(_r, 0; N)
in this section. It is well known [2] that for (7, 4) Z and u locally square integrable,
(4.7) admits a unique solution x Lz(-r, T; En)f3Hl(0, T;E") and (4.7) can be
equivalently formulated as an evolution equation on Z

d
d-Z(t)=Az(t)+Bu(t), z(0) (r/, 4),

(4.8)

y(t)=Cz(t),

where z(t)=(x(t),x(t,.))Z, t>=O, for um; Bu=(Bu, O)Z, and for (7, 4)Z,
C(7, 4) CB. The infinitesimal generator A of the semigroup S(t) is defined by

(4.9) dom (A)={(rl, ch)6Z: cL2and rl=ch(O)}

system:
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and for (4)(0), ) dom (A)

(4.10) A(b(0), 4)) dtx(O)(O), (b

As in [2], [6], [13], and [18], we consider the averaging approximation of (4.8).
Let Zu be a sequence of subspaces of Z defined by

zN {(r/, 6)e Z" (O)=ajon("7 j_),j= I, N}
and let PU be the corresponding ohogonal projection of Z onto Zu, where
-j(r/N). Z can be identified with R"u+) by means of the embeddingju ’u+)
Zu defined by

T Tja= ao, 2 a(c,,, fora=(ag,...,a) R
k=l

where denotes the characteristic function of an interval I. On N(+ we consider
the induced inner product:

(x, w), xp’w,
where

N

Then the adjoint operator jN* is given by

[j*(V, 4,)]o rt and

It is easy to show that

X, W R n(N+l),

r

[ju*(r/, )] Nfy’
(0) dO,

r .
jNN id and jjN*=pN.

On ZN, we consider the approximation of A"

AN --jN(QN)-iHN*(4.11)

where

and

HN

l<=k<=N.

I / r\ l
A:lim [/xr+)-z()J, k:O, 1 N.

In this case, BN= B and Cu= C. Then the following results have been proved.
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THEOREM 4.2 (1) [18, Cor. 4.5]. {Re A > Var }c p(A) and p(Au) and for some
A > Var

(4.12) ]](AI-A)-’-(AI-AU)-PU[[-.O asN.

(2) [13, Lemma 3.3]. For y > Var and b > r, let ao b -1 log [(1 +)(b- r)-]
and a y + b- log Var and for a > max ao, a) define the set

E {h 6 C: [Im hi e(a-Reh)b and Re h y}.

en for every h E
(4.13) II(AI-AU)-PI[ and II(AI-A)-’IIMIImAII,
where M is independent of N and h and is a continuous function of a, b, and y. If F is
the boundary of E, oriented so that Im h increases along F, then

eatpU 1
at(hI Aue P dh, and

2i
(4.14)

e’(II A)- dl.S( t)
2i r

Since (I-A)-1 is compact for some I > Var (A4) is satisfied. The following
lemmas show that (A2) is satisfied in this example.

LEMMA 4.3. If (A, B) is stabilizable, then (A B) is uniformly stabilizable for
N No.

Proof For some K L(Z,) given by

(, o+ (o(o (o, (, oez,

A-BK generates a stable semigroup. Note that the operator A-BK associates with
the hereditary differential equation of the form (4.7); i.e., for H

(-((0,= g(0(0,

where -B(I K() d+Koo). Let K= KP’, then IIK-KII0 asg
and using exactly the same arguments as in the previous section for the parabolic case,
it follows from Theorem 4.2 that for 0> m >sup {Re I: I (A-BK)} there exists an
integer No such that if N No, then for > 2b

2i

where the path P consists of

P {I" Im II e("-ax and Re I N },

{I" Re I and IIm
P the mirror image of P,

and

(4.16)
I](AI-(Ar- BNKN))-1PN MlIm AI
[[(AI--(AN--BNKN))-IpN[[<=M on ’2,

on ’ U 3,
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for some positive constants a and M. On ’1 [,-J 3
[Im 11 lea’I-< e(a-Reh)b e(Re")’ =[Im A[ (b-t)/b e ’t,

SO

Ir IIm 1 lel dll |
f

C C
at i.rl,,-,>/,,

U3 d{I’rl--- (’

2Cb 2Cb
e(a-)(2b-t) e at e2b(a-) et,

t-2b t-2b

where. C is a positive constant independent of t. It thus follows from (4.15) and (4.16)
that

e t>=3b

for some constant /. Since maxo__<t=<3b ]]e(’N-BN:tPN[[ are uniformly bounded in
N >= No, the proof is complete.

LEMMA 4.4. If (A, C) is detectable, then for N >= NI(A, C) is uniformly
detectable.

Proof. First we note that without loss of generality we can assume that for some
GZ dom (A), A-GC generates a stable semigroup. In fact [9], [15] if (A, C) is
detectable, then the Riccati equation

(AE + EA* EC*CE+ I I*)z 0 for all z dom (A*)

has a unique nonnegative solution E such that Ez dom (A) for every zZ and
A-EC*C generates a stable semigroup, where Ix (x, O) Z for x

Let us define G L(e, Z) by

[GNy]0 G(O)y and [Gy]k= G(z), l<=k<=N,

where Gy G(O)y, G( )y) Z, y RP. Then since G( Hl(-r, 0), G GII- 0 as
N-* c, and since

AGy= AG(z), , (G(Z_l)-G(zr))t’(,,,_
j=o k=l

I]AGN I]--< a for some positive constant a. By the variation of constants formula

(4.17) e(-c= e- e’(-SGCrq
e(’-c ds.

From (4.14) and Theorem 4.7 of [14, Chap. 2],

(4.18) IA e%P M for some constant M,

where to=4b. It follows from (4.17) and (4.18) that there exists a uniform constant

M such that

(a ace-’e M,

Thus, from Theorem 4.7 of [14, Chap. 2], for > 2to

(4.19) e(_ce_ 1 [ e(ii_(A GC))_Ip dl,
2i Jr
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where the integral path F is given by F F1 U F2 U F3,

F1 {h Im h e(-Re )t and Re h <_-/3 },

F2 {: Re h =/3 and IIm 1--< e(-)’},
F the mirror image of F

a log (2M2) and/3 y + sup IIGII IIa[I. And, for all

(4.20) II(,I-(A1 -GuCN))-PU[[-< 2M2(1 + to) emllm A[.

Similarly, since GCy dom (A), y P, A-GC generates a differentiable semi-
group for t> 2to. It then follows from [23] that if Wo=sup {Re A: A cr(A-GC)},
then Wo < 0. From Lemma 3.4 with E N GNcN and Theorem IV-3.15 of [8], for
O9o<O9<0 there exists an integer N such that if N>=N, then ()I-
(AN-GNc))-IP is analytic on the compact set {Re ,->o9}. By the Cauchy
theorem, we can, without changing the value of integral (4.19), shift F to the path F’
for which the constant/3 is replaced by w everywhere above. Hence, the lemma follows
from the same calculations in the proof of Lemma 4.3.

Let us consider in (1.9) and (1.11)

(4.21) Q(rt,b)=(Qo,0) and V(rt,b)=(Vort, 0) for(rt,b)Z,

where Qo and Vo are nonnegative symmetric matrices on
Remark 4.5. If Qo, Vo are full rank in (4.20), then (A, Q) is detectable and (A, V)

is stabilizable by the rank condition [17]. Then, in this case, it follows from Lemma
4.3 and 4.4 that (AN, QN) is uniformly detectable and (Arq, Vrq) is uniformly
stabilizable.

Now, the following theorem is a consequence of Theorem 2.1.
THEOREM 4.6. Suppose (A, B) is stabilizable and (A, V) is detectable; then there

exists afinite-dimensional compensator oftheform (1.4) such that the closed-loop operator
Hc (see (1.5)) generates a stable semigroup.

Next, we prove the corresponding result to Theorem 4.1 for the hereditary differen-
tial system. To this end, we need the following lemma which also provides a new
convergence result on the averaging approximation.

LEMMA 4.7. Suppose V(q, th)= (V0r/, 0) for (q, ch)6Z, and (A, V) is stabilizable.
Then if N is the nonnegative solution of (1.12), [IAN,N are uniformly bounded in N.

Proof It follows from Lemmas 4.3 and 4.4 that for some positive integer N2, if
N _>- N2, then (AN, C N is uniformly detectable and (AN, VN) is uniformly stabilizable.
Thus, from Theorem 3.1, (1.12) has the unique nonnegative solution zN and for M >= 1
and o > 0

][e(AN-YNCN*CN),pNll .<= Me-’’ t>0.=

Hence from (1.12)

N--’NcN*cN)*(t--S) ds eANt.N e(AN-ZNCN*CN)*t(4.22) ZN eA’(*-s) VN e(A +

We will show that

(4.23) AN eA’(’-’) If(s) ds <-_

where Ix (x, 0) Z, x Rn, and C(t) is a nondecreasing function of >-0. For >_-0
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let zN(t)=to eAN(t-s) If(s) ds. Then zN(t) satisfies

d
zN(t ANzN(t)+ If(t),

dt
’(o)=o.

Let us consider the operator Ao defined on Z defined by

(4.24)
dom (Ao) {(r/, )eZ" e L: and 6(0)= r/},

Ao((O), 6) (6(0), 4) for e H’.
From (4.11), zN (t) --jNaN (t) where a u Rn(N+I) satisfies

d N

d- a= Aa +f(t),
j=O

r d

N dt ak ak-1 ak, 1 <-- k <- N.

Thus, if we define

(4.25)

then

S NE(zU) IlAozll--laol=+ E --[ak-l-ak[2,
k=l r

(4.26)

1 d
2 dt

N N

----E(zN(t))=(gto, ao)+-- E (gtk-l--gtk, ak-l--ak)
Fk=l

N

(ao, ao)- E (ak-1- lk, ak)
k=l

1 1
12

1
-<io, ao>/ Io1-l I- k-I -- I1>=

<1= laol=+ldol =

Note that for 1 <_- k <_- N

Thus,

k

ao+ E (aj-aj_l)
j=0

2

21aol + 2

k

=< 2laol2+ 2k laj

_--<2 max (1, r)E(zN).

N

Iol E mlal + Ifl
j=0

From (4.24)

1 d

2 dt

k

Z (a a2_,)
j=l

_-< /2 max (1, r) Var/x + Ifl.

U(z (t)) aE N (zN (t))+ 2lfl 2,
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where a =1/2+4 max (1, r)(Var/z)2, so that by Gronwall’s lemma

(I0(4.27) E(zN(t))<=e2t 2 {f12 ds+E(zS(O))

The estimate (4.23) thus follows from the fact that for zv Zv

[](a0 au zu 1 + Var )(2 max 1, r)E (zu ).

Hence, the lemma follows from (4.18) and (4.22).
COgOLLAY 4.8. For every (@(0), &) dom (Ao) andf locally square integrable,

I]Uz(t)--z(t)dom(Ao)O asN,

where Z dom (Ao) Z is defined by

z ao, 2 aL(. with z =ja,
k=O

and

r

L’/(0)

0 elsewhere.

Proof The corollary follows from (4.27) and the arguments in [12, 6].
THEOREM 4.9. Assume Q and Vare defined by (4.21). Let us adopt the same notation

as in Theorem 3.5. If (A, B) and A, V) are stabilizable, A, C) and A, Q) are detectable,
and moreover for some 3 < 0

sup {Re ," h e r(aS-- CV)}<0

for N sufficiently large, then I2I defined by (3.2) generates a stable semigroup.
Proof It follows from Lemma 4.7 that (4.19) is valid when Gs is replaced by. Hence, the theorem can be proved combining the arguments in the proof of

Theorem 4.1 with Theorem 4.2 and the formula (4.19).
Recently, we developed a higher order approximation based on linear spline

elements in 11 ]. It possesses the exact same properties (e.g., Theorem 4.2 and Lemmas
4.4 and 4.7) as the averaging approximation and thus it satisfies Theorem 4.9.
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THE DISTURBANCE DECOUPLING PROBLEM FOR IMPLICIT LINEAR
DISCRETE-TIME SYSTEMS*

A. BANASZUK?, M. KOCIICKI?, AND K. M. PRZYLUSKI$

Abstract. The disturbance decoupling problem for implicit linear discrete-time systems is studied in
detail. Necessary and sufficient conditions for the problem to be solved are given. The results are obtained
with the aid of the concepts of almost invariant, sliding and coasting subspaces for implicit systems.

Key words, implicit linear systems, disturbance decoupling problem, almost invariant subspaces, dis-

crete-time systems, linear control theory
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Introduction. Consider the implicit linear discrete-time system

EXk+I FXk + Gtlk + DZk,
(*)

Yk Hxk k >- O.

The term Zk in the first of the equations above represents a disturbance that affects
the system. We do not assume that the map E is invertible; moreover, no assumption
on the regularity of the corresponding pencil sE F will be made. The systems of the
form (.) arise frequently in various applications. We mention here only 1 ], 11 ]-[ 13 ],
[15], [18]-[20], [22], [31], and [32].

Our task in the present paper is to find (if possible) feedback K such that the
output sequence (yk) of the closed-loop system is not affected by the disturbance
sequence (z). So we say that the disturbance decoupling problem (DDP) is solvable for
the quintuple (E, F, G, D, H) if and only if we can find K with the property that for
every disturbance sequence (z) there exists a sequence (x) such that
(F+ GK)x + Dz, k >-0, and the corresponding output sequence (yk) is identically
zero. If in addition the difference equation EX+l (F + GK)x has at most one solution
for any initial condition, we say that the disturbance decoupling problem with uniqueness
(DDPU) is solvable for the quintuple (E, F, G, D, H).

The methods used in the paper are based on our results presented in [3], [5], and
[9] and also on a recent paper of Fletcher and Aasaraai [17]. It happens that the main
tool for studying the disturbance decoupling problems is the concept of almost invariant
subspaces introduced (for implicit systems) by Banaszuk, Kocicki, and Przytuski [5].
The ideas of [5] are essentially developed in the present paper. In particular, the new
notion of strongly almost invariant subspace is introduced and studied in detail. We
also generalize some of Willems results from [33] concerning the decomposition of an
almost invariant subspace into the sum of sliding and coasting subspaces. This
machinery allows us to obtain necessary and sufficient conditions for solving both
disturbance decoupling problems. The obtained conditions have a simple geometric

* Received by the editors August 22, 1988; accepted for publication (in revised form) November 14,
1989. This work was performed under the auspices of the RP.I.02: "Teoria Sterowania Optymalizacji
Ciagtych uktad6w dynamicznych proces6w dyskretnych."

? Institute of Control and Industrial Electronics, Warsaw University of Technology, Koszykowa 75,
00-662 Warszawa, Poland.

$ Institute of Mathematics,Polish Academy of Sciences, niadeckich 8, P.O. Box 137, 00-950 Warszawa,
Poland.
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form, and are easy to check. The solutions of the problems studied in the paper are
(in principle) constructive. To find a feedback map that solves the problems, we must
compute some subspaces, which can be done using some recursive formulas.

It is worth noting that our formulation of DDP allows the possibility of choosing
appropriately the initial condition Xo. More precisely, the initial condition Xo is selected
according to the disturbance sequence (Zk), which acts on the system. Thereby our
DDP is a closed-loop version of that considered by Banaszuk, Kocicki, and Przytuski
in [5]. Let us recall that in the case where E =/, the DDP studied in [5] is the same
as that introduced by Willems in [34]. (Willems calls this problem "the disturbance
decoupling problem with anticipation.") It seems however that the closed-loop version
of this DDP which has been considered in [34] is not studied in the existing literature.
In the present paper we show that when E I this DDP is solvable if and only if the
classical DDP (the precise formulation of which is to be found in [36]) is solvable. In
other words, when E I, the DDP defined at the beginning of this section and the
DDP of [36] coincide. Hence our DDP is a natural generalization of the DDP of [36]
for the case of implicit systems.

We end this section by noting that some (other than our) disturbance decoupling
problems have recently been formulated in [10], [25], [27], and [17]. Reference [10]
states the problem (for the case when the pencil [sE-F] is regular) in terms of the
system transfer function and gives some sufficient conditions for the problem to be
solved. References [25] and [27] consider the DDPU for a class of feedback maps
that is larger than that taken into account in the present paper. In this context we
should emphasize that the formulation of the DDPU given recently in 17] is essentially
the same as ours. Reference 17] contains some necessary and sufficient conditions for
solving the DDPU. Unfortunately, they are difficult to check since they are far from
being explicit (cf. [17, 5]). Despite this fact, [17] was very inspiring for us; it contains
a result that allowed us to obtain an explicit and constructive solution of both DDP
and DDPU.

1. Basic definitions and preliminary results. We begin by introducing some notation
+and terminology to be used throughout the paper. We shall write 70 to denote the set

of nonnegative integers. Then 7/ := 7/\7/0 and 7/if:= 7/ t_J {0}. All linear spaces and
linear maps considered in the paper are defined over R. For any linear space 55, we
denote by o-(55), o(55), -(55) the space of all 55-valued sequences defined on 7/-,
7/-, 7/-, respectively. Let be an arbitrary space of sequences with values in a given
linear space. Then we shall use the symbol to denote the subspace of all sequences
from/ with finite support. For instance, ((55) is the subspace of the space
consisting of all sequences with support bounded on the left. Let 55, - be linear spaces.
Then 55 - means that 55 and - are isomorphic (of course, as linear spaces). The
symbol Lat (55) will stand for the lattice of all subspaces of 55 (cf. [14]). By (55, -)
we shall mean the linear space of all linear maps 55 -. When E (55, -) and 551 c
we shall use the symbol E Ie to denote the restriction of the map E to the space
Of course, ElSe, (551, -)" If A (55, 3-) and B (, -), ten _" B
9(55 , -) is defined by (A B)(s, r) := As + Br, (s, r) 55 . In the formulation
of thesis of some results of the paper we shall write for abbreviation 99
(or similar statements). The reader should understand that then it is necessary to prove
not only + 55+ - but also that the spaces , 55, and - are independent.

Let , , and a//be fixed linear finite-dimensional spaces over R and (E, F, G)
(,) (, Lr) (//, Lr) be a triple of linear maps. We have the following
definitions.



1272 BANASZUK, KOCIICKI, AND PRZYLUSKI

+DEFINITION 1.1. The set of all ((Xk), (Uk)) 0-() X 00 (0-//) such that the equation
EXk+l FXk + GUk is satisfied on 7- is called the implicit linear discrete-time system
defined by (E, F, G) on Z- and is denoted by @(E, F, G).

DEFINITION 1.2. The set of all ((xk), (uk)) () xo-() such that the equation
EXk+I-" FXk + GUk is satisfied on Z- is called the implicit linear discrete-time system
defined by (E, F, G) on 7?- and is denoted by @(E, F, G).

Of course, the above-defined systems are linear subspaces of the corresponding
spaces of sequences.

+The following simple result relates systems on 7?0 with those on 7?-.
PROPOSITION 1.1. The systems @(E, F, G) and @(F, E, G) are isomorphic. More

precisely, ((Xk), (Uk)) @(E, F, G) if and only if ((x-k), (U-k-l)) @(F, E, G).
Let be a given subspace of . Then we have the following definition.
DEFINITION 1.3. The trace of the system @(E, F, G) on tV, to be denoted by

@(E, F, G) 7V, is the set of all ((Xk), (Uk)) @(E, F, G) such that (Xk) o-(7/V). (The
trace of the system @(E, F, G) on 7g" is defined similarly and will be denoted by
(E, F, ) .)

Of course, (E, F, G)I -- (E[, F[, a), i.e., the trace of a system on any
subspace is a system.

In the sequel we shall need the following subspaces of W.
DEFINITION 1.4. The space ofadmissible initial conditions ofthe system (E, F, G),

to be denoted by (E, F, G), is the set of all x e g for which there exists ((xk),
(E, F, G) such that Xo x.

DEFINITION 1.5. The space ofadmissiblefinal conditions of the system (E, F, G),
to be denoted by (E, F, G), is the set of all x e W for which there exists ((xk), (uk))
(E, F, G) such that Xo x.

DEFINITION 1.6. The reachable space of the system @(E, F, G), to be denoted by
(E, F, G), is the set of all x for which there exists ((xk), (Uk)) /@(E, F, G) such
that Xo x.

DEFINITION 1.7. The controllable space of the system @(E, F, G), to be denoted
by C(E, F, G), is defined as (E, F, G)( (E, F, G).

DEFINITION 1.8. Let 77- then the ith controllable space ofthe system @(E, F, G)
is the set of all x for which there exists ((Xk), (Uk)) @(E, F, (3) such that Xo 0
and x x. The space will be denoted by c(E, F, G).

Remark 1.1. The above-introduced spaces have recently been studied in [3]-[5],
and [7]. Let us observe that the space C(E, F, G) can also be expressed (cf. [3, 5])
as the set of all vectors x 6 such that we can find ((Xk), (Uk)) @(E, F, G) with the

+property that Xo=0 and x=x, for some i77o. In other words, c(E,F, G)=
+ci(E, F, G), where the summation is taken over all 7?0 For some supplementary

remarks concerning the spaces (E, F, G), (E, F, G), (E, F, G), and c(E, F, G)
see the Appendix.

Let be any subspace of W. Then replacing in the definitions of (E, F, G),
(E, F, G), (E, F, G), c(E, F, G), and c(E, F, G) the systems @(E, F, G) and
@(E, F, G) by their traces on //V we obtain the subspaces of W, which will be denoted
by (E, F, G) W, (E, F, G) //V, (E, F, G) //V, (E, F, G) 7/V, and ci(E F,
respectively. The relationship between the above-introduced spaces and related spaces
considered in the existing literature is presented in the Appendix.

In the sequel we will need the following definitions.
DEFINITION 1.9. Let 74/" . We say that 7g" is @(E, F, G)-invariant if and only

if 74/’= (E, F,
DEFINITION 1.10. Let 7/V . We say that 7g" is @(E, F, G)-invariant if and only

if 7V= (E, F, G)l/g
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DEFINITION 1.11. Let 7/# c . We say that W is a reachability subspace for the
system (E, F, G) if and only if 7/V= (E, F,

DEFINITION 1.12. Let 7# c . We say that W is a controllability subspace for the
system (E, F, G) if and only if 7/V= C(E, F,

DEFINITION 1.13. Let 7g’c . We say that 7" is a uniqueness subspace for the
system (E, F, G) if and only if C(E, F,

(We can easily check that W is a uniqueness subspace for the system if and only
if ((x), (Uk)) (E, F, G)I W, for i= 1, 2, and x= x implies (x) (x).)

The most important properties of (E, F, G)- and (E, F, G)-invariant subspaces
are collected in the following proposition (cf. [3, 2, 5]).

PROPOSITION 1.2. Let (E, F, G) (gT, ) x(,) x (71, ) be given and
be any subspace of ;T. Then the following statements hold"

(1) W is (E, F, G)-invariant if and only if FT/V c ETU+ Im G (equivalently,
Wc F-I(EtT’+ Im G)).

(2) 7IV is (E, F, G) -invariant if and only if 7t/" is (F, E, G) -invariant.
(3) The sum ofany number of @(E, F, G)-invariant subspaces is also (E, F, G)-

invariant.
(4) (E,F, G)is(E,F, G)-invariant;moreover, (E,F, G)= F-I(Ef/’(E,F, G)+

Im G).
(5) (E, F, G) is @(E, F, G)-invariant.
(6) (E, F, G) is (E, F, G)-and (E, F, G)-invariant; moreover, C(E, F, G)=

E-I(F(E, F, G)+Im G)f) (E, F, G).
The result below is an immediate consequence of Proposition 1.2(1).
PROPOSITION 1.3. Let 7/I/" be any (E, F, G)-invariant subspace. Assume bc

satisfies b O)( og/, fq Ker E)= /4/’. Then S is (E, F, G)-invariant and Eb b.
In the present paper we shall also need the following properties of the spaces

(E, F, G) and cj(E, F, G) (cf. [3, 5] and [4]).
PROPOSITION 1.4. Let (E, F, G) (,) x(,) x (OR, ) be given. Then

the following statements hold"
(1) Let i, j6 7-. Then ci(E, F, G)c cj(E, F, G)_.if i<-j.

+ such that i(E, F, G)= (E, F, G), for > 3/.(2) There exists 3/ Zo

(3) (E, F, G) is the smallest (E, F, G)-invariant subspace containing
Cl(E F, G).

(4) (E, F, G)= (F, E, G).
+ Eci+I(E, F, G)+ Im G= Fi(E, F, G)+ Im G. In particular,(5) For any 77o

E(E, F, G)+ Im G= F@(E, F, G)+ Im G.
The smallest nonnegative integer 3/ for which the statement (2) of the above

proposition holds will be denoted by 3/(E, F, G). (In [3] the integer 3/(E, F, G) is called
"the controllability index of the system @(E, F, G).")

/ /DEFINITION 1.14. The set of all ((Xk), (Uk), (Zk))Oo(f)XOo(OR)X6-(Lr) such
/that the equation EXk+ FXk + GUk + Zk holds on 770 will be called the implicit linear

+discrete-time system with disturbances defined by (E, F, (3) on 77 0 and will be denoted
by @d(E, F, G).

We can prove that the system @d(E, F, (3) (meant as a subspace of6-() x 6S(R) x
6-(Lr)) determines uniquely (in opposition to the system @(E,F, (3)) the triple
(E,F, (3).

DEFINITION 1.15. Let 9 Lr. We say (cf. [3], [5]) that the system @d(E, F, G)
+accepts all disturbance sequences from 60(9) if and only if for every (Zk) 6o (9) there

+exists ((xk), (uk)) 6-(T) X6o (OR) such that ((xk), (uk), (zk))@a(E, F, G).
For a system @a(E, F, G) and a subspace 9 Y, we shall denote by A(E, F, G; 9)

/ for which the following implication holds:the greatest lower bound of the set of A 770
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v(=,,)e-(). [((z,,),-,=o)(3((x,), (u,,))e-()x-(o).

xo=O and ((Xk), (Uk), (Z)) e a(E, F, G))].

To study some properties of a system with disturbances we will need the following
remark, which shows that such a system can be conveniently analyzed with the aid of
a properly defined system without disturbances. It will allow us to use results of [3].

Remark 1.2. Let D(@,) be the canonical injection
(,/Im G) be the canonical surjection Lr/Im G. Let (/,/3,/):=
(QE, QF, QD). Observe now that if ((Xk), (Zk))(,,,)), then (Zk)-(@) and
there exists (Uk) a-() such that ((Xk), (Uk), (Zk)) d(E, F, G). Conversely, let (Zk)
-(9) and ((Xk), (Uk), (Zk)) a(E, F, G). Then ((Xk), (Zk)) (, , )). It follows
that the system @a(E, F, G) accepts all disturbance sequences from -(9) if and only
if the system d(/, /3, 0) accepts all disturbance sequences from o-(Im/). Hence the
system d(E, F, G) accepts all disturbance sequences from -(9) if and only if the
system @(/, if’,/) accepts all input sequences in the sense of [3, 4]. Another con-
sequence of the relation between the system @a(E, F, G) and (/,/3, 0) is that
77(E, -.F’ G)= 77(/, (, 0.). ,Similarly (considering the system (/,/3,/)), we can observe
that (E, F, G)= (E, F, 0).

Let us note also that, in view of Corollary 3.3 and Proposition 4.1 of [3] if a
system d(E, F, G) accepts all disturbance sequences from -(), then A(E, F, G; 9)
coincides with the anticipation index of the system (/,/,/), the quantity being
studied in [3, 3]. We refer the interested reader to [3, 3] for further remarks
concerning the anticipation phenomenon.

Now we can summarize basic properties of systems with disturbances.
PROPOSITION 1.5. Let 9c be arbitrary. Then the following statements are

equivalent"
(a) d(E, F, G) accepts all disturbance sequences from -(9).
(b) 9 c Er(E, F, G)+ F(E, F, G)+ Im G.
(c) A (E, F, G; ) is infinite.
Proof. Let (/, ,/) be defined as in Remark 1.2.
(a):> (b) Since the inclusion 9 E(E, F, G)+ F(E, F, G)+ Im G is obviously

equivalent to the inclusion Im//(/, , 0)+ (/,/, 0), the equivalence follows
from Theorem 4.1 and Proposition 2.7 and 2.8 of [3].

(a)(c) In view of Remark 1.2, A(E, F, G; 9) coincides with the anticipation
index of the system @(/, if’,/). Since dim <, it follows from Corollary 3.3 of [3]
that A (E, F, G; 9) is finite.

(c)(a) Consider an arbitrary (Zk)-(@). Let A be an integer not less than
A (E, F, G; @), and let (k)-(@) be defined as k :=0 for k=0,...,h-1, and
Zk := Zk-h for k=h,h + 1,’. ". Then there exists ((2k), (fig)) -() XO0() such that
((k), (Ok), (k))d(E, F, G). Put (Xk, Uk):=($k+a, fk+) for kZ-. Now it is
sufficient to note that ((Xk), (Uk), (Zk)) @cl(E, F, G).

We now record the following lemma.
LEMMA 1.1. Let 9 E(E, F, G)+Im G. Then A(E, F, G; 9) =0 and hence

a (E, F, G) accepts all disturbance sequences from -().
Proof In view of Remark 1.2 and the proof of Proposition 1.5, the result follows

from Theorem 4.1 and Proposition 2.7 of [3].
The concept of almost @(E, F, G)-invariant subspace has been recently introduced

in [5]. Let us recall the definition from [5].
DEFINa’ON 1.16. Let 7/’ . We say that 7g" is almost (E, F, G)-invariant if

and only if for any (Zk) o-(ETCr+ Ft+ Im G) there exists ((Xk), (Uk))
such that ((Xk), (Uk), (Zk)) @d(E, F, G)I.



THE DISTURBANCE DECOUPLING PROBLEM 1275

Remark 1.3. We shall need in the sequel some results of [5]. The results concern
a system with disturbances described by the difference equation

EXk+ FXk q- GUk q- Z.k,

on Z. So the theory of [5] is not directly applicable in the setting of the present paper.
In order to use the results of [5] to the system @d(E, F, G) it is sufficient to note that
there exists a natural correspondence between solutions ofthe equation (,) with support
bounded on the left and some solutions of this equation on 7/o. More precisely, let
((Xk) k=-o (Uk)=-o Zk k-) be a solution of (*) satisfying (Xk)k- O, Uk k-

0, (z) -’k=_ 0 for some a Z. Let ((Yk)k=0, (k)k=0, (k)-0):= ((Xk+)k=O, (Uk+)_O,
(Zk+)kO). Then ((Yk)=o, (k)kO, (k)=0) is a solution of (,) on Z satisfying Yo=0.
Conversely, let ((Yk)k=O, (Jk)k=0, (Zk)k=O) be a solution of (,) on Zo with Yo=0. Put
((Xk)k- (Uk)k-, (Zk)k:L):=0 and ((Xk), (Uk)-, (Zk)):=((k)0,
(k)kO, (k)kO). Then it is immediate that ((Xk)k-, (Uk)k-, (Zk)k-) is a solution
of (*) with suppo bounded on the left. The above considerations allow us to apply
directly some results of [5] to study propeies of the system d (E, F, G). In paicular,
it allows us to identify the notion of almost invariant subspace introduced above with
that considered in [5].

The following proposition (cf. [5, Thm. 3.2]) gives a geometric characterization
of almost (E, F, G)-invariant subspaces.

PROPOSITION 1.6. Let be a subspace of . en the following statements are
equivalent"

(a) is almost (E, F, G)-invariant.

(c) E+F+Im G= E(E, F, G)l+ F(E, F, G)[+ Im G.
Using the above proposition we can prove (cf. [5]) the following propeies of

almost (E, F, G)-invariant subspaces.
COROLLARY 1.1. (1) Every (E, F, G)-invariant (or (E, F, G)-invariant) sub-

space is almost (E, F, G)-invariant. In particular, the spaces (E, F, G), (E, F, G),
(E, F, G), and (E, F, G) are almost (E, F, G)-invariant.

(2) e sum ofany number ofalmost (E, F, G)-invariant subspaces is also almost
E, F, G) -invariant.
(3) ere exists a greatest almost (E, F, G)-invariant subspace. e subspace

coincides with (E, F, G) + E, F, O).
Let us recall (cf. [3], [11], [16], [35]) the following definitions.
DEFINITION 1.17. Let d(E, F, G) be a given system and let (Xk) 0o () be such

that Xo=0. Then we will say that the system d(E, F, G) possesses the uniqueness
property if and only if ((Xk), O, O)d(E, F, G) implies (Xk)=O.

DEFINITION 1.18. We say (cf. [3]) that a system d(E, F, G) is regular if and
only if the system possesses the uniqueness propey and the system d (E, F, 0) accepts
all disturbance sequences.

(Of course, the propeies defined above do not depend on the map G.)
We record here the following result concerning regular systems (cf. [3, Remark

4.2, Props. 4.13, 4.14]).
PROPOSITION 1.7. Let (E, F, G)(,)x(,)x(,) be a given triple

of linear maps. en the following statements are equivalent"
a d E, F, G) is regular.
(b) e pencil [sE F] is regular.
(c) dim dim and d(E, F, G) possesses the uniqueness property.
(d) dim dim and d(E, F, O) accepts all disturbance sequences.
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Another consequence of Proposition 4.13 of [3] is the following result.
PROPOSITION 1.8. dim _-<dim , if @d(E, F, O) accepts all disturbance

sequences.

2. On certain decompositions. In this section we investigate some decompositions
of the implicit system. We will also study relationships between various properties of
such a system and analogous properties of its subsystems.

Let W W03" ) p, Z Z@" @ Zp, and 0//= 0//1 @)" @) 0q, for some posi-
tive integers p and q and assume that (E, F, G) w(W, )x 5(W, )x(,) is
fixed. We introduce the following definitions.

DEFINITION 2.1. The (2p+ q)-tuple of subspaces (,. , p Lrl,. , Zp
o//1,... O?/q) is said to be a decomposition of (, r, ). A decomposition of (, Z,
is said to be good for the triple (E, F, G) if and only if Z1 EW1 + FI + G//1. In the
particular case when W1- CO(E, F, G) and q- 1 we say that the corresponding good
decomposition is a Kalman decomposition (cf. [9]).

(Note that in the case of a Kalman decomposition we have 1- E(E, F, G)+
Im G= F(E, F, G)+ Im G; cf. Proposition 1.4(5).)

DEFINITION 2.2. Let Ji (i, ) be the canonical injection i into , let
(,, ) be the canonical injection of 0//,, into , and let Pi (Z, Z) denote the
canonical surjection of Z onto 3(. Define, for i,j-1,...,p, m-1,..., q,
(, ), F (, i), G,, (0//0,, i) by E := PEJ, Fo :- PFJ, and Gm :=
PGM,,. The (ordered) ,(2p2+pq)-tuple of linear maps (Ell,El2," ",Epp;
Fll, F12," , Fpp; Gll, G12 "’’, Gpq) is called the (2p2+pq)-tuple corresponding to

the triple (E, F, G) for the decomposition (W1,"" ", p; Z1,"" ", Zp; ,"" ", llq) of
(, , 0).

Let us observe that if the decomposition (W1, , p Yl, ", Yv 1, ", q)
is good for (E, F, G), then Eil= FI 0 and GI 0, for all i# 1.

The following propositions are useful.
PROPOSITION 2.1. Let (1," ", gv; Y," ", ; q-g) be a good decomposition of

(g, , o) for (E, F, G),and let (Ell, E12, lpp; Fll F12, Fpp; G1, ", Gp) be
the (2p2+p)-tuple corresponding to (E, F, G) for this decomposition. Then the system
@a (El 1, F11, G1) accepts all disturbance sequences from +o o (1) if and only if gE is an
almost @(E, F, G)-invariant subspace.

Proof The proof follows immediately from the corresponding definitions.
PROPOSITION 2.2. Let (W1, ; Yl, 2; ) be a good decomposition of , , -li

for (E, F, G), and let (Ell, EI, 0, E22 Fll F12 0, F22 G1,0) be the lO-tuple corre-
sponding to (E, F, G) for this decomposition. Let c and ’2 ’2 satisfy and

1(2 Yl + " Then the system @a (E2, Fz2, 0) accepts all disturbance sequencesfrom
-(@2) if the system @d(E, F, G) accepts all disturbance sequences from -(@). Con-
versely, the system @d (E, F, G) accepts all disturbance sequences from -(@) if the
system @d(E11, Fll, G1) accepts all disturbance sequences from -(1) and the system

+@d (E22, F22, 0) accepts all disturbance sequences from o (@).
Proof The first statement is obvious. To show the second statement consider an

+ +arbitrary (Zk) o (). Then there exist (z,) o (r) and (z,) o (@2) such that (Zk)
(Zk)+(zZk). Since @d(E2, F22, 0) accepts all disturbance sequences from (2) we
can find (x,) -(2) such that ((x,), 0, (z,)) @d(E, F, 0). Similarly, the system

+@d(Ell,Fl,G1) accepts all disturbance sequences from Oo(rl); hence there
+ + 2exist ((x), (glk))OO(ffl)XO0(O) such that ((xlk),(glk), (--E12Xk+

@d(Ell, Fll, {1)" Thus ((Xk + X2k), (Uk), (Zk)) @d(E, F, G).
PROPOSITION 2.3. Let (1, 2; Z1, Z2; a//) be a good decomposition of (g, , -li)
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for (E,F, G), and let (Eli, El2, 0, E22; Fll, F12, 0, F22; G1, 0) be the lO-tuple
corresponding to (E, F, G) for this decomposition. Then the system d(E, F, G) accepts
all disturbance sequencesfrom- g() ifthe systems d EI Fll, G1) and d E22 F22 O)

o () andaccept all disturbance sequences from + +o (22) respectively.
Proof The proof follows from the second statement of Proposition 2.2. For @ 2

and @2 2" [-]

In 3 we shall need the following result.
PROPOSITION 2.4. Let (l,2;l,Lr2; -//1, ?/2) be a good decomposition of

(, Y{, ) for (E, F, G), and let (Ell, E2, O, E22; FI, F12, 0, F22; G, G2, 0, G22) be
the 12-tuple corresponding to (E, F, G) for this decomposition. Assume in addition that
T (EI, FI, GI). Then (E, F, G)=,(E22, F22, G22) and E(E, F, G)+
Im G= (EI +Im G)(EzzCC(Ez2, F_2, G22)+ Im

Proof Since the inclusions (E, F, G)@(E_2, F22, G22) and
(E, F, G) are obvious, it is sufficient to show that (E22, F22, G22)c (E, F, G). For
this, let y:=max ()’(Ell Fll Gll), )’(E22, F22, G22)). Then, for each x2

2(E22, F22, G22), there exists ((x,), (u,)) @(E22, F22, G22) such that Xo=0 and xv
x2. Since C(E, Fll, GI) and the considered decomposition is good, it follows
from Corollary 1.1(1) that the system @(EI,FI, G) accepts all disturbance

+sequences from Oo(Lrl). Moreover, in view of Lemma 1.1, A(E,F, GII; Lr)=0.
Hence there exists ((,),(tT,))o-()o-() such that ((,),(tT,),(-E2x,++
FzxZk+GzuZk))@d(E,i,F G) and ff=0. Since =(EI,FI, G) we can
find (()), (5)) @(EI, F, GI) satisfying ~1 ~1Xo=0 and Iv=fir. Now let (Xk):=
(),)--(Y,)+(X) and (Uk):=(ftk)--(ak)+(U2k). We can check that ((Xk),(Uk))
@(E, F, G), Xo 0 and xv x2. Hence @(E22, F22, G22) @(E, F, G). We have shown
that (E, F, G)=@ ((E22, F22, G22). To prove the remaining part of the theorem
first note that 21 El + FT + G?/1 El+Fll + Im G El+ Im Gll; the
last equality follows from Proposition 1.4(5). Hence

E(E, F, G)+ Im G EI + E%P(E22, F2_, G22)+ Im G

(Ell+Im G1)@(E22@(E22, F22, G22) +Im G22).
In the present paper we shall frequently consider systems satisfying the condition

Y E(E, F, G)+ Im G. Such systems (which are called in [6], [8], and [9] strongly
controllable) have various important properties. In particular, we can formulate the
following result.

PROPOSITION 2.5. Let (;Ta, 2" Yl, Y2" O be a decomposition of (g, , -I1) for the
triple (E, F, G) such that the l O-tuple corresponding to (E, F, G) for this decomposition
takes the form (EI E12 0, E22; FI, F2, 0, F22 G1, G2). Assume that
E(E, F, G)+ Im G. Then 2 (E22, F22, G2) and Lr2= E22(E22, F22, G2)+ Im G2.

Proof In view of Propositions 1.4(5) and 1.2(6), Y E(E, F, G)+ Im G implies
that C(E,F, G)= (E,F, G). On the other hand, Proposition 1.2(4) yields
(E, F, G)= . It ensures that (E, F, G) and hence 2= (E22, F22, G2). Let
us note also that Lr E(E, F, G)+ Im G implies 2-" E222 -k- Im G2. [-]

Observe that in the terminology of [6] the proposition above states that
@(E22 F22 G2) is strongly controllable if @(E, F, G) enjoys the same property. Thus
Proposition 2.5 generalizes in a sense [36, Prop. 1.2].

We end this section by recording the following simple result.
PROPOSITION 2.6. Let (1, 2; Lrl, Y2; //) be a decomposition of (, , 71), and

let (E, E12, 0, E22; Fll, F2, 0, F22 G, G2) be the lO-tuple corresponding to (E, F, G)
for this decomposition. Then @d E, F, G) possesses -the uniqueness property if
@d(E, FI, G) and @d(Ez2, F22, G2) enjoy the same property.
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3. Strongly almost invariant subspaces. Let us begin with the following definition.
DEFINITION 3.1. We say that a subspace OWc is strongly almost (E, F, G)-

invariant if and only if it is almost (E, F, G)-invariant and for any ((Xk), (Uk), (Zk))
d(E,F, G) such that Xo OW and (zk)6-(EOW+FOW+Im G) the condition (Xk)
6(OW) is satisfied.

The following theorem provides a fundamental characterization of strongly almost
invariant subspaces.

THEOREM 3.1. Let (1, :Te; 1, e; all) be a good decomposition of (:T, , -ll) for
the triple (E, F, G). Let (Ell, Ee, 0, Eee; F, Fie, 0, Fez; G1,.0) be the lO-tuple corre-
sponding to the triple E, F G) for this decomposition. Then the following statements are
equivalent"

(a) 1 is strongly almost (E, F, G)-invariant.
(b) 1 is almost (E, F, G)-invariant and C(E, F, G)c 1.
(c) d(EI,FI,G) accepts all disturbance sequences from +

6o (Lrl) and
d (Eel_, Fez, O) possesses the uniqueness property.

Proof. (a)(b) It is sufficient to show that C(E, F, G) 1. For this consider
an arbitrary x CO(E, F, G). It follows from Proposition 1.4(2) that there exist i’o
and ((Xk),(Uk))(E,F,G) satisfying Xo-0 and xi=x. Since ((Xk),(Uk),O)
@d(E, F, G), 0=Xo W1 and 1 is strongly almost (E, F, G)-invariant, (Xk) 6-(1)
and hence x W1.

(b)(c) In view of Proposition 2.1, d(Ell, Fll, G1) accepts all disturbance
sequences from 6(1), since W1 is assumed to be almost (E, F, G)-invariant. To
prove that d(E22, Fee 0) possesses the uniqueness property, let us consider any
sequence (x) such that x=0 and ((X2k),O,O)@d(Eee, Fe_,O). Put h:=
A(Ell, Fll, G1; 1) (cf. Proposition 1.5). Let + := x, for k77o, and $:= 0, for
k =0, 1,..., h- 1. It is immediate that ((), 0, 0) d(Eee, F2e, 0). It follows from
the equivalence (a)<::>(c) of Proposition 1.5 that there exists ((,),())

--1__6() x 6S() such that Xo 0 and ((), (), (-Ee+ + Fle)) d(Ell, Fll, G).
It is easily seen that ((+), ()) (E, F, G) and -1Xo+=0. Hence (+)
6-(C(E, F, G)) and, since C(E, F, G)c W1, () 0. But then, of course, (x) 0.

(c)=:>(a) In view of Proposition 2.1, W1 is almost (E,F, G)-invariant. Let
((Xk), (Uk), (Zk)) d(E, F, G) be such that (Zk) 6(Lrl) and Xo W. Then there exist

A-(uniquely defined) (x) 6o (i), for 1, 2, such that (Xk) (X) + (X). We can easily
check that ((x), 0, O)d(Eee, Fez, 0). But x=0; hence the uniqueness assumption
ensures that (x) 0, i.e., (Xk) 6-(T).

COROLLARY 3.1. The space (E, F, G)+ (E, F, G) is the greatest strongly almost
@(E, F, G)-invariant subspace. The space C(E, F, G) is the smallest strongly almost
@(E, F, G) -invariant subspaee.

Proof The proof is an obvious consequence of Corollary 1.1, Proposition 1.2(6)
and the equivalence (a)<=>(b) of Theorem 3.1.

Another consequence of Theorem 3.1 is the following.
PROPOSITION 3.1. Let (1,2;1,2 0-//.) be a Kalman decomposition of

(, , all) for the triple (E, F, G). Let (Ell, E12, 0, E22; Fll, Fie, 0, Fee; G1,0) be the
lO-tuple corresponding to (E, F, G) for this decomposition. Let //V2 := o/g. fq 2, where
is a strongly almost @(E, F, G)-invariant subspace. Then Pl# 1 O) liVe, Et4#+ Ft4#+
Im G 1 03 (E22 7#2 + F2e //V_), and 7g’e is almost (E22, F22, O)-invariant. Conversely,
let oWe ;Te be any almost @(Eee, Fe2, O)-invariant subspace. Then 1 O) oW2 is strongly
almost E, F, G)-invariant.

Proof Since 1 c oW (cf. Theorem 3.1) the equality oW 1 oW f) We) 1 03 oWe
can be checked using the modular distributive law. From this the equality EoW+ FoW+
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ImG=Lr1@(E227/V2+F22W2) follows immediately. Note that 6l=C(E,F, G) is
almost @(E, F, G)-invariant (of. Corollary 1.1(1)). Hence Proposition 2.1 ensures that
@d(E11, Fll, G1) accepts all disturbance sequences from +Oo(Lrl). Now, the almost
@(E=, F2, 0)-invariance of /,V2 follows from Proposition 2.2.

The proof of the second statement is an immediate consequence of Proposition
2.2 and Theorem 3.1.

Before formulating our next result we recall (cf. [28], [30]) the following definition.
DEFINITION 3.2. A subspace //V c is said to be an (E&F)-deflating subspace if

and only if the condition dim 7V dim (E//V+ FW) holds.
PROPOSrrION 3.2. Let @a(E, F, O) be a given regular system. Then the set of all

almost @(E, F, O)-invariant subspaces coincides with the set of all (E&F)-deflating
subspaces. Moreover, the set is a sublattice of Lat

Proof See Corollary 4.1 and Theorem 4.2 of [5] for the proof.
The theorem to be given below shows that some properties of strongly almost

(E, F, G)-invariant subspaces can be expressed by corresponding properties of a
certain (regular) subsystem of (E, F, (3). This fact will allow us to use some results
of [5].

THEOREM 3.2. Let E, F, G)(gg, 2g) x (gg, 2g) x (, 2g) be a given triple of
linear maps. Let (1, 2, 3; N1, N2,293; 07/) be a Kalman decomposition of gg, 2g, 71)
satisfying, in addition, ggl gg2 @(E, F, G) + E, F, G) and 2gl 2g
E@(E, F, G)+ F(E, F, G)+Im G. Assume that (Eli,’" ", G3) is the 21-tuple corre-
sponding to (E, F, G) for this decomposition. Then the following statements hold.

(1) E21--- F21--0, E3,-- F31-- 0 E32 F32-- 0 G2--- 0, G3-- 0.
(2) The system d (E22, F22, 0) is regular.
(3) The set of all almost @(E22, F22, O)-invariant subspaces forms a sublattice of

Eat (2).
(4) The set of all strongly almost (E, F, G)-invariant subspaces forms a sublattice

of Lat (a). Moreover, this lattice is isomorphic with the lattice ofall almost (E22, F22, 0)-
invariant subspaces.

Proof. We begin by observing that the decompositions (1, 2, 3 2gl, 292,293 07/)
and (ggl@2, 3; NI@N2, N3; ) are good (cf. Corollary 1.1 and the equivalence
(b)<=>(c) of Proposition 1.6).

(1) The proof of (1) is immediate in view of the above.
(2) Let (Ell,"" ", G2) be the 10-tuple corresponding to the triple (E, F, G) for

the decomposition (1@ ;T2, 3 291@ 292,293 07/). By Proposition 2.1, the system
@d(/ll fill (1) accepts all disturbance sequences from +

6o (Lrl @ Lr2). Now applying
Proposition 2.2 for the system @d(/ll,fill, (1), we obtain that the system

+@d(E22 F22 0) accepts all disturbance sequences from o(292). Now it remains to
prove that @d(E22, F22 0) possesses the uniqueness property. For this, we first note
that the implication (a)(c) of Theorem 3.1 guarantees that @d(22, 1g’22, 0) possesses
the uniqueness property. This fact allows us to prove that I=Cg(E,F, G)=
@(ll,/311, (1). It follows that gl is strongly almost @(/11,/311, (l)-invariant. Now,
again using the implication (a)(c) of Theorem 3.1, we obtain that the system
@d (E22, F22,0) possesses the uniqueness property.

(3) The proof of part (3) follows from statement (2) and Proposition 3.2.
(4) We begin by noting that the map 7/V2@(E, F, G)@ 7/V2 from the Lat (gg2)

into the Lat (f) is a morphism of lattices, i.e., it preserves sums and intersections of
subspaces. Using Prooosition 3.1 and statement (3), we obtain that the set of all strongly
almost @(/11,/311, )-invariant subspaces forms a sublattice of Eat (fl@ 2). Let us
now recall that l@T2 r(E, F, G)+(E, F, (3) is the greatest strongly almost
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@(E, F, G)-invariant subspace of (cf. Corollary 3.1). Hence, the set of all strongly
almost @(/11,/31, ()-invariant subspaces coincides with the set of all strongly almost
(E, F, G)-invariant subspaces. [q

The following generalization of Proposition 3.2 follows immediately from
Theorems 4.1 and 4.2 of [5].

PROPOSITION 3.3. Let d(E, F, D) be a given regular system. Then the set of all
almost (E, F, D)-invariant subspaces 7IV satisfying the inclusion ImD ETV+ FT/V

coincides with the set of all (E&F)-deflating subspaces satisfying the same inclusion.
Moreover, the set is a sublattice of Lat (). The smallest element of this sublattice is
C(E, F, D).

Now we are ready to establish the main result of this section.
THEOREM 3.3. Let (E, F, (3) (, )x (:T, )x ’(, ) be a given triple of

linear maps, let be a subspace of Lr, and let D (,) be the canonical injection

from into . Assume that d (E, F, G) accepts all disturbance sequences from -(@).
Let (1, , 3; 1,, 3; o-//, ) be a decomposition of gT, , 71 x satisfying
1= (E,F, G), 2=r(E,F, G)+(E,F, G), I=EC(E,F, G)+Im G, and

e E(E, F, G)+ F(E, F, G)+Im G. Assumethat (EI,"" ", F33 G1, D1, G2,
De, G3, D3) is the 24-tuple corresponding (E, F, G x D) for this
(1, _, 3; 1, Lre, 3; , ). Then the following statements hold"

(1) E21-- Fel--0, E31-- F3, -0, E3e F3e 0, Ge=0, G3=0, D3=0.
(2) The set of all almost (Eee, Fe_, O)-invariant subspaces 7de satisfying Im De

E22 0////"2 + Fee c]/’2 forms a sublattice of Lat (e). The smallest element of this sublattice is

(, F, D).
(3) C(E, F, G D) C(E, F, G) C(Eee, Fee, D) and

EC(E, F, Gx D)+ FC(E, F, G D)+Im G

(E(E, F, G)+ Im G)(EeeC(Eee, Fez, De)+ FeeC(Eee, Fez, De)).

(4) The set of all strongly almost (E, F, G)-invariant subspaces 7/1/" satisfying
@ E/+ FT#"+ Im Gforms a sublattice of Lat (). The smallest element of this sublat-
tice is E, F, G D). Moreover, this sublattice is isomorphic to the lattice of all almost

(Eel_, Fez, O)-invariant subspaces 7’e satisfying Im D2 Ee7r2 + FezWe.
Proof. (1) Since the system d(E, F, G) accepts all disturbance sequences from

+o() the implication (a)=:>(b) of Proposition 1.5 yields that

@ c 10)Lre E(E, F, G)+ F(E, F, G)+ Im G.

Hence D3--0. The rest of the proof follows from Theorem 3.2(1).
(2) The pr,oof of part (2) follows from Theorem 3.2(2) and Proposition 3.3.
(3) Let (E,...,/ee; 1,/1,0, 0) be the 12-tuple corresponding to the triple

(E, F, G) for the decomposition (l(R):Te, T3; le, 3; a//, ). By Corollary 3.1
e is strongly almost (E, F, G)-invariant. Since the decomposition (1)
e, 3; l)e, Lr3; ) is good for the triple (E, F, G) we can use the implication
(a)(c) of Theorem 3.1 to show that the system d (/ee, /3ee, 0) possesses the unique-
ness property. Hence (E, F, G D) c(/11 fil, 1 /). Now it remains to use
Proposition 2.4 in the system d(/l, /311, tl /1) to get

CO(E, F, G x D) (E, F, G)ff) c6(E22, F22 De)
and

E(E,F, GxD)+F(E,F, Gx D)+Im G=(E(E,F, G)+Im G)
(R) (Eee (Eee, Fe:, De) + Im De).

But, in view of Propositions 3.3 and 1.2(6),

E22(Eee, Fee, De)+ Im De Ee(Eee, Fez, De)+ Fez(Eee, Fee, De).
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(4) Part (4) can be proved using the same argument as in tb.e proofs of Theorem
3.2(4) and Theorem 3.3(2), (3).

Theorem 3.3 allows us to prove the following corollary.
COROLLARY 3.2. Let (E, F, G)(, Lt)(,) (o-//, ) be a given triple of

linear maps, let @ be a subspace of, and let D (@, Y{) be the canonical injection

from @ into . Assume that a(E, F, G) accepts all disturbance sequences from -(@).
Then @c E(E,F, GxD)+F(E,F, G D)+Im G and

dim (E(E, F, G x D)+ F(E, F, Gx D)+im G)-dim (E, F, G D)

--dim (E(E, F, G)+ Im G)-dim (E, F, G).

In particular, when G 0, @ E E, F, D) +F E, F, D) and dim (E(E, F, D) +
F(E, F, D)) <-dim (E, F, D).

Proof The first statement of the corollary is a consequence of Theorem 3.3(4).
To prove the second statement, let us note that with the notation of Theorem 3.3(3)
we have

and
C(E, F, G x D) ((E, F, G)@ C(E22 F22 D2)

E(E,F, GxD)+F(E,F, Gx D)+Im G
(E(E, F, O)+ Im G)((E22C(E22, F22 m2)q-F2(E22 F22 D2) ).

In view of Theorem 3.2(2) the system @d(E22, F22 0) is regular. But C(E22 F22 D2)
is a deflating subspace in view of Proposition 3.3, thus

dim (E22 (E22, F2, D2) + F2 (E2, F2, D)) dim (E2, F22, D2).

The rest of the proof is a matter of an elementary calculation.

4. Coasting and sliding subspaces. In this section we will generalize the concept
of sliding and coasting subspaces introduced for a standard system by Willems [33].
This concept has been applied in [25] to study the problem of regularizability of the
system. The coasting and sliding subspaces are defined there with the aid of subspace
recursions and so their dynamical meaning is not obvious. In the present paper we
give definitions by means of dynamical reasoning.

DEFINITION 4.1. A subspace 7’c will be called a coasting subspace for
@(E, F, G) if and only if it is a uniqueness subspace for @(E, F, G), which is also
@(E, F, G)-invariant.

DEFINITION 4.2. A subspace 7/r c is said to be a sliding subspacefor @(E, F, G)
if and only if it is simultaneously a uniqueness and a reachability subspace for
@(E, F, G).

Note that 7t/" is a coasting subspace if and only if W= 7(E, F, G)I and
(E, F, G)]= 0. Similarly, 7t/’ is a sliding subspace if and only if
and C(E, F, G)It= 0.

We shall need in the sequel the following lemmas.
LEMMA 4.1. Let , be, and - be subspaces of such that be + - and f3 - O.

Then there exists a subspace satisfying be, , and - -.
LZMMA 4.2. Let 71# be any @(E, F, G)-invariant subspace. Then for all j 7/0

and for all i= 0,..., j- 1 there exists t/Ui such that

= i(R) 2(E, F, O)lTf and , F-a(ETV, + Im G)+ 2-i_l(E, F, G)17.
Proof We first prove the statement for i= 0. For this let a subspace Wo be an

arbitrary direct complement of i(E, F, G)I to the space W. Applying Propositions
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1.2(1) and 1.4(5) (the latter for @(E, F, G)177 and the modular distributive law we
obtain

77o 77 F-(E77+Im G)=F-1(E77o+ECj(E,F, G)[77+Im G)

F-l(E77o+ F%_(E, F, G)[77+ Im G)

F-l(E//F’o + Im G)+ cj_(E, F, G)[77.
So, for 0 the statement holds. Now, let the statement be true for some 0, ., j 2,
i.e., 77= 77iff cj(E, F, G)177 and 77i c F-(E77i + Im G)+ j_i_(E, F, G)177, for
some 77 c . By Proposition 1.4(1) -i-l(E, F, G)I 77 (E, F,
cj__I(E,F G)177=0. In view of Lemma 4.1, there exists a subspace
F-(E77 + Im G) such that 77ff j_-I(E, F, G)]77= 77i+03 j__(E, F, G)177.
Hence we obtain 77= 7703 (E, F, G)I= i++ (j(E, F, G)I g. But + so
r= +,(R) (E, F, G)I. Now applying again Proposition 1.4(5) and the modular
distributive law, we get

7//’i+ F Et/t/’i + Im G) F Et4Z + -t- E E, F, G)177+ Im G)

F-(E77i+l + F__2(E, F, G)]77+ Im G)

F-(E77i+1 + Im G)+ %_-2(E, F, G)[ 77.

The theorem below is well known for a standard system (cf., e.g., [33, Thm. 7],
[29, Lemma 2.24]). Let us recall that the "classical" proof of this theorem requires
construction of a feedback map. In this context note that the proof presented below
is purely geometric.

THEOREM 4.1. Let (E,F, G)f(W, Lr) x(, N) x(a//, Lr) be given, and let
be any @(E, F, G)-invariant subspace. Then there exists a coasting subspace for the
system @(E, F, G) such that 77t/’= C(E, F, G)ITCq)6f and Et+Im G
(E(E, F, G)177+ Im G)E.

Proof. It follows from Lemma 4.2 (forj T(E, F, G)+ 1 and i= ),(E, F, (5)) that
for every (E, F, G)-invariant subspace o/ there exists an (E, F, G)-invariant sub-
space o such that 77- (E, F, G)177ff). Since ((E, F, G)[c ((E, FG)]77) f) o---
0, o is a coasting subspace of (E, F, G). It is obvious that E/Y’+Im

E(E, F, G)177+E+Im G. Proposition 1.4(5), states that Er(E, F, G)I+ Im G-
F(E,F,G)It+ImG. Hence to complete the proof we shall show that
(F(E, F, G)[77+ Im G) Eo--0. For this we consider arbitrary
(Fr(E,F, G)[/+Im G)fE. Then we can find c((E,F, G)[/, u a//, and s
satisfying 2 Es Fc+ Gu. Since o/= (E, F, G)I/ we can apply Proposition 1.2(6)
to get the relation s E-I(Fr(E, F, G)[/+ Im G)f)o= ((E, F, G)[r. But s, so
s 0, and consequently z 0.

The following lemma is quite useful.
LEMMA 4.3. Op(E, F, G) Op(E, F, G) f3 77(E, F, G) + (E, F, G).
Proof. The proof follows from Proposition 1.1 and Corollary 2.2 and Proposition

2.7 of [3].
Lemma 4.3 allows us to generalize Theorem 7 of [33]. Note again that the proof

presented below uses an argument different from that of Theorem 7 of [33].
THEOREM 4.2. Let (E,F, G)(W, ) x(W, ) x(//, ) be given, and let 77/7

be any reachability subspace for the system (E, F, G). Then there exists a sliding
subspace b for the system (E, F, G) such that 77= C(E, F, G)ITI/’O) and
Im G= (E(E, F, G)177+Im G)q) FS

Proof. Every reachability subspace 77 for (E, F, G) is (E, F, G)-invariant.
Therefore (cf. Proposition 1.2(2)) 77 is also (F, E, G)-invariant. Applying Theorem
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4.1 to the system @(F, E, G), we obtain that there exists a coasting subspace 5e for
@(F, E, G) such that 7/V= (F, E, G)ITVSf and FIV+ Im G= (F(F, E,
Im G)F5. Applying Proposition 1.4(4), (5), we obtain F(F, E, G)IW+Im G=
E(E, F, G)IT,V+ Im G. So it remains to prove that ow is a reachability subspace for
@(E, F, G). Since = 77(E, F, G)low, then by Lemma 4.3 we get the equality
(E, F, G)low fq ((E, F, G)[Se) + (E, F, G)[5. Note, that since IV is a reachability
subspace for @(E, F, G), 77(E, F, G)I 7V ((E, F, G)I 7V) fq ( (E, F, G)I 7V)
C(E, F, (3)1 W. Now applying Proposition 1.4(4), we obtain (E, F, (3) W
(F,E, G)IT/V. It yields ((E,F, G)ISe)f’I(r(E,F, G)lSe)cfq((E,F,
f3((F,E, G)IgV). But b is a coasting subspace 5e for @(F,E, G). Hence
((F,E, G)ITV)=0. We have shown that 5=(E,F, G)IS, so oW is a reachability
subspace for @(E, F, (3). Since (E, F, G)low= (F, E, G)low=0 ow is a sliding sub-
space for (E, F, G).

The corollary below summarizes the results ofTheorems 4.1 and 4.2. For a standard
control system it reduces to Theorem 7 of [33] or Theorem 2.27 of [29]. If O/" , a
similar result is announced in Theorem 3.1 of [25] for a class of implicit systems.

COROLLARY 4.1. Let W be any almost @(E, F, G)-invariant subspace. Then there
exist a coasting subspace - and a sliding subspace 5 for the system @(E, F, G) such
that 7IV= (E, F, G)IT/V and EgV+ F//V+ Im G=(E(E, F, G)IgV+ Im G)
E-O)F5. In particular, when 7V is strongly almost @(E,F, G)-invariant,
(E, F, G)-and EgV+ FTV+ Im G= (E(E, F, (3)+ Im G)E-F.

Proof First observe that for arbitrary 7V c , 77(E, F, G)IT/V is an @(E, F, G)-
invariant subspace, while (E, F, G)IgV is a reachability subspace for @(E, F, G). So
we can use Theorems 4.1 and 4.2 to obtain (E, F, G)ITF= (E, F, G)ITg ff and
5 (E, F, G)] IV (E, F, G)I 7/V 5e, for some coasting subspace - and sliding subspace
5e. Note that f] E, F, G kV E, F, G kV f] E, F, G T/V C E, F, G)I//V,
hence - (E, F, G)IW= - q(E, F, G)I//V 0. Using a similar argument, we can
prove that (E, F, G)ITV= 0 and (E, F, (3)]kV f-] (-ff-))= 0. By Proposition 1.6
kV= (E, F, G)I+(E, F, G)[; thus kV= (E, F,
To prove the second equality consider an arbitrary

z(E(E,F, G)]7/V+ Im G)f"IF=(EC(E,F, G)]kV+ E-+ Im G)f"IF.

Then there exist v (E, F, G)] o/g, u , and s O such that z Ev + Gu Fs. Hence,
by Proposition 1.2(4),

s f-] (F-I(E(E, F, G)It/V+ Im G))ffl

0f (E, F, G)lkV= 5f] C(E, F, (3)17/V 0.

So z =0 and therefore (E(E, F, (3)[V+ E-+ Im G) f] F5 0. By a similar argument,
we obtain (E(E,F, G)[kV+FSe+Im (3)E-=0 and (E(E,F, (3)lkV+Im G)
(E-F5)=0. Since (by Proposition 1.6)

EW+ FkV+ Im G= E(E, F, G)]W+ F(E, F, G)[ W+ Im G

E(E, F, G)[W+ E3-+ F5+ Im G

we get the desired equality.
The rest of the proof follows immediately from the equivalence (a)<=>(b) of

Theorem 3.1. 1
Remark 4.1. Note that the proof of Lemma 4.2 is constructive. Therefore we can

compute explicitly coasting and sliding subspaces with the properties described by
Theorems 4.1 and 4.2 and Corollary 4.1.

We also record the following simple result.
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PROPOSITION 4.1. A subspace 3-c is a coasting subspace for @(E, F, G) if and
only if it is @(E, F, G)-invariant and 3- I(E, F, G)=0. In particular, E3- 3- if 3-
is a coasting subspace for @(E, F, G). Similarly, a subspace 90 c is a sliding subspace
for (E, F, G) if and only if it is a reachability subspace for @(E, F, G) and 90CI
(F, E, G)=0. In particular, F6P if90 is a sliding subspace for @(E, F, G).

Proof Note that for any @(E,F, G)-invariant subspace 3-(E,F, G)I3-
3-f-) I(E, F, G). Since, by Proposition 1.4(3) (E, F, G)I3- is the smallest @(E, F, G)-
invariant subspace containing (E,F, G)I3- (E,F, G)I3-=0 if and only if
(E, F, G)I3-=0. We have shown that 3- is a coasting subspace if and only if it is
(E, F, G)-invariant and 3-f3 (E, F, G)=0. To prove that E3- 3- for a sliding
subspace 3-, it is sufficient to note that Ker E f) 7/tr c (E, F, G) f’l 7" for any W being
@(E, F, G)-invariant.

The proof of the second statement is similar to the first and so is omitted.
In the following definition we distinguish a certain class of almost @(E, F, G)-

invariant subspaces.
DEFINITION 4.3. A subspace //V is called a regularizing subspacefor the system

(E, F, G) if and only if it is almost @(E, F, G)-invariant and it is a uniqueness
subspace for (E, F, G).

In other words, 7/V is a regularizing subspace for the system @(E, F, G) if and
only if 7V is almost @(E,F, G)-invariant and (E,F, G)lr=0. It happens that
regularizing subspaces play an important role in solving the DDPU.

We shall need the following equivalent characterization of regularizing subspaces
for a system @(E, F, 0).

PROPOSITION 4.2. Let (E, F, 0) (f, f) x (, Lr)x (, ). Assume (1,, e; 11) to be a good decomposition of (; f; 0-//), and (Eli," ", Fez; 0, 0) to be the
l O-tuple corresponding to the triple (E, F, O) for this decomposition. Then the following
statements are equivalent"

(a) is a regularizing subspace for (E, F, 0).
(b) d (El 1, F1 1, O) is regular.
(c) is an (E&F)-deflating and a uniqueness subspace for (E, F, 0).
(d) There exist a coasting subspace - and a sliding subspace 90 for the system

d(E, F, O) such that 3- and 1 E3-
Proof. The proof follows easily from Propositions 1.7, 2.1, 4.1, and Corollary

4.1.
PROPOSITION 4.3. Let (E, F)(, .) x(, ), @ be a subspace of, and let

D (,) be the canonical injectionfrom @ into. Suppose that the system d(E, F, O)
accepts all disturbance sequences from -(9 ). Then there exists a regularizing subspace
Wfor the system d(E, F, O) such that 74 (E, F, D) and 9 E74+ FT/. Moreover,
such a subspace 7" can be chosen so that if (1, 2; 1, fe; 9) is a decomposition of
(; ; 9) satisfyingl 71, 1 E74/’+ FT/I/’, and (Ell," ", F2e; D, De) is the lO-tuple
corresponding to (E, F, D) for this decomposition, then Eel Fel 0, De 0, the system
d(E, F, O) is regular, and 1 (Ell, FI, D).

Proof. Theorem 3.3(4) ensures that (E, F, D) is strongly almost (E, F, 0)-
invariant. Now, by Corollary 4.1, there exist a coasting subspace 3- and a sliding
subspace 9 for the system (E, F, 0) such that (E, F, D)= (E, F, 0) -90 and
EC(E, F, D)+ FC(E, F, D)= EC(E, F, O)EffF90. Moreover, 9c EC(E, F, O)
E@F90. Let c be such that q)((E, F, 0)CIKer E)= (E, F, 0). Put 3-:=
03 -. Then 3- is (E, F, 0)-invariant by Propositions 1.3 and 1.2(3). Since E?
E3- 3-, and E3- E@ E3-, we get E3- 3-. Now, by Proposition 4.1, 3- is a coasting
subspace for the system (E, F, 0). Thus 9c E3-O3F90. Let (1, e; 1, e; 9) be a
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decomposition of (:T;:;@) such that 1:--"( and I:=E@Fff Let
(Ell, ", F22", D1, D2) be the 10-tuple corresponding to (E, F, D) for this decomposi-
tion. Then E21 F21 0 and D2 0. Note that bythe implication (d) (a) of Proposition
4.2, 1 is a regularizing subspace. On the other hand, 1--ECl + Fcl, in view of
Proposition 1.2(1), (2). Now, by the implication (a)(b) of Proposition 4.2,
a(/11, 11,0) is regular. Let /:= (/11,/11,/31). Proposition 3.3 ensures that
is an (El&Fl)-deflating subspace and Im D c EI o//]f + F11/d/’. Since the considered
decomposition of (, Z, ) is good, 74/" is also (E&F)-deflating and Im D
The rest of the proof follows from Proposition 4.2.

5. The disturbance decoupling problem. This section is essentially based on the
results reported in [2].

We begin by reformulating the definition of the DDP and the DDPU given in 0.
PROPOSITION 5.1. Let

(E, F, G, D, H)(,)x(,) x(ll, )x(,) x(2, o-tj)

be a given quintuple of linear maps.
(1) The DDP is solvable for the quintuple (E, F, G, D, H) ifand only if there exists

K(, ell) such that the system a(E, F+GK, 0)lKer H accepts all disturbance
+sequences from o (Im D).

(2) The DDPU is solvable for the quintuple (E, F, G, D, H) if and only if there
exists K (T, all) such that the system @a (E, F + GK, 0)[Ker H accepts all disturbance
sequences from o-(Im D) and the system @a(E, F+ GK, G) possesses the uniqueness
property.

It happens that for solving the above-stated problems it is of crucial importance
to find necessary and sufficient conditions for a given subspace to be @(E, F+
GK, 0)-invariant for some K (, ). These conditions have recently been found
by Fletcher and Aasaraai in Theorem 2,1 of 17]. The conditions are ET/V FTg"+ Im G
and dim (ET//" fq Im G) <_- dim ((F-1 Im G) f’) 7/V). In fact, for solving the DDP we should
answer a more general question. This is done by the following lemma, the proof of
which is a slight modification of that given in [17].

LEMMA 5.1. Let 7g’;T and @. Then there exists K(, ) such that
EW+ c F+ GK W if and only if ETV + FW+ Im G and dim ((
Im G) -< dim ((F-11m G) fq 7/V).

Proof. (3) Let (ei)---1 be a basis in (ETC+ )fq Im G. Then there exists a linearly
independent sequence (wi)

_
such that ei (F + GK) wi, 1, ., k. Note that w

(F-1 Im G)f) 7V, since e Im G, for i= 1,. ., k. Hence the subspace F-1 Im G
contains at least k =dim ((ET/V+ @) fq Im G) linearly independent vectors.

() Let (e)a=l be a basis in EW+ satisfying span{e;i=l,...,k}=
(ETCA+@)fqlmG. Then there exists (/i)f=l and (wi)di=k+l such that ei=Gti, for

1, , k, and eg Fwi + Gi, for k + 1, , d. It is easy to check that (t)=1 are
linearly independent and so are (W)a=k+l. Since k=dim((ETV+@)fqlmG)<=
dim ((F- Im G)f3 W) there exists a linearly independent sequence (wi)= such that
w (F- Im G)fq kV for i= 1,. ., k. Hence we can find (ai)-i such that Fw=
i=l,...,k. Let ui:=ti+tT, for i=l,...,k and ug:=t, for i=k+l,...,d. Note
that ei Fwg + Gu, for i= 1,..., d. To show hat (wi)a__ are linearly indeaPendent
suppose d--lCWi=0, for some real c, i=l ’’’, d. It yields that e:==l ce=-- ceiu (E7+ @) fq im G, hence c 0, for k + 1, , d. Since the sequence
(w)-i is linearly independent, we obtain ci =0, for i--1,..., k. Now it is sufficient
to choose any map K (, 0-//) satisfying Kw u, i= 1,..., d.

Using Lemma 5.1, we can prove the following useful result.
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LEMMA 5.2. Let 7/’c and @ . Then there exists K (, a//) such that
E74/’+c(F+GK)7 ifET/++Im G FTd/’+Im G and dim (ETd+ @)-<_dim /4/.

Proof Let := FIT. Then it is easy to check that (F-1 Im G)fq 7/= -1 Im G.
Hence

dim ((F-11m G)f-) W’) dim/--1 Im G=dim (Im fqIm G) +dim Ker/3
=dim Im/3+ dim Im G-dim (Im ff+ Im G) +dim Ker fi
dim W+ dim Im G dim (FW+ Im G).

On the other hand,
dim ((EO/’+) f3 Im G) dim (EW+ @) +dim Im G-dim (EW+ @ + Im G).

Therefore dim ((EW+) f3 Im G) <= dim ((F-1 Im G) fq o/.) if EW+ @ + Im G
FW+Im G and dim (EW’+@)=<dim 7/’. Now the proof follows from Lemma
5.1.

The main result of the paper is the following.
THEOREM 5.1. Let (E, F, G)w(,)x(;T,)w(,) be a given triple of

linear maps, let be a subspace of Y{, and let D (,) be the canonical injection
from into Y{. Then there exists K (, ?1) such that @d(E, F+ GK, O) accepts all
disturbance from -() if and only if @d(E, F, G) accepts all disturbance sequences
from o() and dim(E(E,F, G D)+@)-<_dim C(E,F, GD).

Proof (3) We first prove that dim (Eq(E, F, G x D) +) =< dim c(E, F, G D).
Applying Corollary 3.2, we immediately obtain the inclusion @ EC(E, F + GK, D) +
F+ GK c E, F+ GK, D) and the inequality

dim (E(E, F+GK, D)+(F+GK)(E, F+GK, D)) =< dim (E, F+GK, D).
Hence dim (E(E, F+GK, D)+ @) <=dim (E, F+GK, D). Let us observe also that

(E, F+ GK, D)
(E, F + GK, D) c(E, F, G D). Therefore

dim (E(E, F, Gx D)+ @)=dim (E/+ E(E, F+ GK, D)+ 9)
-< dim ET/#+ dim EC E, F+ GK, D) + @
<= dim W+ dim E, F + GK, D)
=dim (E,F, GD).

To end the proof of the implication it is sufficient to note that the system @d(E, F, G)
o() ifdaccepts all disturbance from + (E, F + GK, 0) accepts all disturbance sequen-

ces from -(@).
() We begin by observing that, in view of Theorem 3.3(4) the subspace

@(E, F, G x D) is strongly almost @d(E, F, G)-invariant. So we can use Corollary 4.1
to conclude that

q(E, F, G x D) (E, F, O)-6
and

E(E,F, GxD)+F(E,F, Gx D)+Im G=(EC(E,F, O)+Im G)E-FY
for some coasting subspace - and sliding subspace ow. Let W be chosen so that
C(E, F, G)= Wq3((E, F, G)(3 Ker E). Note that W is @(E, F, G)-invariant and
EW W (cf. Proposition 1.3). Let (1, 2, 3; Yl, 2, Y3; , @) be a decomposition
of (,,x)satisfying 1= /g’q3-, 2=(C(E,F,G)fqKerE)Sf, =EI
ET//ff) E3-, and

I2=EC(E,F, GxD)+U(E,F, GxD)+ImG
(ECC(E, F, G)+Im G)@E-q3FSf.
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Assume that (Ell ", F33 G1, D1, G2, D2, G3, D3) is the 24-tuple corresponding to
the triple (E, F, G >< D) for the decomposition. Since (t91 ( 2, 93 1 2, 3 0, )
is a good decomposition of (, 2%, //x @) for the triple (E, F, GD), E31-- F31--0
E32 F32 0, G3 0, and D 0. Similarly, Efl Y implies E21 0. Observe now that

YY2 (E(E, F, G)+ Im G)E-F0= E/F+ E-+ Im G+ FSe

y + fry + Im G.

Hence A2 F22f2 + Im G. Note also that E(E, F, G x D)+ @ EW+ E-+E+@
+ E0 + @. Therefore E(E, F, G D) + @ Y (E22f2 + Im D2) and hence

dim (E(E, F, G D) + @) dim 1 -" dim (E22+ Im D2).

On the other hand,

dim c(E, F, G x D) dim (1 2) dim 91 -t- dim 2.
But

dim dim (E//V E) dim EkV+ dim E- dim kV + dim - dim 1,

since EV V and E- - (cf. Proposition 4.1). Thus dim (E(E, F, G x D) +) <_-

dim @(E, F, G x D) implies that dim (E222 + Im D2) _-< dim 2. We shall now prove
that E222+ Im G2 + Im D2 F222+ Im G2. First observe that (by Proposition 1.4(5))

F(E, F, Gx D)+Im G E(E, F, Gx D)+Im G+.

It follows that 2 F222 + Im G E222 n
t- Im G2 nt- Im D2 Hence 2

E222 -- Im G+ Im D2 F222 -1
t- Im G2. Now we can use Lemma 5.2 to show that there

exists KzEo99(2,/) such that E22czd-ImOz(Fzznt-GzK2)2 and consequently
@d(E22, F22 ql- G2K2, 0) accepts all disturbance sequences from og(Im D2). Note that
l being a sum of @(E, F, G)-invariant subspaces, it is also @(E, F, G)-invariant (cf.
Proposition 1.2(3)). Therefore FlC Im G2 and hence we can find K1E (1, o)
such that Fz + GzKI=0. Let K e(, o) be such that K]I K1, Klf2 K2, and
K]3 =0. Then the 24-tuple corresponding to the triple (E, F+ GK, G x D) for the
decomposition (fl, 2, 3 N, Az, Y3 o?/, @) of (, 2, x @) takes the form

(Ell, E12, E13,0, E22 E23 0, 0, E33 Fll + GK1, F12
nt- GIK:, FI3, O, F22 + G2K2, F32, 0, 0, F33 G1, D, G2, D2, 0, 0).

The map Ell is invertible so obviously d(Ell, Ell + G1K1,0) accepts all disturbance
+(AI). On the other hand, we know from the previous considerationssequences from Oo

that @a(E22, F22+ G2K2, 0) accepts all disturbance sequences from o-(Im D2). Hence,
in view of Proposition 2.2, the system @d(E, F+ GK, 0) accepts all disturbance sequen-
ces from -(@). F1

Theorem 5.2 to be given below completely solves the DDP.
THEOREM 5.2. Let

(E, F, G, D, H)(,)x(, f) x(-li, f) x.(@, ) x.(,

be a given quintuple of linear maps. Then the DDP is solvable for the quintuple
(E, F, G, D, H) if and only if the following conditions hold:

(i) ImDc E(E,F, G)IKerH+F(E,F, G)]Ker H+lm G;
(ii) dim (E@(E, F, G x D)]Ker H + Im D) -< dim @(E, F, G x D)]Ker H.
Let us recall the concept of U-regularizability (cf. [9], [16], [25], [26]).
DEFINITION 5.1. We say that a system @d(E, F, G) is U-regularizable if and only

if there exists K(, 0) such that the system @d(E,F+GK, G) possesses the
uniqueness property.



1288 BANASZUK, KOCIICKI, AND PRZYLUSKI

To prove our next result we shall need the following lemma (cf. [9, Thm. 3.1]).
(The proof of the result given in [9] is based on construction of a feedback map K
such that Ker(F+GK)f-I @(E,F+GK, G) =0.)

LEMMA 5.3. Let (E, F, G) (,) x (T, ) x 5g(1, ) be given. Then the sys-
tem @a(E, F, G) is U-regularizable if and only if dim q(E, F, G) <-

dim (E(E, F, G)+ Im G).
We can now prove the following theorem solving the DDPU.
THEOREM 5.3. Let

(E,F, G,D,H)(,Lr)x(,)x(ll,)x(,Lr)x(W, )

be a given quintuple of linear maps. Then the DDPU is solvable for the quintuple
(E, F, G, D, H) if and only if the following conditions hold"

(i) Im D c E77(E, F, G)[Ker H +F(E, F, G)]Ker H + Im G;
(ii) dim (E(E, F, G x D)[Ker H + Im D) =< dim (E, F, G x D)[Ker H;
(iii) dim (E, F, G) =< dim (E(E, F, G) + Im G).
Proof (==>) The proof is obvious in view of Theorem 5.2 and Lemma 5.3.
() We know from Theorem 5.2 that there exists K (W, /) such that

@d(E, F+G, 0)]Ker H accepts all disturbance sequences from o-(Im D). In par-
ticular, @d(E, F+ G/, 0) has the same property. Put/ := F + G/. By Proposition 4.3,
there exists a regularizing subspace 1 c for the system @(E, , 0) such that W1
(E,,D) and ImDcLrI:=EWI+W1. It is easy to check that (E,,D) c

%(E,F, GxD), so we obtain 1 %(E,F,GXD) and LrlcE(E,F, GxD)+
F(E, F, G x D) + Im G. Let 2, T3, Lr2, and Z3 be such that 1@ W2 %(E, F, G x D),
I@W2@W3=, Lr@Lr2=E(E,F, GxD)+F(E,F, GxD)+Im G, and Lrl@
Lr2@ 5f3 Z. Then (1, f2, f3 Z., Lr2, Z3; /, ) is a decomposition of (W, Z, 0//x @).
Assume that (Ell, ", F33; G1, D1, G2, D2, G3, D3) is the 24-tuple corresponding to
the triple (E, F, G x D) for this decomposition. Let K := K[ and Fyg := Fy + GyK, for
i, j- 1, 2, 3. It follows from the proof of Theorem 5.1 that we can choose K so that
K 0. Then E21 V21 V21 d- G2K 0, E31 F31 F31 --0, E32--- F32-- F32 0, D2 0,
G3=0, and D3=0. Since, in view of Theorem 3.3(4), 61@2= @(E,F, GxD) is
strongly almost @(E, F, G)-invariant, we can use the equivalence (a) :> (c) of Theorem
3.1 to conclude that @d(E33, 33,0) possesses the uniqueness property. Proposition
4.3 ensures that @d(Ell, 1, 0) is regular; hence dim 91 --dim Lrl. Thus

dim (ECg(E, F, G x D)+ FOg(E, F, G x D)+ Im G)- dim C(E, F, G x D)

dim -dim 2.
Let us observe now that @(E, F, G x D)-invariance of (E, F, G x D) implies that
Y{12 E(E, F, G x D)+ Im G+ Im D. Hence Proposition 2.5 ensures that the
equalities = E22@(E22 ,/22, G2) d- Im G2 and 2 @(E22,/22, G2) hold. Applying
Corollary 3.2, we obtain

dim Lr2- dim dim (E@(E, F, G)+ Im G)- dim (E, F, G).

This equality together with the inequality

dim(E(E,F, G)+Im G) => dim (E,F, G)

ensures us that

dim 2 dim (E22c(E22, P22, G2) + Im G2) dim 92 dim (E22 P22, G2).
So using Lemma 5.3, we can find /(,) such that @d(E22,/22+ G.2/2, 0)
possesses the uniqueness property. Let K (, ) satisfy/11 =0,/]2 K, and
/13 0. Put K :=/ +/. Now the 24-tuple corresponding to the triple (E, F + GK, D)
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takes the form

(EI, Ele, El3,0, E, E23 0, 0, E33; FI + G1K1, F12
+ GI(K2+ K2), F13,0, F22+ G:(K:+ K:), F23 0, 0, F33 D1,0, 0).

Since the systems d(Ell, Fl1+ G1/1,0), d(E::, F2:+ G:(/e+/:), 0), and
d(E33, F33,0) possess the uniqueness property by Proposition 2.6 the same property
has the system d(E, F+ GK, 0). Note also that since d(Ell, Fll + G1/1,0) accepts
all disturbance sequences from o-(Im D1), the system d(E, F+ GK, 0) accepts all
disturbance sequences from -(Im D). [3

COROLLARY 5.1. Let (E,F, G,D,H)(,Lt) (g,) x(-ll,) x(@,Lt) x
(gT, 1) be a given quintuple oflinear maps. Then the DDPU is solvablefor the quintuple
(E, F, G, D, H) if and only if the DDP is solvable for this quintuple and the system
@d E, F, G) is U-regularizable.

COROLLARY 5.2. Let @(E, F, G) be a regular system. Then the DDP is solvable if
and only if the DDPU is solvable.

Remark 5.1. Note that the conditions of Theorems 5.2 and 5.3 are easily checked
because the subspaces occurring in their formulation can be computed with the aid
of some subspace recursions (cf. the Appendix). Since the coasting and sliding sub-
spaces used in the proof of Theorem 5.1 can be determined explicitly (cf. Remark 4.1),
we can compute a feedback map solving the DDP. The most important step for
computing such a feedback is described in the (constructive) proof of Lemma 5.1. Let
us now discuss the DDPU. To solve the problem we should first compute a preliminary
feedback solving the DDP. Then it is sufficient to modify this feedback (as it is described
in the proof Theorem 5.3) so that the obtained "closed-loop" system possesses the
uniqueness property. But this can be made using standard methods of regularizability
(cf. [9], [16], [25], [26]).

Example. Consider the DDPU for a quintuple (E, F, G, D, H) defined as follows:

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1

E= 0 0 0 0 0 F= 1 0 1 1 0

0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 1

1 0 1

0 01 1

G= 0 D= 0 H=[0 0 0 0 1].
0

0 1

Let, for 1, 2, , 5, e denote the ith versor ofR. Since Ker H span {e, e, e3, e4},
we obtain

E ]Ker H

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 0 0 FIKerH= 1 0 1 1
0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 1
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We can easily check (cf. Remark 1.1) that

(E, F, G)lKer H span {el, e2}, (E, F, G)lKer H span {el, e3, e4},

(E, F, G)lKer H- span {el},
and

(E, F, G x D)lKer H span {e, e2, e3, e4}.

Thus conditions (i)-(iii) of Theorem 5.3 hold and the DDPU is solvable. Let us now
calculate the corresponding feedback map K. For this, decompose (according to
Corollary 4.1) the subspace (E,F, GD)IKerH into a direct sum of
(E, F, G)lKer H, a coasting subspace -, and a sliding subspace ,7’. Let us observe
that it is sufficient to put -= span {e2} and ow span {e3, e4}. The construction of the
feedback map now follows from Theorem 5.1 applied for the system @d(E, F, G)lKer H.
We can check that the map

where k11,"" ", k5 and k25 are arbitrary, solves the DDPU.
Let us note that here E@(E, F, G)[Ker H + F(E, F, G)lKer H + Im G N.

Hence, condition (i) of Theorem 5.2 (or equivalently of Theorem 5.3) is satisfied for
each map D. The equivalence (a):(c) of Proposition 1.5 ensures that the system

+@d(E, F, G)[Ker H accepts all disturbance sequences from 6o (Im D), independently
of the map D. Thus the "open-loop" disturbance decoupling problem considered in
[5] is solvable for every D. However we can easily find a map D for which condition
(ii) of Theorem 5.2 does not hold and hence the DDP is not solvable for the quintuple
(E, F, G, D, H). An example of such a map D reads as follows:

1 0

Remark 5.2. In the second version of the paper [17] (which was unknown to us
at the time the main results of the present paper were obtained) some necessary and
sufficient conditions for solving the DDPU have been established. More precisely, the
result of [17] says (in our terminology) that the DDPU is solvable for a quintuple
(E, F, G, D, H) (,) x(,) x (//, ) x (@, ) x (f, ) ifand only ifthe
system @d(E, F, G) is U-regularizable and there exist subspaces U, o/ Ker H and

such that the following conditions hold:
(i) is @(E, F, G)-invariant;
(ii) (3 Ker E 0;
(iii) W is @(E, F, G)-invariant;
(iv) dim (EW 711m G) _-< dim ((F
(v) ImDE+;
(vi) EW FW+ Im G;
(vii) dim (r3 Im G)-<dim ((F-11m G)r3

Note that the problem of finding spaces , O/’, and satisfying the above conditions
has not been solved in [17] and seems to be difficult. It should be contrasted with the
explicit conditions of Theorem 5.3. More importantly, [17] does not provide any hint
of how to construct a feedback map solving the DDPU.
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Remark 5.3. Together with a given quintuple (E, F, G, H, D) consider also
(/, , (,/, 3):= (PEQ, P(F+ GM)Q, PG, HQ, PD), where P, Q are invertible and
M is an arbitrary feedback map. Then it is obvious that the DDP (or DDPU) is solvable
for the quintuple (E, F, G, H,D) if and only if the problem is solvable for
(/, if’, ,/-,/). In other words, the property of solvability of the DDP and DDPU is
invariant with respect to the action of the above-described group of transformations.
In particular, the property is invariant under the (Rosenbrock) restricted system
equivalence (cf. [32]). However, if the (Verghese) strong system equivalence (cf. [32])
is taken into account, the situation is not apparent since strong system equivalence
does not preserve the class of systems considered in our paper. As is easily seen, the
orbit of an implicit system (under the strong system equivalence) may contain a system
with a direct influence of the input Uk and the disturbance Zk on the output Yk.
Unfortunately, the methods of our paper are not directly applicable to solving the
DDP (or DDPU) for such systems. The problem of disturbance decoupling for systems
with direct dependence of the output on the input and disturbance remains open.

TABLE

The present paper 0zcaldiran, Lewis and
and [2]-[9] Malabre [25], [26], [21] Willems [33]

greatest @(E, F, G)-invariant
subspace contained in W

V*(E, F, G; )

supremal (F, E, G)-invariant
subspace of W

v*
supremal controlled invariant
subspace contained in

(E, F,

greatest @(E, F, G)-invariant
subspace contained in

V*(F, E, O; w/U)

supremal (E, F, G)-invariant
subspace of W

(E, F, G)IW
greatest (E, F, G)-reachability
subspace contained in W

R*(E, F, G;

supremal almost teachability
subspace of W

supremal almost
controllability subspace
contained in

greatest @(E, F, G)-
controllability subspace contained
in o/

l*(E, F, G’ r)

supremal reachability subspace
of/

l

supremal controllability
subspace contained in W

We can observe that when E I the DDP, DDPU, and the disturbance decoupling
problem considered in [36, Chap. 4] are equivalent. To show this it is sufficient (in
view of [36, Chap. 4]) to prove the following simple result.

PROPOSITION 5.2. Assume that Y and (A, B, D, C)(, f)x(,)
(@, ) (, ). Then the DDP is solvable for the quintuple (I, A, B, D, C) if and
only if Im D c (I, A, B)lKer H.

Proof (3) Let K w(, ) be such that the system @a(/, A+ BK, 0) accepts
all disturbance sequences from o(ImD). Then by Proposition 1.5 ImDc
(I, a+ BK, 0)lKer H +a(I, a + BK, 0)lKer H. But (I, a + BK, O) O.
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() The proof is an obvious consequence of Theorem 4.2 of [36].

Appendix. We can show (cf. [3], [4], [7]) that the spaces (E,F,
(E, F, G)IW, (E, F, G)IW, and (E, F, G)IW can be computed with the aid of
some (finite) subspace recursions. The recursions coincide with those considered in
[23]-[26] (cf. also [21]). Consequently, we can identify these spaces with some spaces
considered in the above-mentioned references. However the terminology and notation
used in [21], [23]-[26] differs from that used in the present paper (and also [2]-[9]).
Table 1 will make the access to our results easier for some readers. It summarizes the
basic terminology of various references.

The above-reported terminology of [21], [25], [26], and [33] concerns continuous-
time systems. Moreover, in [33] only standard systems (i.e., with E I) are considered.
At this point it is worth noting that Willems in [34, 8] (in the context of discrete-time
standard systems) proposes for counterparts of spaces V’o,, R*.,o, and R* other symbols
and names.
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DIFFERENTIAL GAMES: A VIABILITY APPROACH*

JEAN-PIERRE AUBIN?

Abstract. The usual intertemporal optimality criterion traditionally used in differential games is replaced
here by a myopic criterion, playability, which requires that at each instant, the state of the game obeys
playability constraints. (For simplicity, only time-independent playability constraints are presented below.)
Game theoretical concepts are adapted to this case and characterized through conveniently generalized
Isaacs’ equations, the contingent Isaacs’ inequalities.

For each of these concepts, feedback controls are constructed, according to several game theoretical
selection procedures when they are not uniquely determined by contingent Isaacs’ inequalities.

The question of choosing strategies through their velocities regarded as decisions is also investigated,
and decision rules allowing victory or defeat are characterized through other contingent partial differential
equations.

Key words, differential games, viability theory, playable games, viability kernels, heavy trajectories,
minimal

AMS(MOS) subject classifications. 90025, 90D26

Introduction. We consider a two-player differential game whose dynamics are
described by

(a) (i) x’(t) =f(x(t), y(t), u(t)),
(ii) u(t) U(x(t), y(t)),

(b) (i) y’(t)- g(x(t), y(t), v(t)),
(ii) v(t) V(x(t), y(t)),

where u, v, the controls, are regarded as strategies used by the players to govern the
evolution of the states x, y of the game.

The rules of the game are set-valued maps P: Y, X and Q:X Y, describing
the constraints imposed by one player on the other. They replace the traditional
intertemporal optimality or endpoint criteria used in differential games.

The playability domain of the game K c X Y is defined by

K := {(x, y) X x YI x P(y) and y e Q(x)}.

(We consider only the time-independent case for the sake of simplicity. See [42] for
the extension to time-dependent problems.) We point out the following properties:

THE PLAYABILITY PROPERTY. It states that for any initial state (Xo, Yo) K, there
exists a solution to the differential game which is playable in the sense that

Vt>-O, x(t) P(y(t)) and y(t) Q(x(t)).

XAVIER’S DISCRIMINATING PROPERTY. It states that for any initial state (Xo, Y0)
K and for any continuous closed-loop strategy (.,.) played by Yvette, there exists
a playable solution to the differential game.

XAVIER’S LEADING PROPERTY. It states that there exists a continuous closed-loop
strategy (.,. played by Xavier such that for any initial state (Xo, Yo) K, there exists
a playable solution to the differential game.

Our first task is to characterize the rules satisfying such properties as somewhat
generalized solutions to Isaacs’ equations. Since the rules are set-valued maps and not

* Received by the editors September 12, 1988; accepted for publication (in revised form) October 18, 1989.
? Centre de Recherches de Math6matiques de la D6cision, Universit6 de Paris-Dauphine, Paris, France.
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functions, we characterize them by the indicators p and o of their graphs, defined
by v(X, y) := 0 when x P(y) and v(x, y) := + 0 when x P(y). But these func-
tions, which are only lower semicontinuous (when the graphs are closed) are not
differentiable in the usual sense. Hence we must replace the concept of derivative by
the one of contingent epiderivative in the Isaacs equations.

This being done, we shall interpret the solutions to contingent Isaacs’ equations
in game theoretical terms and characterize the above properties of the rules P and Q
by checking whether the function max (p, o) is a solution to the corresponding
contingent Isaacs’ equation.

We focus our attention in the second section to the playability property.
We shall characterize it by constructing retroaetion rules

(x, y, v),, C(x, y; v) and (x, y, u),, D(x, y; u),

which involve the contingent derivatives of the set-valued maps P and Q, with which
we build the regulation map R mapping each (x, y) K to the regulation set

R(x, y) {(u, v)l u C(x, y; v) and v D(x, y; u)}.

The strategies belonging to R(x, y) are called playable.
The Playability Theorem states that under technical assumptions, the playability

property holds true if and only if

V(x,y)K, R(x, y)

and that playable solutions to the game are regulated by the regulation law:

Vt>=0, u(t)C(x(t),y(t);v(t)) and v(t)eD(x(t),y(t);u(t)).

We then deal in 3 with the construction of single-valued playable feedbacks (, ),
such that the differential system

x’(t) =f(x(t), y(t), a(x(t), y(t)),

y’( t) g(x( t), y( t), (x( t), y( t)),

has playable solutions for each initial state. By the Playability Theorem, they must be
selections of the regulation map R in the sense that

V(x, y) K, (x, y)-.(a(x, y), (x, y))e R(x, y).

We recall that the contingent cone TK (x) to a subset K at x c K is the closed cone of elements v satisfying

lim inf d x + by, K / h O.
h0+

The contingent epiderivative D, V(x) of an extended function V from X to R U {+c} at x c Dom (V) is
defined by

;pD, V(x) := T$p(v)(X, V(x))

or, equivalently, by

V(x + hu’)- V(x)
D V(x)(u) lim inf

h0+, h

The contingent derivative of the set-valued map Q from X to Y at a point (x, y) of its graph is the closed
positively homogenous set-valued map DQ(x, y) from X to Y defined by

Graph (DQ(x, y)):= TraphO(X, y)

or, equivalently, by

(O(x+hu’)-y)vDQ(x,y)(u) liminf d v, =0.
h-O+, u’ h
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We shall prove the existence of such continuous single-valued playable feedbacks,
as well as more constructive, but discontinuous, playable feedbacks, such as the
feedbacks associating the strategies of R(x, y) with minimal norm (the playable slow
feedbacks, as in [21], [47]). More generally, we shall show the existence of possibly
set-valued feedbacks associating with any (x, y) K the set of strategies (u, v) R(x, y)
which are solutions to a (static) optimization problem of the form:

(u, v) R(x, y)} or(x, y; u, v)<_- inf or(x, y; u’, v’)
u’,v’R(x,y)

or solutions to a noncooperative game of the form:

V(u’, v’) R(x, y), a(x, u, v’) <- a(x, u, v) <-_ a(x, u’, v).

In other words,

the players can implement playable solutions to the differential game by playing
for each state (x, y) K a static game on the strategies of the regulation subset
R(x,y).

We also consider in 4 the issue of finding discriminatingfeedbacks by providing,
for instance, sufficient conditions implying that for all continuous feedback g(x, y)
V(x, y) played by Yvette, Xavier can find a feedback (continuous or of minimal norm)
(x, y) such that the differential equation above has playable solutions for each initial
state.

We address the question of whether Xavier has a leading role, i.e., the problem
of constructing continuous pure feedbacks (t(x, y) which have the property of yielding
playable solutions to the above differential game whatever the strategy played by
Yvette.

The last section is devoted to closed-loop decision rules, which operate on the
velocities of the strategies (regarded as decisions) rather than on the controls. We need
to provide first regulation maps which yield absolutely continuous strategies which
are then almost everywhere differentiable. We distinguish among them those that
guarantee or allow victory or defeat adequately defined. The indicator functions of
their graphs are characterized as solutions of contingent partial differential inequalities.
We apply analogous selection procedures which yield closed-loop decision rules
allowing, say, a game to remain stable.

The techniques rely heavily on viability theorems and differential calculus of
set-valued maps, which are exposed in [2, Chaps. 4, 5, and 6] and [6]. An Appendix
presents some results on lower semicontinuous Lyapunov functions which are used in
some proofs. The time-dependent case and some classical examples appear in [42].

1. Contingent version of Isaacs’ equations. Let us consider only two players, Xavier
and Yvette. Xavier acts on a state space X and Yvette on a state space Y. For doing
so, they have access to some knowledge about the global state (x, y) of the system and
are allowed to choose strategies u in a global state-dependent set U(x, y) and v in a
global state-dependent set V(x, y), respectively.

Their actions on the state of the system are governed by the system of differential
inclusions:

(1) (a)

(b)

(i) x’(t) ----f(x(t), y(t), u(t)),
(ii) u(t) U(x(t), y(t)),
(i) y’(t) g(x(t), y(t), v(t)),
(ii) V(t) V(x(t), y(t)).
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We now describe the influences (power relations) that Xavier exerts on Yvette
and vice versa through rules of the game. They are set-valued maps P:Y,, X and
Q:X Y which are interpreted in the following way. When the state of Yvette is y,
Xavier’s choice is constrained to belong to P(y). In a symmetric way, the set-valued
map Q assigns to each state x the set Q(x) of states y that Yvette can implement.

Hence, the playability subset of the game is the subset K c X Y defined by

(2) K := {(x, y) X x YI x P(y) and y Q(x)}.

Naturally, we must begin by providing sufficient conditions implying that the
playability subset is nonempty. Since the playability subset is the subset of fixed points
(x, y) of the set-valued map (x, y) P(y) Q(x), we can use one of the many fixed
point theorems to answer these types of questions.2

From now on, we shall assume that the playability subset associated with the rules
P and Q is not empty.

We can reformulate this differential game in a more compact form, by denoting
by z := (x, y) Z := X Y the global state, by h(z, u, v):= (f(x, u, v), g(y, u, v)) the
values of the map h’R’RPxRqR describing the dynamics of the game, by
L:= Graph (P) Xavier’s closed domain of definition, by M := Graph (Q-l) Yvette’s,
and by K := L f? M the playability subset. We shall also identify the set-valued maps
U and V with their restrictions to L and M, respectively, by setting U(z) := whenever
z L and V(z):= when z M.

Hence the differential game can be written in the form

(3) (i) z’(t)--h(z(t), u(t), v(t)),
(ii) u(t) U(z(t)),
(iii) v(t) V(z(t)).

We denote by oW(Zo) the subset of solutions z(. to (3) starting at Zo.
Let us associate with this differential game the following four Hamilton-Jacobi-

Isaacs partial differential equations:
(i) infuu(z)infv()d(z)/dz, h(z, u, v)=O,
(ii) suput(z)supvv(z)d(P(z)/dz" h(z, u, v)=0,
(iii) supvv(z)inf,u(z)d(I)(z)/dz, h(z, u, v)=O,
(iv) inf,/(z)supply(z)dcP(z)/dz, h(z, u, v)=0.
We would like to study the properties of the solutions to these partial differential

equations, and in particular, characterize the solutions which are indicators of closed
subsets L, defined by

0 if zL,
(x) :=

+oe if z L

and which are only lower semicontinuous.
Hence we are led to weaken the concept of usual derivatives involved in these

partial differential equations by replacing them by contingent epiderivatives, since any
extended function :X Rt_J {+oe} has contingent epiderivative, and in particular,
indicators, for which we have the relation

0
DT(z)(v) v,_(z)(V) :=

if v TL( z),
if v TL(z).

For instance, Kakutani’s fixed point theorem (see [6, Chap. 3]) furnishes such conditions: let L X
and M Y be compact convex subsets and P:M,, L and Q:L,, M be closed maps with nonempty
convex images. Then the playability subset is not empty.
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THEOREM 1.1. Let us assume at least that h :Rnx RPRqR is continuous, has
linear growth, and that the set-valued maps are closed with linear growth.

We assume that all extended functions are nonnegative and contingently epi-
differentiable and that their domains are contained in the intersection K of the domains
of U and V.

(1) If the values of the set-valued maps U and V are convex and if h is affine with
respect to the controls, t is a solution to the contingent equation

(4) inf inf D(z)(h(z, u, v))<-_O
U(z) V(z)

if and only if
Vzo6Dom(CP), =lz(.)Sf(Zo)lVt>-O, dp(z(t))<=(z).

(2) Assume that h is uniformly Lipschitzean with respect to x. Then is a solution
to the contingent equation

sup sup D,p(z)(h(z, u, v))<-_O
U(z) V(z)

if and only if
Vzo6Dom(@), Vz(.)6A(Zo), Vt>-O, (z(t))<-(Zo).

(3) Assume that V is lower semicontinuous, that the values of U and V are convex,
and that h is affine with respect to u. Then is a solution to the contingent equation

(6) sup inf Dy(z)(h(z, u, v))<-_O
V(z) U(z)

if and only iffor any continuous closed-loop strategy (z) V(z) played by Yvette and
any initial state Zo Dom ((P), there exists a solution z(. to Xavier’s control problem

(i) z’(t)--hz(t), u(t), (z(t))),
(ii) u(t) U(z(t))

starting at Zo and satisfying for all >- O, (z(t)) <-_ (Zo).
(4) Assume that V is lower semicontinuous with convex values. Then is a solution

to the contingent equation

(7) inf sup Dcb(z)(h(z, u, v))<=O
U(z) V(z)

if and only if Xavier can play a closed-loop strategy (z) U(z) such that, for any
continuous closed-loop strategy (z) V(z) played by Yvette and for any initial state

Zo 6 Dom (), there exists a solution z(. to

(8) z’( t) h(z( t), (z(t)), (z(t))

starting at Zo and satisfying for all >-O, (z(t))<= (Zo). The converse is true if
B(z) := {t7 e U(z) such that

supply(z) DdP(z)(h(z, tT, v)) inf, U(z)supv() Dydp(z)(h(z, u, v))}

is lower semicontinuous with closed convex values.
Proof
--The two first statements are translations of the theorems characterizing

Lyapunov and universal Lyapunov functions (see the Appendix) applied to the differen-
tial inclusion z’(t) H(z(t)) where H(z):=f(z, U(z), V(z)).

3This means that for all zDom (), for all veX, D$(z)(v)>-c and that Ddp(z)(v)<ee for at
least a v 6 X.
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Let us prove the third one. Assume that satisfies the stated property. Since
V is lower semicontinuous with convex values, Michael’s theorem (see [2, Chap. 1])
implies that for all Zo Dom (V) and Vo V(zo), there exists a continuous selection
(. of V such that V(Zo) Vo. Then @ enjoys the Lyapunov property for the set-valued
map H(z):= h(z, U(z), (z)), and thus, there exists Uo U(zo) such that

D,(Zo)(h(zo, Uo, (Zo)))--< 0.

Hence is a solution to (6).
Conversely, assume that @ is a solution to (6). Then for any closed-loop strategy

v’, the set-valued map Ho satisfies the assumptions of the theorem characterizing
Lyapunov functions, so that there exists a solution to the inclusion z’ Ho(z) for any
initial state z Dom () satisfying for all -> 0, @(z(t)) -<_ (z).

Consider finally the fourth statement. Assume that Xavier can find a continuous
closed-loop strategy such that for any closed-loop strategy t, @ enjoys the stated
property. Since V is lower semicontinuous with convex values, Michael’s theorem
implies that for all Zo Dom (V) and Vo V(zo), there exists a continuous selection
(. of V such that V(Zo)= Vo. Since for any continuous closed-loop strategy (. ), @
enjoys the Lyapunov property for the single-valued map z- h(z, (z), (z)), we
deduce that for all zoDom(), there exists u:=(z) such that for all v V(z),
D,(z)(h(x, u, v))<-O, so that is a solution to (6).

Conversely, assume that the set-valued map B, is lower semicontinuous with
closed convex values. Hence Michael’s theorem implies that there exists a continuous
selection of B,. Then for any continuous closed-loop strategy (. V(. ), we deduce
from (7) that @ is a Lyapunov function for the single-valued map z h(z, J(z), (z)),
so that, for all z Dom (), there exists a solution z(.) to the system (8) satisfying
for all t>-O, dp(z(t))<-_(z), l-]

Let L be a closed subset of the intersection K of the domains of U and V. The
problem we investigate is that of finding one (or all) solution(s) z(.) of the game
which is (are) viable in L. There are several ways to achieve that purpose, according
to the cooperative or noncooperative behavior of the players. Here we shall investigate
several of them.

DEFINITION 1.1. We shall say the subset L enjoys"
(1) The "playability property" if and only if

lzL, :lz(.)b(z)lft>-O, z(t)L.

(2) The "winability property" if and only if

Vz6L, Vz(.)f(z), Vt=>0, z(t)6L.

(3) "Xavier’s discriminating property" if and only if for any continuous closed-
loop strategy t;(z) V(z) played by Yvette and any initial state z L, there exists a
solution z(. to Xavier’s control problem

(i) z’(t)= h(z(t), u(t), (z(t))),
(ii) u(t) U(z(t))

starting at z and which is viable in L.
(4) "Xavier’s leading property" if and only if Xavier can play a closed-loop

strategy (z) U(z) such that, for any continuous closed-loop strategy (z) V(z)
played by Yvette and for any initial state z L, there exists a solution z(.) to (8)
starting at z and viable in L.
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We shall characterize these properties: for that purpose we associate with L the
following set-valued maps:

The regulation map Rt defined by

VzL, RL(Z):={(u, v)6 U(z) V(z)Ih(z u, v) TL(z)};

Xavier’s discriminating map AL defined by

Vz6L, At(z,v):={u U(z)I(u,v)6Rt(z)};

Xavier’s leading map Bt defined by

Vz L, B(z) := f"l At(z, v).
vV(z)

DEFINITION 1.2. We shall say that
L is a playability domain if for all z L, RL(Z)
L is a winability domain if for all z L, R(z):= U(z) V(z).
L is Xavier’s discriminating domain if

(9) VzL, Vv V(z), At(z, v)

L is Xavier’s leading domain if for all z L, Bt(z)# (.
We begin by translating these properties in terms of contingent version of Isaacs’

equations.
PROPOSITION 1.1. Let us assume that h :R" Rp Rq - R" is continuous, has linear

growth, and that the set-valued maps are closed with linear growth.
L is playability domain if and only if is a solution to (4).
L is a winability domain if and only if t is a solution to (5).
L is a discriminating domain for Xavier if and only if t is a solution to (6).
L is a leading domain for Xavier if and only if t is a solution to (7).

Therefore, Theorem 1.1 implies the following characterization of these domains.
COROLLARY 1.1. Let us assume at least that h :R" Rp X Rq - R is continuous, has

linear growth, and that the set-valued maps are closed with linear growth.
(1) If the values of the set-valued maps U and V are convex and if h is affine with

respect to the controls, then L enjoys the playability property ifand only if it is a playability
domain.

(2) Assume that h is uniformly Lipschitzean with respect to x. Then L enjoys the
winability property if and only if it is a winability domain.

(3) Assume that V is lower semicontinuous, that the values of U and V are convex
and that h is affine with respect to u. Then L enjoys Xavier’s discriminating property if
and only if it is a discriminating domain for Xavier.

(4) Assume that V is lower semicontinuous with convex values. IfL enjoys Xavier’s
leading property, then it is a leading domain for him. The converse is true if Bt is lower
semicontinuous with closed convex values.

The existence theorems of the viability and invariance kernels imply the following
consequence.

PROPOSITION 1.2. Let us assume that h :R Rp Rq - R is continuous, has linear
growth, and that the set-valued maps are closed with linear growth.

(1) If the values of the set-valued maps U and V are convex and if h is affine with
respect to the controls, then there exists a largest closed playability domain contained in
L, whose indicator is the smallest lower semicontinuous solution to (4) larger than or

equal to the indicator L of L.
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(2) Assume that h is uniformly Lipschitzean with respect to x. Then there exists a
largest closed winability domain contained in L, whose indicator is the smallest lower
semicontinuous solution to (5) larger than or equal to the indicator L of L.

2. Playable differential games. We shall now proceed with the case of the game
described by (1), where the playability domain is defined from rules P and Q by

K:={(x,y)Xx YIxP(y) and yQ(x)}

enjoys the playability property, which becomes in this case: for any initial state (Xo, Yo)
K, there exists a solution to the differential game (1) which is playablein the sense that

Vt>_--O, x(t)P(y(t)) and y(t)Q(x(t)).

We now need to define playable rules. For that purpose, we associate with the
rules P and Q acting on the states retroaction rules C and D acting on the strategies
defined in the following way.

DEFINITION 2.1. Xavier’s retroaction rule is the set-valued map C defined by

C(x, y; v) ={u U(x, y) f(x, y u) DP(y, x)(g(x, y, v))}

and Yvette’s retroaction rule is the set-valued map D defined by

D(x, y; u)= {v V(x, y)lg(x, y, v) DQ(x, y)(f(x, y, u))}.

We associate with them the regulation map R defined by

(10) R(x,y)={(u,v)[uC(x,y; v) and vD(x,y; u)}.

The subset R(x, y) is called the regulation set and its elements playable controls.
In other words, we have associated with each state (x, y) of the playability domain

a static game on the strategies defined by the retroaction rules. This new game on
strategies is playable if the subset R(x,y) is nonempty. This property deserves a
definition.

DEFINITION 2.2. We shall say that P and Q are playable rules if their graphs are
closed, the playability domain K defined by (2) is nonempty, and if for all pairs
(x, y) K, the values R(x, y) of the regulation map are nonempty.

We still need a definition of transversality of the rules before stating an adequate
characterization of playability.

DEFINITION 2.3. We shall say that the rules P and Q are transversal if for all
(x, y) K, for all perturbations (e, f) X x Y, there exists (u, v) satisfying

(i) u DP(y, x)(v) + e,
(ii) v DQ(x, y)(u)+f.

We shall say that they are strongly transversal if

For all (x, y) K, there exist c > 0, 6 > 0 such that for all (x’, y’) Bl(((x, y), 6)
and all (e, f) X x Y, there exist solutions (u, v) to
(i) u DP(y’, x’)(v)+ e,
(ii) v DQ(x’, y’)(u) +f,
satisfying max (llull, IIvll)--<max (lie[l, []fl]).

We recall that a subset K is sleek if the set-valued map x T/((x) is lower semicon-
tinuous. In this case, TK (x) is convex. A set-valued map is said to be sleek if its graph
is sleek.
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We shall now derive from Corollary 1.1 a characterization of the playability
property.

THEOREM 2.1 (Playability Theorem). Let us assume that the functions f and g are
continuous, affine with respect to the strategies and have a linear growth, that thefeedback
maps U and V are upper semicontinuous with compact convex images and have a linear
growth, and that the rules P and Q are sleek and transversal.

Then the rules P and Q enjoy the playability property ifand only if they are playable.
Furthermore, the strategies u(.) and v(.) which provide playable solutions obey the
following regulation law:

(11) Vt_>-O, u(t) 6 C(x(t), y(t); v(t)) and v(t)6 D(x(t), y(t); u(t)).

Proof We apply Corollary 1.1 and prove that the playability subset of the differen-
tial game is a playability domain, i.e., that for any global state (x, y)e K of the system,
there exist strategies u and v such that the pair (f(x, y, u), g(x, y, v)) belongs to the
contingent cone TK (x, y).

Since K is the intersection of the graphs of Q and p-l, we need to use a sufficient
condition for the contingent cone to an intersection to be equal to the intersection of
the contingent cones.

The graphs of Q and P-1 are sleek because the rules of the game are supposed
to be so. Furthermore,

TGraph(P-’)(X y)- TGraph(Q)(X y) X X Y

because the maps P and Q are transversal: For any (e, f)e X x Y, there exists (u, v)
such that (u, v-f) belongs to the graph of Q and (u+ e, v) to the graph of p-l, i.e.,
that (e, f) (u + e, v)-(u, v-f).

Hence, by Corollary 4.3.5 of [6, p. 149], we deduce that

TK(x, y) TGraph(P-’)(X y) Toraph(O)(X, y)

Graph (DP(y, x))-’ 71 Graph (DQ(x, y)).

Therefore, K is a viability domain if and only ifthe regulation map R has nonempty
values, i.e., if and only if the rules of the game are playable. [3

The regulation law (11) describes how the players must behave to keep the state
of the system playable. A first question arises: Do the domains of the set-valued maps

(i) C(x, y): v C(x, y; v),
(ii) D(x, y) u D(x, y; u)

coincide with U(x, y) and V(x, y), respectively?
PROPOSITION 2.1. We posit the assumptions of Theorem 2.1. Let us assume thatfor

all (x, y)6 K,

(12) (i) Dom (C(x, y))= V(x, y),
(ii) Dom (D(x, y))= U(x, y).

Then the rules are playable.
Proof We deduce it from Kakutani’s fixed point theorem, since the set R(x, y)

is the set of fixed points of the set-valued map

(u, v) C(x, y; v) x D(x, y; u)

defined on the convex compact subset U(x, y) x V(x, y) to itself. This set-valued map
has nonempty values by assumption, which are moreover convex since the rules P and
Q being sleek, the graphs of the contingent derivatives DP(x, y) and DQ(x, y) are
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convex. They are also closed. This implies that the graph of (u, v),, C(x, y; v)x
D(x, y; u) is closed. Hence we can apply Kakutani’s fixed point theorem. [3

3. Feedback solutions to differential games. When we know the regulation law
(11), playing the game amounts to choosing for each pair (x, y) K playable strategies
(u, v) in the regulation set R(x, y) through playable feedbacks.

We begin by looking for single-valued playable feedbacks (, ), which are
selections of the regulation map R in the sense that

V(x, y) K, (x, y)--(a(x, y), (x, y)) R(x, y)

or, equivalently, solutions to the system

a(x, y) C(x, y; (x, y)),
V(x, Y) K,

(x, y) D(x, y; a(x, y)).

For instance, continuous selections of the set-valued map R provide continuous
playable feedbacks (, t3) such that the system of differential equations

(13)
x’(t) =f(x(t), y(t), a(x(t), y(t))),

y’( t) g(x( t), y( t), F(x( t), y( t)))

does have solutions which are playable.
Michael’s continuous selection theorem, as well as other selection procedures we

shall use, require the lower semicontinuity of the regulation map R.
Our next objective is then to provide criteria under which the regulation map is

lower semicontinuous. For that purpose, we need to strengthen the concept of playable
rules.

DEFINITION 3.1. We associate with any perturbation (e, f) the retroaction rules
C(e.y) and D(e,y) defined by

C.)(x, y; v)={u U(x, y) f(x, y; u) DP(y, x)(g(x, y, v) f + e}

and

O(e,f)(x y; u) {v V(x, y) g(x, y, v) DO(x, y)(f(x, y; u) e) +f}

and the regulation map R(e,f) defined by

R(e,f)(x y) {(u, v)lu C(e,f)(X y; v) and v D(e,f)(x y; u)}.

We shall say that the rules P and Q are strongly playable if

For all (x, y) K, there exist 7 > 0, > 0 such that for all (x’, y’) B: ((x, y), )
and all (e, f) yB, R(e,y(x’, y’) .
THEOREM 3.1. Let us assume that the functions f and g are continuous, affine with

respect to the strategies and have a linear growth, that the feedback maps U and V are
upper semicontinuous with compact convex images and have a linear growth, and that
the rules P and Q are sleek, strongly transversal and strongly playable.

Then the regulation map R is lower semicontinuous with closed convex images.
In particular, there exist continuous playable feedbacks , ).
Proof. We use the lower semicontinuity criterion of the intersection and the inverse

image of lower semicontinuous set-valued maps.
First, we need to prove that the set-valued map

(x, y) Tt,:(x, y):= Graph (VP(y, x)-) f"l Graph (VQ(x, y))
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is lower semicontinuous. But this follows from the strong transversality of the rules P
and Q and the lower semicontinuity criterion (see Theorem 1.5.5 of [6, p. 53]).

We observe that U V being upper semicontinuous with compact values, it maps
a neighborhood of each point to a compact set. Since we can write

R(x, y)={(u, v)6 U(x, y) V(x, y)](f(x, y; u)g(x, y; v)) TI(x, y)}

and since both U x V and T are lower semicontinuous with convex images, strong
playability of the retroaction rules implies that the regulation map R is lower semicon-
tinuous.

Unfortunately, the proofof Michael’s continuous selection theorem is not construc-
tive. We would rather trade the continuity of the playable control with some explicit
and computable property, such as u(x, y) being the element of minimal norm in
R(x, y), or other properties. Hence we need to prove the existence of a solution to the
differential equation (13) for such noncontinuous feedbacks.

We shall provide a general method of construction of such playable feedbacks.
For that purpose it is useful to introduce the following definition.

DEFINITION 3.2 (selection procedure). A selection procedure of the regulation
map R X x Y,, U x V is a set-valued map SR: X x Y,,,, U x V

(i) For all (x, y) K, S(R(x, y)) := SR(X, y) VI R(x, y) (g,
(ii) The graph of SR is closed,

and the valued map S(R):(x, y) S(R(x, y)) is called the selection of R.
It is said to be convex-valued if its values are convex and single-valued if, moreover,

(14) V(x,y)Dom(R), SR(X,y)VIR(x,y)={a(x,y), g(x,y)}

is a singleton.
THEOREM 3.2. We posit the assumptions of Theorem 3.1 and we suppose that K is

a playability domain.
Let SR be a convex-valued selection procedure of the regulation map R. Then, for

any initial state (xo, Yo) K, there exists a playable solution starting at (Xo, Yo) to the

differential inclusion
(i) x’(t)=f(x(t), y(t); u(t)),
(ii) y’(t) g(x(t), y(t); v(t)),
(iii) for almost all t, (u(t), v(t))S(R(x(t),y(t))).
In particular, if the selection procedure is single-valued, then the strategies

((x, y), (x, y)) defined by (14)

are single-valued playable feedback controls.
Proof Since the convex selection procedure SR has a closed graph and convex

values, we can replace the differential game (1) by the controlled system

(15) (i) x’(t)=f(x(t), y(t); u(t)),
(ii) y’(t) g(x(t), y(t); v(t)),
(iii) for almost all t,

(u(t), v(t))(U(x(t), y(t)) V(x(t), y(t)))fSR(X(t), y(t)),

which satisfies the assumptions of the Viability Theorem. It remains to check that K
is still a viability domain for this "smaller system."

But by construction, we know that for all (x, y) K, there exists (u, ) S(R(x, y)),
which belongs to the intersection U(x, y) V(x, y) SR(X, y) and which is such that
(f(x, y’, u), g(x, y; v)) belongs to Tic(x).
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Hence the new controlled system (15) enjoys the viability property, so that, for
any initial state (Xo, Y0) K, there exist a viable solution and a viable control to the
controlled system (15) which, for almost all t>=0, are related by

(i) (u(t), v(t))(U(x(t), y(t)) V(x(t), y(t)))f’)Sn(x(t), y(t)),
(ii) (f(x(t), y(t); u(t)), g(x(t), y(t); v(t)) Tc(x(t), y(t)).

Therefore, for almost all >-0, (u(t), v(t)) belongs to the intersection of R(x(t), y(t))
and SR(X(t), y(t)), i.e., to the selection S(R(x(t), y(t))) of the regulation map R.

We can now multiply the possible corollaries, by giVing several instances of
selection procedures of set-valued maps.

We begin by cooperative procedures, where the players agree on criteria
o-(x, y; .,. for selecting strategies in the regulation sets R(x, y).

Example. Cooperative behavior. Let o’:Graph (R)-R be continuous.
PROPOSITION 3.1. We posit the assumptions of Theorem 3.1. Let o- be continuous

on Graph (R) and convex with respect to the pair (u, v). Then, for any initial state

(Xo, Yo) K, there exist a playable solution starting at (Xo, Yo) and playable strategies to

the differential game (1) which are regulated by

for almost all >- O,

tr(x(t), y( t); u(t), v(t)) inf r(x(t), y(t); u’, v’).
u’,v’R(x(t),y(t))

In particular, the game can be played by the slow feedbacks of minimal norm:

(u(x, y), v(x, y)) R(x, y),

I[( u O(x, Y)112 / vO(x, Y)ll =) min (11 u 2 / v
(u,v)eR(x,y)

Proof. We introduce the set-valued map SR defined by

SR(X, y):= {(u, v)G Ylr(x, y; u, v)<= inf cr(x, y; u’, v’)}.(u’,v’)R(x,y)

It is a convex selection procedure of R. Indeed, since R is lower semicontinuous, the
function

(x, y; u, v)--o’(x, y; u, v)+ sup (-o’(x, y; u’, v’))
(u’,v’)R(x,y)

is lower semicontinuous thanks to the Maximum Theorem. Then the graph of Se is
closed because

Graph (SR)--I(x,y)] cr(x,y; U, V)+ sup (--cr(x, y; u’, V’))_--< 0/.
(u’,v’)R(x,y)

The images are obviously convex. Consequently, the graph of R also being closed,
so is the selection S(R) equal to

S(R(x,y))= (u, v)R(x,y)lo’(x,y; u, v) < inf (cr(x,y; u’, ))
(u’,v’)R(x,y)

We then apply Theorem 3.2. We observe that when we take

tr(x,y; u, v):= Ilul12+ Ilvll 2,
the selection procedure is single-valued and yields the elements of minimal norm.

Example. Noncooperative behavior. We can also choose strategies in the regulation
sets R(x, y) in a noncooperative way, as saddle points of a function a(x, y; .,. ).
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PROPOSITION 3.2. We posit the assumptions of Theorem 3.1 and we suppose that K
is a playability domain. Let us assume that a X Y U V- R satisfies

(i) a is continuous,
(ii) For all (x, y, v) X V, u--a(x, y; u, v) is convex,
(iii) For all (x, y; u) X U, v-a(x, y; u, v) is concave.

Then, for any initial state (Xo, Yo)6 K, there exist a playable solution starting at (Xo, Yo)
and playable strategies to the differential game (1) which are regulated by

(i) (u(t), v(t)),g(x(t), y(t)),

for almost all t_>0, (ii) For all (u’, v )6 R(x(t),y(t)),
a(x(t), y(t); u(t), v’)<-a(x(t), y(t); u(t), v(t))

<- a(x( t), y( t); u’, v(t)).

Proof We prove that the set-valued map SR associating with any (x, y) K the
subset

SR(X, y):= {(U, V)6 U x V such that for all

(u’, v’) R(x, y), a(x, u, v’) <- a(x, u’, v)}
is a convex selection procedure of R. The associated selection map S(R(. )) associates
with any x X the subset

S(R(x, y)) := {(u, v) R(x, y) such that for all

(u’, v’) R(x, y), a(x, y; u, v’) <-_ a(x, y; u’, v)}
of saddle points of a(x, y; .,.) in R(x, y). Yon Neumann’s minimax theorem states
that the subsets S(R(x, y)) of saddle points are not empty since R(x, y) are convex
and compact. The graph of SR is closed thanks to the assumptions and the Maximum
Theorem because it is equal to the lower section of a lower semicontinuous function:

Graph(SR)={(x,y)[ sup (a(x,y; u, v’)-a(x,y; u’, v))<=O}.
(u’,v’)eR(x,y)

We then apply Theorem 3.2. [3

4. Discriminating anti leatling feedbacks. We now address the question of finding
criteria for the playability domain K to be Xavier’s discriminating domain, and for
finding Xavier’s feedback strategies which are selections of the set-valued map
(x, y, v) A(x, y, v)c U(x, y) defined by

a(x,y; v):={u U(x,y)[(u, v)R(x,y)}.

Such feedbacks are called discriminating feedbacks. If we assume that Xavier has
access to the strategies chosen by Yvette, he can keep the states of the system playable
by "playing" a discriminating control whatever the choice of Yvette through a dis-
criminating feedback.

Then, we shall investigate whether we can find (possibly, single-valued) selections
of such a set-valued map A, and for that, provide sufficient conditions for A to be
lower semicontinuous.

We first observe that A can be written in the form

A(x, y; v):= C(x, y; v) f"l (D(x, y))-l(v).
The first assumption we must make for obtaining discriminating feedbacks for Yvette
is that the domain of the set-valued maps A(x, y;. are not empty, i.e., that

For all v V(x,. y), there exists u e U(x, y) such that
f(x, y; u) DP(y, x)(g(x, y; v)) DQ(x, y)-l(g(x, y; v)).
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We shall actually strengthen it a bit to get the lower semicontinuity of A, by
assuming that

(16) For all (x,y)K and all vV(x,y), there exist 6>0, and y>0
such that for all (x’,y’)Btc(x,y, 6), v’B(v, 3)V(x’,y’), and all
]]eill_-<y (i=1,2) there exist uU(x’,y’) such that f(x’,y’;u)
(DP(y’, x’)(g(x’, y’; v’))- el) ffl (DQ(x’, y’)-l(g(x’, y’; v’))- e2).

PROPOSITION 4.1. We posit the assumptions ofTheorem 3.1, where we replace strong
playability by assumption (16), and we assumefurther that the norms of the closed convex
processes DP(y, x) and DQ(x, y)-i are bounded. Then the set-valued map A is lower
semicontinuous.

Proof First, we must prove that C is lower semicontinuous, and, for that purpose,
that (x, y, w),, DP(y, x)(w) is lower semicontinuous.

By a generalization of the Banaeh-Steinhauss theorem to closed convex process
(see Theorem 2.3.2 of [6, p. 61]), we know that it is sufficient to prove that

(x, y) Graph (DP(y, x)) is lower semicontinuous

and that

IIDP(y, x)ll := sup inf
ilwll=l uDP(y,x)(w)

This is the case because P is assumed to be sleek and because we have assumed that
the norms of the derivatives are bounded. Therefore, the set-valued map

(x, y, v) DP(y, x)(g(x, y; v))

is also lower semicontinuous.
The lower semicontinuity criterion and assumption (16) imply that

(x, y, v),, C(x, y; v) is lower semicontinuous.
The same proof shows that the set-valued map (x, y, v),, DQ(x, y)-(v) is also

lower semicontinuous. Since A is the intersection of these two set-valued maps, we
again apply the lower semicontinuity criterion to deduce that A is lower semicontinuous,
which is possible thanks to assumption (16).

THEOREM 4.1. We posit the assumptions of Proposition 4.1. For any continuous

feedback control (x, y)--(x, y) played by Yvette, there exists a continuous single-valued
feedback, (x, y) played by Xavier such that the differential equation (13) has playable
solutions for any initial state (Xo, Yo) K.

More generally, let SA be a convex selection procedure of the set-valued map A. Then,
for any continuousfeedback control (x, y)-(x, y) played by Yvette, for any initial state

(Xo, Yo) K, there exists a playable solution starting at (Xo, Yo) to the differential game
(i) x’(t) =f(x(t), y(t); u(t)),
(ii) y’(t) g(x(t), y(t); g(x(t), y(t))),
(iii) u(t) es(a(x(t), y(t); g(x(t),y(t)))).
In particular, if the selection procedure is single-valued, then the control a(x, y)

defined by

a(x, y):= s(a(x, y; (x, y)))

is a single-valued feedback control.
This is the case, for instance, when Xavier plays the feedback control y) of

minimal norm in the set A(x, y; (x, y)).
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Proof Whenever Yvette plays a continuous feedback (x, y), K remains a playa-
bility domain for the system

(i) x’(t) =f(x(t), y(t); u(t)),
(ii) y’(t)= g(x(t), y(t); (x(t), y(t))),
(iii) u(t)A(x(t), y(t); (x(t), y(t))).
Since the set-valued map (x, y) A(x, y; (x, y)) is lower semicontinuous, it

contains continuous selections 6(x, y) which therefore yield playable selections.
We can also use more constructive convex selection procedures of the set-valued

map (x, y) A(x, y; (x, y)) and deduce that Xavier can implement playable solutions
by playing strategies u(t) in the selection S(A(x(t), y(t); t(x(t), y(t)))).

A much better situation for Xavier occurs when he can find feedback strategies
t which are selections of the set-valued map B defined by

B(x, y):= f) A(x, y; v).
V(x,y)

In other words, such a feedback allows him to implement playable solutions whatever
the control v V(x, y) chosen by Yvette, since in this case the pair (u, v) belongs to
the regulation set R(x, y) for any v. Such feedbacks are called pure feedbacks.

In order to obtain continuous single-valued feedbacks, we need to prove the lower
semicontinuity of the set-valued map B, which is an infinite intersection of lower
semicontinuous set-valued maps.

THEOREM 4.2. We posit the assumptions ofProposition 4.1. We assumefurther that
there exist positive constants 6 and y such that for all (x’, y’) BK ((x, y), 6), we have

(17) For all v V(x’, y’) and all e i 3’B, (i 1, 2), there exists u U(x’, y’) such that
2f(x y’; u) DP(y’, x’; v)+ e and g(x’, y’ v) 6DQ(x y’ u)+e.

Then the set-valued map B is lower semicontinuous and there exist continuous single-valued
pure feedback strategies for Xavier.

Proof. We observe that V is upper semicontinuous with compact values, that A
is lower semicontinuous and has its images in a fixed compact set, and that assumption
(17) implies obviously that there exist positive constants 6 and 3’ such that for all
(x’, y’) BK ((x, y), 6), we have

Vv V(x, y’), Ve yB, f-) (A(x’, y’; v) e)
V(x’,y’)

This theorem follows then from the general criterion on the lower semicontinuity
of an infinite intersection of lower semicontinuous set-valued maps.

THEOREM 4.3. Let US consider a metric space X, normed vector-spaces Y and Z,
and set-valued maps F X Y Z and H S Y. We assume that

(i) F is lower semicontinuous with convex values,
(ii) H is upper semicontinuous with compact values,

and that there exist positive constants % 6, c such that for every single-valued map
e: Y--3"B we have

(18) Vx’ e B(x, 6), cB O 0 (F(x’, y)- e(y)) .
yeH(x’)

Then the set-valued map G X Z defined by

Vx X, G(x) := f-) F(x, y)
yell(x)

is lower semicontinuous (with nonempty convex images).
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Remark. When the set-valued map F is locally bounded (in the sense that it maps
some neighborhood of each point to a bounded subset), we do not need the constant
c and we can replace (18) by

Vx’ B(x, ), 71 (F(x’, y)- e(y)) .
yH(x’)

Proof Let us choose any sequence of elements x, Dom (F) converging to x and
z G(x). We must approximate z by elements z, G(x.).

We introduce the following numbers:

(19) e, := sup d(z, F(x,, y))/2.
yH(xn)

Now, let us choose for each y H(x,) an element u.(y) F(x,, y) satisfying

Ilz- u,(y)l <-_2d(z, F(x., y)) <-_ e,

and set 0n := y (3, + en). Consequently,

On(z- un(y))

so that there exists an(y) yB such that

O,(z- u.(y)) (1 On)an(y).

Therefore, assumption (18) implies the existence for all n large enough of elements
wn cB and elements vn(y) F(xn, y) such that an(y) vn(y) wn for all y H(xn).

Hence we can write

O,(z- un(y))= (1 -On)(vn(y)-- Wn)

so that the common value

zn := Onz+(1-On)wn Onun(y)+(1--On)vn(y)

does not depend on y, belongs to all F(x,, y) (by convexity), and converges to z because

[Iz- z, II--(1 0,)llz- w.II (1 0.)(llzll + c)

and because 1- 0n en/(3, + en) converges to zero for e, converges to zero thanks to
the following lemma.

LEMMA 4.1. Let us assume that F is lower semicontinuous and that H is upper
semicontinuous with compact images. Then the numbers en defined by (19) converge to zero.

Proof Since F is lower semicontinuous [6, Cor. 1.4.17, p. 49] the Maximum
Theorem implies that the function

(x, y, z)--d(z, F(x, y))

is upper semicontinuous. Therefore, for any e > 0 and any y H(x), there exist an
integer Ny and a neighborhood y of y such that

(20) Vy’ T’y, Vn >- Ny, d(z, F(x., y’)) <-_ e

because d(z, F(x, y)) =0. Hence the compact set H(x) can be covered by p neighbor-
hoods Fy,. Furthermore, H being upper semicontinuous, there exists an integer No
such that

Vn>_-No, /-/(x.)= U %,.
i=l,’",p
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Set N := maxi=o,...,p Nyi. Then, for all n => N and y H(x,), y belongs to some Vy,, so
that, by (20), d(z, F(x,, y)) <- e. Thus,

Vn->N, e.:= sup d(z,F(x.,y))/2-<_,
yH(xn)

i.e., our lemma is proved. [q

5. Closed-loop decision rules. Actually, although differential games can be played
through retroaction rules, there are many games where players act on the velocities of
the strategies rather than on the state of the controls. We can regard changes of strategies
as decisions of players.

This leads us to introduce the following definition. We shall call decisions the
derivatives of the strategies.

Then, in order to deal with decisions defined in such a sense, we must now assume
that players use open-loop strategies u(..) and v(.) which are absolutely continuous
and obey a growth condition of the type4

(21) (i) Ilu’(t)ll--< p(I]u(t)ll / 1),
(ii) IIv’(t)ll<=(llv(t)ll + 1).

We shall refer to them as "smooth open-loop controls," the nonnegative parameters
p and tr being fixed once and for all. We denote by ’{ the subset

(Z, U, V) R Rp Rq such that u U(z) and v V(z).

Instead of finding .largest playability or winability domains in the state space, we
shall look for analogous concepts in the state-strategy space. We shall determine
set-valued maps which allow players to win in the sense that either

(22) /t-->0, u(t) 6 U(z(t))

or

(23) lt>--O, v(t) V(z(t))

or both. Roughly speaking, Xavier may win as long as its opponent allows him to
choose at each instant t_-> 0 strategies u(t) in the subset U(z(t)), and must lose if for
any choice of open-loop controls, there exists a time T> 0 such that u(T): U(z(T)).

DEFINITION 5.1. Let (Uo, Vo, Zo) be an initial situation such that initial strategies
Uo U(zo) and Vo V(zo) of the two players are consistent with the initial state Zo.

We shall say that
Xavier must win if and only if for all smooth open-loop strategies u(.) and

v(.) starting at Uo and Vo, there exists a solution z(.) to (3) and (21) starting at Zo
such that (22) is satisfied.

Xavier may win if and only if there exist smooth open-loop strategies u(.)
and v(.) starting at Uo and Vo and a solution z(.) to (3) and (21) starting at Zo such
that (22) is satisfied.

Xavier must lose if and only if for any smooth open-loop strategy u(.) and
v(. starting at Uo and Vo and solution z(. to (3) and (21) starting at Zo, there exists
a time T> 0 such that

u( r) U(z( r)).

We can replace p(llull / 1) by any continuous function o(u) with linear growth.
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The initial situation is stable if and only if there exist open-loop strategies
u(.) and v(.) starting at Uo and Vo and a solution z(. to (3) and (21) starting at Zo
satisfying both relations (22) and (23).

Naturally, if both Xavier and Yvette must win, then both relations (22) and (23)
are satisfied. This is not necessarily the case when both Xavier and Yvette may win,
and this is why we need to introduce the concept of stability.

THEOREM 5.1. Let us assume that h is continuous with linear growth and that the
graphs of U and V are closed. Let the growth rates p and tr be fixed.

There existfive (possibly empty) closed set-valuedfeedback mapsfrom R to Rp Rq

having the following properties:
Rtc U is such that whenever (Uo, Vo)Rt(Zo), Xavier may win and that

whenever (Uo, Vo) Rt(Zo), Xavier must loose.

If h is Lipschitz, St Rt is the largest closed set-valued map such that whenever
(Uo, Vo) Su(zo), Xavier must win.

Sv Rv V, which have analogous properties.
Ruv c Ru fq Rv is the largest closed set-valued map such that any initial situation

satisfying Uo, Vo) Ruv(Zo) is stable.
Knowing these five set-valued feedback maps, we can split the domain Y( of initial

situations into ten areas which describe the behavior of the differential game from the
position of the initial situation.

In particular, the complement of the graph of Rtv in the intersection of the graphs
of Rt and Rv is the instability region, where either Xavier or Yvette may win, but
not both together.

TABLE
The 10 areas of the domain of the differential game.

Z bl DO) E

Graph (Sv)

Graph (Rv)

Yg\Graph Rv)

Graph (St)

Xavier must win
Yvette must win

Xavier must win

Yvette may win

Xavier must win
Yvette must loose

Graph (Ru

Xavier may win
Yvette must win

?
? STABILITYI ?
? ?

Xavier may win
Yvette must loose

Graph (Rt)

Xavier must loose
Yvette must win

Xavier must loose

Yvette may win

Xavier must loose
Yvette must loose

The problem is to characterize these five set-valued maps, the existence of which
is now guaranteed, by solving the "contingent extension" of the partial differential
equation

(24) O_,Oz h(z, u,  )-p(llull+ 1) u - (llvll+ 1)

If is a solution to this partial differential equation, we can check that for any initial situation
(Zo, Uo, Vo)E Dom (), there exists a smooth solution (z(.), u(. ), v(. )) such that

t(z(t), u(t), v(t)) is nonincreasing.

This property remains true for the solutions to the contingent partial differential equation (27).
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which can be written in the following way:

(25)

o o o
h(z, u, v) + inf u’ + inf v’ _<- O.

OZ Ilu,ll__<o(llull/a) OU IIv’ll=<r(llvll/l) OV

We shall also introduce the partial differential equation6

which can be written in the following way:

o o o
h(z, u, v)+ sup u’+ sup v’=<O.

Oz ilu,ll<__p(llull/a) OU iiv,ll__<,r(llvll/a)
0/9

The link between the feedback maps and the solutions to the solutions to these
partial differential equations is provided by the indicators of the graphs: we associate
with the set-valued maps St:, Rt:, and Rt:v the functions t:, t:, and t:v from
R Rp x Rq to R+ (.J {d-3} defined by

(26)
0

(i) t:(z, u, v):-"

(ii) t:(z, u, v):= {0
(iii) t:v(z, u, v):= {0

if (u, v) St:(z),
if (u, v)_ St:(z),
if (u, v) Rt:(z),
if (u, v) Rt:(z),
if (u, v) Rt:v(Z),
if (u, v) : Rt:v(Z),

and the functions v and @v associated with the set-valued map Rv and Sv in an
analogous way.

These functions being only lower semicontinuous, but not differentiable, cannot
be solutions to either partial differential equations (24) or (25). But we can use the
contingent epiderivatives of any function :R x Rp Rq -> R [_J {+} and replace the
partial differential equations (24) and (25) by the contingent partial differential
equations

(27) inf Ddp(z, u, v)(h(z, u, v), u’, v’)<=O
u’ll_-< p(ll +
v’ II--< o’(11 +

and

(28) sup
Ilu’ll<-p(llull+ 1)
v’ll_-<,(ll + 1)

Dye(z, u, v)(h(z, u, v), u’, v’) =< O,

respectively.
Let t: and fv be the indicators of the graphs of the set-valued maps U and V

defined by

0 if u U(z),
(i) ft(z, u, v) :=

+e if u U(z),
0 if v V(z)

(ii) v(Z, u, v):=
+o if v V(z).

We can check that if f is Lipschitz and cI) is a solution to this partial differential equation, for any
initial situation (Zo, Uo, Vo) Dom (), any smooth solution (z(.), u(. ), v(. )) satisfies that

t-@(z(t), u(t), v(t)) is nonincreasing.

This property remains true for the solutions to the contingent partial differential equation (28).
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THEOREM 5.2. We posit the assumptions of Theorem 5.1. Then
u is the smallest lower semicontinuous solution to the contingent partial

differential equation (27) larger than or equal to f u.

v is the smallest lower semicontinuous solution to the contingent partial
differential equation (27) larger than or equal to v.

uv is the smallest lower semicontinuous solution to the contingent partial
differential equation (27) larger than or equal to max (f u, f v).

Ifh is Lipschitz, dp u is the smallest lower semicontinuous solution to the contingent
partial differential equation (28) larger than or equal to fu.

Ifh is Lipschitz, dp v is the smallest lower semicontinuous solution to the contingent
partial differential equation (28) larger than or equal to f v.

If any of the above solutions is the constant +, the corresponding feedback map
is empty.

ProofofTheorem 5.1. Let us denote by B the unit ball and introduce the set-valued
map F defined by

H(z, u, v):: {h(z, u, v)} x p(llull + 1)B x  (llvll + 1)B.

The evolution of the differential game described by equations (3) and (21) is governed
by the differential inclusion

(z’(t), u’(t), v’(t))6 H(z(t), u(t), v(t)).

Since the graph of U is closed, we know that there exists a largest closed
viability domain contained in Graph (U) Rq, which is the set of initial situations
(Zo, Uo, Vo) such that there exists a solution (z(.), u(.), v(.)) to this differential
inclusion remaining in this closed set. This is the graph of Ru. Indeed, if (Uo, Vo)
Ru(zo), there exists a solution to the differential inclusion remaining in the graph of
U, i.e., Xavier may win. If not, all solutions starting at (Zo, Uo, Vo) must leave this
domain in finite time.

The set-valued feedback map Rv is defined in an analogous way.
For the same reasons, the graph of the set-valued feedback map Ruv is the

largest closed viability domain of the set Y{ of initial situations.
When h is Lipschitz, so is F. Then the solution-map S(zo, Uo, Vo) is also

Lipschitz thanks to Filippov’s theorem,7 so that the subset of initial situations such
that all the functions of S(zo, Uo, Vo) remain in a closed subset is also closed. This is
the largest closed invariant domain by F of this closed subset. Then the largest closed
invariant domain contained in Graph (U) Rq is the graph of the set-valued feedback
map Su.

Proof of Theorem 5.2. We recall that thanks to Haddad’s viability theorem, a
subset L R x Rp x R is a viability domain of F if and only if

V(z, u, v) L, Tr(z, u, v) f’) H(z, u, v) # (.

Let r denote the indicator of L. We know that the Viability Theorem can be
reformulated in the following way.

L is a closed viability domain if and only if its indicator function L is a solution
to the contingent partial differential equation (27).

Hence to say that the graph of Ru is the largest closed viability domain
contained in the graph of U amounts to saying that its indicator u is the smallest
lower semicontinuous solution to the contingent partial differential equation (27) larger

See [6, p. 402].
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than or equal to the indicator 12 t of Graph (U) x Rq. The same reasoning shows that
indicator v of Rv is the smallest lower semicontinuous solution to the contingent
partial differential equation (27) larger than or equal to flv and that the indicator tv

of the graph of Ruv is the smallest lower semicontinuous solution to the contingent
partial differential equation (27) larger than or equal to the indicator of Y{, which is
equal to max (u, 1) v).

We know that a closed subset L c Rnx RPx Rq is "invariant" by a Lipschitz
set-valued map F if and only if

V(z, u, v) L, Tt.(z, u, v)c H(z, u, v).

This condition can be reformulated in terms of contingent epiderivative of the indicator
function L of L saying that

V(z, u, v) L, sup DL(z, u, v)(w) 0.
weH(z,u,v)

Hence to say that the graph of St is the largest closed invariance domain contained
in the graph of U amounts to saying that its indicator t, is the smallest lower
semicontinuous solution to the contingent partial differential equation (28) larger than
or equal to the indicator u of Graph (U)x Rq. [-]

Let us denote by R one of the feedback maps Rt, Rv, Rtv and assume that the
initial situation belongs to the graph of the set-valued feedback map R (when it is not
empty). The theorem states only that there exists at least a solution (z(.), u(. ), v(. ))
to the differential game such that

Vt>_-0, (u(t), v(t))6 R(z(t)).

To implement strategy, players must make decisions, i.e., choose velocities ofcontrols
in an adequate way.

We observe these stable solutions.
PROPOSITION 5.1. The solutions to the game satisfying

ft>=O, (u(t), v(t))6R(z(t))

are the solutions to the system of differential inclusions

(29) (i) z’(t)= h(z(t), u(t), v(t)),
(ii) (u’(t), v’(t)) GR(z(t), u(t), v(t)),

where we have denoted by GR the R-decision map defined by

GR(Z, U, V):= DRR(Z, u, v)(h(z, u, v)).

For simplicity, we shall set G := GR whenever there is no ambiguity.
Proof Indeed, since the function (z(.), u(. ), v(. )) takes its values into Graph (R)

and is absolutely continuous, then its derivative (z’(.), u’(.), v’(.)) belongs almost
everywhere to the contingent cone

TGraph(R)(Z(t), u(t), v(t)) := Graph (DR(z(t), u(t), v(t))).

We then replace z’(t) by h(z(t), u(t), v(t)).
The converse holds true because equation (29) makes sense only if (z(t), u(t), v(t))

belongs to the graph of R. [3

The question arises of whether we can construct selection procedures of the
decision components of this system of differential inclusions. It is convenient for this
purpose to introduce the following definition.
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DEFINITION 5.2 (Closed Loop Decision Rules). We say that a selection (, d) of
the contingent derivative of the smooth regulation map R in the direction h defined by

(30) V(z,u,v)Graph(R),(Y(z,u,v),d(z,u,v))Dg(z,u,v)(h(z,u,v))

is a closed-loop decision rule.
The system of differential equations

(31) (i) z’(t)= h(z(t), u(t), v(t)),
(ii) u’(t)--c(z(t), u(t), v(t)),
(iii) v’(t)-d(z(t), u(t), v(t))

is called the associated closed-loop decision game.
Therefore, closed-loop decision rules being given for each player, the closed-loop

decision system is just a system of ordinary differential equations.
It has solutions whenever the maps c and d are continuous (and if such is the

case, they will be continuously differentiable).
But they also may exist when c or d or both are no longer continuous. This is

the case when the decision map is lower semicontinuous thanks to Michael’s theorem.
THEOREM 5.3. Let us assume that the decision map G := GR is lower semicontinuous

with nonempty closed convex values on the graph ofR. Then there exist continuous decision
rules c and d, so that the decision system (31) has a solution whenever the initial situation
(Uo, Vo) g(zo).

By using selection procedures introduced above, we can obtain explicit decision
rules which are not necessarily continuous, but for which the decision system (31) still
has a solution.

Hence, we also obtain the following existence theorem for closed-loop decision
rules obtained through sharp convex selection procedures.

THEOREM 5.4. Let S be a convex selection of the set-valued map G. Then, for any
initial state (Zo, Uo, Vo) graph (R), there exists a starting at (Zo, Uo, Vo) to the associated
system of differential inclusions

(32) (i) z’(t)= h(z(t), u(t), v(t)),
(ii) (u’(t), v’(t)) S(DR(z(t), u(t), v(t))h(z(t), u(t), v(t)))

:= G(z(t), u(t), v(t))fqS(z(t), u(t), v(t)).

In particular, if we assume further that the selection procedure S is single-valued, then
the single-valued map

((z, u, v), d(z, u, v)) := S(G)(z, u, v)

is a closed-loop decision rule, for which decision system (31) has a solution for any initial
state Zo, Uo, Vo) graph (R).

Proof We shall replace the system of differential inclusions (29) by the system of
differential inclusions

(33) (i) z’(t)= h(z(t), u(t), v(t)),
(ii) (u’(t), v’(t))S(z(t), u(t), v(t)).

Since the convex selection procedure S has a closed graph and convex values, the
right-hand side is an upper semicontinuous set-valued map with nonempty compact
convex images and with linear growth. It remains to check that Graph R is still a
viability domain for this new system of differential inclusions. Indeed, by construction,
we know that there exists an element w in the intersection of G(z, u, v) and S(z, u, v).
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This means that the pair (h(z, u, v), w) belongs to h(z, u, v) S(z, u, v) and that it
also belongs to

Graph (G):= TGraphR(Z, U).

Therefore, we can apply Haddad’s viability theorem. For any initial situation
(Zo, Uo, vo), there exists a solution (z(.), u(. ), v(. )) to the new system of differential
inclusions (33) which is viable in Graph (R). Consequently, for almost all t>0, the
pair (z’(t),u’(t),v’(t)) belongs to the contingent cone to the graph of R at
(z(t), u(t), v(t)), which is the graph of the contingent derivative DR(z(t), u(t), v(t)).
In other words,

for almost all t>0, (u’(t), v’(t)) G(z(t), u(t), V(t)).

We thus deduce that for almost all t>0, (u’(t),v’(t)) belongs to the selection
S(G)(z(t),u(t),v(t)) of the set-valued map G(z( t), u( t), v(t)). Hence, we have
found a solution to the system of differential inclusions (32).

We can now multiply the possible corollaries, since we have given several instances
of selection procedures of set-valued maps.

Example. Cooperative behavior. Let o-:Graph (G)--G be continuous.
COROLLARY 5.1. Let us assume that the set-valued map G is lower semicontinuous

with nonempty closed convex images on Graph (R ). Let r be continuous on Graph (G)
and convex with respect to the pair (u, v). Then, for all initial situations (Uo, Vo) R(Zo),
there exists a solution starting at (Zo, Uo, Vo) and to the differential game (3)-(21) which
is regulated by:

For almost all >_-0, (u’(t), v’(t))6 G(z(t), u(t), v(t)) and r(z(t), u(t), v(t), u’(t),
v’(t)) infu,,,, (z(t).u(t).v(t)) o-(z(t), u(t), v(t), u’, v’).

In particular, the game can be played by the heavy decision of minimal norm:

(c(z, u, v), d(z, u, v)) O(z, u, v),

[Ic(z, u, v)l[2+[[d(z, u, v)[[2) min ([[u’[[2+ [[v’[[2).
(u’,v’)G(z,u,v)

Example. Noncooperative behavior. We can also choose strategies in the regulation
sets G(z, u, v) in a noncooperative way, as saddle points of a function a(z, u, v, .,. ).

COROLLARY 5.2. Let us assume that the set-valued map G is lower semicontinuous
with nonempty closed convex images on Graph R and that a R x Rp Rq R satisfies
that

(i) a is continuous,
(ii) For all (z, u, v, d), c-a(z, u, v, c, d) is convex,
(iii) For all (z, u, v, c), d-a(z, u, v, c, d) is concave.

Then, for all initial situations (Uo, Vo) R(zo), there exists a solution starting at (Zo, Uo, Vo)
and to the differential game (3)-(21) which is regulated by

(i) (u’(t), v’(t))6 G(z(t), u(t), v(t)),
(ii) For all (u’, v’) G(z(t), u(t), v(t)),

for almost all t_>0, a(z(t), u(t), v(t), u’(t), v’)
a(z( t), u( t), v( t), u t), v t))
a(z( t), u( t), v( t), u, v t)).

Appendix. Lower semicontinuous Lyapunov functions. We now consider a differen-
tial inclusion

(34) for almost all t>-O, x’(t) F(x(t))
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and time-dependent functions w(.) defined as solutions to a differential equation

(35) W’(t)=--p(W(t)), w(0)= V(x(O))

where ’R+- R is a given continuous function with linear growth. This function is
used as a parameter in what follows.

The main instance of such a function is the affine function (w):= aw- b, the
solutions of which are w(t) (w(O)-b/a) e-a’ + b/a.

Our problem is to characterize either -Lyapunov functions, i.e., nonnegative
extended functions V: X - R/ (_J {+} satisfying

(36) t->0, V(x(t)) <- w(t), w(0)= V(x(O))

along at least a solution to the differential inclusion (34) or -universal Lyapunov
functions, which satisfy property (36) along all solutions to (34).

DEFINITION 6.1. We shall say that a nonnegative contingently epidifferentiable9

extended function V is a Lyapunovfunction ofF associated with a function (. R+--R
if and only if V is a solution to the contingent Hamilton-Jacobi inequalities

(37) /xDom (V), inf D,V(x)(v)+q(V(x))<-_O
veF(x)

and a universal Lyapunov function of F associated with a function q if and only if V
is a solution to the upper contingent Hamilton-Jacobi inequalities

(38) /xDom (V), sup D,V(x)(v)+q(V(x))<=O.
vF(x)

THEOREM 6.1. Let V be a nonnegative contingently epidifferentiable extended
function and F X X be a nontrivial set-valued map.

Let us assume that F is upper semicontinuous with compact convex images and
linear growth. Then V is a Lyapunov function ofF associated with p(. if and only iffor
all initial state Xo Dom (V), there exist solutions x(. to differential inclusion (34) and
w(. to differential equation (35) satisfying property (36).

If F is Lipschitz on the interior of its domain with compact values, then V is a
universal Lyapunov function associated with p if and only if for all initial state Xo
Dom (V), all solutions x( to differential inclusion (34) and w( to differential equation
(35) do satisfy property (36).

The proof is based on the viability and invariance theorems of the closed subset
Ep V for the differential inclusion:

(39) (i) x’(t) F(x(t)),
(ii) w’(t)---qg(w(t))

and these viability and invariance theorems can be reformulated in the following way.
COROLLARY 6.1. Let F X X be a nontrivial set-valued map.

Let us assume that F is upper semicontinuous with compact convex images and
linear growth.

In Rockafellar’s sense.
This means that for all x Dom (V) and v X, D V(x)(v) > -, and that D V(x)(v) < for at least

avX.
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A closed subset K enjoys the viability property if and only if its indicator K is a
solution to the contingent equation

inf D:(x)(v)=O.
vF(x)

If F is Lipschitz on the interior of its domain with compact values, then K is
invariant by F if and only if its indicator i( is a solution to the contingent equation

sup D:(x)(v)=O.
vF(x)

The functions p and U :X - R/ U {+} being given, can we construct the smallest
lower semicontinuous Lyapunov function of a set-valued map F associated with p
larger than or equal to U, i.e., the smallest nonnegative lower semicontinuous solution

U to the contingent Hamilton-Jacobi inequalities (37) larger than or equal to U?
THEOREM 6.2. Let us consider a nontrivial set-valued map F X X, a continuous

function p :R/ - R with linear growth, and a proper nonnegative extended function U.
Let us assume that F is upper semicontinuous with compact convex images and

linear growth. Then there exists a smallest nonnegative lower semicontinuous solution

U Dom (F)-R {+oo} to the contingent Hamilton-Jacobi inequalities (37) larger than
or equal to U (which can be the constant +oo), which then enjoys the property:

For all x Dom (U), there exists solutions to (35) and (36) satisfying for all >- 0,
U(x(t)) U(x(t)) - w(t).

If F is Lipschitz on the interior of its domain with compact values and p is

Ljpschitz, then there exists a smallest nonnegative lower semicontinuous solution

U Dom (F)--R U {+o} to the upper contingent Hamilton-Jacobi inequalities (35)
larger than or equal to U (which can be the constant +c), which then enjoys the property:

For all x Dom (U), all solutions to (35) and (36) satisfy for all t->O, U(x(t))<=
U(x( t)) <- w( t).

In particular, for q(w):= aw, we deduce that

For all x Dom (Ua), U(x(t))<-_ U,,(Xo) e -’t and thus converges to zero.

The proof amounts to showing that the largest closed viability domain (invariance
domain) contained in the epigraph of U, called the viability kernel (invariance kernel)
of Ep (U), which does exist under the assumptions of the first (second) part of the
theorem, is actually an epigraph, and thus, the one of the smallest lower semicontinuous
(universal) Lyapunov function. Actually, the existence theorems of these kernels are
equivalent to the theorem above, since it implies the following corollary.

COROLLARY 6.2. We posit the assumptions of Theorem 6.2.
Let us assume that F is upper semicontinuous with compact convex images and

linear growth.
The indicator %I/viab(K) of the viability kernel Viab (K) of a closed subset K (i.e.,

the largest closed viability domain ofF contained in K) is the smallest nonnegative lower
semicontinuous solution to

(40) Vx Dom (V), inf D V(x)(v) <-_ 0
vF(x)

larger than or equal to .
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Assume that F is Lipschitz on the interior of its domain with compact values.
The indicator nv(K) of the invariant kernel Inv (K) ofa closed subset K (i.e., the

largest closed invariance domain of F contained in K) is the smallest nonnegative lower
semicontinuous solution to

(41) Vx Dom (V), sup D,V(x)(v)<-_O
veF(x)

larger than or equal to i.
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ASYMPTOTIC STABILIZATION OF A CLASS OF SMOOTH
TWO-DIMENSIONAL SYSTEMS*

W. P. DAYAWANSA, C. F. MARTIN, AND G. KNOWLES

Abstract. This paper studies the asymptotic stabilizability of two-dimensional control systems. The class
under consideration includes C-systems that satisfy a certain genericity assumption and all real analytic
systems. Necessary and sufficient conditions for feedback stabilization using continuous feedback and a
sufficient condition for C-feedback stabilization are given. This latter condition is given in terms of an

inequality involving two indices. If the direction of the inequality is changed, an obstruction to C-feedback
stabilizability is obtained. A subclass of polynomial SYstems is also studied and given complete necessary
and sufficient conditions for global asymptotic stabilization using C-feedback.

Key words, asymptotic stabilization, nonlinear systems, two-dimensional, Weierstrass polynomial
systems

AMS(MOS) subject classification. 93

1. Introduction. Asymptotic stabilization of a nonlinear control system is one of
the most important problems in control theory. Fortunately, techniques have been
developed in the recent past to analyze this problem. Prominent among them are the
techniques based on center manifold theory, pioneered by Ayels [4] and used effectively
by Kokotovic and his coauthors, among others; the idea of zero dynamics introduced
by Byrnes and Isidori [9], [8], [7], etc.; the topological obstructions derived by Brockett
6], Krosnosel’skii and Zabreiko [20]; and the work on continuous feedback stabiliz-
ation by Sontag and Sussmann [25], Kawski [18], etc.

In this paper attention is restricted to a smooth two-dimensional system,

(1.1) 2=f(x)+,(x)u,
where x U is an open subset of R2, u is a scalar input, and f, are smooth vector
fields. It is assumed that f(0)=0, g(0) 0. We study the existence of a feedback
function c on U such that x(0)= 0 and the closed-loop system

(1.2) (f+c)(x)
is asymptotically stable at zero in the sense of Lyapunov. Let us denote by t--x(t, x)
the solution of (1.2) with initial condition x. Here we recall that (1.2) is said to be
stable at zero if for all e > 0 there exist 6 > 0 such that [Ix(t, x)1] < e for all > 0
whenever IIxll < 6. The system (1.2) is said to be asymptotically stable at zero if it is
stable and x(t, x) converges to the origin as t-* c, for all x in some neighborhood
of the origin.

The recent work of Kawski 18] has shown that if the system is small time locally
controllable at the origin, then it is stabilizable by H61der continuous feedback. He
constructed a class of Lyapunov functions to prove the asymptotic stability of the
closed-loop system.
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An extremely important observation on asymptotic stabilization was made by
Brockett [6]. For the moment let us consider (1.1) with arbitrary state-space dimension
n and arbitrary number of inputs n. Brockett proved that the following are necessary
for stabilization of (1.1) with a C feedback function.

(B1) The uncontrollable eigenvalues of the linearized system should be in the
closed left half of the complex plane.

(B2)

(B3)

(1.1) is locally asymptotically controllable to the origin, i.e., for an arbitrary
open neighborhood W of the origin there exist a neighborhood W of the
origin and control u(. such that for all x W the solution t-->x(t, x, u(t))
of (1.1) stays in U for all > 0 and converges to the origin as

The function (x, u)-->f(x)+(x)u’ x"-->n is locally onto at (0, 0).

In a recent paper by Boothby and Marino [5] it was pointed out that in the two-
dimensional analytic case, (B3) can be stated in an apparently stronger form, thereby
deriving a .new necessary condition.

The focus of this paper is on the two-dimensional case. We study the real analytic
case and a class of smooth systems which are characterized by the property that a
certain order jet approximates the system in a sense which will be described in 2.

The main results of this paper are the following.
(i) System (1.1) (with f(0)=0 and (0) 0 both f and are Cw) is locally

asymptotically stabilizable by continuous feedback if and only if (B2) is satisfied,
i.e., the system is locally asymptotically controllable to the origin (Theorem 3.1,
Corollary 3.1).

(ii) We will define two rational indices associated to (1.1), which will be called
index of stabilizability and the fundamental stabilizability degree. We will show that
if a certain inequality in terms of these two indices is satisfied, then the system is C
stabilizable. Furthermore, if they satisfy another inequality then the system is not Coo
stabilizable (Theorems 4.1-4.3 and Corollary 4.1).

(iii) We consider the two-dimensional homogeneous case and give necessary and
sufficient conditions for global asymptotic stabilizability (Theorem 5.2).

(iv) We consider the special class,

ax’ + bx’ : u,

when a, b are real numbers, n, rn are positive integers, and we consider the global
asymptotic stabilization problems (Theorem 6.1).

The basic mathematical ideas in the paper are as follows. First an equivalence
relation on the space of all smooth two-dimensional systems is introduced. All elements
of a given class will have the same stabilizability properties. Then it is possible to
observe that iff is real analytic, then f is equivalent to a Weierstrass polynomial. Even
when f is only C, Mather’s theory on singularities is applicable here and gives fairly
weak sufficient conditions under which f is equivalent to a polynomial system. It turns
out that if the linearization around the origin is nontrivial, then the system is equivalent
to its linearizati0n and in this sense the linearization technique is generalized.

Before embarking on the question of stabilizability of polynomial or Weierstrass
polynomial systems, a special class of polynomial systems should be considered. This
case will illuminate the picture considerably. The algebraic structure of a one-
dimensional real analytic variety is used to give sufficient conditions for asymptotic
stabilization by C feedback and necessary and sufficient conditions for asymptotic
stabilization by continuous feedback (which preserves existence and uniqueness of
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solutions and has slower than exponential decay rate). The sufficient conditions
mentioned above are shown to be the union of a necessary condition and an additional
condition. Surprisingly, the additional condition is satisfied rather easily when the
complexity of the system increases. An obstruction to stabilizability with C-feedback
is also given.

This paper is organized as follows. In 2, an equivalence relation (weak feedback
equivalence) with the property that equivalent systems have the same stabilizability
properties is defined. This relation turns out to be the same as the one used by Golubitsky
and Schiffer 13] in the context of bifurcation theory. Their results are used to identify
the equivalence classes which contain polynomial or Weierstrass polynomial systems.

In 3, the local asymptotic stabilization problem for real analytic systems,

.2 f(x, x), .2 u,

is solved completely. The feedback used is continuous at the origin and C--away
from the origin. As has been pointed out by many authors ([25], [28], [15], etc.), this
allows us to use C-feedback in practical situations. In view of a theorem due to
Artstein [3] (see [24] also), existence of continuous stabilizing feedback implies the
existence of stabilizing feedback of the class considered above. However we use this
stronger class of feedback right away due to the fact that it answers existence and
uniqueness questions trivially. In 4, some sharp sufficient conditions for C a-stabiliza
bility and some obstructions to C-stabilizability are given. In 5 we study the global
stabilization problem for homogeneous systems. In 6 we consider the class

2a axa + bx, "’2 U,

where a, b E, and n, m are nonnegative integers. We give necessary and sufficient
conditions for global stabilization by C (and in many cases real analytic) feedback.
This class already contains very interesting systems. For example, a Xl- x3;

_
u

is stabilizable by H/51der continuous feedback of H/51der exponent 1/2 but no more (in
x4particular not by Lipschitz continuous feedback) (see [12]). Also the system a xa-

2 u is Ca-stabilizable but not C3-stabilizable (see [12]).
In 7 some concluding remarks are given.

2. Weak feedback equivalence and the orbits of polynomial and Weierstrass
polynomial systems. In this section we identify a class of smooth systems which can
be approximated by a Taylor polynomial of an appropriate order. The results of most
of this section are not needed to analyze the real analytic class and the reader can
skip to the last paragraph of the section without losing the essential flavor of this paper.

The usual notion of feedback equivalence [26] is defined as follows.
DEFINITION 2.1. Consider two two-dimensional systems =f(x)+ g(x)ui where

1, 2, x U, an open neighborhood of the origin in 2, f and g are smooth vector
fields, and f(0)= 0. The two systems are feedback equivalent near the origin if there
exist germs of real-valued smooth functions a and/3 near the origin, where a(0)= 0,
/3(0) 0 and a germ q of a ditteomorphism around the origin which preserves the
origin such that

(2.1) f q,(f + ag2),

This notion is of tremendous help in understanding controllability properties since
in many instances we can simplify the structure using this equivalence relation.
Obviously, stabilizability properties of feedback equivalent systems are the same.
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Indeed, we can enlarge the equivalence relation without losing this property by allowing
the multiplication of the vector fields f by germs of positive smooth functions at the
origin.

Here the goal is to preserve the structure (2.3) of the system and thus the
diffeomorphism is restricted to a subgroup.

DEFINITION 2.2. Consider two systems,

(2.3) l=fi(x), 2= u, i= 1,2,

where fi is a smooth function in a neighborhood of the origin. The two systems (or
by abuse of language fl and f:) are weakly feedback equivalent, if there exists
a germ of a coordinate transformation around the origin of the form
(Xl, x2)-((Xl), $(Xl, x:)), which preserves the origin, and a function T such that

and

(2.4) f’(x,, x2)= (x)f2((9(Xl), (Xl, X2)),

as germs of smooth functions at the origin.
This equivalence relation is up to sign, the same as that defined in Golubitsky

and Sch5ffer [13, p. 51] in the context of bifurcation theory. Following the work of
Thom [27] and Mather [23], they raised the question of finding conditions under which
a given function is equivalent (weak feedback equivalent in this paper) to a Taylor
polynomial. The relevant results are described below.

Let denote the space of germs of real-valued smooth functions in two variables
at the origin. will denote the subset of (g consisting of germs which take the value
zero at the origin. is clearly an ideal in . Henceforth, the term germ refers to an
element of .

DEFINITION 2.3 [13]. The restricted tangent space of a germ g, denoted by RT(g),
is the ideal in generated by {g, xl(Og/Ox:), x2(Og/Ox2)}.

THEOREM 2.1 [13]. Let g, pc . IfRT(g+ tp)= RT(g) forall t[0, 1], then g+ tp
is weakly feedback equivalent to g for all [0, 1 ].

TIJEOREM 2.2 [13]. Let g .
(i) There exists an integer k such that ill k c RT(g) if and only if dim (/RT(g))

is finite.
(ii) If tlk RT(g) for some integer k, then g is weakly feedback equivalent to its

kth order Taylor polynomial
Theorem 2.2 can be used to identify a large number of equivalence classes which

contain polynomial systems. For more general means of identifying these classes and
for means of computing the associated transformations, we refer the reader to
Golubitsky and Sch/iffer [13].

In order to give the reader some idea of the results given in later sections an
example, the case dim (RT(f))-<3, is considered. Since the linearization techniques
apply when the origin is a regular point of f, it is assumed that it is a critical point.
The computation of the normal forms and the means of identification of the normal
form was done in Golubitsky and Schiffer [13]. Results of 4 are used to determine
the asymptotic stabilizability properties. We remark here that cases (1), (4), (7), and
(8) follow from the results of Boothby and Marino in [5], and the cases (2) and (3)
are obvious. The purpose of Table 2.1 is merely to motivate the reader rather than to
present new results here.
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TABLE 2.1
The possible cases off when dim (RT(f))<=3, normal forms, and the asymptotic stabilizability with

C -feedback.

Normal
Defining relation form Asymptotic stabilizability

(1) det(d2f(O))<O; f2x2(O)O
(2) det (dZf(0)) > 0; f2x(0) 0
(3) det (dZf(0)) 0, Ely,0 such that

fv(0) 0 and fv(0) 0; fx(0) 0

(4)
(5)

(6)

(7)
(8)

+(x +
x +x

fx(o) o, L....(o) o, Z,x(O) o +xg + x,x:
det (dZf(0)) =0; Ely,0 such that +/-(x+xZ2)
f(0) =f(0) =0; p =f:x2(0) 0, q
fv(0)f2(0)-3fzx:(0) 0, p and q
have same signs.
Same as in (5) except that p and q +/-(x-x)
have opposite signs
L2(O)’-"L1x2(O)---L1xI(O)OZ2X2x2(O) +/-X21-[-X32
Lx(o) o, L......(o) o, Zx(o) o +xx+x

Asymptotically stabilizable
Not asymptotically stabilizable

x-x3 is asymptotically stabilizable

x + x3 is not asymptotically
stabilizable
Asymptotically stabilizable
Not asymptotically stabilizable

Asymptotically stabilizable

Asymptotically stabilizable
Asymptotically stabilizable

If f is real analytic, then f is always weakly feedback equivalent to a Weierstrass
polynomial up to sign. To see this, first use weak feedback equivalence with y(x)= 1,
q(Xl) xl, and q(xl, x2) axl + bx2 (for some a, b) to ensure thatf(x, 0) 0. Now
we consider complexityf For the sake of clarity, use z and z2 for the complex variables
instead of x and x2. Now it is well known (see, e.g., Griffiths and Harris [14]) that
there is a unique holomorphic function (xl, z2) such that cg(0) 0 and a unique
Weierstrass polynomial z’ + al(zZ)Zn-1 -k-. -k- am(z2) (where ai(" is holomorphic and
ai(0) 0, i= 1,. ., m) such that f(zl, z) (z, z2)(z’ + al(z2)z’-1 +. + a,(z2)).
It is now possible to claim that (xl, x2) and ai(x), i= 1,..., m are all real. For if
not, then (since f(xl, x2) is real)

f(Zl, Z2) C(Z1, Z2)(Zn-k- (Z2)Zn-1 +’" + m(Z2)),

where (zl, z) and 8i(z) denotes the complexification of the complex conjugates of
(xl, x2) and ai(x). But this violates the uniqueness of and

Now f(xlx2) (xl, Xz)(X’ + a(xz)x’-1 +. + a,,(x2)) and (0) # 0. Therefore,
f is weakly feedback equivalent to sgn ((0))(xT+ aa(x)a’-1+. + am(x2)) as
previously claimed.

3. Asymptotic stabilization of two-dimensional systems. In this section we will give
necessary and sufficient conditions for continuous local feedback stabilization of the
real analytic system

(3.1) =f(Xl,X2)

where f(0) 0.
THEOREM 3.1. System (3.1) is asymptotically stabilizable with continuous feedback

ifand only iffor all e > 0 there exist p B(O) + and q B(O)

_
such thatf(p) < 0

and f(q) > O. This condition is also equivalent to local asymptotic controllability to the
origin.

COROLLARY 3.1. System (3.1) with smooth f is asymptotically stabilizable iff is
weakly feedback equivalent to a polynomial and iffor all e > 0 there exist p B (O) f-) 2
and q B (0) 2 such that f(p) < 0 and f(q) > O.
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The equivalence of the given condition in Theorem 3.1 to local asymptotic con-
trollability is trivial in view of Facts 1-5 to follow. In the rest of the section we will
prove Theorem 3.1. Corollary 3.1 follows at once from Theorem 3.1.

First consider a two-dimensional system,
(3.2) 21 +f(xl, x2), 22 u,
where f(xl, x2) is a Weierstrass polynomial, i.e.,

f(xl, x:z) x’ + al(x2)x’-1 +... + a,,(x:), and
ai(0) 0, 1 <- -< n. It was shown in 2 that all two-dimensional real analytic systems
and a large class of two-dimensional smooth systems contain a system of the form
(3.2) in their orbits under the weak feedback equivalence. Since asymptotic stabilizabil-
ity is invariant under the equivalence relation, necessary and sufficient conditions for
asymptotic stabilizability of (3.2) will give necessary and sufficient conditions for the
asymptotic stabilizability of all two-dimensional real analytic systems and for a large
class of smooth two-dimensional systems which satisfy the hypothesis of Theorem 2.2.

Here only the case with the positive sign in (3.2) will be discussed. The remaining
case can be treated in the same way. Moreover, since the local problem is considered,
only the germs of the corresponding functions at the origin will be dealt with. So
questions such as the convergence of a series, etc., should be interpreted in this context.

The basic steps of the proof are as follows: First, it will be observed that (possibly
after redefining the xl-axis) f-l(0) may be written as a finite union of graphs of C
functions {xl li(x2)}ii where each Ai has domain either [0, e) or (-e, 0]. Moreover,
each of these functions is either strictly monotone or identically zero; Ai(0)= 0 and
has a representation as a convergent rational power series in its argument. Therefore,
in a small neighborhood of the origin these curves do not intersect each other except
at the origin and, hence, describe sectors in this neighborhood. These sectors will be
modified appropriately, linear feedback functions in these sectors will be defined, and
then they will be pieced together using a smooth partition of unity and it will be shown
that the resulting feedback will asymptotically stabilize the system. This is done by
constructing a neighborhood base of the origin {W}<o such that each W is
positively invariant, contains no nontrivial periodic orbits, and no equilibrium points
other than at the origin. Then, by invoking the Poincar6-Bendixon theory, it is possible
to prove the asymptotic stability. Since the partition of unity is defined on a deleted
neighborhood of the origin, feedback functions will be C only on a deleted neighbor-
hood of the origin. However, since the magnitude of the feedback functions is less
than kllxll, it extends to a continuous function in a neighborhood of the origin. This
special structure of feedback obviously ensures the existence and uniqueness of
solutions.

It should be observed that it follows from Artstein [3] (see [24] also) that when
continuous stabilizing feedback exists, we can find stabilizing feedback functions from
this smaller class. However, working with this class from the beginning avoids difficulties
regarding existence and uniqueness of solutions.

First let xl and x2 be considered complex variables and, for the sake of clarity,
write them as z and z2. First consider the case when f(z, z2) is an irreducible
polynomial z’+a(z2)z’-+ "+a,,(z2) where a(0) =0 for all i. Now f defines an
algebraic function zl q(z) [1, p. 292] and we can write

f(zl, zz) 1-I (z, h,(z)),
i=1

where hi(zz) are the branches of q(z2). In particular, we may define h to be holomorphic
on {z C[z 0, arg (z) zr/2}. Moreover, since w--hi(wm) is holomorphic on C, it
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follows that Ai(z) can be written as a convergent rational power series

Ai(z)= E a,,z’/m.

All of these considerations are valid when f is a Weierstrass polynomial except
that the convergence is now local (see Lefschetz [21, p. 103]) (and the function defined
by the analytic continuation of {A}l is not an algebraic function).

We remark here that Boothby and Marino [5] used this algebraic scheme to obtain
a necessary condition for stabilization.

The following salient features of {}i=1 are noted. They are more or less obvious
and the proofs are omitted. The statements made on [0, e) are valid on intervals (-e, 0],
also.

FACT 1. For small e > 0 and for x2 e [0, e], A(x2) is either always real or it takes
a real value only at x2 0.

FACT2. If a,=0 for all n<m, then the function hi (-e, e)-> C is C and
X
((n/m)-l)A’i(Xz)=Z,__ (n/m) i,n 2

FACT 3. Suppose that A[[0, e) is real. (Now a,. is real for all n.) If ai,. 0 for
some n < m, then the equation Xl Ai(x2) can be solved to obtain a convergent rational
power series

x2 Y b,,x’/l, x2[0,8) or x2(-8,0].
n>l

The function i defined by this function is C and, hence, the graph of x
i(Xz)(X2 [0, e)) is a C submanifold ofR2. On the other hand, if ai,, =0 for all n < m,
then Xz--’>li(X2) is C on [0, e), Therefore, it follows that the curve Xz--->(x2,
(x2 [0, e)) is a C submanifold. Therefore, in either case, tangent vector to this curve
at zero is well defined. Now by redefining the x axis, if necessary, it may be assumed
that none of the tangent vectors to x A(x2) at the origin is tangential to the x axis.
It now follows that if A][0, e) is real, then a,,=0 for all n<m and XZ’>,i(X2)
(x2 [0, e)) is a C-curve. Henceforth, this condition, without loss of generality, will
be assumed.

FACT 4. If AI[0, e) is real, then Ai(x2) is either strictly monotone for x2 [0, e)
or else Ai(x2) 0.

FACT 5. Let

{graph of X /j(X2) X2 [0, E)[ /j is a branch of
and h(x) > 0 Vx2 (0, e)}

{graph of xl A2(x2), x2 (-e, 0]IA is a branch of
and A2(x2) > 0 Vx2 (-e, 0)}.

Let cCe be the corresponding collection of graphs obtained by replacing the condition

A2(x2) > 0 as above by Aj(x2) < 0. (The letters r and stand for right and left.) An order
can be defined on cCr (and on cge) by graph of Ai > graph of A if A-I(x1) > A-I(x1) for
small enough Xl. Existence of A-1 follows from the strict monotonicity and the
independence of the definition on Xl follows from the rational power series expansions.

In order to simplify the statements of the proofs to follow, the following notation
and terminology will be adopted. Throughout, e and 6 will denote appropriately small
positive reals and the graph of Ai means graph of Xl= Ai(x2) for x2 in a specified
interval. Be(0) will denote the Euclidean ball of radius e > 0 around the origin in R2.
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Let

cr,u {(graph of hi) cr Idom (hi)= [0, e)},

r, % %,u,

%,u {(graph of h) e[ dom (h) [0, e)},

%, - c,,
= ,.u e.

We will call tr c a critical curve iff changes sign while crossing tr. The set of critical
curves will be denoted by c and c,t cct3 ,t for (a, fl){r, g} x{u, d}. If tr c
and it is not critical then tr is called a noncritical curve. Note that f-(0)t3 Be(0)=
{x[ }.

Let

+ {(x,, x.) e lx, > 0},

_={(x,,x)lx, <0},

Let o- graph of h "[0, e) [0, c) be in ,,,,. Then it may be said that (X1, X2) is above
tr if 0< x2 < e and x < h(x2). The region above cr means the set of all x which is
above o-. Terms such as "below tr" or "between oh and tr2" will be used in the sequel
and they are self-explanatory.

The proof of the Theorem 3.1 will be broken into several different cases and in
all of the interesting cases the feedback a will be defined sectorwise first. Then a
smooth partition of unity on a deleted neighborhood of the origin will be used to piece
them together. The asymptotic stability of the system will be proven by constructing
a neighborhood base { W }=o of the origin such that for every point in each of these
neighborhoods the positive limit set is the origin and that the neighborhoods are
positively invariant. In order to construct these neighborhoods, the following pre-
liminary facts are needed. The first lemma is needed later to show that the invariant
sets { W}<to form a neighborhood base of the origin.

LEMMA 3.1. Let h:[0, e)- [0, c) be a C function given by a convergent rational
power series X(O)=Y,=ea,O"/" (m,) and assume that h 0.

Then for small enough o there exists a function q :[0,/3o) [0, ) such that the
following hold:

(i) The graphs of x=h(x2) and of Xz=xlln(Xl/) meet at q(),
q(/3) In (p(/3)//3) and q() is the smallest such positive x value.

(ii) p(/3)-0 as 0.

Proof Without loss of generality it is assumed that ae # 0. Since h is C at zero
it follows that >-m and since h is positive, ae>0. Now for small 0, 1/2aeO/" <_-h(0)_-<

2aeOu’. Since x--x In (x/) is monotone increasing on x [/3, ) it suffices to prove
that there are functions /3p1(/3) and /3q2(/3) (/3(0,/o)) such that
q1(/3) In (ql()/)=(1/Zae)"/e(ql())/;

q2(/3) in (q2(fl)) and g’2(fl) --> 0 as/3 --> O.

Now consider the equation

x In (!) =bx’/e where b > 0 is fixed.
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This can be rearranged and written as

/3 (xl)= xl exp (-bx-(-’/e)).

Obviously the function xl--(xl) xl exp (-bx-((-"/e)), x (0, e) is smooth and
strictly monotone increasing and, hence, a homeomorphism onto some interval (p, q).
Moreover, /3(x)0 as x-0 and hence p=0. Now 0"(0, q) (0, e), the inverse of
/3, is well defined and 0(/3) 0. But by definition of fl(x) it follows that x q(/3) is
the unique solution of xl In (x/fl)= bx’;’/.

Replacing b by (1/2ag) m/g and by (2lag) m/e we obtain q and (42 and hence the
existence of q follows.

Remark 3.1. Lemma 3.1 can be modified in obvious ways to obtain a function
for the cases where the domain of A is (-e, 0] and/or codomain of A is (-c, 0]. For
example, if the domain of A is (-e, 0] and the codomain is (-c, 0], then we replace
x In (x/) by xl In (-x/) and obtain a function q satisfying (i) and (ii) in Lemma
3.1 such that the graphs of x=A(x2) and x2 =xln(-x/fl) meet at
(-q(/3),-p(/3) In (p(fl)/fl)).

A second technical lemma is now needed which will be used to prove the
nonexistence of nontrivial periodic orbits inside W.

LnMMA 3.2. Let cr %, be the graph of ’[0, e)--> [0, oc). Suppose that the region
above o does not contain critical or noncritical curves. Let ." [0, s) [0, oc) be defined
by (0) =1/2h(0) and let 5" be its graph {((0), 0)1 0[0, e)}. Then for sufficiently large
k the tangent vector [f(x), --kx2]Tpoints into the region between r and 5for allx (Xl, x2)
O/’ o’.

Proof On a oef {(Xl x) +[Xz->0}B(0) write f(x)=(x-h(Xz))q(x,x2)
where 0(x) is bounded. Existence of such 0 follows since o- . Since o-e %,u, there
exists a convergent rational power series

(x)= Y a,x/" (l>=m, aO).

If f(x)> 0 on 5, then the result is obvious. So assume that f(x)< 0 on & Then
for x on 5 close enough to zero,

f(x) O(xl Xz)h(x) 0(x)
-kx2 2kx: 2k

L X(21_m)/g
-2k

for some L> O.

However,

d n [
aex(f_,)/e

dx2
(x) ,-e2 --m a"x(2"-’)/" >-2m

Therefore, for large enough k, f(x)/-kx2 < (d/dx2)](x2) for x and hence the
result follows. [3

The lemma below is used to prove the positive invariance of W.
LEMMA 3.3. Let r graph of {h "[0, s) - [0, c)} %.u. Let/3o> 0 be small enough.

Let q’(O, o) (0, ) be as given in the conclusion of Lemma 3.1. For (0, o) let

tt "[0, q(fl)]_ R2 be tzt(0) (0, 0 In (0//3)). Let At be the region bounded by t, cr

and the positive x-axis. Then for large enough k andfor all (0, o), the tangent vector

[f(x), k(x + x2)] T points into A for all x (x, x) .
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Proof For each x c/x, [xl, xl + x2] r is a tangent vector to /x . Since the graph
of A is in it follows that f(x)= (xl-A (x2))4,(x) on At where O(x) is bounded on
a neighborhood of zero. Since xl > A (x2) on A it follows that f(x) < Lxl for all x c A
and for small enough /3 and for some L> 0. Therefore the conclusion follows at
once.

Remark 3.2. Lemmas 3.2 and 3.3 can be modified in obvious ways to incorporate
the cases when r, where (a, b){r, {} {u, d} to obtain conclusions similar to
those already obtained. The following lemma should also be interpreted in this general-
ized sense.

LEMMA 3.4. Let/30> 0 be small andforl (0, flo) let tx t "[0,/3]- N2 be the straight
line joining (0,-) to (, O) parameterized by length. Then, for large enough k, the
tangent vector If(x),-k(xl + x2)] r points into the region bounded by the negative x2
axis, tx t and the positive Xl axis for all x (Xl, x2) tx t and for all (0, flo).

Proof. Sincef(x,x2) is C (in fact C), it follows that there exist e >0 and L>0
such that [f(x, x2)l < L([Xll/ix[) for all x B(O). The result follows at once.

Proof of Theorem 3.1. It is only necessary to prove the if" part since the "only
if" part in the theorem is obvious.

The proof is broken into several cases. The x axis is already redefined, if necessary,
such that none of the curves cre are tangential to the Xl axis at the origin. In
particular, f(x) 0 on the x axis. Throughout the proof e, 8, Bo, etc., are used to
denote positive real numbers which are arbitrarily small without further reference to
them.

Case 1. =. Now by the hypothesis of the theorem, xf(xl, x2)--<0 for all
2x e B(0). Define feedback a(x) -x2, and now (xl + x22) is a Lyapunov function for

the closed-loop system proving the stabilizability.
Case 2. There exists a C2 curve L[,--(I,].L2)’(--E, E)--)2 such that /x(0)=0,

/Xl(0) > 0, and/Xl(0)f(/x(0)) < 0 for all 0 0.
This case can be handled trivially using center manifold theory by using the

techniques outlined in Carr [10] and we will not discuss this any further.
Case 3. c contains only one element and it is in ,u. Moreover, f(x)< 0 for x

immediately above it.
Denote the element in c by o- graph of (h "[0, e) - [0, ee)). For small/3 consider

the open neighborhood W of zero shown in Fig. 3.1.
In Fig. 3.1, the curve is defined as follows. If there exists a # e -, which

is above o-, then choose it such that there are no elements of cg between cr and # and
let =#. Otherwise, let ’[0, e)- [0, co) be (X2) =1/2A(X2) and let be the graph of. Once is defined, the points y, y, and 3’3 are defined as functions of/3. It follows
from Lemma 3.1 that { W}o<t<o is a neighborhood base of the origin. St is defined
to be the region bounded by or, and the curve x- yl.

In order to define the feedback function a on B(0), the following open subsets
of B(0)-{0} are defined. Let 0<w be such that (d/dx2)A(O)<oo.

Region between 6 and the line Xl 2x2 in 2

2 Region between x -wx and x oox in 2
3 Region between the negative x2 axis and the line

x -2wx2 in N2

4 Region between cr and the positive x2 axis in N2+,
5--- {(Xl, X2)I Xl

6 3 I,..J I4 .J 5"
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FIG. 3.1

Now 51, 2, 6 is an open cover of B(0)= {0}. Let /xl, /x2, /-1,6 be a subordinate
C-partition of unity to this cover. Now define on Be(0) by

0 if x =0,
k((x + x2)/Xl(X)+ xlxz(X)-X2lX6(x)) if x 0,

where k is a positive constant to be determined.
Now, since c is Coo on B(0)-{0} and since Ic(x)l <2kllxll on B(0), it follows

that the closed-loop system has local unique solutions on Be(0). We take/30 such that
Wg0c B(0). Now it is obvious that the vector field [f(x), c(x)] r points into W or
tangential to 0 W at all x on the horizontal and the vertical parts of the boundary.
By Lemmas 3.3 and 3.4 the same conclusion holds on x: Xl In (x/el) and on x + x2 -/3
for all /3 </30 whenever k is large enough. So for such k, W is positively invariant
for all /3 </3o. Since zero is the only equilibrium point of the closed-loop system in
Wt (/3 (0,/3o)), it follows from the Poincar6-Bendixon theorem [17] that nontrivial
periodic orbits of the closed-loop system in W (if any) should encircle the origin.
However, S is obviously positively invariant; therefore, we conclude that there are
no nontrivial periodic orbits in W at all. Hence, by the Poincar6-Bendixon theorem
for continuous vector fields 17], it follows that for each x W the positive limit set
w(x) is the origin. Since { W}<o is a neighborhood base, the asymptotic stability
of the closed-loop system follows.

The argument for proving the asymptotic stability of the closed-loop system is
essentially the same for all of the remaining cases. Therefore, we will only describe
the construction of W and a for those cases and omit writing the argument.



1332 W.P. DAYAWANSA, C. F. MARTIN, G. KNOWLES

Case 4. c contains only one element and it is in ,u. Moreover, f(x)<0 is
immediately below it.

The element in c is denoted by o-= graph of A’[0, e)- [0, ). Before describing
Wt, a C function ’[0, e) [0, ) will be defined in the following way. If there exist
some c graph of ’[0, e) [0, ) in below o- and above the line x2--0, then the
uppermost such is taken and we define to be . Otherwise we define 2A. Now

will denote the graph of . For small enough fl we will now define W to be the
region shown in Fig. 3.2. The point (3’1,3’2) is the point of intersection of x2=
xl In (xl/) and xl=(x2). (This point exists by Lemma 3.1 and Remark 3.1 and
(3’1, 3’2) - 0 as /3 0.) The point (3’1, 3’3) is the point of intersection of xl 3’1 and

xl )t (x2). The region St is the region enclosed by , r and xl 3’1.
In order to define the feedback function a the following regions are defined. Let

o > 0 be such that (d/dx)(O) < w.

1 {(X1, X2) B(0)-{0}[ x1

[,_J{(Xl,X2)Be(O)[".2+lx2>O, 0<x < .(x)}.

..J{(Xl,X2)Be(O)f’2+lx2<O, 0<x <2x2}

2 { (x, x2) B(O) CI +
3 {(x,, x) 6 B(0) fq 2+1x2 > 0, (x) < x, < 2wx2}.

FIG. 3.2
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Let /aLl, /.Z2, /2, be a C-partition of unity of B(0)-{0} subordinate to the open
cover U i. Now define the feedback function asi=1

if0 if x =0,
k(-x(x) + x.(x) + x(x)),

where k is a large positive constant.
The following facts are now easily verified.
(1) Let /3o be small enough and let k be large enough. Then {Wt}t<o is a

neighborhood base of the origin and each Wt and St is positively invariant
for the closed-loop system.

(2) The only equilibrium point of the closed-loop system in W is the origin.
Therefore, by arguing as in the previous case, the asymptotic stability of the closed-loop
system is proven.

Case 5. There exist r r,u and u %,u. Moreover, f(x) < 0 for all x immediately
above u and f(x)> 0 for all x immediately above ,.

Define a C curve below tr and a C curve below p as was done in Case 3.
Now for small enough/3, W is defined to be the neighborhood of the origin shown
in Fig. 3.3, and S will denote the region enclosed by tr, and the curve xl 71 in
Fig. 3.3.

Let to > 0 be such that the line Xl tox2 is below and xl =-tox2 is below .
Let

1-- Region above flu t in B(0)-{0},

2 Region between tr and Xl 2tox2 in 2 71 (B(0)-{0})d-

3 Region between , and Xl =-2tox2 in _71 (B(0)-{0}),

FIG. 3.3
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4 Region between xl oJx2 and xl (.ox2 in B(0)-{0},

5 Region below Xl -2wx2 in 2+ (Be(0) {0}

Region below x 2wx2 in (B(0) -{0}).

Let {}= be a C-paition of unity on B(0)- {0} subordinate to the open cover
U Now define a’B(0)Nby

0, x =0,
a(X)

k(_X2l(X) + Xz2(x + x23(x + Xl4(x Xl5(x))
where k is a large positive constant.

It is easily proven that there exist large enough k and small enough Bo> 0 such
that {W}<o and {S}<o are positively invariant for the closed-loop system, they
contain no nontrivial periodic orbits, and the origin is the only equilibrium point in
W for all < 0. Therefore, the asymptotic stability follows.

Case 6. There exist e ,, and e ,, and f(x) > 0 for all x immediately above
g and f(x)< 0 for all x immediately above u.

Now consider 8 above and above u as was done in Case 4. In this case the
}=l are constructed as in Case 5 but interchange g and 8 and and .regions {

Now construct a using the formula in Case 5 and argue as in Case 3 to prove asymptotic
stability.

Case 7. There exist e r, and u e ,, and f(x) > 0 for all x immediately above

Now construct 8 above as in Case 4 and below as in Case 3. Define the
regions {i}s= as in Case 5 but interchange g and 8.

Case 8. There exist g e ;,u and e ,. Moreover, f(x) > 0 for all x immediately
above U .

Let =graph of ’[0, e)[0,) and uCgraph of ’(-e, 0](-,0]. Define
[’[0, e) (0, m) as in Case 4. If there are no elements of e,a above u, then define

" (-e, 0] (-, 0] by ;(x)= 2p(x2) and let be the graph of . Otherwise let be
the element of e,, which is immediately above v. Now for small enough B > 0 define
the region W as shown in Fig. 3.4.

Let S be the region bounded by , 8 and the line x y. Let w > 0 be such that
the line x wx is below 8 and above .

Let l be the region above 8U {(x, x)lx < O, x+(1/2w)x}. Let 2 be the region
below Xl=-Wx2 (x <0) and above x =wx (x <0). Let 3 be the region below
X 22 (X < 0) and above .

Let 4 be the region between and Xl 2wx (Xl > 0). Let s be the region above
x =-wx (x > 0) and below x wx2 (Xl > 0). Let 6 be the region above x 2wx2
(x > 0) and below g.

Let {}= be a C-paition of unity subordinate to the cover 6i=1 i of
B(0)-{0}. Now define the feedback function a" B(0)N by

0, x =0,
(x)

(-x,(x) + Xl(x) + x3(x) x4(x) + xs(x) + x6(x)),
where k is a large positive constant.

Now, as in Case 3, it is argued that when k is large enough, and Bo is small
enough, { W}<o and {S}<o are all positively invariant, { W}<o does not contain
nontrivial periodic orbits, and the origin is the only equilibrium point of the closed-loop
system in W. Since { W}<o is a neighborhood base of the origin, the asymptotic
stability follows at once.
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FIG. 3.4

Case 9. There is r Cr,u V ,d, and f(x)> 0 for x immediately above r or
immediately below ,. Now define as in Case 8 and 7 above , to be the element of
e,d immediately below u if such an element exists or let ff {(Xl, x2)lx2 (-e, 0],
(2x, x) }.

Now define {i},6.=1 as in Case 8, but interchange v and 7 and define a accordingly
and complete the argument as in Case 8.

Each of the remaining cases is essentially similar to a case considered already in
the sense that the modifications needed are obvious.

4. Stabilization of real analytic systems using smooth feedback. Consider a two-
dimensional real analytic control system,

(4.1) 1 f(xl, x2), u,

where u is the control and 3
7 is a real analytic function defined near the origin of

and f(0) 0. As seen before, there is no loss in generality in considering the special case

(4.2) l=f(x1,x2), 2-- u,

where f(x) is a Weierstrass polynomial. Let

f(x) x’ + al(x2)x?-1 +’’’ q- a,,(x).

The objective in this section is to give a rather sharp sufficient condition for feedback
stabilization of (4.1) using Cl-feedback and to derive some obstructions Ior the
existence of C-stabilizing feedback. It is said that (4.1) is C stabilizable if there exist

C feedback which asymptotically stabilizes the system.
Throughout this section the notation introduced in the previous section regarding

the variety f-l(0) will be used.
In what follows, we will show that there are three indices which seem to dictate

the smoothness of stabilizing feedback. The first of them quantifies the vertical distance
that a trajectory should travel before its horizontal component begins to move towards
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the origin. The remaining quantifiers dictate the smallest value of the feedback function
needed in order to cross certain critical boundary curves. It turns out that in certain
cases even the smallest value is too large in the sense that to achieve it the feedback
function must vary too rapidly. Therefore, such cases point out obstructions for smooth
feedback stabilizability.

Throughout this section e will denote a positive real number which is as small as
desired.

Denote the positive rationals by Q+ and define:

A/ {3’ Q+lf(xl, b(xl)) < 0 for all x e (0, e), for some e > 0,
and for some convergent rational power series

with leading exponent equal to 1/3’},

A-={3"Q+lf(-x, 4(x))> 0 for all Xl (0, e), for some e>0
and for some convergent rational power series b(xl)

with leading exponent equal to 1/3’}.

DEFINITION 4.1. The index of stabilizability off is max {infA+ { 3’}, infA- { 3’}}.
DEFINITION 4.2. The fundamental stabilizability degree of f is the order of the

zero of am(X2) at x2=0. The secondary stabilizability degree of f is the order of
the zero of am-l(X2) at x2 =0.

Notation.

I := Index of stabilizability of f,

s := Fundamental stabilizability degree of f,

s2 := Secondary stabilizability degree of f
Note that Sl is invariant under real analytic weak feedback equivalence. Indeed we
can define Sl directly from j7 as the smallest integer { such that

ox (O)
The remaining indices are not weak feedback invariants in general.
Note that according to Theorem 3.1, I is defined only when (4.2) is C-stabilizable.
In what follows, we need to compare Sl with 2I-1 and s2 with I- 1 when I > 0.

By considering the factorization,

f(x) (x 3’l(X2))(x? -1 + Cl(X2)X?-2 -1t-.. + Crn_l(X2))

where 3’1(x2) is a rational power series with leading exponent equal to I and ci(x2),
1,..., m- 1 are rational power series in x2, it is easily concluded that s2> I-1

(respectively, s2 >= I 1) if s > 2I 1 (respectively, s -> 21 1).
TrEOREM 4.1. The system (4.2) and hence (4.1) is C-stabilizable if

s1>2I--1.

Proof. If I 0, then obviously a(x)= -kx stabilizes the system for large positive
k. When I 0, the proof of this theorem is very much like the proof of Theorem 3.1
on C-stabilizability except for the construction of the feedback function. The invariant
sets {W}<o will be exactly the same as before and the proof of the invariance
follows along the same lines. So here we will only construct a(x) in a representative
case and leave the details to the reader.



ASYMPTOTIC STABILIZATION 1337

For convenience we will assume that there exist O" E (Cr, which is the graph of
Xl At(x2); cr E c,., which is the graph of x A(x2); and that the leading exponents
’)/r and ),e in the rational power series of Ar and Al are less than or equal to I. Moreover,
it is assumed that f(x)< 0 above rr, f(x)> 0 above r, that there are elements of r
above O" with the leading exponent Yr, and no elements of c are above trl with the
leading exponent y. Define Ur’[0 e)-- [0, 00) and ue" [0, e)- [0, ) by Ur(X2)=1/21r(X2)
and u(x2)=1/2,t(x2). (If there are elements of r or Re above err or o- with leading
exponents Yr and ye, respectively, then we take ur and/or ue to be some rational power
series with leading exponents yr and/or ye and such that their graphs lie between rr
and/or o and the corresponding element of Cr of Ce.) Now uv and ue are strictly
monotone rational power series and, therefore, we can invert x Ua(X2) (a {r, {}) to
obtain

rr:[0, e)-*[0,) and rt:(-e, 0]-[0, ),

which are both convergent rational power series and rr and o’ are the groups of
x: rtr(x) and x: tie(x1), respectively. Now the leading coefficients of fir and tie are
1/Yr and 1/ye, respectively, and each is not less than l L Now let k be a large positive
constant and y is a rational of the form (2p+ 1)/(2q + 1) for p, q. If I <_-1, y is
taken to be greater than but very close to 1/I and if I > 1, we take y 1. Now define
the feedback function c(x) as

O if x=O,
a(x) -kx+ k(qr(x)) for x> 0,

-kx+k(rle(x)) for x>0.

It is obvious that a is C .
The sets {Wt}<o are constructed now as in the proof of Theorem 3.1. The

positive invariance of these sets and the nonexistence of any equilibrium points other
than the one at the origin is verified exactly along the same lines as before using the
inequalities s > 21-1 and s2> I-1. These inequalities permit a(x) to be made much
smaller than those we had constructed in Theorem 3.1 and, thereby, produce C
feedback functions. The rest of the details are left to the interested reader. [3

COROLLARY 4.1. Suppose that f is symmetric with respect to Xl (i.e., f(xl, x2)=
f(-x, x2)). Then f is C stabilizable if and only iff is CO stabilizable.

Proof It is only needed to show that C-stabilizability implies C l-stabilizability.
C-stabilizability implies that I is defined. Since the case m--0 is trivial it will be
assumed that m => 2.

The following cases are possible.
Case 1. I 0. Now the symmetry off implies that f-- 0 on the xl-axis. Therefore,

Sl- c and the desired conclusion follows from Theorem 4.1.
Case 2. I # O. Now we have a convergent rational power series A:- with

leading exponent I such that

f(A (x2), X2) 0 for all X2 0e,

where // is either [0, e) or (-e, 0].
But, by symmetry of f with respect to x, it follows that

f(-, (x2), x:) 0 for x also.

((x))Therefore, x- is a factor of f(x, x2) for x2E .
It now follows that the leading exponent of a(x) (i.e., s) is not less than the

leading exponent of (A(x2))2.
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Therefore, S1_->2L It follows from Theorem 4.1 that the system is Cl-stabiliz
able. 0

In the proof of the following theorem the technique for the construction of the
Lyapunov function is due to Kawski [18].

THEOREM 4.2. Suppose that l+2s._>- Sl and Sl is odd. Then the system (4.1) is
C’-stabilizable.

Proof Since the proof is trivial if m 0 we assume that m > 1.
By replacing x2 by -x2 if necessary we may assume that the leading coefficient

of a,(x2) is positive. Let ai(x2)= Y=I ai,x. Now let k > 0 be large enough and define
the function

m--2

V(x) xx2+ lX xm-i) ai’j 2J+’ + Xl E am-l"J X+1"

= j+l

am,j am Sl+ 2 X+1+ "x’+’+kx
j=,+lj+l Sl+ 1

Now define the feedback function a(x)=-OV/Ox-OV/Ox2. Obviously, a is real
analytic.

Since s is odd and s2+ 1 (s + 1) it follows that for large enough values of k,
the function V is positive definite on a small neighborhood of the origin. Furthermore,

(x) 0 v
(x)

If V(x(t))O along a trajectory x(t) of the closed-loop system, then (since
f(x) =0 V/Ox2) it follows that x(t) is constant.

Now rewrite V(x)=,= b,(x)x2 Then

OV
E n.b..(x)x;-,

OX n=

so if Ov/Oxz(x(t))O, but x(t) is nonconstant, then it follows that b,(Xl(t))=0 for
n= 1,2,. ..

Since bs,+l(X) is nonzero and real analytic, it follows that there exists e > 0 such
that bs,+(x) 0 for all 0 < ]x < e. Therefore, for small enough 6 > 0 if {x(t), > 0}
B(0) and if V(x(t))= 0 for all > 0, then x(t) is constant. We will now show that for
possibly smaller values of 6 this implies that x(t)O. For if x(t) is constant, then
(0 V/OXl)(X(t)) 0 (0 V/Oxz)(x(t)). Since (O/Ox)(O V/Ox)(O) 2k 0 it follows that
(OV/Ox)-(O) is the graph of a real analytic function x (x). However, 0V/0x2
does not depend on k and hence for almost all values of k and for small 6, (0 V/Ox)-l(o)
and (0 V/Ox)-(O) intersect in B(0) only at the origin. This now shows that for large
enough k and small enough 6, 9(x(t)) 0 and x(t) e B(0) for all > 0 implies that
x(t) 0, and hence the stability follows from LaSalle’s theorem. S

Now our attention is focused on obtaining necessary conditions for smooth
stabilization. The result shows that if we reverse at least one of the inequalities in
Theorem 4.3 then we have an obstruction to C-stabilizability.

TzozM 4.3. Suppose that s < 2I 1. en the system (4.1) is not C-stabilizable.
Proof Since s is a natural number it follows that I > 1. By the definition of I

one of the following should hold.
(a) There is a sector in bounded by curves x=h(x2) (xe[0, e)) and

x hz(x) (xe(e, 0]), such that graphs of and are both in and f(x) > 0 on, and such that the leading exponents of h and h are not less than L
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(b) There is a sector Yt2 and 2_ bounded by curves xl A3(x2) (x2 [0, e)) and
X A4(X2) (X2 (--6, 0]), such that graphs of A and A4 are both in Re and f(x) < 0 on
2, and such that the leading exponents of A and A4 are not less than I.

(c) Same as in (a) except for that either Al(X2)--0 or A2(x2)--0, but not both.
(d) Same as in (b) except for that either A3(X2)= 0 or /4(x2) 0, but not both.

Now, suppose that the system is C-stabilizable with feedback a(x). Let be a point
close to the origin on the positive xl-axis and let be a point close to the origin on
the negative xl-axis. Let x(t; ) and x(t, ) (t _-> 0) be the positive orbits of
respectively. Let F(x) [f(x), a(x)] . Since x(t, ) 0 and x(t, )- 0 as the
following hold.

In cases (a) and (c), x(t; ) crosses one of the boundary curves of Ytl and leaves
Ytl, and, until x(t; ) reaches the boundary of Ytl, the Xl coordinate of x(t,
increases monotonically.

In cases (b) and (c), x(t; ) crosses one of the boundary curves of Yt2 and leaves
Yt2, and, until x(t; ) reaches the boundary of t2, the Xl coordinate of x(t;
decreases monotonically.

For convenience, it is appropriate to only consider the cases (a) and (c), to assume
that xl Al(x2) (x2e [0, e)) is a boundary of Ytl, and to assume that the vector field
F(x) points away from Ytl on Xl Al(x). Moreover, we assume that there is a sequence
of points {"}.=1 on the positive xl axis such that yn _. 0 as n-* and x(t, n) crosses

xl hi(x2) and leaves 1 in positive time for each n. The argument given for this case
is representative of the argument needed to obtain the desired contradiction in each
of the remaining cases.

Now let u be the leading exponent of/.l(X2). Then u_>-I. Now for all large a > 0,
x(t,) should cross the curve Xl--ax (x2E [0 e)) for each n. Therefore, we have a
sequence {x"}.=1 on xl =ax (x: [0, e)) such that x" -0 as n-c and

f(xn)
< aI(x) -I for all n.

(x")

Since sl < 21-1, it follows that for suitably large values of a,

f(x")=f(a(x)’,Xz)>=c(x)t3 for some c>0 where =min{sl,s2+I}.

Therefore,

a(x") >/(x)" for some constant/> 0 where r/=/3 + 1 I.

Note that r/< L Therefore, it follows that

0xe a(0) 0 for some

Therefore, for large enough a and small enough e > 0, there exists a positive constant
b such that

a(ax,x2)> b(x2)" for all x2[0, e).

Now let 0 be a positive real number and consider the sector Yt3 bounded by
x=Al(x2) and xl=-Ox, x2[0, e). It is claimed that for some 0>0 one of the
following should hold: Either there is a sequence {x"}.=1 on xl ax such that x" 0
as n - and on each line segment {, x2 x in Yt3 there is a point at which a(x) < O,
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or there is a sequence {x"}-i on Xl=-Oxl2 such that x0 as noo and a(x")<
(b/2)(x’)" for all n. For suppose that for all 0>0 there is some e >0 and a(x)>
(b/2)(x2)" on x=-Ox for all x2 [0, e). Then,

1 If(-Ox, x2)]< 2]f(-Ox,
IOx- a(-Ox, x2) ]IOx-(b(x2)’)l

21d Ox+s2 d- dx’<-
ibOx2

for X2 [0, e),

where d and d2 are positive constants which are independent of 0.
If s _-< s2 + I it is obvious that we can make

[d10x+s2 + d2xll

less than one by making 0 large enough. If s > S2-- I, then by keeping track of the
bounds obtained in proving that (ax, x2)> b(x2), it is observed that

]dax(z+’ + d2x,]
2

Ibax
< 1 for x2 [0, e).

Hence, in either case the vector field F points into the sector 3 on the boundary
curve Xl =-Ox for some 0>0. Now, since the same holds true on xl Al(x), it
follows that 3 is positively invariant. But now asymptotic stability implies that each
horizontal line segment { in 3 with endpoints on boundary curves should have a
point at which c is negative. Therefore, the claim has been proved.

Now let 0 > 0 and be as in the claim above. Then, it follows from the claim
that there exists a sequence {x" (x’, x)}=l in converging to the origin such that
a(x") < (b/2)(x’) ". Then

Ic(a(x) x" b (x) " b _(,,x) ( )1->- =(x) -"
I(a(x)’,x)-x’l -2 (a+O)(x’)’ 2(a+0)

But, (I-r/)> 0 and, hence, the previous inequality violates Lipschitz continuity of
a(x). This contradiction completes the proof of the theorem.

5. Homogeneous systems. Consider the system

(5.1) )l=f(xl,x2), 22=u,

where f is a homogeneous C-function of degree A, i.e., f(sxl, sx2) s’f(x, x) for
all real s. In order for various definitions to make sense, assume that A is a rational
number of the form q(2p + 1) where p and q are nonnegative integers and q-> 2p + 1.

Methods for determining the stability of two-dimensional hornogeneous systems
have been known for over 30 years. Consider the system

(5.2) , q,,(x,, x), q,2(x,, x),

where ql and q2 are smooth homogeneous functions of degree A q(2p + 1) (q -_> 2p +
1).

THEOREM 5.1 15], [16]. The origin is a (globally) asymptotically stable equilibrium
point of (5.2) if and only if q is odd and one of the following conditions is satisfied:

(i) System (5.2) does not have any one-dimensional invariant subspaces and
’= cos 0bl(COS 0, sin 0)+sin 02(cos 0, sin 0)

cos 02(cos 0, sin 0)-sin 01(cos 0, sin 0)
dO < 0
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or
(ii) System (5.2) is asymptotically stable on each of its one-dimensional invariant

subspaces.
The reader is referred to Hahn [15] for a very readable proof.
Remark 5.1. In the special case where 1 and 2 are homogeneous polynomials,

Theorem 5.1 was proved by Haimo [16] using arguments which are more algebraic in
nature than those found in Hahn [15].

Now the necessary and sufficient conditions for the asymptotic stabilizability of
Theorem 5.1 can be stated. This result follows from Theorem 4.1 if f is C w, but we
give a slightly simpler proof in the general case and prove the global stabilizability.

THEOREM 5.2. System (5.1) is locally asymptotically stabilizable by continuousfeed-
back if and only if one of the following conditions hold:

(i) q is odd and there exist some a / such that f( a) < O.
(ii) q is even and there exist points a,b/ such that f(a)f(b)<O.
In both of these cases there exist globally asymptotically C stabilizing feedback.
Proof. Conditions given in the theorem are clearly necessary, for otherwise, either

g2(t) => 0 on [+ or 2(t)_-< 0 on [_ along trajectories; therefore, the system is unstable
at the origin regardless of feedback.

Sufficiency of (i). By using weak feedback equivalence with an associated coordin-
ate transformation (Xl, x2)--(xl, x2- Oxl) where 0 is a real constant, it may be assumed
that f(1, 0) < 0. Now let

Now the system

(5.3) : =f(xl, x), 2= -x
obviously satisfies (ii) of Theorem 5.1 and this proves the sufficiency of (i) of Theorem
5.2.

Sufficiency of (ii). Now there exists P (Pl p2) G [2
+ such that f(p) 0 and that

f(p + e, Pz)f(Pl-e, P2) < 0 for small positive e. (Here we assumed (after applying a
weak feedback transformation if necessary) that p # 0.) Now a C-function :-*
can be constructed such that d/ds(O)= p/pl and xf(x, (x))< 0 for all xl # 0.

Special case: f is C2. In this case, the sufficiency of (ii) can be proved rather
easily using the following ingenious "trick" found in Byrnes and Isidori [8] and in
[23], [28], and [24].

Let us change coordinates as

(5.4) y=x, y2=x-(x).

Now (5.1) is written in new coordinates as

Let us write

where

Y=f(Yl,Y2+(Yl)), fi2 -’(Ya)f(Yl Y2 + (Yl)) d- U.

f(Y, Y2 + (Yl)) --f(Yl, (Yl)) + Y2g(Yl, Y2),

g(Yl, Y_)- f(Yl, ty + (Yl)) at.

Since f is C2, it follows that g is C 1.
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Now define the feedback function for (5.5),
u q’(Yl)f(Yl, y2+ #(Yl))-Y2-yg(Y, y2).

It is now obvious that V(y Y2)= 2(yl + y22) is a Lyapunov function for (3.5), proving
the global asymptotic stabilizability of (5.1).

General case: f is Ca. The proof given above fails since g may now be merely
continuous. However, the existence of globally asymptotically stabilizing C-feedback
in this general case can be proven by using a somewhat more complicated argument.
(A similar construction is possible when (i) of Theorem 5.1 is satisfied as well.)

Assume without loss of generality that Pl 1. By replacing x2 with -x2 and u with
-u, if necessary, it may be assumed that there exists some 6 > 0 such that

kf(1, k+p2)<O for all 0<lkl_-<a.
Without loss of generality, the assumption can be made that I(x)l N (6/2)[x,I for all

Xl.
Let n be an odd integer greater than 2p/(2q+ 1). We will now prove that the

feedback,

U ((Xl) X2)+ ((Xl) X2) n,
globally asymptotically stabilizes the system (5.1).

Local asymptotic stability. In order to simplify the proof, consider the case P2 > 0.
The cases pz 0 and P2 < 0 can be handled by obvious modification of the proof and
the details are left to the reader.

Without loss of generality assume that 6 < p2. Let > 0 and consider the region
A, bounded by the lines

X2 P2 + 6 pa(X1 )
x,=-,

x -p,
f x2 -p+ 2p2 x.

It may be claimed that when is small enough, A is a positively invariant set.
Use to denote the portion of the boundary of A which lies along . Clearly, the
vector field F:=[f(x), ((x)-x)+((x)-x)"]r points into A on , f, and

for all > 0. Since (x)-x2 < 0 on and (x)-x2> 0 on f, it now suffices
to prove that

f(x)
p (x) x2 2p2

on and f. Sincef(x)/((x)-x) =0 at (, P2) and at (-, -(pz- 6)), consider
a point x in

(X(-,-(p-))) U (fX(, P)),
and write x=(r cos 0, rsin 0). Define 0o by cos 0o 1/(1 +p and sin Oo=pz/(l +p.
Then

f(x)
2 If( r cos 0, r sin 0

(x)-xa x-px

r(1 +p) sin (0- 0o)l’
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where y(0) =f(cos 0, sin 0). Since f is C it follows that y is C 14 and also y(0o) 0.
Hence y(0)] <- el(0 0o)1, where e is a constant. Moreover, in the region under consider-
ation 0 < [0 0o[ < r v, where v tan-1 (6), we can find a constant d > 0 such that
]sin (0 0o)1 -> d](0 0o)1. Therefore,

f(x) c r(2p/(zq+l)-l)

q(Xl)- x2 2d x/1 +p
Since 2p/2q + 1 > 1, it follows that when r is small enough

1f(x)
(x,-x2)-2p2

if x e/ J 5 Now, when fl is small enough the required bound on r can be achieved.
This concludes the proof that when fl is small enough, A is a positively invariant set.

Now A is a compact positively invariant set. The origin is the only equilibrium
point in A. It is clear that (since I(x,)l -< (6/2)xl) the region in A bounded by the
straight lines Xl=fl, x2=p2x,, and x2=(p2+6)x1 is an invariant set for a possibly
smaller ft. This precludes the existence of periodic orbits in A; therefore, we conclude
that w(x), the positive limit set of x, is the origin for all x A. Along with the
positive invariance of A, this proves the local asymptotic stability of our system.

Global asymptotic stability. It must be shown that for all x 2, W(XO) ---0. By
arguing as before but using the term (q(Xl)-X2)" in the feedback function as the
dominant term whenever (p(Xl)-X2)" > 1, we prove that A’ is a positively invariant
set for large values of/3. The fact that the feedback function (q(Xl)-x2)+
is positive on the line x2 px1 precludes the existence of periodic orbits in A which
enclose the origin. Therefore, for all x A’ (/3 is large enough), w(x) =0. This
completes the proof of Theorem 5.1.

Remark 5.2. It is clear that

q(x) p2x, +)2 (tan-’ (x))2

satisfies the requirements of q in the proof ofTheorem 5.1, thereby proving the existence
of real analytic feedback which stabilizes the system. Furthermore,

2p(X,) pzXl at- X

yields polynomial feedback which locally asymptotically stabilizes the system. If f is
homogeneous of odd degree, then the proof given above can be modified to show that
the linear feedback u= y((p2 + 6/2)Xl-X2) (3 is a positive constant which is large
enough) locally asymptotically stabilizes the system and polynomial feedback u
6((pz+6/2)x-xz+((pz+6/2)xl-x2)"), where n is an odd integer greater than
2p/(2q+ 1), globally asymptotically stabilizes the system. (Here it is assumed that
kf(1, (k + P2)) < 0 for 0 < k[ < 3. If kf(1, (k + P2)) > 0 for 0 < k[ < 3, then it is necessary
to replace 6 with -3 in the expression for feedback.)

Remark 5.3. In a recent paper Andreini, Bacciotti, and Stefani [2] gave sufficient
conditions for stabilizability of homogeneous polynomial systems of odd degree in
arbitrary dimensions. In the two-dimensional case their conditions are sufficient as
well and they are equivalent to (i) of the previous theorem.

6. Local and global asymptotic stabilization of a special class of polynomial
systems. Consider a system of the form

(6.1) 1 ax + bx, )_ u,
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where n and rn are integers and a and b are real numbers. This special class is
considered here since we can make global statements regarding this class.

Let f(x)= ax’ + bx. By Theorem 3.1, the following condition is necessary and
sufficient for continuous feedback stabilization.

There exists ql ER2
+ such that f(ql) <0 and q2ER_ such that f(q2)> 0.

This is referred to as condition (,).
The objective in this section is to prove that condition (,) is also sufficient for

global asymptotic stabilizability of (6.1). in the special case where a > 0, b # 0, n 1,
rn > 1 and odd, the linearized system will have an eigenvalue in the open left half
plane and, therefore, it follows easily that no C1-feedback can stabilize the system.
To avoid such cases it may be assumed in this section that n > 1 and m > 1. In most
cases it will be shown that the stabilizing feedback can be constructed from the class
of polynomials.

This class already displays interesting examples. The system

2 x- x3, 2 u

is globally asymptotically stabilized using H61der continuous feedback with H61der
exponent equal to 3. But this is the maximum H61der exponent. In particular, no
Lipschitz continuous feedback stabilizes the system. As another example the system

2 X 2 U1 X1--

is C-globally asymptotically stabilizable but no C3-feedback stabilizes it. We refer the
reader to [12] for details on these examples.

We now state the main theorem of this section.
THEOREM 6.1. Consider the system (6.1) and assume that n >-2 and that condition

(*) is satisfied. Then there exists C globally asymptotically stabilizing feedback _If b 0
and m is odd, then there exists globally asymptotically stabilizing polynomial feedback.

Proof We will prove the theorem by considering several different cases which
encompass all of the possibilities.

Case 1. a 0 or b 0 or n m. In this case f(x) is a homogeneous polynomial
of order rn or n and Theorem 2.1 shows that the system is globally asymptotically
stabilizable with C feedback. If a 0 b, n m and odd, Remark 5.2 points out that
there exists globally asymptotically stabilizing polynomial feedback.

Case 2. a 0 b and m is odd. The argument here is due to Kawski [18]. It is
obvious that our system is weakly feedback equivalent to

(6.2) 21--"+’X --XT, 22=U.

Global asymptotic stabilizability of (6.2) can be proved rather easily by considering
the Lyapunov function

1
(6.3) V(x) 4x+x’+’ q= xx2 + 4x),

m+l

and feedback

u 8xl nx;-x. + (+x’; x’) + 4kxf-
where k is an even integer which is greater than n(rn + 1)/m.
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By using H6lders’ inequality we obtain

Ix x=l x= ((I 2a/"xll n(m+l)/m)) rn/(m+l)

<-- x:z + IXll"(m+l)/"2(m+l)/m
-(m+l) m+l

If Ix1[ _-< 1, then

2(m+l)/m m
ixll,,(,.+,/, < 4lxll"m+l

If Ixll > 1, then

(6.4) 2(m+l)/m ..m Ix, n(m+ 1) <4lxllk"m+l m

Therefore, V(x) is a positive-definite function on R2 which is radially unbounded.
Moreover,

f/(x)=-(xT:x)<-o.
Since the set {(x, X2) IX=]= X-’-0} does not contain a nontrivial invariant set, it

follows from the well-known LaSalle’s theorem [17] that the system is globally
asymptotically stable.

Case 3. a # 0 b, n, rn are even, n > rn. It is obvious that system (6.1) is weakly
feedback equivalent to

(6.5) .1 X1--XT, ..2 U.

We are going to prove the existence of C feedback which globally asymptotically
stabilizes (6.5).

Define :R-E such that S"--(qJ(s))m=o and sO(s)>=O for seE. Since n> m, it
follows that 0 can be constructed to be a C-function. Let p:R E be a C 1-function
such that:

(i) re(O) O;
(ii) 0<(s)<1/21(s)l for all s0 and (s)>1/41,(s)l for Isl> 1;
(iii) q(s)= p(-s) and p is monotone increasing for s-0.
Let k be an odd integer greater than n.
We claim that the feedback

u (x)= q,(x,)+ (x,)-x+(q,(x,)+ (x,)-x:)

globally asymptotically stabilizes the system.

Local asymptotic stability. The idea is similar to the proof of Theorem 3.1. It is
necessary to first produce arbitrarily small positively invariant sets enclosing the origin
and then show that they cannot contain nontrivial periodic orbits. The shape of the
invariant sets (called A’) are depicted in Fig. 6.1 and the notation there is used to
describe the boundaries of A.

Assume that/3 is small and positive and consider A as shown above. Now denote
the vector field [x’-x, c(x)] 7" by F(x). Obviously, F points into A on r, o’3,
cr, o’, and or6. The problem is to construct cr2 in such a way that F points into At

on cr and A is contained in a ball of radius 6(/3) such that 8(/3) 0 as/3 0. Consider
the region in 2+ between the two branches of the curve x’ x’ and inside a small
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FIG. 6.1

ball. In this region

X X2

,(x) I(x)-xl

m--1IO(Xl) -a+q(Xl) -2x2 + "4-x2

<1

when the radius of the ball is small enough. Therefore, it is possible to take o-2 to be
the straight line with slope 1 through (/3",-/3n).

Now the positive invariance of A is established. Moreover, it is clear that A is
contained in a ball of radius 6(/3) where 6(/3) 0 as/3 0. Since by construction, A
does not contain equilibrium points other than at the origin (in order to prove the
locally asymptotic stability) it now suffices to prove that there are no periodic orbits
in A enclosing the origin. But this is obvious now since the region in enclosed
by cr and the branches of the curves x’ x’ is a positively invariant set.

Global asymptotic stability. Positive invariance of A is proved for large /3 by
X k,using the bound (x)>-(O(xl)-x2+zO(1)) in a way similar to the above.

Nonexistence of nontrivial periodic orbits follows by exactly the same reason as
above.

Case 4. a # 0 b, n, m even, n < m. Clearly, (6.1) is weakly feedback equivalent
to

(6.6) 21=Xl--X2
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The objective here is to prove the existence of globally asymptotically stabilizing
Cl-feedback. It is shown in [12] that the case when n 2 and m =4 is not C3-1ocally
asymptotically stabilizable.

Let O:--> be the C 1-function which satisfies the following properties:
(i) q(s)"-s" =0 for all s
(ii) sth(s) > 0 for all s 0.

Let q : be a C-function such that:
(i) 9(0) =0 and q(s)= +q(-s) for all s

(ii) 0< q(s)<1/21q(s)[ for all s0 and lq(s)l<=(s) for Is[> 1.
It is claimed that the feedback function

u (x) x- (x) 6(x) + ((x) (x) q(x))+,

globally asymptotically stabilizes the system in this case.
The proof here is similar to that of Case 3. An turns out to be more complicated

now, which is depicted by Fig. 6.2. We start with a small positive real/3 > 0 and draw
the boundaries of An such that cr and tr pass through (/3",-fl’). The boundary
component 0-2 will be described later.

Let F(x) denote the vector field [x’- x’, a(x)] r. It is obvious that F points into
A on all of the boundary components of A except possibly on try. The aim is to
construct or2 in such a way that F points into A on or2 and that the point of intersection
of tr with the curve xl q(x2) approaches the origin as/3->0. The difficulty here is
that or2 cannot be taken to be a straight line, for then it will not satisfy the second
desired property of or2 However, in the region in 2+ bounded by Xln =x2m and inside

FIG. 6.2
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a small ball

X X2Xl. --X2
(x) [x- 4,(x)l

IX-1 "Jr" X I(X2) -’’"’-- J(X2) -1

nxT-’ (since x O(xz)).

Therefore, we take to be the solution of the differential equation

dx 1
(6.7)

dXl nx-’ x fl

This analysis will be carried out under the assumption that n > 2. The case n 2
is similar and for the sake of brevity that case is omitted. By solving (6.7) we get

1 1
(6.8) x= n(n 2)x7-+ n(n_2)m(,-

Obviously, x2 is monotone increasing from -" to (1/n(n-2)m("-)-" as x
increases from to . It is claimed that when is small enough this curve meets
the Xl O(xz), xz0 at some point (6(), 6z()) and (6z(), 6())0 as 0.

Consider the function

1 1
6 (x) x+

n(n 2)x"-/ n(n 2)m("- x> 0

and is a very small positive constant. It now suffices to show that 6(")> 0 and
6(2"fl ") < 0. Now 6(fl ) 2" > 0 and

l ( 1 )(2)=(2+1)
n(n-2)m(-

1 2m(_

Since n > 2 it is now obvious that (2) < 0 for all small enough . This shows that
the curve given by (6.8) and x 0(x), x0 meet at a point (, (), ()) where
() e (,2) for small and clearly ((), ())0 as 0.

A positively invariant set A enclosing the origin is now produced which is
contained in a ball of radius r() where r()0 as 0. Fuhermore, since the
origin is the only equilibrium point in A and since > 0 on x (x) (which precludes
the existence of periodic orbits enclosing the origin) it is concluded that the system is
locally asymptotically stable. This concludes the proof of locally asymptotic stability
of (6.1) with feedback u (x).

Global asymptotic stability is proved by showing that A
ts now defined to be a suitable straight line) is a positively invariant set without any
periodic orbits.

Since the cases considered above are the only possibilities which can satisfy
condition (.), Theorem 6.1 is now proven.

7. Celg rears. Necessary and sucient conditions are given for the
asymptotic stabilizability for a class of two-dimensional C-systems, which includes
all real analytic systems. We also identify some obstructions for the existence of
C-stabilizing feedback in terms of some inequalities involving three numbers associ-
ated to the system. Currently, it is anticipated that these numbers have deeper geometric
significance than the way in which they have been defined and may even give some
related conditions for higher dimensional systems.
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A J-SPECTRAL FACTORIZATION APPROACH TO o’/’o CONTROL*
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Abstract. Necessary and sufficient conditions for the existence of suboptimal solutions to the standard
model matching problem associated with Y( control are derived using J-spectral factorization theory. The
existence of solutions to the model matching problem is shown to be equivalent to the existence of solutions
to two coupled J-spectral factorization problems, with the second factor providing a parametrization of all
solutions to the model matching problem. The existence of the J-spectral factors is then shown to be
equivalent to the existence of nonnegative definite, stabilizing solutions to two indefinite algebraic Riccati
equations, allowing a state-space formula for a linear fractional representation of all controllers to be given.
A virtue of the approach is that a very general class of problems may be tackled within a conceptually
simple framework, and no additional auxiliary Riccati equations are required.

Key words. Y( control, J-spectral factorization, indefinite factorization, four block problems, Riccati
equations, Nehari’s Theorem
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Introduction. Since their inception, control problems have been amenable to
a variety of solution techniques. These range from the complex function theory
approaches based on Nevanlinna-Pick-Schur interpolation to operator theoretic and
state space approaches to extension problems. In the case of simple problems, like
sensitivity minimization, the relationships between these various approaches are well
understood [8], [10], [14], [18]. The considerable body of knowledge about control
problems and their solution has evolved from the interaction between these various
approaches, all of which provide solutions to the simple "Nehari type" problems which
are conceptually elegant and computationally tractable. Unfortunately, this class of
problems is too special to be of general engineering significance. In the case of more
general problems, such as the mixed sensitivity problem, the mathematical solution
was until recently more complicated, the interconnections were not well understood,
and the computational burden associated with the solution was all but prohibitive
(see [8], [10], [20]).

The J-spectral factorization approach to the problem of finding all suboptimal
controllers for the simple "Nehari type" problems is well documented [2], [4], [10]
and the approach has also been used to solve the optimal case [3]. In a recent paper
1 ], a general class of control problems is solved via several spectral and J-spectral

factorizations. The resulting algorithm is far from computationally simple. The new
solution to the problem presented in [12], however, requires just two indefinite
algebraic Riccati equations to be solved and it was observed that these were associated
with two J-factorizations.

In this paper we re-analyze the work in [1], showing that all the spectral and
J-spectral factorizations can be subsumed into just two J-spectral factorizations. The
Bart, Gohberg, and Kaashoek factorization theory [6] can then be used to associate
the existence of the appropriate J-spectral factors with the solvability of two indefinite
algebraic Riccati equations, and these can then be used to construct a generator of all
solutions.
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$ Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United

Kingdom.
Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125.

1350



A J-SPECTRAL FACTORIZATION APPROACH 1351

Concurrent with this work, several of the other approaches to 3foo control have
been generalized and entirely new connections have been uncovered. The following
remarks, which are in no way a complete survey, are intended to connect this paper
with these other developments.

The four block distance problem has been solved by Glover, Limebeer, Doyle,
Kasenally, and Safonov [12], [13], [21] using all-pass embedding. In Glover and Doyle
[12] the equivalence between maximum entropy oo control and risk sensitive control
was established, a connection observed also in [7]. Moreover, Doyle et al. [9] have
developed a state-space approach with a separation argument reminiscent of classical
linear quadratic Gaussian (LQG) theory. Khargonekar, Petersen, and Rotea [16] have
also considered a state feedback approach, observing a connection with LQ game
theory. The connection between game theory and J-spectral factorization is long
standing [5]. Extensions to time-varying systems using the maximum principle [25]
and LQ game theory [19] have also been made. A conjugation approach developed
by Kimura [17] is related to the J-spectral factorization method pursued here.

Note, however, that the assumptions used in the various approaches above are
not all equivalent. In particular, the assumptions used here are more general than [9],
where stronger assumptions are used for expository reasons. The optimal case is
considered only in [13], [21].

Section 1 contains preliminaries and the standard stabilizing controller parametriz-
ation theory. In 2 we analyze model matching problems of Nehari, unilateral and
bilateral type and solve these in turn via J-spectral factorization. In order to satisfy
the stability requirements it is necessary to impose an additional hitherto "unnoticed"
condition on the J-spectral factors. Specifically, we will require the (1, 1) block of the
factors to be outer. We note that Petersen and Clements [22] have also recently and
independently observed that a J-spectral factorization with outer (1, 1) block can be
associated with an o state feedback problem.

The relationship between J-spectral factorization and indefinite algebraic Riccati
equations is analyzed in 3. The results are reminiscent of existing results relating
spectral factorization and Riccati equations and are derived using canonical factoriz-
ation theory [6]. These results provide a state-space solution of the model matching
problem in 4. Section 5 gives necessary and sufficient conditions for a solution to
the control problem to exist and a representation formula for all solutions.

cmxn, jmxn
A*
A/(A)
hmax(A)
In(A)

A_-> B, A> B
M_->N,M>N

1. Preliminaries.
1.1 Notation.

real and complex number fields
complex conjugate of s C
proper rational functions of a complex variable with complex
coefficients
m x n matrices with entries in C,
complex conjugate transpose of A
ith eigenvalue of A 6 C
largest eigenvalue of a matrix A C
inertia of A C""’.
In(A) (r(A), v(A), 8(A)) where zr(A), v(A), and 8(A) are, respec-
tively, the number of eigenvalues of A in the open right and left half
planes and on the imaginary axis
A- B C"" symmetric and positive semidefinite, positive definite
M-N t and M(jw)>-N(jto),M(flo)> N(jw),
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matrices in m, without imaginary axis poles
9Le norm: for Me [[M[[oo sup. {hmax[M(jo))*M(joo)]} 1/2

subspace of" matrices without poles in the right half plane
units of Y(" M Y(:>M, M
M"(s)=M(-g)*
Hankel operator with symbol M

Associated with a matrix M ,,n is a state space realization"

(1.1) M(s)=D+C(sI-A)-IB [tDB.] C
If P 6 (l+,,)(p+q) is partitioned as

P q

P121(1.2) P=
P21 P22Jm

then

if(P, K) PI + P2K(I P22K)-IP2.
We say P is stabilizable if there exists such a K for which (P, K) is internally

stable (see 10]). The oo control problem we will be concerned with is to find necessary
and sufficient conditions for the existence of an internally stabilizing controller K such
that ]](P, K)][ < y, and when such conditions hold, to parametrize all solutions.

Finally, define the indefinite matrix Jpq(’)/) C p+q, ")/> O, by

(1.3) jpq(y)=[Ip 0 ]0 _y2iq
For convenience we will often abbreviate Jpq(y) to J.

1.2. Parametrization of all stabilizing controllers and the model matching problem.
Suppose P <t+m)<,+q is partitioned as in (1.2) and is stabilizable. Suppose P22 has
a doubly coprime factorization over:

P22 NrD-I D-IN/(1.4a)
where

Vr Ur Dr(1.4b)
-NI DI N, Vt 0

is the corresponding Bezout identity. Further

(1.4c)
V U

and Dr
G ?, q.

-NI Dl N V

It is well known (see, e.g., [8], [10], [23]) that K is a stabilizing controller if and only
if K is given by

K2 Nr Vl Im
Q Yq’"

Substituting (1.4) and (1.5) into (P, K) we obtain

;(P, K)=P+PK(I- P2K)-1p21

(1.6) (Pll- P12U,D,P21) + (P12Dr)Q(DtP21)

Tll +T2QT2.
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Thus, the 3f control problem can be posed as a model matching problem: Given the
T0’s, find necessary and sufficient conditions for the existence of Q Noo such that

IITal /T=OT2lloo< 3’ and, when such conditions hold, parametrize all solutions.

2. Model matching theory. In this section we solve a sequence model matching
problem of increasing generality via J-spectral factorization. The existence of a solution
to the model matching problem is shown to be equivalent to the existence of a J-spectral
factor W Y( satisfying a relation of the form G-JG W-JW in which Wll
where W is the (1, 1) block of W. The J-spectral factor W, when it exists, is shown
to parametrize all solutions to the model matching problem.

2.1. The Nehari problem. The purpose of this section is to summarize the standard
results [2], [10] relating the Nehari extension problem to J-spectral factorization. The
condition WIW is new, however, and is one that not only turns out to be
paicularly useful in the more general model matching problems we subsequently
consider, but simplifies the proofs for the Nehari case as well.

THEOREM 2.1. Let R xq. efollowing are equivalent:

2. ere exists Q q such that IIR + Qll ;
3. ere exists W +q with Wll satisfying

(2.1) G-Jpq(y)G W-#q(y)W, G
Iq

Proof 12 is Nehari’s Theorem. We shall prove that 13 and that 32.
32" Suppose a W with the required propeies exists. Let V W- and partition

V and W conformably with G. Since V2 W2-W21WW [15, p. 656] and WI, it follows that V2 . Set Q V2(V2)- , giving

Hence

(+Q(+Q

0 0=[V] V-GJGV[V0] =[V-] J[V] by (2.1)

(VV-)- < 0.

This implies 2.
1 3" Decompose R as R R+ + R_, with R N and strictly proper,. Suppose, following 10], that R_ has a minimal realization R_(s) C(sI- A)-B

and P and Q satisfy the Lyapunov equations

(2.2a) AP + PA* BB*

(.b +* C* C.

Since Irll < , max(e) < 2. Define

(.3 N (--e-
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Define X by

-A* C* -QB-1X L 7-2CPN I 0
y-2B*N 0 I

It is readily verified (using the state transformation PN ]-1 on G-_JG_) that

G-_JG_=X"JX, G_=[ R_].I
Since -A* is asymptotically stable, we see that X Y(. It is also easy to verify using
(2.2) and (2.3) that the "A" matrix of X-I=-N-A*N, so X6 c. The "A" matrix
of (XI)- is given by

-A* y-2C*CPN.

Using (2.2) and (2.3) it is easy to establish that

N-1p-I+p-1N**=-[T-1C* Bp-1][B.p_I
which shows, since N-P-I>O, that is asymptotically stable, and consequently
XI Y(, provided (, [y-C* BP-I]) is controllable [11, Thm. 3.3]. The required
controllability is easily seen from

[ i 0][3 y-’C*]=[-A* C*]-y-2CPN T-1I
Finally, observe that

so W given by

G-
0 I 0 I

I R+]W=X
0 I

has the required properties. [3

Note that, provided y is not in the spectrum of FR, the generalization to the AAK
problem (where Q is allowed k poles in the right half plane) is simply that W- is
allowed k poles in the right half plane.

Consider the factorization (2.1). As with spectral factorization, W Y( satisfying
(2.1) is not unique, being determined only up to a J-unitary matrix (see the following
lemma). Supposing that one of these solutions has the property Wll (4c, it is
important to establish whether or not all of the other possible solutions have this
property as well. For unless the property W is an all or none affair, Theorem
2.1 will be of little practical value, as one would have to look through the class of
possible W’s in search of one with the desired Wll Y( property. Fortunately, this
is not necessary.

LEMMA 2.2. Suppose W (Poo+q. Then
1. Y cg+q satisfies Y-JY W’-JW ifand only if Y AW, where A is a constant

J-unitary matrix (i.e., A*JA J).
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2. If W’1Wll- y2W"1W21->0 and Y +q satisfies Y"JY= W-JW, then Yll
if and only if Wll .
Proo Suppose Y satisfies W-JW Y-JY. Then

(2.4) (Y-)-Iw-j Jyw-1.

Since YW-1 c, it follows that YW-1= A is constant and is J-unitary by (2.4). The
converse is obvious.

Observe that WWI- y2WflWI 0 and WIWlWq1 and

Ilw  w 711  r m so A*JA=JA-1= J-A*JAj-1A* j-l, the (1, 1) block of
which is a11A y-:AI:A: L Hence All is nonsingular and [[A?A:II < y. Therefore
(I +AA2W2W]1) or, equivalently, YI AIW +AW: . For the
converse, interchange Y and W in the above argument.

Note that if G-JG W-JW and Ga 0 then the conditionWW y:WflW:
0 is satisfied. Thus, given any W such that G-JG W-JW with G as in (2.1),
the Nehari problem has a solution if and only if W . The point is that if
W11, we do not have to worry about the possibility of some other solution
Y such that G-JG Y-JY having the propey YI .

The next result is also standard [2], [10] and provides a characterization of all
solutions to suboptimal Nehari extension problems.

THEOREM 2.3. Let R q and suppose there exists W +q with Wll
satisfying (2.1), i.e., G-JG W-JW. en the set of all matrices Qq such that
R+ Q y is given by

Proo Let V=W- and recall V: . Suppose U , IIuIl % To prove
Q we show that Q . By (2.1), Vj-1V G-J-(G-1)-, the 2, 2 block of
which gives VIVfl-y-VV=-y-I. Hence IIv  V=lll < It follows that
(VfVIU+ I) and hence Q V(VVlU+ I) , for all U with

IIuIl % Also, with Q defined by (2.5) we have

(R+ Q)-(R+ Q) yI (QI) VG-JGV Q

(Qf)-[U-U- yI]Qf 0.

Conversely, suppose Q is such that I]R+Qll y. Define

U I I

Observe that U, are right coprime and that

I I

It follows that U is inveible in , and that U=UUe with %
Hence (2.5) holds, with Q=V, and Q=QQ and it remains to show that
U. This we do by showing that U. To see this, observe that, since

lvvlllVVll <, the winding number (around the origin) of
det{(VVlU+I)(jm)} is zero. Also V=(VVV+I)Ve N. It follows that
the winding number of det (U(jm)) is zero, giving e, since U . S
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2.2. The unilateral model matching problem. In the last section we considered a
factorization problem associated with the Nehari extension problem IIR /Oll < % In
this case the factorization problem is particularly easy because G is square and invertible
in, a fact used in the proof of Theorem 2.3. We now turn to the unilateral model
matching problem where we seek Q such that [[A +BQ< 7, where B is "tall"
(i.e., has more rows than columns), and the relevant "G" is now also "tall." A related
theorem is given in [14, p. 58].

The "tall" J-spectral factorization problem is shown to be equivalent to two
spectral factorization problems together with a "square" J-spectral factorization prob-
lem (i.e., one of Nehari type). The techniques are similar to those used elsewhere [8],
[10], [20] to reduce "two-block" distance problems to Nehari problems, but here the
interpretation is in terms of the existence of solutions to J-spectral factorization
problems.

THEOREM 2.4. Suppose

has a left inverse in. efollowing are equivalent:
1. ere exists a Q o such that IIx + BQII <
2. ere exists a W +q with Wla satisfying

(2.6) -J,,(y) w-J,, (y)w.
Furthermore, ifsuch a W exists, the set ofall matrices Q satisfying
is given by

(2.7) Q: QIQf ]Q1} =w-l[U]O I.’
Proof G left inveible in is equivalent to B full column rank on the imaginary

axis, so there exists Bo such that BffBo B-B. Reduce to the Nehari problem
as follows:

Let B BBff and note BSB L Let B be such that [BB] is all-pass. Then

I]A+BQI]T ,,A+ [B,B] [B;Q] 11 <,

+ < 7, R

I111< and (R1 +BoQ)(R+oQ+r<.
Thus, there exists Q eN such that +BQI< 7 if and only if:

(2.8a) Ne with N-N==I-RR= 7Iq-[I-B(BB)-B-]A;
and

(2.8b) 0(=BoQN-) such that IRN- +By Theorem 2.1, there exists such that

IRN-+ < X with

such that

Note also that R (B)-B. Now observe that

It follows that W existsX and N exists (X =W[ ]-) and the theorem is proved.
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That (2.7) gives all solutions now follows from Theorem 2.3.
Remark 2.5. The condition that G (equivalently B) has a left inverse in 5 is

not necessary for there to exist a solution to the model matching problem. It is, however,
a necessary condition for the existence of W Yg such that G"JG W"JW.

2.3. The bilateral model matching problem. We now extend the constructions of
2.2 to the bilateral case. That is, we seek Q such that IIA + BQCII < % with

B "tall" and C "wide." The technique is based on reduction to the unilateral case,
and the result involves two J-spectral factorizations.

THEOREM 2.6, Suppose A P, B ,%q and C P. Suppose also that
B has a left inverse and C has a right inverse in the appropriateo spaces. Let B BB
in which B 1 is all-pass and B q. Then there exists a Qq" such
that A+BQC ]]oo < 3/if and only if

1. There exists a V d+1 with Vii d satisfying

(2.10) HJpI(T)H" =VJ,,,I(T)V~, H=
B2A II

and

2, There exists a W q+" with Wll q satisfying

(2.11) G"Jlm(T)G:W"Jqm(y)W, G .V-I.* [B0
where

(2.12) J=
I,

In this case, the set of all matrices Q6qm such that IIA+ BQCII =< y is given by

(2.13) Q=Q1Q

Proof. We may assume, without loss of generality, that B, since
[IA+BQCII<= T<=> IIB:’A+BQC I1 -<

With B we see that 1 is necessary by applying Theorem 2.4 to the problem
A* + C*0, where 0 (BQ)*.

Let Cod be such that CC= CoC and define C CIc. Let C_ be such
that [cC] is all-pass. Define R by

R= [RR2] =A
C+/-

As in the proof of Theorem 2.4, the existence of V satisfying (2.10) implies that there
exists M 3 such that

T2MM- y2i R2R".
So QY( satisfies IIA+BQCII< yc=>v exists and IIM-1RI+M-1BQColI< 3/.
Assuming that the necessary condition 1 holds, we therefore need to show that there
exists Q such that IIM-R1 + M-1BQColI < y:> there exists W satisfying (2.11).
But, since C0 cg, this is just a unilateral model matching problem. By Theorem
2.4 we know that Q exists if and only if there exists Y taboo with YI dXe such that

YJY P1JPl,~ P IM-IB M-1R ]0 I
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and that y-1 "generates:’ all QCo’s. But such a Y exists if and only if there exists
W Y( with Wll Y( satisfying

W-JW-- P-JP, P P1 0 C
and furthermore W-1 "generates" all Q’s. It remains therefore to show that P-JP
G-JG, with G as in (2.11)"

(2.14)

P
0 C-1

Now observe that .*J. =-y2J-1, that .a* I and that

Co
j

Co HJH- VJV.

It is then easy to check that G-JG P-JP. f]

Remark 2.7. Suppose V as in part one of the Theorem exists and that G is as
given in (2.11). Since G-JG P-JP with P as in (2.14), it follows that if W satisfies
(2.11) then the condition Wl*lWll-y2W2*lW21->0 of Lemma 2.2 pa two will be
satisfied. Hence if any W satisfying (2.11) has the propey WI , then
all do.

3. J-spectral factorization theoff. In the last section we solved the model matching
problem in terms of J-spectral factorization. For the most part, the arguments made
no reference to state space ideas. It is this connection that we now investigate.
Specifically, we will relate the existence of J-spectral factors to the existence of solutions
to indefinite algebraic Riccati equations. The main tool for this work is the state space
factorization theory of Ba, Gohberg, and Kaashoek [6]. We begin with a little notation.

DEVNXON 3.1. A matrix HC2nx2n is a Hamiltonian matrix if H H**,
o .]. If H C2"" is a Hamiltonian matrix, we say H dom (Ric) if there exists

Q C"" and A C"" such that

with A asymptotically stable (i.e., In (A) (0, n, 0)). If H e dom (Ric), then Q Ric (H)
is Hermitian and satisfies the algebraic Riccati equation

with

QH1, + H*11Q+ QHI2Q- H, :0

Hll + HlzQ A asymptotically stable.

We now prove the equivalence between J-spectral factorization and the solution of
indefinite Riccati equations. A related result is in [5].

THEOREM 3.2. Suppose GE+q)x(m+t) is given by the realization G(s)=
D+C(sI-A)-IB, with A6C asymptotically stable (i.e., In (A)=(0, n, 0)). Then
there exists a W cg such that

(3.1) G-Jpq( T)G W-Jmt(T)W
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if and only if:
1. There exists a nonsingular matrix Woo C(m/)(m+) such that

(3.2)

and
2. H dom (Ric), where

(3.3) H
-C*JC

Here, J Jpq (,) ).

D*Jpq(T)D W*ooJm,( y) Woo

-A* -C*JD
(D*JD) D*JC B*].

In this case W Ygoo satisfies (3.1) if and only if, for some solution Woo of (3.2),
W is given by

(3.4a)

where

(3.4b)

(3.4c)

Proof. Suppose

W(s) Wo+ L(sI-A)-’B

L= Jn(T) W*(D*Jpq(’y)C -t- B’Q)

Q Ric (H).

1 and 2 hold. Then Q=Ric(H) implies that A-
B(D*JD)-[D*JC + B’Q]= A-BWLIL is asymptotically stable. It follows, with W
defined by (3.4), that We Woo. Now note that the Riccati equation for Q can be
written as

(3.5) QA + A*Q + C*JC L*JL 0

with L as in (3.4b). Hence

W-JW W*+ B*(-sI A*)-IL*]J[ Woo + L(sI A)-B]

D*JD + D*JC + B* Q](sI A)-’B + B*(-sI A*)-I[C*JD + QB]
-B*(-sI a*)-l[ Q(sI A) + (-sI A*)Q C*JC](sI A)-IB

[D* + B*(-sI A*)-’ C*]J[D + C(sI A)-’B]
G-JG.

That (3.4) gives all W follows from Lemma 2.2.
Now suppose there exists We Woo such that G-JG =W-JW. It follows by

evaluating (3.1) at s oe that (3.2) has a solution Woo= W(oo). Let M G-JG, M+
W-J and M_=W. We then have M=M+M_, M_ oo, M oo, which is a
canonical Wiener-Hopf factorization of M. To establish that H dom (Ric), we use the
factorization theorem of Bart, Gohberg, and Kaashoek [6] (see also [10, Chap. 7]).
The relevant result is the following theorem.

THEOREM (BGK). Suppose M=/q- (SI--,Z)-I/ with (,, , ) minimal,
C nn. Then M has a canonical Wiener-Hopffactorization if and only if l is invertible,, and=-1-1 have no imagina, ry axis eigenvalues and X+(,A) and X_()
are complementary (i.e.,,, X+() fl X_(A) {0} and X+() U X_(A) Cn), where
X+(A) respectively, X_(A)) is the subspace of C spanned by the generalized eigenvectors
ofA corresponding to eigenvalues A ofA such that Re (A) > 0 (respectively, Re (A) < 0).

The problem in applying this theorem in our case is that the realization of
M G-JG is not required to be minimal under our assumptions. The assumption that
A is asymptotically stable in the realization (3.1) allows us to avoid the minimality
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condition by applying the BGK theorem to a minimal realization of M G"JG and
then showing that the dilation to the original realization does not destroy the com-
plementarity of the subspaces. We are going to do this in two steps: First we assume
that (A, B) is controllable in the realization of G.

Temporary assumption. (A, B) controllable.
Since A is asymptotically stable, there exists P---P* (unique) such that

PA + A*P + C*JC O.

It follows that G’-JG is given by

sIA 0 B 1(3.6) G’-JG 0 -A* -K* K =D*JC+B*P.
K B* O*JO

Since (A, B) is controllable, the unobservable (respectively, uncontrollable) modes of
the realization (3.6) are the unobservable modes of (K, A) (respectively, uncontrollable
modes of (-A*, -K*)).

Therefore, without loss of generality suppose A, B, C are such that

(3.7) A= A 0
B= K=[K 0] (K,A) observable.

[.A A; B
A minimal realization of G"JG is given by

By the BGK theorem, since J has a canonical factorization, the Hamiltonian
matrix =-- has no imaginary axis eigenvalues. Hence there exists non-
singular matrix such that

(3.9) =T, T=[T Ta] Re{Ii(T)}<0, Re{I(T3)}>0i=I n.
0 T3

Paition X conformably with T. We see from (3.8) and (3.9) that

X+()=Im
I

and X_(A)=Im

By the BGK theorem X+() and X_() are complementary, i.e.,

( 0 [2, lJ
nonsingular.

Hence d XX Ric (A).
Now return to the realization (3.6) with (A, B, K) as in (3.7). Consider
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Observe that

0 0

I I
H

0 0 0

and furthermore, with H as in (3.3) we have that [Jp ]H[p ]=/. It follows
that H dom (Ric) and Q Ric (H) [o ] + P.

Removal of the controllability assumption. Suppose (A, B, C) is in controllable
canonical form:

0 A22

B (All,/]1) controllable, C C C2]

and define by

(3.12) H=
-C* JC1 -A’11

B1 ] 1[
C*I JD

(D*JD)- D*JC1 B*I ].

Applying the above result (i.e., with the controllability assumption), we have
dom (Ric) and so there exists t such that

with asymptotically stable (i.e., In ()= (0, n, 0)).

Now consider H defined by (3.3). Since (A, B, C) is in controllable canonical form,
H is as follows"

/-11 H12 /12 0

0 A22 0 0

H21 H32 -H*ll 0

H3"2 H42-H1"2
Since =/-11 -+-/120 and A22 are asymptotically stable, there exist Q12 and Q22 such
that

Q12A22 + i* 012 H32- 0H12
Q22A22 + A*22Q22 H42- H1*2012 Q1*2(H12 +/-r12 Q12),

it follows that

H
I 0 I H12 + H12Q12

A22

and we see that H dom (Ric).

4. State-space solution of the model matching problem. We are now ready to apply
the J-spectral factorization results to the model matching problem associated via (1.6)
with the standard generalized regulator problem [8], [10], [23].



1362 M. GREEN, K. GLOVER, D. LIMEBEER, AND J. DOYLE

4.1. State-space preliminaries. Throughout the remainder of the paper we will
assume that P(s) has state-space realization given by

IAi BI BDo21(4.1) V Cl 0

C2 D
where we assume"

A1. (A, B2) is stabilizable and (C2, A) is detectable.
A2. D*.D12 I and D21D*21 I. We will also denote the unitary completions of

D12 and D12 as D_ and D+/-.
As has already been noted [24], [13], the assumption implicit in (4.1) that Dll 0,

D22 0 can be made without loss of generalitymby using a loop shifting argument
which in the present context amounts to solving the factorization at c problem first
(see (3.2)) and introducing a (-/-dependent) change of variables. It is of course also
possible to directly tackle the factorizations without assuming any special structure
for D, but this considerably increases the length of the calculations.

By A1, there exist state feedback and output injection matrices F and H such
that A-B2F and A-HC2 are asymptotically stable. A doubly coprime factorization
of P2, i.e.,

p22 NrD-I= D-INt
with

-u,
-Nt I

is given by

(4.2)
A BaF B2

--Ul L -F I
V C 0

We then get the Tij’s of the associated model matching problem as [8], [10], [23]

(4.3)
IT21

A-B2F B2F
0 A- HC:

C1-DIF DlzF
0 C2

0 D2
D21 0

LEMMA 4.1. T21 (respectively, T12 has a right (respectively, left) inverse ino if
and only if [A)I BD,] has full row rank (respectively, [a-a1 2c, D,2] has full column rank)
for all A + A O.

Proof T right invertible in =>TI(A) full row rank for all A +)t 0. Since
A-HC is asymptotically stable, (A- HC2- AI) is nonsingular for any A + 0. Hence
for Z+=0,

u*T21(h 0, U 0

:[x* u*][A-HC2-AI B,-HD21]=O,C2 D21

0 C D:I

x0, u0
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4.2. A unilateral model matching problem. We now derive necessary and sufficient
conditions, in terms of a nonnegative definiteness condition on the solution of an
indefinite Riccati equation, for the existence of Q such that IITl +QT2III < %
We do this via Theorems 2.4 and 3.2. Consider H defined by

(4.4) H=IT21 0 1Tll II
By Theorem 2.4, applied to the matrix G(s)= H(g)*, we need to solve the following
factorization problem.

FACTORIZATION PROBLEM P1. With H6’+l)(p+t) defined by (4.4), find
V cy(+l with Vii 6 such that

(4.5) HJpI(y)H’- VJm/(y)V".

THEOREM 4.2. Let H be as in (4.4). Then Problem P1 has a solution if and only if
HE dom (Ric) and Ric (HE) >= 0, where

A* C* Cl S-1 DIB*I(4.6) Hy
-BIB* -B1D*21 0 0 C

(J--Jpl()). In this case, a solution V to Problem P1 is given by

[ D 0Iv(4.7) V=
-PIUIDI I

where

(4.8a) V= C lm 0

C 0 I

and

(4.8b) M [M M2] YC*+ B1 D2"1 y-2 yc.]

with

(4.8c) Y= Ric (Hy).

Proof Write H as

(4.9) H=H1H2

where

(4.10a)

(4.10b)

I A-B2F
H= 0

C1-D12F

H1I 0

0 I

I A- HC2
H: C2

B HD21 0 ]
DI 0 J0 I

Since H1 g and has the particular form H1 --[x ], we see that V solves Problem
P1 if and only if there exists V with (V2)al qdW such that HflH" V2JV"
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V and V2 are related via V H1Va. Applying Theorem 3.2, we see that Hy E dom (Ric)
is necessary and sufficient for the existence of Va E Y(, and that Va is given by

(4.11) I A-HC2C1

M1-H M2]
L 0

0 i,

with M as in (4.8b).
We now claim (V2) 0OO1 goo Ric (Hy) >- O. Since (A- HC2) is asymptoti-

cally stable, it follows that (Va),, c’dY(ooC:A-M1Ca is asymptotically stable. We
therefore need to show that A-MCa is asymptotically stable cV Y>-0. To see this,
write the Riccati equation for Yoo as

(4.12) AY+ YA*+ BB* MJM* O.

Since M1 YooC* + B1D*l we see that

(4.13) MIM*I YooC*2M*I +MIC2Y- YooC*2C2Y2+B1D*21D21B*1.
Substituting into (4.12) we obtain

(4.14) (A-M1Ca)Yo+ Y(A-MICa)*+[YooC*2 yM2 B1/)*] yM*
/_B

Since (A-M1Cz-M2CI) is asymptotically stable, (A-MICz, M2) is stabilizable.
Hence [26, Lemma 12.2], Yoo>=OCz(A-MC2) is asymptotically stable.

It remains to verify the formula (4.7) for V- HV2. This is easily done via a state
space calculation. [3

Remark 4.3. The decomposition of V in (4.7) is analogous to the decomposition
of H as

(4.15) H=
-P12U/D/ I [Pll

(see (1.6)). it follows that V1 is a solution to the J-factorization observed in [12], namely

(4.16) V1JV PI I Pll I
2.

Remark 4.4. A necessary condition for Hgdom (Ric) is that Hy have no
imaginary axis eigenvalues. It is not difficult to show that a necessary condition for

FA--AI Bthis is that c2 D2,] be full row rank for all A + 0, since

B1] -O=x* (A- BID*Ca) --O
D2

and x* B,(I- D*Da,)=O

:==>[0 X*l]Hy= A[O x*].

An alternative view of this necessary condition is obtained by considering the J-spectral
factorization directly, since a necessary condition for the factorization (4.5) to exist
(with V e q32() is that H (equivalently T21) be right invertible in.This is equivalent
to [A- ,

c D] full row rank for all A + by Lemma 4.1.
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Remark 4.5. The problem of finding Q Yf such that [[Tll nt-T12Qllc< 3/ can
be tackled in an entirely analogous way, applying Theorem 3.2 to the matrix

The relevant conditions are:
1. Hx dom (Ric), where

[ A 0 ] [ B2 B1]j_I[D*2C B*2](4.18) Hx _CfC -A* -C*1012 0 0 B*I
2. X=Ric(Hx)>-_O.
The factorization dual to (4.16), i.e.,

(4.19)
0 I

J
I

X Qcx3, Xll Qocc

is the factorization associated with the state feedback problem in [22], where P is
assumed stable.

4.3. A bilateral model matching problem. We derive necessary and sufficient condi-
tions, in terms of nonnegative definiteness conditions on the solutions of two indefinite
Riccati equations, for the existence of QY( such that []T11+T2QT2II< y. The
first Riccati equation is associated with the factorization Problem P1 in 4.2 (see (4.6)),
which we will, in this section, assume has a solution. The second Riccati equation is
associated with the factorization of the matrix

(4.20) G "V-1]* [T120 Im0].
By Theorem 2.6, we need to solve the following factorization problem.
FACTORIZATION PROBLEM P2. With G defined by (4.20), find We (qoz+m with

W q such that

(4.21) G"JI,(T)G= W"Jq,,, (y)W.

THEOREM 4.6. Let G be as in (4.20). Then Problem P2 has a solution if and only
if Hz dom (Ric) and Ric(Hz)=>0, where

(4.22) Hz=[A-MzCi 0 ] [B2-M2D12 M1]-C$1C1 -(A- M2C1)* -CD12 0
j-1

D*2C1 (82- M2D12)*’]
x

(J Jl,( Y)). In this case, W is given by

(4.23a) W W
Nr

where

(4.23b)
F A- M1C2- M2C

W1 [ L1
L2

82- M2D12
I
0
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and

(4.24a) L
L2 _( C2

__
/-2M, Zo)

with

(4.24b) Z Pdc Hz ).

Thus,

Proof First, consider the formula for G in light of the fact that V is given by (4.7).

P12U/ I 0 I

--’VT"*[ -P’=u’lrP’=D’ o]DT’ Jl 0 I’

yvTly: P,2 0 Dr
-P2 I Nr VI

Dr(4.25) G-- G1 Nr Vl

since TI P12D,.

where

using (1.4).

(4.26a) G1 .V-,., [ P2 0]-P22 I

A-MC-MC B-MD M
(4.26b) C D2 0

-C2 0 I

Since [ -v,] e there exists W e such that G-JG W"./W if and only if W
is given by (4.23a), where W satisfies

(4.27) G’JG1 WlJWl
Using the realization (4.26b) and Theorem 3.2, there exists W satisfying (4.27)
if and only if Hz dom (Ric), and in this case, W1 given by (4.23b) satisfies (4.27).

Let us now consider necessary and sufficient conditions for Wll .
Using (4.23), (4.2) and the state transformation [ o] the following realization

for W is obtained:

(4.28a) W

where

(4.28b) ,=[A-M2C-(B2-M2D12)F-(B2-M2D2)F+MIC2]M2( C1 DI2F) A M2D12F- M1 C2

(4.28c) =[B2-M2D12M1 ]M2D2 H- M1
L F

(4.28d) d=
L+C’ C2
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The "A" matrix of W- is therefore

.= rA- M9.C1-(B2- MDI2)L1
(4.29)

M2( C1 D12L1)

Rewrite the Riccati equation for Zo as:

M1 C2 1
A- M1C2J"

Z[A- M2CI-(B MD,)L1]+[A- MC,-(B- MeD,)L,]*Z
(4.30)

+ Z[(B MuD,)(B M2DI)* + T-2MIM*]Z+ C*(I D12D)C1 0.

Using (4.14), (4.30), and M =-y-YC*I, we therefore have

0 5/21 0 Y
+

0 Y 0 5/21

Yoo -C* D12
(4.31)

x
k -C*D -C* 0

YC
Temporary assumption. Y nonsingular. With Y nonsingular, define

0 yl

Since A- is asymptotically stable, ([L+ C C], A) is detectable. Observing that

L+ C=--MZ it follows from (4.31) and [26, Lemma 12.2] that is asymptoti-
cally stable 0.

Removal of temporary assumption. Suppose, without loss of generality, the realiz-
ation (A, B, C) is such that Y is of the form

Y=[0 ;]’ nonsingular.

It follows from (4.14) that A-MC is upper triangular:

A MC [X XI X asymptotically stable.
0 XJ’

Fuhermore, we see from (4.29), since M --YC, that is also upper triangular:

[ 11 AI=lo
Applying the Y nonsingulr argument to the 1, 1 block gives A asymptotically
stableZ0, and hence A is asymptotically stableZ0.

Remark 4.7. The structure (4.23a) ofW is of great significance, as we now explain.
Recall from Theorem 2.6 that all matrices QE such that IIT, +T2QT2[I are
given by

Q QQ, w U with

where W solves Problem P2. Also recall, from (1.5), that all stabilizing controllers are
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given by

K KIKi,

It follows from (4.23a) that all stabilizing controllers K such that o(P, K)lloo_-< 3’ are
given by

(4.33) K=K1K-1 IKII---W-I [U/I Uoo with
K2

5. The controller generator. Theorem 4.6 gives necessary and sufficient conditions
for internally stabilizing controllers K such that (P, K)I1 < 7 to exist. Furthermore,
(4.23b) and (4.33) provide a representation formula for all such controllers. The result
we give in this section provides an alternative formula for controllers; there will be
two changes. First, we will replace Zoo by an equivalent expression, since Zoo--
Xoo(I-y-ZYooXoo) -1, and second, we will transform the formula (4.33) into an
equivalent feedback form more typical in the engineering literature.

THEOREM 5.1. Suppose P(s) is given by the realization (4.1), that assumptions A1
and A2 hold and that

A3.

C D C Dl
are, respectively, full column and row rank for all A + O. Then there exists a rational
matrix K such that if(P, K) is internally stable and lift(P, K)II< if and only if
Hx dom (Ric), Hy dom Ric) and

2(5.1a) Xoo->_0, Yoo->_0 and Amax(XYoo)< T

where

(5.1b) Xoo= Ric (Hx), Yoo= Ric (Hy)

with Hy and Hx as in (4.6) and (4.18).
Furthermore, when the conditions (5.1) hold, all controllers K such that (P, K) is

internally stable and II(P, K)II -< are given by

(5.2) K= (K,, U) U with ttUIIoo-< 3’

where

(5.3a) Ka Ckl 0 I

Ck I 0

with

(5.3b)

(5.3c)

Proof We have already proved that y-suboptimal controllers K exist c:>Q Yt
exists such that [ITI +T12QTII < 3":, Hy and Hz dom (Ric) with Yoo->_ 0 and Z>_- 0
(provided Tl and Tl have right and left inverses in Yt, which is assured by Lemma
4.1 and A3).
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We need to show, given Hydom(Ric) and Yoo=Ric(Hy)>-0, that
Hzdom(Ric) and Z=Ric(Hz)>=OCr>Hxdom(Ric). X=Ric(Hx)>=O and
/max(Xeo Ye) <7 ,)/2.

Observe that

(5.4)
0 Hz 0 I

Suppose Hxdom(Ric), Xoo=Ric(Hx)=>0 and max(Xoogoo)<’’2. Then
(I-y-2yooxoo) is nonsingular, and from (5.4) we see that Hzdom (Ric), with

Z= Ric (Hz)= X(I- y-zYX)-. To see that Z0, note that

z(-x )+(-x )*z+(x+x) 0.

It follows [11, Thm. 3.3, pa 3] that Z0, since (-2 YX-I) is asymptotically
stable.

Conversely, suppose Hz dom (Ric) andZ Ric (Hz) O. Hence (I+ y-2ZY)
is nonsingular and from (5.4), Hx dom (Ric) with

X Ric (Hx) (I + y-ZY)-Z Z(I + y-2 YZ)-’.

Clearly X0 and we see that max(XY)< 2 since

X(Xy)=X,{(i+y_2Zy)_,Zy}=y2 A,(ZY)
V2+Ai(zr)"

This concludes the proof of the necessary and sucient conditions for the existence
of K.

By Remark 4.7, K is given by

() KK1K [K1] =wl [y], Uwith [[U,,(.
K2

Defining X W[, we can equivalently write

K o%(Ka, U), U Y( with

where

0 0 I

Rewrite L in (4.24a) as

(5.7) D*2C + B*X ] (I-y"2 YooXo)) -1L=
_( C2 + ,y_2D21B, X)

A straightforward state space calculation using (4.23) and (5.7) will reveal that a
realization for Ka in (5.6) is indeed given by (5.3).

We note here that this theorem agrees with others derived recently, such as [9],
[123, [133, [213.

6. Conclusion. In this paper the J-spectral factorization approach to suboptimal
Y(oo control problems of "Nehari"/"one.block"/"first kind" type has been extended
to the general case.
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The existence of solutions was shown to be equivalent to the existence of solutions
to two coupled J-spectral factorization problems with the additional property that the
(1, 1) block of both J-spectral factors be outer. The second of these J-spectral factors
was shown to generate all solutions to the Y( control problem.

The existence of the J-spectral factors was then shown to be equivalent to the
existence ofnonnegative definite, stabilizing solutions to two indefinite algebraic Riccati
equations. This allowed an explicit state space formula for a generator of all solutions
to the suboptimal Y(o control problem to be given.

The approach in this paper can easily be extended to AAK type problems where
k poles are allowed in the right half plane, with the proviso that one avoids the singular
points (i.e., y-optimal, the spectrum of the underlying Hankel operator, etc.). The
change is that, instead of being outer, the inverse of the (1, 1) block of the J-spectral
factors is required to be in Yg(k) (i.e., no more than k poles in the right half plane).
The singular (optimal) case is, however, more involved, as a noncanonical factorization
is required.
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DECOMPOSITION/COORDINATION ALGORITHMS IN STOCHASTIC
OPTIMIZATION*

J.-C. CULIOLI" AND G. COHEN:

Abstract. This paper considers an extension to the situation of stochastic programming of the Auxiliary
Problem Principle formerly introduced in a deterministic setting to serve as a general framework for
decomposition/coordination optimization algorithms. The idea is based upon that of the stochastic gradient,
that is, independent noise realizations are considered successively along the iterations. As a consequence,
deterministic subproblems are solved at each iteration whereas iterations fulfill the two tasks of coordination
and stochastic approximation at the same time. Coupling cost function (expectation of some performance
index) and deterministic coupling constraints are considered. Price (dual) decomposition (encompassing
extensions of the Uzawa and Arrow-Hurwicz algorithms to this stochastic case) are studied as well as
resource allocation (primal decomposition).

Key words, stochastic optimization, stochastic gradient, decomposition, coordination, dual methods,
price decomposition, resource allocation, convergence of algorithms
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1. Introduction. For the optimization of large scale systems, the idea of decomposi-
tion has received much attention since the pioneering works of Dantzig and Wolfe
15] in linear programming, and Lasdon and his coauthors [21], [5] in convex program-
ming. These were followed in the seventies by an abundant literature on the topic,
starting with the book of Mesarovic, Macko, and Takahara [25]. Later on, an attempt
was made to propose a unifying view of the field, first in the context of convex
differentiable optimization (Cohen [6,], [7]), then in nondifferentiable optimization,
(Cohen and Zhu [13]), and more recently for other variational problems (Cohen [11])
and games (Cohen [10]).

In this paper, we consider the case of stochastic optimization, Decomposition in
the framework of stochastic optimization has already been considered in [3], [23], for
example. But here the approach will be somewhat different. Let us explain this for the
particular case of the following stochastic optimal control problem in discrete time"

T

(1) min [ E lt(x,, u,,
t=0

(2)’ xt+l f(xt, ut, tot), t= 1,’’’, T

where u is the control vector, x is the state vector, w is a stochastic input, (1) is the
objective function, (2) is the dynamics, and E denotes the mathematical expectation
with respect to the probability law associated with the stochastic process (e.g., a white
noise) {wt} and to the initial condition Xo.

Actually, for the problem to be well-posed, {ut} and {xt} must be specified as
stochastic processes, which amounts to specifying the class of feedback laws that are

Received by the editors January 16, 1989; accepted for publication (in revised form) October 17, 1989.
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allowed for the control. To fix ideas, suppose that only affine state feedbacks are allowed

(3) u, C,x, + c,
where C,, respectively, c,, is a time-dependent gain matrix, respectively, open-loop
control vector, of appropriate dimensions. Let us further assume that the dynamics
(2) are also affine and that the white noise w, is Gaussian. Then all stochastic processes
will be Gaussian and they will be characterized by their first-order (vector) and
second-order (matrix) moments. Lyapounov equations allow the calculations of the
state covariance given the feedback gain sequence {C,} (see [23]).

If the system is made up of N interconnected systems with state and control
vectors x i, u i, it may be required that C, be block-diagonal with respect to these
decompositions (decentralized feedback). However, unless the dynamics are completely
decoupled, the covariance matrices will not be block-diagonal. Observe that a decompo-
sition of those matrices and of the corresponding Lyapounov equations (say, by a
relaxation technique as in [23]) would involve N(N+ 1)/2 blocks (instead of N blocks
for vectors). It means that the interpretation of the potential subproblems, as problems
of the same nature as the overall problem, would be lost. We refer the reader to [3]
for a deeper discussion of this issue.

In what follows, we adopt a different point of view. We first note that in the field
of deterministic optimization, decomposition/coordination algorithms and more
classical optimization as the gradient algorithm are essentially of the same nature (that
is of a variational nature). This is shown by the so-called Auxiliary Problem Principle
which serves as a unifying framework [6], [7]. On the other hand, in the field of
stochastic optimization, we may distinguish between global techniques such as dynamic
programming and variational techniques such as the stochastic gradient [17], [20],
which stems from the Robbins-Monro approximation technique [29]. It is therefore
natural to combine the Auxiliary Problem Principle with the idea of the stochastic
gradient algorithm which amounts essentially to considering successive independent
realizations of the "noise," one at a time, and to performing successive gradient steps.
Here, one gradient step will be replaced by the resolution of a deterministic auxiliary
problem (corresponding to one particular realization of the noise), this auxiliary
problem splitting up into N independent subproblems. Iterations will serve two
purposes: coordination and approximation of the mathematical expectation. That is,
at each iteration, coordination parameters will be updated and a new stochastic
realization will be considered.

This point of view carries the same limitation as the stochastic gradient technique:
because realizations are considered one at a time, it is out of the question to compute
optimal "closed-loop" solutions; only "open-loop" solutions can be approximated.
For example, in the case of the optimal stochastic control problem considered above,
we can compute optimal "deterministic" values of parameters of an a priori feedback
law such as (3), namely {C,, c, It 1,. ., T}, but not a general Markovian feedback
u, q(x,, t), as dynamic programming would allow.

Let us discuss another example: the problem of optimal investments in networks
(see [2] for electrical networks and [27] for telecommunications networks). The general
mathematical formulation is the following

(4) min [a(u)+ {min,,,u,o) (u,v(u,o), oo) s.t.y(u,v(u, oo),w)<-O}].
One must choose the capacities u of transmission lines of a network to minimize the
sum of an investment cost a (increasing function) and of an optimal operation cost
(decreasing with u). The latter cost is the expectation of the constrained minimum of
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a stochastic cost fl since the operation of the network involves perturbations to

(stochastic demand, failures, etc.) and on-line operational decisions v (routing, dis-
patching, etc.). These operational decisions are closed-loop variables (the operator has
to react to observed situations) whereas the investment decisions are open-loop since
one must decide upon the capacities of transmission lines at the beginning of a given
planning period with only a statistical knowledge of the future situations.

In problem (1)-(2), as in problem (4), we may distinguish between closed-loop
or stochastic variables (namely x and u--assuming that u is specified by (3)--in the
former problem, v in the latter), and open-loop or deterministic variables (C and c
in the former case, u in the latter). But we may also classify constraints as "almost
sure" stochastic constraints (involving to and/or closed-loop variables) which generally
represent physical laws (e.g., the dynamics (2)) and physical limitations (the inequality
constraint in (4)), or classify them as deterministic constraints (involving only open-loop
variables): the latter constraints would arise from the specification of admissible values
for C and c in the former problem and for u in the latter. From the mathematical
point of view, stochastic constraints involve stochastic or closed-loop Lagrange multi-
pliers whereas deterministic constraints involve only determinisitc multipliers.

This classification delimits what is possible and what is not in terms of decomposi-
tion with our approach: essentially, any coupling arising through deterministic primal
or dual variables (that is, in the latter case, through deterministic constraints) can be
handled directly; on the other hand, if coordination is made necessary also because
of some coupling arising from stochastic variables or constraints, then the correspond-
ing coordination iterations cannot be "mixed" with those of stochastic approximation
(which amounts to "visiting" independent noise realizations sequentially). In this latter
case, it is of course always possible, for fixed values of all open-loop (primal and
dual) variables and for some fixed realization of to, to perform all the coordination
iterations which are motivated by the coupling through closed-loop variables (if any),
and then to update the open-loop variables and, at the same time, to draw a new
independent noise realization. This means two iteration loops embedded one in the
other.

The point of view that we just precisely described should be contrasted with
another approach which consists in approximating the mathematical expectation by
taking the average over a (relatively large) number of noise samples considered all
together. This idea is generally exploited in the context of linear programming and
can be found in the work of several authors among which we only quote [24] and [30]
for the sake of brevity. The main advantage of this point of view over our approach
is that closed-loop strategies can be handled (the closed-loop aspect is often referred
to as "recourse" in this literature) but at the price of dealing with a very large scale
problem. To try to remedy to this size increase, decomposition is sometimes considered
but it mainly concerns the decomposition of the whole problem into subproblems
corresponding to the individual noise samples, rather than to the decomposition of a
physical system into interconnected subsystems. We do not insist more on this approach
which is clearly in a quite different spirit from the idea of stochastic gradient.

Finally, in what follows two classes of problems will be discussed. Let a// be a
Hilbert space, Us a closed convex (feasible) subset, (1, 9d, P) a probability space, and
j a real-valued function over x12, lower semicontinuous and convex in u and
measurable in to. The first class of problems considered assumes the following general

We will not deal here with constraints "in probability" but the same discussion applies as well to this
case.
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form:

(5) min fj(u, w)P(dw)= min J(u).
Uf J ’ Uf

It is assumed that the implicit constraint u e Us is "simple" and will also appear as
a constraint in the auxiliary problems. In particular, from the point of view of
decomposition, it will be assumed decoupled, that is, if a decomposition -1 x. x a//N is given, then

(6) Us= U(x’’’ x UYN
where U,f. is a closed convex subset of

Notice that problem (5) may indeed represent a problem of type (4) if j(u, to) is
defined as

(7) j(u, to):= min g(u, v(u, to), to).
D(U,tO) vf(,o)

However we recall the following two restrictions:
(i) the above minimization problem in v must be solved completely at each

iteration before proceeding to the updating of u and to the drawing of a new
value of w;

(ii) the following condition must be satisfied, for, otherwise, u would be indirectly
subject to stochastic constraints

(8) Vu Uy, US(u, w) ; a.s.

Because we assume that the constraint u Us induces no coupling, problem (5)
represents a type of problem in which coupling arises only from the cost function. In
order to deal with coupling arising from (deterministic!) constraints, we shall consider
explicit constraints and we shall appeal to duality. Let O be an application from to
another Hilbert space c, and C be a closed convex cone in cC We consider the second
class of problems

(9) min fj(u, w)P(dw) s.t. (R)(u)-C.
Uf

For equality constraints, it suffices to set C {0}. These equality or inequality constraints
represent the only coupling constraints. We will consider two decomposition/coordina-
tion schemes, namely price or dual decomposition (see [21]) using ordinary or aug-
mented Lagrangians, and resource or right-hand side allocation (see [5]).

As far as the former dual approach is concerned, apart from decomposition
considerations, our general algorithms will encompass what may be considered the
extensions of the Uzawa and Arrow-Hurwicz algorithms [1] to the case of stochastic
optimization using either ordinary or augmented Lagrangians. This is not the first time
that dual algorithms are considered in the framework of stochastic optimization: we
are only aware of the work of Kushner and Clark [20] in this area.2 We believe that
our technique to study convergence, using convexity assumptions, is somewhat simpler
and closer to the deterministic counterpart (see e.g., [13]).

We shall conclude this paper with some open problems and conjectures. This
paper is based on the thesis dissertation of Culioli 14] a preliminary account of which
was given in [12].

See also the end of this Introduction.
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After the first version of this paper was issued, a reviewer pointed out to us two
main groups ofworks on numerical stochastic gradient (or "quasi-gradient") algorithms
from the Russian literature. It would be rather lengthy to examine here the differences,
weakness, or advantages of our work compared to those earlier works, as far as precise
technical assumptions are concerned. Therefore, we limit ourselves here to brief
qualitative comments of this literature. It has in common with our approach the fact
that it uses successive noise realizations one at a time.

The first group of algorithms uses the so-called "linearization" technique 16, pp.
215-218], [19, pp. 108-112]. At each stage of these algorithms, an auxiliary problem
with a linear cost function has to be solved over a bounded feasible set. This cost
function is built with an "average gradient" vector obtained by convex combination
of all past information, be they stochastic gradients or "quasi-gradients" or even finite
difference approximations. On the other hand, it will be clear that a basic common
feature of all our algorithms is that the auxiliary problems that have to be solved at
each stage are based on strongly convex (or convex-concave) auxiliary functions (plus
linear correction terms), a feature that definitely precludes the use of, e.g., linear
programming, to solve these auxiliary problems. This may sound like a limitation of
our approach, but we expect a better numerical stability (i.e., convergence rate) as a
counterpart to this effort of solving nonlinear (e.g., quadratic)--but generally decom-
posed-problems at each stage. However, we cannot support this claim by any numeri-
cal comparison experiments.

The second group of algorithms consists essentially of Arrow-Hurwicz-like
algorithms in a stochastic context [28, pp. 116-126].4 They are not quite different from
what can be derived from our general algorithms studied in 3. The main differences,
apart from more or less restrictive technical assumptions, are again to be found in the
technique of convergence proofs.

2. Coupling through the cost function only. In this section, we address the first
class of problem (5). Let K be an auxiliary differentiable cost function (K’ denotes
the derivative) and {ek}k be an infinite sequence of numbers such that

(10) ek>o E e=+ E (ek) <+.
k=0 k =0

We propose the following algorithm.

ALGORITHM 1.
(i) Pick up some ue UI; set k =0;
(ii) At stage k, knowing u k, draw an independent realization w k+l out of1 according

to the probability law P and a subgradient rk out of Oj(u k, o)k+l), and compute
u k+l by solving

(11) min K(u)+(ekrk- K’(uk), u).
Uf

(iii) Go back to (ii) with k - k + 1.

As a first example, if K(u)= I]u112/2 and ir there is no constraint (i.e., UI= ),
then (11) is readily solved and Algorithm 1 yields the stochastic (sub)gradient algorithm.

Moreover, we had to read those papers in their original language since no English translations were
provided, which makes very precise comments rather hazardous.

4 We are also aware of an incomplete reference to S. P. Uryas’ev, Arrow-Hurwicz algorithm with
adaptively controlled step sizes (1984), using rather sophisticated formulae for the step sizes.



DECOMPOSITION/COORDINATION ALGORITHMS 1377

With constraints (ue Us?/), we get a projected subgradient formula U k+l’--

17(uk- ekrk) where 17 denotes the projection on Uy. From the decomposition point of
view, assuming (6), it suffices to choose an additive auxiliary cost function K(u)=
Yi Ki(u) to realize that (11) splits up into N independent subproblems.

We can state the following convergence theorem.
THEOREM 1. (i) We assume that u-j(u, to) is convex, lower semicontinuous,.sub-

differentiable on UffOr all to and that to--j(u, to) is measurable on 12, for all u Uf. If
moreover J (defined in (5)) is coercive on uY, then (5) has solutions (the set of solutions
is denoted U* and any particular solution is denoted u*).

(ii) We assume that K is differentiable and strongly convex with modulus b > 0 in
uf.6 Then the solution u k+l of (11) exists and is unique.

(iii) With assumption (10) and if j has linearly bounded subgradients (l.b.s. for
short) in UJI that is

(12)

then

3c,>0, c:>O’VuE Uf, Vto, VrOj(u, to), Ilrll<=c, llull+c

lim J(u k) J(u*) a.s.
k

the sequence {uk} is almost surely bounded and every cluster point (in the weak topology
of 71) is a solution of (5).

(iv) At last, if J is strongly convex, then U* reduces to a singleton {u*} and
{uk}almost surely strongly converges to u*.

The proofs of all theorems are gathered in an appendix.
Remark 1. One particular run of the algorithm corresponds to an infinite sequence

{tok/}k of independent realizations in 12. This is a trajectory of a stochastic process
over the probability space (12, 9, P)(R). One run also produces trajectories of other
stochastic processes such as {uk}k over the same probability space but with different
state spaces. In the above theorem and in the rest of this paper, statements of "a.s.
(almost sure) convergence" must be understood with respect to that probability space.

Note also that if c,k denotes the sub-or-algebra generated by to, to

:k denotes the conditional expectation knowing k, then for any function f
(13) _f(u) =f(u)
and

(14)

k and if

_i(u, ,o +’) =_j(u, ,o +’) j(u).

Remark 2. Statement (iii) of Theorem 1 can be strengthened under an additional
assumption which is met in particular if K is quadratic. Namely, if K’ is continuous

It means that for every sequence {uk}c Uf such that lim lit/k[ --(X), then lim J(u k) +.
It means that

b
’Zlb > O: Vcr 6[0, 1], Vu, vE Uf, g(cru+(1-a)v)<=crg(u)+(1-a)g(v)-- ,(1-,)llu- vii 2.

This property is equivalent to the strong monotony of K’, that is

<g’(u)-g’(v), u-v>>_-b In- vii
or to the inequality

b
K(v)- K(u) >=(K’(u), v- u)+l v- u 12
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from // equipped with the weak topology to o//, equipped with the weak-, topology,
then it can be proved, using results of [8], that the whole sequence {uk}kc almost
surely converges in the weak topology to some point in U*.

The main idea of the Auxiliary Problem Principle is to locally replace a nonsepar-
able cost function (here j(u, wk+a)) by a linear approximation (here (rk, u)) which is
of course additive, and to reintroduce (strong) convexity through K which can, in
addition, be chosen additive. Such a "linearization" is not necessary if some part of j
is already additive or more generally separable. More specifically, suppose that

j(u, o)=g(u, oo)+F 2 h(u, o), oo
i=1

h are convex functions of the same type as j previously, andwhere g and h
(x,... ,x)F(x,-.., x, o) is a convex function from N to N which is non-
decreasing with respect to every x for all other x and all w (so that F h is also
convex). For example, if F is simply the identity for all o, j is the sum of g which is
nonseparable and of h which is additive. The following variant of Algorithm 1 amounts
to performing a partial" linearization of j.

ALGORITHM 2. In Algorithm 1, replace (11) by

min K(U)+(ekrk--K’(uk), U)+(ekxk, h(u, tog+a))
Uf

where X
k
E OI’(x k, wk+l)[xk=h(uk,tok+t

The proof of convergence of this variant can be found in [14]. The assumptions
on g are the same as those on j in Theorem 1. Moreover F is assumed Lipschitz
uniformly in to, whereas for h it is assumed that

(15)

which is equivalent to (12) if h is subdifferentiable. Note that

max

so that (15) implies

(16) Ih(v, oo)-h(u, oo)l<=[c(llull+llv-ull)+c4] IIv- nil.
3. Coupling through constraints and price decomposition. In this section, we con-

sider problems of the form (9) where we recall that, in addition to J, only the explicit
constraints involving (R).are intended to be coupling, that is, we still assume (6) as far
as decomposition is concerned. Actually, to cover situations when the cost and the
constraint functions are mixes of additive and nonadditive functions, we should
consider the more general problem

(17) min f (j(u, w)+g(u, to))P(dto)7 s.t. O(u)+(u)
Uf

where g and E would be additive with respect to the decomposition of u whereas j
and O would be at least subdifferentiable.

Or else min, ts J(u)+ G(u).
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3.1. Some facts about duality. Recall that C is a closed convex cone in some
Hilbert space . We say that a function from R to is C-convex if and only if

Va [0, 1], Vu, v’(au+(1-a)v)-a(u)-(1-a)(v)-C.

Note that if C reduces to {0} (case of equality constraints), it means that is affine.
We say that is C-subdifferentiable at u if and only if there exists a linear continuous
operator o from OR to such that

v ,I,(v) -,I,(u) -(,, v u) C.

The set of all such q will be denoted 0#(u). The conjugate cone C* of C is defined by

c*:- {p * I(p, c>>_-o, Vc c}

where * denotes the topological dual of c. Note that C*= c, if C --{0}. Moreover,
if p e C* and is C-convex, then the functional u->fv(u := (p, (u)) is convex, and
if q O(u), then q rp Ofv(u) where qr is the adjoint operator of q.

With a problem like

(18) min F(u) s.t. (u.)-C
Uf

is associated a Lagrangian

L(u, p):= F(u)+(p, (u))

which has saddle points over Uy x C* under convexity and other technical assumptions.
The set of saddle points is of the form U* x P* and U* is the set of solutions of (18).
Classical algorithms to compute saddle points are the Uzawa and Arrow-Hurwicz
algorithms [1]. The Uzawa algorithm consists of the following stages:

(i) minuuS F(u)+(p k, (u)) (yields
(ii) update pk by pk+l= H(pk+ p(uk+l)) where p is a positive number and II

is the projection on C*.
However, such an algorithm fails to converge to a solution of (18) if F is not strongly
convex. As a matter of fact, this algorithm amounts to a "gradient" algorithm for
maximizing the dual functional

(19) qt(p) := min L(u, p).

This functional has Lipschitz gradients if F is strongly convex, and it is generally only
subdifferentiable if F is not at least strictly convex. In the latter case, even if pk

converges to an optimal p*, it cannot be expected that the subgradients (uk+l)
oqr(p k) converge to an "optimal" value (say 0 in the equality constraint case). The
situation improves if we use the augmented Lagrangian

(20) Lc(u, p):= F(u)+ hc((u), p)

where c is a positive constant and

(21) A(t, p):= [lln(p + ct)ll- [[P2[[]/2c
is a convex-concave functional with derivatives

(22) (Ac)’t( t, p) II(p + ct)

(23) (h),(t, p) [1-I(p + ct) -p]/c.

Observe that is always concave and we have that O(p) =--6 (l)(p)) where denotes the closure
of the convex hull and /)(p) denotes the set of optimal u in the minimization problem (19).
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The fundamental reason is that, in this case, the corresponding c (defined as but
from Lc) is always Lipschitz differentiable. We refer the reader to [13] for details.

The basis of price decomposition [21] was the observation that the minimization
stage (i) above splits into independent subproblems if and only if F and are additive
functions. This is no longer true if F or cb is not additive or if Lc is used instead of
L. These issues have been considered in [6], [7], [13]. We are going to extend this
work to stochastic problems as (17) hereafter. But let us first notice that, for a problem
as (9) for example (with J-=0 and (R)-=0 to mimic a separable situation), a naive
extension of the Uzawa algorithm as follows fails to work:

(i) minuu/g(u, ook+l)+(p k, ,,(U)) (yields
(ii) update pk by pk+, ii(pk + ekE(uk+)).
Here is a simple counterexample drawn from [14].
Example. Let C={0} (equality constraint), let E(u)=Du and g(u,w)=

(u,A(w)u)/2+(b(w), u). The optimality conditions for a pair (u*, p*) read

u* +/+ Drp* =0; Du* =0

where A is a shorter notation for r-A(w) and likewise for b. From these conditions,
we get, assuming all inverses do exist,

p*=

Now the above algorithm yields
(i) A(wk+’)uk+’ + b(wk+’)+ Dp =0
(ii) p+ pk + eDu+ which amounts to

(pk+l _pk)/ ek _D[A(ook+,)]-I DTpk D[A(ook+l)]-, b(wg+,).
Advocating the ordinary differential equation (ODE) technique of Ljung [22], it is
seen that if any equilibrium point/5 exists for this algorithm, it must verify the equality

--DA-’DTp D_{[A(w)]-’b(w)}=O
showing that/5 has nothing to do with p* in general.

3.2. The case of a strictly convex cost function and the use of ordinary Lagrangian.
3.2.1. Cost function not strongly convex. We follow a path similar to that of 2

leading to Algorithm 1, except that we now deal with saddle points. To obtain our
next algorithm, we choose an auxiliary function

T(u, p)= K(u)-

being a positive constant. We observe that the Lagrangian L relative to (17) is made
up of a nonadditive term

M(u, p)= [ re(u, p, o)P(doo) where re(u, p, oo)=j(u, w)+(p, (R)(u))
d

and of an additive term

S(u, p)= fa s(u, p, oJ)P(dw) where s(u, p, w) g(u, w)+(p, ..(u))

and we build the two successive auxiliary problems (assuming differentiability here,
for the sake of simplicity)

(i) minu u/T(u, p)+ es(u, pk, w+)+(em’,(u, p, wk+) T’,(u , p), u)
(yields uk+);

(ii) maxpc. T(u+, p)+ es(u+, p, w+l)+(ekm’p(u+, p, w+)
T’e(u+ p), p) (yields p+)
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In the more general case of nondifferentiable functions, this amounts to the following
algorithm.

ALGORrrI-IM 3.
(i) Pick up some u Uf and pO C*; set k =0;
(ii) At stage k, knowing (u k, pk), draw an independent realization w k+l out of l

according to the probability law P, a subgradient rk out of Oj(u k, tok+l), a
subgradient 0 k out of O(R)(u k) and compute uk+ by solving

(24) min K(u)+ek[g(u, tok+)+(pk, Z(U))]+(ekrk--K’(uk), U)-4c-ek((ok)Tp k, U).
Uf

(iii) Update pk by

(25) pk+,= II[pk + yek((R)+ E)(u+,)].
(iv) Go back to (ii) with k -k + 1.

Two particular uses of this algorithm are of interest"
When L is additive (i.e., J-=0 and (R)-=0), which is the situation usually
considered in price decomposition [21 ], with the simplest choice K(u)= u 112/2,
we get a correct substitute to the naive extension of the Uzawa algorithm here
mentioned above. The minimization stage now reads

min ]lu-u’ll2/Z+ e’[g(u, tok+)+(p, E(u))].
Uf

When, on the contrary, G 0 and .. 0, and with the same choice of K, we
get the stochastic version of the Arrow-Hurwicz algorithm

(i) u+ k k )r[u -e (r +(0 rp)] where r denotes the projection on Uf

(ii) pk+l ii[pk -4r" 6k6)(uk+l)].
THEOREM 2. (i) We assume that j(., to) and g(., to) are convex, lower semicon-

tinuous, thatj(., to) is subdifferentiablefor all to with 1.b.s. (see (12)), that g(., to) meets

property (15) and that (j+g)(u, .) is measurable for all u. We assume that 6) and "
are C-convex and Lipschitz and that 6) is C-subdifferentiable. We assume that there exist
saddle points u*, p*) ofL over Uf x C* this involves additional assumptions ofcoercivity
ofJ + G and of constraint qualification that we do not detail here).

(ii) We assume that K is differentiable and strongly convex with modulus b > O.
Then the solution u k+ of (24) exists and is unique.

(iii) With assumption (10), we have that

lim L(u k, p*) L(u*, p*) a.s.

for all p* P* and the sequence {u k} and {p k} are almost surely bounded. If J + G is
strictly convex, the sequence {u k} weakly converges to the unique solution u* of (17).

(iv) At last, if J + G is strongly convex, the convergence takes place in the strong
topology.

Remark 3. The assumption of strict convexity could be replaced by that of
"stability in u of L" (see [13]), but practically the only case when it is easy to check
for this assumption is that of strict convexity of the cost function.

Remark 4. It does not seem possible to get a convergence result for the dual
sequence {pk} because, in some sense, such a convergence would be in connection
with that of the subgradients {rk}, which is out of the question.

3.2.2. Cost function strongly convex. In Theorem 2, we mentioned the case when
J+ G is strongly convex. In this case, it can be proved that defined by (19) is not
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only differentiable but that it has Lipschitz derivatives (the Lipschitz constant being
th2/a when 4) is the Lipschitz constant of O + .. and a is the strong convexity modulus
of J + Gmsee footnote 6). Then the dual problem consists of maximizing this smooth
deterministic function . To achieve such a task, it is enough to use "large steps" p
(more generally, steps pk that do not tend to zero) instead of "small steps" pk__
as we did in Algorithm 3. This version is described in Algorithm 4 hereafter. However,
due to the simultaneous use of small steps at the lower (primal) level and of large
steps at the upper (dual) level, it is necessary to stabilize the algorithm by keeping the
sequence {p k} in a bounded set (containing at least a dual solution p*--see [13] for
other instances of this kind).

To alleviate notations from now on, we come back to the simpler form (9) of
problem (17) (i.e., we let g 0, .. 0).

ALGORITHM 4. In Algorithm 3, let g =- O, .. 0 and replace (25) by

(26) pk+l= 1-ii[pk _[_ po(uk+l)]
where p is a positive number and H is the projection on the set B(O, I) c C*, B(O, I)
being the closed ball with centre 0 and radius 1 > O.

Remark 5. The projection FI, can be computed as P, oH where P, denotes the
projection on the ball B(0,/) which is computed easily.

THEOREM 3. We assume that B(O, i,) contains at least one optimal multiplier p*.
We strengthen the assumptions of Theorem 2 by assuming that J is strongly convex with
modulus a and that the sequence {e k} is nonincreasing. We call - the Lipschitz constant

of (R). Then, if
(27) 0 < p < 2a/.2
the sequence { u} generated by Algorithm 4 strongly converges to the unique solution u*
of (9).

3.3. Cost function only convex and the use of augmented Lagrangian. As already
discussed in 3.1, the functional defined by (19) is generally nondifferentiable if
L(., p) is not at least strictly convex, whereas the functional c defined as but after
the augmented Lagrangian Lc (see (20)) has Lipschitz derivatives if the cost function
and constraints are simply convex. We are thus going to reconsider Algorithm 3 or 4
with L instead of L.

This essentially amounts to considering algorithms involving the following two
basic stages"

(i) Compute u k/l by solving

man K(u)+ekg(u, tok+l)+(ekrk--K’(uk), U
Uf

()
+ ((a)’,((o+ )(u), p), 0. u+=_(u)).

(ii) Update pk by

(29) pk+l =pk + yek(A),p((O+ ..)(uk+l), pk).
The expressions of (A)’t and (A) have been given in (22)-(23).

Remark 6. Note that there is no need to project the right-hand side of (29) on
C* because, with augmented Lagrangians, saddle points hold true on UY c, and
not only on UYx C* as with ordinary Lagrangian.

From the point of view of decomposition, assuming (6), we observe that (28)
splits up into independent subproblems provided that g and .. be additive functions
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of u (otherwise, they should be subditterentiable and they are incorporated into j and
19, respectively) and that K be chosen additive, too.

A proof of convergence for the algorithm above was given in [14] (indeed, the
part, g and 19 were not considered explicitly).

In the following, we shall consider a different version. This version follows a
remark made by Mataoui9 whose contribution is gratefully acknowledged. First, for
the sake of simplicity, we drop again the "additive" terms (g 0, .. 0). Secondly, as
we did in 3.2.2, since e is Lipschitz differentiable and deterministic (as was in
that section), we are going to use "large steps"/9 instead of "small" steps ye k as above
for the updating of p k. Thirdly, as a consequence of mixing small steps at the lower
level and large steps at the upper level, we need to keep pk in a bounded set by
projection on a ball B(0,/x) containing at least one optimal p*.

(30)

ALGORITHM 5. In Algorithm 3, replace (24) by

and (25) by

min K(U)+(erk--K’(uk), U)+ek(II[pk+c19(U)], 0" U)
Uf

(31) pk+I P {pk + p- (1-I[pk + c19(uk+l)]-pk)

where P has been defined in Remark 5.

Note that (30)-(31) are exactly (28)-(29) up to the differences explicitly stated
above.

THEOREM 4. We keep all the assumptions of Theorem 2, wherever relevant, and we
assume, as in Theorem 3, that {e k} is nonincreasing and that B(O, tx) contains at least
one optimal p*. We assume that

(32) 0<p<2c.

Then the sequences {u k} and {pk} generated by Algorithm 5 are almost surely bounded
and every cluster point of {u k} (in the weak topology) is almost surely an optimal u*
for (9).

4. Coupling through equality constraints and resource allocation.
4.1. The deterministic case. Let us first consider the deterministic constrained

optimization problem

(33) min J(u) s.t. Du d.

Since we immediately consider equality constraints here, they have to be affine if we
wish to remain in the framework of convex programming. Hence D q/-c is a linear
continuous operator and d

Suppose that a decomposition of u is given. Since D is linear, it is additive, namely
Du Y Diui. Assume that the cost function J is also additive for simplicity. We may
interpret the right-hand side d as a certain amount of resource that has to be shared
among the N units. In price decomposition, the consumption Diu of each unit is
priced with help of some "shadow" price p, and then each unit can minimize its own
cost function Ji(ui) augmented by the cost of its individual consumption (p, Diui). The
role of coordination is to adjust p so that the total consumption Du balances the

Section Automatique, lcole des Mines de Paris, Fontainebleau, France.
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available resource amount d (which is mathematically possible if and only if there
exists a saddle point for the Lagrangian associated with (33)).

The idea of resource (or right-hand side) allocation, also referred to as "feasible"
or "primal" decomposition (see e.g., [18], [5]) is dual of that of price coordination.
The total amount d is shared by coordination among the units according to some
"feasible allocation" v V where

(34) Vy= V (9N E Vi-" d
i=1

Therefore each unit can optimize its own local behaviour by solving

(35) min Ji (ui) s.t. Diui vi.
0

Assuming that these problems do have a solution for all considered allocations, the
questions that should be clarified are the following:

Does there exist an optimal allocation (that is, one making the corresponding
"local" solutions of subproblems (35) optimal for (33))?
How can such an optimal allocation be characterized in terms of information
provided by the resolution of subproblems (35)?
How to reach an optimal allocation computationally?

We refer the reader to [9, Part 1] for a detailed discussion of these issues. Let us
mention briefly here that the answer to the first question is yes as long as there exists
a solution u* to the overall problem (33) (an optimal allocation is then given by
v*--Du*i for all i). As for the second question, if there exist optimal Lagrange
multipliers p* associated with the allocation constraints in the subproblems (35), a

sufficient condition for some feasible allocation v*--(v*,..., v*) to be optimal is
that the corresponding multipliers verify p* pf, for all i, j (which may be interpreted
intuitively as the fact that the shared resource, at the amount at which it has been
allocated to the local units, is marginally equally useful for each of them).

Finally, any coordination algorithm construction involves the following functional

N

(36)
r/(v) i=lE

?(v):= inf sup Ji(u)+(p, Du-v)
p C6

defined on Vy (say r/takes the value +c elsewhere).
Remark 7. Clearly, r/i(vi) is equal to the optimal cost value of (35) (equal to

when there is no feasible solution to (35)).
Obviously, solving (33) amounts to solving the coordination problem

(37) min r/(v).

One possible algorithm to solve (37) is the projected subgradient algorithm (not very
often considered in the literature in this particular instance). It is well known that
is convex when (33) is a convex programming problem, and that, when a multiplier
p (concatenation of the p’s, optimal multipliers for the subproblems (35)) exists for
some value of v, then -p 0r/(v). The projected subgradient algorithm to solve (37)
amounts to performing the following iterations:

A necessary condition would involve at least uniqueness of the multipliers.
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(i) For i= 1,..., N, solve (35) with vk (yields uk+’ as primal solution and
as optimal multiplier);

(ii) Update vk by vk/’=tfi[v-p(-p/l)] where p is a positive number and
is the projection on Vy.

Remark 8. The projection a5 is easily calculated. We have that

1

N p5+1)=v/k+p p/k+,____l

since vk Vy after the first stage of the algorithm.

4.2. The stochastic case. Let us now come back to the stochastic case, that is,
when J(u)=_j(u, to) in (33), but D and d are still deterministic (again, we are able
to handle only deterministic constraints). Keeping our definition (36) of r/(v), the
"master problem" (37) is still equivalent to the original problem (33). However,
is not simply the expectation of some cost function (indeed it is the inf sup of an
expectationmsee (36)) and the following algorithm is not a stochastic subgradient
algorithm and there is no way that it can work:

(i) For i-- 1," ", N, solve minu,%ji(ui, (-O k+l) subject to Diui-- vki (yields u
as primal solution and pk/l as optimal multiplier);

(ii) Update vk by vk/l th(v k + ekpk+’).

We are going to derive a proper algorithm in a more systematic way, using the
Auxiliary Problem technique, as already shown in 3.2.1. But we first consider a

slightly more general situation where we distinguish between an additive part g of the
cost function and a nonadditive but subditterentiable part j, as we did already in (17).
Instead of (33), we thus consider

(38) min:(j(u, w)+ g(u, to)) such that Du d

which is readily transformed into

(39) min min sup _(j(u, to)+g(u, w))+(p, Eu-v)
Vf U p*

where E is the block-diagonal operator

D, 0

E := D2

We choose the auxiliary function"

0

T(u, v)= K(u)+ Ilvll=/2 
where ,/is a positive constant, and we share the expression in (39) into a "separable"
term

s(u, p, to)= g(u, oo)+(p, Eu)

11 In general, T should also be a function of p but here we choose it independent of p.
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and its nonseparable complement

m(u, v, p, w)=j(u, to)-(p, V).

Remark 9. The reason that we consider the term (p, Eu} as a separable term
whereas (p, v} is not considered so is that E is block-diagonal and u and p are going
to be handled together at the subproblem level, whereas v is handled separately at the
coordination level.

We then consider the following iterations (here in a differentiable case):
min,ou SUpp* T(u, ok)"[ eks(u, p, tok+l)+(ekmu(U k, O k, pk, ok+l)

T’u(u k, Vk), U) (yields (u k+l, pk+l));
maxvvs T(uk+, v)+(ekm,(ug+, vk, pk+, tok+)_ T,(uk+I, vk), V)

(yields vk+l).
This finally yields the following algorithm (where we turn back the min, SUpp problem
into a constrained minimization problem).

(4O)

ALGORITHM 6.
(i) Pick up some u and v VY; set k 0;
(ii) At stage k, knowing (u k, vk), draw an independent realization tok+l out of

according to the probability law P, a subgradient rk out of Oj(u k, tog+l), and
compute u k+ 1, p k+ 1) by solving

min K(u)+egg(u, tok+)+(ekrk--K’(uk), U) s.t. ek(Eu--vk)=o.

(41)
(iii) Update vk=(v," ", v) by

v+’= ,(v + ,ep+1)
or else, for 1,. ., N

( N),+ 1
Z pk+lvki + vk + ye k

Pi N j=a

(iv) Go back to (ii) with k -k+ 1.

Remark 10. The factor e k multiplying the constraint appearing in (40) should not
be dropped. Dropping it amounts to rescaling pk+ and changing it into/k+l ekpk+l
(unless we also divide the whole cost function in (40) by the same factor ek). Such a
rescaling does not in principle affect the dynamics of the algorithm, but numerically
it does. As a matter of fact, /k+l tends to zero with e k and the whole behaviour is
modified because of the numerical "noise" (see [14] for numerical experiments).

If we assume, as in the deterministic case, that the cost function is additive, that
is, j---0, and if we choose K(u)= I1 11=/2, (40) yields, for i= 1,-.., N

1
min u, u 112 + g, (u,, to +1)
uoui 2e k s.t. Diui v ki

where, in application of Remark 10, we have divided both the cost function and the
constraint by e k. This is the closest proper equivalent to (35) in the stochastic case.

THEOREM 5.
We assume that:

j(., to) and g(., to) are convex, lower semicontinuous;
j(., to) is subdifferentiablefor all do with 1.b.s. (see (12)), g(., to) meets
property (15), (j + g) (u, is measurablefor all u, and J + G is coercive
on ;
D is linear and continuous and d Int (Ira D).

Then the Lagrangian associated with (38) has a saddle-point (u*, p*).
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(ii) We assume that"
K is differentiable and strongly convex with modulus b > 0, and K’ is

Lipschitz with constant B;
Each Di is linear, continuous and surjective onto qff.

Then the Lagrangian associated with (40) has a saddle point (u k/l, pk/l) and
u k+l is unique.

(iii) For , small enough,12 and if

(42) :t. Vk , Ek k+l
then the sequences {uk}, {pk}, {Vk} generated by Algorithm 6 are almost surely
bounded and every cluster point of {u k} in the weak topology is almost surely
a solution u* of (38).

(iv) Finally the convergence takes place in the strong topology towards the unique
u* if and only if J + G is strongly convex.

Remark 11. Admittedly, the assumption that each Di (or E) is onto is rather
strong, but we ,do not know how to alleviate it. It implies that Problem (40) is well
defined for all v k. It is also equivalent to the fact that each DiDf (or EE r) is strongly
monotone, which is the property used in the proof.

Remark 12. The assumption (42) is mild. It holds true, for example, if {ek/e k/l}
is nonincreasing, which is the case for the usual sequences one uses to meet (10).

5. Conclusion. In this paper, we have considered stochastic convex programming
problems where the cost function is the expectation of some performance index
corrupted by noise and where the constraints, if any, are deterministic. We were
interested in decomposition algorithms, but the algorithms presented are of interest
even without this feature in mind.

We attempted to extend the so-called Auxiliary Problem Principle, previously
introduced in a deterministic setting to provide a general framework for decomposition
algorithms, to that situation of stochastic optimization. However, we wanted to preserve
the idea of stochastic gradient, which amounts to considering a single independent
realization of the noise at each iteration. In this way, the auxiliary (decomposed)
problem to be solved at each stage is deterministic. The iterations serve two purposes
at the same time: they coordinate the subproblem solutions to make them converge
to the overall optimummthis is the coordination task--and they visit many independent
random realizationsthis is the stochastic approximation task according to the scheme
first introduced by Robbins and Monro [29].

However, this approach bears its own limitation, namely that only "open-loop"
or deterministic variables can be approximated in this way. This as well applies to
dual variables with the consequence that stochastic coupling constraints cannot be
handled by coordination (unless coordination iterations be pushed to their end while
keeping the noise realization fixed). This is a serious limitation since, in problem
(1)-(2) for example, the dynamics should not be coupling.

There is however a possible way of dealing with stochastic constraints, be they
coupling or not. The idea is to avoid manipulating multipliers by appealing to some
kind of penalty technique. This is offered as a conjecture hereafter. Let us first consider
a stochastic problem with almost sure constraints but with a finite set f. Say, f
{to1,..., to,} and 7r is the probability associated with realization toi. The problem

See Remark 13 in E of the Appendix to see how small y should be.
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can be formulated as follows:

(43) min 77"ij(u tOi) s.t. (U, tOi)E-C, i.
i=1

Let u* be a solution. It is known [31] that cE-Cce;,II(c)=O (recall that II is the
projection over C*) so that the constraints can be written again as equality constraints.
With each constraint, a multiplier pg can be associated and, assuming that optimal
multipliers p* do exist, it is known (under the name of "exact penalty" technique [4])
that if Q is large enough (compared to sup/IIp/*ll), then u* can be found by solving

min [Trij(u, oi)+ QIlII(O(u, og))ll 3.
i=1

A simple manipulation shows that u* can also be found by solving

(44) min z[j(u, o)+ O’lln(o(u, o))11

with Q’ larger than Q/infi 7rg (indeed Q’ larger than supg Ilp*l[/Tr would be enough).
This problem is of type (5) and can be solved by the algorithms of 2.

We see that if f now becomes infinite, the probabilities 7r will approach zero,
and, unless the optimal multipliers associated with constraints corresponding to weak
probabilities are small (and there is no reason why this should be the case), Q’ will
approach +. However, in a practical problem, it is reasonable to withdraw realizations
with very small probabilities from the problem formulation before considering almost
sure constraints. Or else, one should consider only constraints in probability (say, the
constraint must be met with probability 0.95).

It is conjectured that the right theorem would be: "The solution of (44) is a solution
of a version of (43) with constraints in probability and this probability tends to 1 when
Q’ +oo." If some sort of theorem of this kind is true, then the solution of problems
with stochastic constraints can be approximated by problems that we know how to
solve and decompose by the algorithms studied in this paper. However, this is not
always satisfactory (think of dealing with the constraints (2) by such a technique).

Finally, comparing our work with the literature we are aware of, although the
stochastic gradient algorithm and its variants have been largely considered, algorithms
appealing to duality to handle (deterministic) constraints do not seem to have been
thoroughly studied. One noticeable exception is the work by Kushner and Clark [20].
Although a direct comparison of their results with ours is not straightforward since
they do not always study the same algorithms,3 it seems that our assumptions are
often less restrictive (no differentiability, only subdifferentiability required, no strong
nor even strict convexity required except for Algorithms 3 and 4 using ordinary
Lagrangians) and, above all, our technique of proof seems simpler than theirs. See
also the discussion relative to [28] at the end of the introduction.

As for the resource allocation algorithm ( 4.2), it does not seem to have been
considered elsewhere in a stochastic context.

Appendix: proofs of convergence theorems.
Two technical lemmas from [13]. For the sake of completeness, we quote here two

technical lemmas drawn from [13] that will be repeatedly referred to in this appendix.

t3 They study a penalty algorithm that we do not consider but they do not study the augmented
Lagrangian algorithm; they very often appeal to projections on bounded sets, what we do only when mixing
"large" and "small steps."
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LEMMA 4 of [13]. Letfbe a Lipschitz functional on a Hilbert space all and consider
the sequences {Uk}k = and {ek}k + such that

e=+
kM

" E elf(u)-1 < +.
ke

en limk++f(u k) "LEMMA 5 of [13]. Let {Xk}kCR+ and {ak}k c + such that

k

Let Xk denote supekX and assume that

k--1

xk aeXe++k
g=l

and that k<= , for all k M. en the sequence {xk} is bounded.

A. Proof of Theorem 1. The proof of statements (i) and (ii) is based on classical
arguments and we skip it here. The solution uk+ of (11) is characterized by the
following variational inequality:

(45) Vu (K’(u’)-K’(u)+r, u-u’)O.
For some solution u* of (5), we consider the Lyapounov function A

(u) K(u*)- K(u)-(K’(u), u*-

Note that

(6) (.) b]]u */2
from the strong convexity of K.

From (12), and using (a + b)2 2(a2 + b2), it should be clear that there exist positive
constants c and c such that

(47)
r 11 *ll = + c6

2csA(uk)/b+c6,
the latter inequality arising from (46).

On the other hand, we have that

ek(rk, Uk--uk+l

hence

(48) u+’- ull-< 11 r II/b.
It follows that

ek(rk, u k
U k+l) ____< e r II. u u,,+

=< <)ll r’< ll

(strong monotony)

(from (45) with u u k)
(Schwarz inequality)

(Schwarz inequality)

(from (48))
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hence

(49) k k uk+l) k)2(c7A(llke (rk,u <(e )+c8)

from (47) and for some positive constants c7 and c8.
We now study the variation of A over one stage of the algorithm, namely A(uk+l)

A(u k) denoted by +IA for short. From the definition of A, we get

+n K(u K(u+1 (K’(u), u- u+)
A1

+(K’(uk) K’(uk+l), u*-- uk+l>.
A2

Using (45) with u u*, we see that

A <- ek(rk, tl*-- uk+l> ek(rk, u*-- uk)+ ek(rk, uk- u k+l)
B1 B2

and

01 <= ek(j(u *, (-ok+l)--j(u k, oak+’))
from the convexity of j(., wk+) and the definition of rk, whereas Bz is bounded
by (49). Also, from the convexity of K, A1 is nonpositive.

Collecting everything, we get

6+lA e(j(u*, w+’)-j(u, W+’))+(ek)(cva(uk)+ %).

Taking the conditional expectation with respect to and remembering (13)-(14), we
get

(50) A(u+)-A(u)e(J(u*)-J(u))+(e)Z(cyA(u)+c8).
Let y := A(u) and notice that J(u*) J(u) by definition of u*. Taking the expecta-
tion in (50), we get

(51) y+’-y ay+
where {a} and {} are convergent series of positive numbers. Using Lemma 5 of
[13], we conclude that the sequence {y} is bounded.

Coming back to (50), and summing up for all values of k, we get

E (A(u+I)-A(u))+ E (Y+)<
ke ke

where (x)+ denotes max(x, 0). This, together with infk:(A(uk))>--o (which is
obvious since A is nonnegativemsee (46)), implies that {A(uk)} is a quasimartingale
and therefore that it almost surely converges to some random variable with finite
expectation [26, pp. 49-51]. Thus it is almost surely bounded and so are the sequences
{rk} from (47) and {u k} from (46). Therefore {u k} is almost surely weakly compact
and has almost surely cluster points in the weak topology. We now prove that any
such cluster point, say ri, is indeed a solution u* of (5).

For this, we first need to prove that J(u k) almost surely converges to J(u*). Taking
again the expectation in (50) and summing up, we have that

ektE(J(u k)-J(u*)) <= (yk(1 +ak)--yk+’+ilk)
ken ken

(52) <-- 2 (Mcek+k)+Y
ken

<0(3
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since yk is positive and bounded by some M. Each term J(uk)--J(u *) being nonnega-
tive, this proves that, almost surely,

(53) ek(J(uk)--J(u*)) <.

It is easy to see that J is Lipschitz over any set on which its subgradients are bounded.
We also have that I[u/l-ull-<_ c9 from (48) and for some positive constant c9.
Because of these facts and with (53), we conclude that J(u k) almost surely converges
to J(u*) using Lemma 4 of [13].

Now if we consider a cluster point of the sequence {u k} in the weak topology,
belongs to Us which is closed and convex, hence weakly closed. Since J is convex

and lower semicontinuous, hence weakly lower semicontinuous, we have, for a sub-
sequence {u ki} weakly converging to

J(/7) -<_lim inf J(u k,) J(u*)

proving that indeed fi is equal to some u* almost surely.
We complete the proof by considering the case when J is strongly convex with

modulus a, in which case u* is unique. This solution is characterized by the variational
inequality

:lR*OJ(u*)" Vu Uy, (R*, u-u*)>--O.

Then

J(u)-J(u*)-(R*, u-u*)/ allu-u*ll/2
allu-u*ll/2,

but since J(u k) converges to J(u*) almost surely, it follows that I1-*11 tends to
zero almost surely.

B. Proof of Theorem 2. The solution u k+l of (24) is characterized by the following
variational inequality"

Vu U,
(54) (K,(uk+l)_K,(uk)+ekrk, u_uk+,)+ek(g(u, cok+l)_g(uk+l, k+l))

+ (p, 0. (u_u+,))+(p,E(u)_E(u+,))o.

We have that

bllu+- u[l 2 (K’(u+1) K’(u), u+- u) (strong monotony)

[(r, u u+l) + g(u, +1)_ g(u+l, +,)
+(p,O.(u-u+l)+E(u)-E(u+))] (from(54) withu=u)
k Fk k k+l k k uk+l k[ 1+1 ll+llu -, 11)+6+11p I1+)].1 -u

where, in the last inequality, we have used the Sehwarz inequality, propeay (16) for
g, the Lipschitz constants and of and E, respectively, and the fact that for all
o oO(u), II0ll . It follows that

llu+1- ul[ [llrll + llull + llu+1- uil) + c6+ llPll+ 6)].

Since e goes to zero, ce b/2 for k large enough, and we may assume that this is
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already true for k 0 without loss of generality. Hence

(55)
<- egEc9[I u / C,o/ IIp[l(/

the latter inequality arising from (12).
For some saddle point (u*, p*), consider now the Lyapounov function

A(u, p) K(u*)-K(u)-(K’(u), u*- u)+ llp-p*[12/2r

and observe that

(56) IlP-p*ll2<2,A(u,p) and Ilu-u*ll2<-2A(u,p)/b.
We study the difference A(u k’+l, pk’+l)-A(uk’, pk’) (denoted by 6+1A again)

6+’A K(uk’)- K(uk’+’) -(K’(uk’), uk’- u k’+’)
A1

+(K’(u ’) K’(uk’+l), u*- u k’+’)

+ (lip+1 -p*ll2- lip -p* 112)/2%
A3

We have that

(57) A,-<_ -b[[u k’+’- ull/2
from the last inequality in Footnote 6. As for A2, we consider (54) with u u*. This
yields

A2 ek’[(rk" U*--uk+l)q-g(U * wk+l)--g(U k+l, (.O k+l)
(58)

qt-(p k, O k"

Using the convexity ofj and (R) together with the definition of rk’ and Ok’, the Schwarz
inequality, property (16) for g and the Lipschitz property of 19 (which implies also
that Ok’ =< z), we get

A2 _<- ek’[ (j + g)(u*, co k’+l) (j + g)(u k’, w k’+l)

(59) + ([]r[] + C5([1/,/k "[-[]U k+l- uk[[)-" C6"[- z]]pgl]). ]lu g+’- u[]
+(p, O(u*)-O(u))+(p, =_(u*)- (u+’))].

Finally for A3, we use (25) together with a similar equality for p* (which is
equivalent to the left-hand side inequality of the saddle point), namely

(60) p* rI[p* + ye k’(19 + Z)(u*)].

Because the projection does not expand distances, we get

lip +’-p*ll lip

taking the square

A3<= ek(pk--p*, (19+ .’,)(uk+l) (19 -] ,,)(U$)) - ’)/(2(Ek)211 uk+l u*ll/2
where we have used the Lipschitz constant b of 19+ E (which is less than z+ ).
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Summing up these inequalities for A1, A2, A3, we get

a+lA < e[d(u*, p*, wk+l) g(U k, p*, wk+l)]
+ [(p, O(u+’) O(u)) + (p*, (o+ =_)(u) -(o+ _)(u+))]

B

+ [llrll + 11.11 + C6"- llpll]. tllg k+l- ukll
B

/ 4,=()11 u+, u* 112/2 +(ek’C b/2)llu k+’ ul[ 2

B3

where we have set

(61) g(u,p, w):=(j+g)(u, to)+(p, (O+..)(u)).
The last terms above can be bounded as follows. The Schwarz inequality and the

Lipschitz property of (R) and .. yields a bound of B1 that can be incorporated into B2
using different constants. Also, remembering (12) and (55), and using standard manipu-
lations, we get

B1 -it- 32 < Ek)2[ Cll uk HgIi 2 + c1211p -p*ll 2 + c,3]
(62) (sk)2[c14A(uk, pk)+ C13]

the latter from (56). On the other hand

B3 2(Ek)2l[ Hk U,ii 2 + (2(Ek)2 + c5k b/2)llu+,_
The former term in the right-hand side can be bounded from above by an expression
similar to (62) using (56) again, whereas the latter term is nonnegative for k large
enough (and we may assume that this is already true for k 0 without loss of generality).

Collecting everything, we get the basic inequality

(63) 8+’A ea((u*, p*, +’)-(u, p*, +’))+(e)(c,sA(u, p)+ c,6).

This inequality plays the pa of (50) in the previous proof. Thus, proceeding exactly
as previously, we can prove the following results:

{A(u, p)} is a quasimaingale, which converges almost surely to some random
variable with finite expectation;
the sequences {u}, {r}, {p} are almost surely bounded;
the sequence {L(u,p*)=(u,p*,a+)} almost surely converges to
L(u*,p*);
therefore, using the (weak) lower-semicontinuity of L(., p*), each cluster point
of {u} in the weak topology minimizes L(., p*); but since (J + G) is assumed
to be strictly convex, u* is the only such minimizer and the whole sequence
{u} weakly converges to the unique u*.

The case when J+ G is strongly convex is handled exactly as it was previously.

C. Proof of Theorem 3. We indicate the main modifications that must be applied
to the previous proof. The calculations leading to (55) are still valid. The Lyapounov
function to be considered now is

(64) A(u, p) K(u*)-K(u)-<K’(u), u*-u>+(ek/2p)llp-p*l] 2.
The inequalities in (56) now read

(65) ]]p <= /. and ]]u’-u*ll2<=2A’(u’,p’)/b;
the former by construction (see (26)).
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(66)

The variation of Ak(U k, pk) over one stage of the algorithm is

+A K(u) K(u+’) -(K’(u), u

"t-(K’(uk)-- K’(uk+I), U*-- U k+l)
A

+ (ek+,l[pk+l _p,]]2_ ek]]pk _p,ll2)/2p.
A3

The inequalities (57) for A1 and (58) for A2 are still valid (remember that g--0, ,,-= 0).
As for A3, we. get

A3 <= (ek/2p)(lip k:+’ --p*[I 2- IlPk: --P*II 2)

<= ek(p k: -p*, (R)(u k:+’) (R)(u*)) + e pr2ll u+l- u*]]2/2,
the former because {e} is nonincreasing, and the latter thanks to (26) and (60), but
with H. instead of Hthis holds true because we assume that p*6 B(0, )and
thanks to the Lipschitz propey of .

Summing up these inequalities for A, A2, A3 and using the convexity of and
the definition of 0 k, the Schwarz inequality and the Lipschitz propey of O (also
0 k r), we get

+’A 8[(rk, u*-uk)+(p*, O(u*) O(uk))]

+ ek[[]rk]] + 2r[pk + rp*]" [uk+’-

B

+ pll+’-*/2- b[+1- ]:/2.
B2

The last terms above can be bounded as follows. Remembering (12), (55), the
fact that [[p k[[ and using standard manipulations, we get

1 ():[-*+6]
(67)

():[c(u, p)+ c6],

the latter from (65). On the other hand, note that

<- (1 + aek)l[u k: u*ll z + (1 + 1/aek)llu k:+a uk:li
from the H61der inequality

(68) xy <= (x2 + y/:)/2,

which is true for an arbitrary positive number . Hence

+(pr(e ’ + I/a)-b)llu+’- ull/2.
C3
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If we choose a as the solution of p’2(e+ l/a)= b, then clearly C3 will always be
nonnegative, whereas C2<= (ek)2[CsAk(u k, pk)+ C9] from (65). This last bound is similar
to (67).

Collecting everything, we get

6+’A_-< ek[(rk, u*- uk)+(p*, (R)(U*)- (R)(Uk))]
_3t_ (/ k)2[ c8Ak(l,lk, p k) .31_ C9 31 epr21l u u* II/2.

Taking the conditional expectation knowing kremembering (13)yields

:kAk+(Uk+ pk+)_ Ak(uk pk)<__ ek[(krk, U,_Uk)+(p,, (R)(U,)_ (R)(Uk))]
+ (ek)2[ c8Ak (u k, p k) + c9 q_ 8kpT.2ll IA

k U$112/2.
Observe that Rk:=iEkrk=_rk OJ(uk) (similar to (14)). Moreover

<e, u*- u> <-_ <e *, u*- u>- allu u*ll
(see footnote 6) for all R* OJ(u*). Finally, because u* minimizes J(. )+(p*, 19(. )),
there exists some R* OJ(u*) such that

Vue U, <R*,u-u*)+<p*,O(u)-O(u*))>-O.

These considerations yield the basic inequality

[F_kAk+ blk+ l, p k+ Ak tik, p k) ek (--- a) tlk u* [,2 + (,k)2[8Ak tlk, p k) + 9

which plays the part of (50) in the proof of Theorem 1. Remembering (27), it can be
proved in the same way as previously that II-*[I-,0 as

D. Proof of Theorem 4. For the sake of brevity, let us set

(69) qk := ii[pk + c(R)(uk)] (= (ac),,(O(uk),
(70) qk+l/2:__ i-i[pk + Co(uk+I)] (__.. (Ac),t((R)(uk+l), pk)).
The variational inequality (54) now holds with g =0, .. =0, and with qk replacing

We use the Lyapounov function (64) again and thus (65) is still valid. However,
the proof will be a bit more involved in that it will require two stages. These stages
correspond to Lemmas 7 and 8 hereafter. But we start with Lemma 6 which is a
technical lemma about function Ac.

LEMMA 6. For function A defined by (21), we have

Y

((A)’(tl, pl)-(A);’(t2, P2), tl- t2}--((A)p(tl, pl)-- (Ac)(t2, P2), Pl--P2}
(71)

>= cll(A)(tl, p)- (A)(t=, p2)l] 2.

Proof From (22)-(23), we have that

Y (rI(pl + Ctl) rI(p + ctg, c( tl- t2))/c

-(rI(pl + Ctl)-pl- (rI(p_ + ct9-pg, Pl-P2)/c

IIp-p2112/c-2(rI(pl+ ct)-ri(p+ ctg, pl-pz)/c

+ (rt(pl + Ctl) ri(p + eta), p + Ctl (P2 + ct2))/c.

The last term is not less than lift(p1+ Ctl)-rI(p2+ ct2)[l/c because in general

IlIIa -Ilbll<= (IIa -IIb, a-b).
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Therefore

V>= [[II(pl + Ctl)-Pl-(II(p2+

which is the claimed result. [-]

LEMMA 7. Almost surely

(72) , ek_]lqk+l/2--pkll z < C.
ken

Proof We decompose the variation of the Lyapounov function in three terms as
in (66). Inequality (57) still holds true whereas (58) now reads

A2<= e k[(rk, u*- uk+l)+(q k, 0 k (u*- uk+l))]
<= ek[j(u *, wk+l)-j(u k, to k+l) (convexity ofj(.,

+(qk, (R)(u*)- O(uk+)) (convexity of (R))

-k-Ilrkl[ I]U k+l- ukll] (Schwarz inequality).

As for A3, we have that

A3 (ek/2p)(llpk+l -p*ll- Ilpk -p*ll 2) ({e k} nonincreasing)
<= ek(pk--p*, (qg+l/Z--p)/c)
+(ep/2cZ)llq+a/Z-pgll (from (31) and p* B(0, )).

Summing up

6+AN e[g(u*, p*, w+) -g(u, p*, w+)] (see (61))
+ e[(q+a/2-p*, O(u*)-O(ug+))+((q+/Z-p)/c, pg -p*)]

B

+ eg[(q-q+/2, O(u*)-O(u+))+(p*, O(u) O(u+’))]
B2

+ ekllrk{l {{U k+’- uk[] + (ekp/Zca)l[qk+l/--pkl[2-- bluk+l-
B3

For B, we use Lemma 6 with tx=O(uk+), t=O(U*), p=pk, pZ=p." With these
choices, remembering (22)-(23) and noting that (A)’(tz,pz)=p* and that
(A) tz, P2) 0 since p* H(p* + cO(u*) ), it is realized that B is exactly the expression
-Y in that lemma. Hence

B _l]qk+l/2_pk}2/ C.

For B2, we simply use (69)-(70) and the Lipschitz propey of O,

B lu+- II" lu+’- u* + lp*" +-ul
Ilu+l-ul[ [=(llu+’-ull+llu-u*ll)+llp*ll] (triangular inequality)

T2 k T E k ,
for any positive number a using (68). For the same reason,

1 k+l k

1
IlU TM20ek ull 2 + (csll u u,II = + C6)

using (12).
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Collecting these inequalities, we get

+’A <_- [(u*, p*, ,o +’ -(u, p*

+-- P-1 ]]qk+I/2--pklI2+(ek)2(C711uk--u*II2+C8)

-- (ff-’J- CloF_,k --) ,,uk+l ukl[ 2

where c7 and c8 depend on a. This a is chosen in such a way that

c9/a + cloe- b/2 0

so that the last term is nonpositive for all k (remember that {e k} is a nonincreasing
sequence).

Then taking the conditional expectation knowing k, we get

_kAk+l(uk+l pk+l)_ Ak(u, pk) <= 8tC[L(u, p,)_ L(u k, p,)]

+--
C

d-(k)2(27 AkT (u’P)+c

where we have used (65). Observe that the first term in the right-hand side is nonnegative.
This is also the case for the second term from (32). We can thus drop them and take
the expectation to get (51) again (here with y:=:A(u, p)), from which we con-
dude that {A(u, p)} is a quasimartingale by the same argument as in the proof of
Theorem 1. Then (72) follows similarly to (52).

LEMMA 8. Almost surely

(73) E ek(Lc( uk, P*)- Lc(u*, pk)) < 0O.
kt

Proof. We return to the inequalities obtained for A and A at the beginning of
the proof of Lemma 7. Because of (69) and the convexity of hc( ", pk), we have that

A2 <- ek[j(u *, o k+l) --j(u k, w k+l) + h((R)(u*), pk) hc((R)(uk), pk)
/ (llrll / llqll) [In+ ul[].

Because (qk _pk)/c (A)((R)(uk), pk) and because of the concavity of A((R)(uk), ),
we have that

A3 <= ek[A((R)(uk), pk) Ac((R)(uk), p.)+ (p/2c=)llq+/=
/ lip -p*l[" Ilqk+1/2- qkl]].

If we collect these new inequalities for A and m together with (57) for A1, we obtain

6+1A =< e k[C(u *, pk, o k+’ C(u k, p*, (.O
k+l -- (p/2c2)llqk+a/2-pk]l 2

/ [(11 r[[ / [Iq[I)[[ u+’- ull / lip -p*[I" IIq+/)-- q[I]- bll u+-u 112/2
B4

where we have set, similarly to (61)

(u, p, w):=j(u, to)+ A(O(u), p).
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From (69)-(70) and the Lipschitz property of (R), it comes that

Hence using (68) again, for any positive number

B4=<fl(ek)2

2

+
2 Ilu+1- u 11 =.

From (69), we have that

(74)
qk]] __< ]]P / cliO(u*)II / cl[O(u) O(u*)[I

-<-IIp / cllO(u*)ll / cllu u*ll.
We use this inequality for qk, (12) for rk and (65) for pk and uk- u*, plus standard
calculations. On the other hand, we choose/3 in such a way that (1 +2r)/2/3 b/2.
Thus we obtain

B4 (8k)2[ CllAk(t/k, pk)q_ C12]"

A new inequality follows for 6kk+lA on which we take the conditional expectation
knowing kin particular [Ek[c(U*, pk, tok+l)--CCc(blk, p*, tok+l)]’- Lc(U*, pk
Lc(u k, p*)and then the expectation. This yields

ek[L(u k, p*)- L(u*, p*)] --< yk yk+l + (ek)2[cyk + C]

+ ekp/2C2): qk+1/ pk 112.
Recall that yk :__ _Ak(tlk, pk) is almost surely bounded. Let Y be a bound, then summing
up for k=0,..., N-1, we get

B

N-1 N-1

ek[L(uk, p,)_L(u,,p,)]<_yo_yrv+ (ek)[Cllyk+cl]
k=0 k=0

N-1

+ E (ekp/2c2) llq+/=-pll
k=0

B6

and

N-1

Bs <- Y+ Z (sk)2[CllY-t-Cl2] <= Y+ E (Ek)2[CllY+Cl2](O0
k=0 kN

whereas B6 is also bounded from (72). We conclude that (73) holds true almost surely
since the expectation can be removed for L(u k, p*)-L(u*, p*)>-0 for all k. [3

We can now complete the proof of Theorem 4. In the same way that we derived
(55), we can now obtain

[[U k+l- Uk[[ 8 k[cl3lluk u*ll / c,411 qk / c]

F_,k[ U
k *c61l -u +c17] (from (74))

F-,kcl8 (a.s.)
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since we have seen that {U k} is almost surely bounded in the proof of Lemma 7. A
similar statement cannot be obtained for pk+l_pk due to the use of "large steps" to
update p. For this reason, we cannot exploit (73) and we limit ourselves to the weaker
result , ek(Lc(u k, p*)-- Lc(u*, p*)) < dO a.s.

kl

which follows from (73) since Lc(u*, p*) _-> Lc(u*, pk). Given that Lc(’, p*) is Lipschitz
on every bounded set, we conclude from Lemma 4 of [13] that

lim Lc(u k, p*) Lc(u*, p*) a.s.

Since the sequence (u k) is almost surely bounded, it has cluster points in the weak
topology, and for each such cluster point a, Lc(a, p*) minu uS Lc(u, p*) almost surely
since Lc(’,p*) is weakly lower semicontinuous. This implies that every fi is almost
surely a solution of (9). This holds true for the augmented Lagrangian (this property
is sometimes referred to as "stability in u"--see [13]) but not for the ordinary
Lagrangian in general, unless it is strictly convex (the case considered in Theorem 2).

Finally, if J is strongly convex, it can be proved as usual that the convergence of
u k towards the unique u* is strong.

E. Proof ofTheorem 5. The claims at (i) and (ii) should be clear given assumptions.
A primal-dual solution of (40) is characterized by the conditions

lull, (K’(uk+l)--K’(uk)+ek(rk+Erpk+l), u--u k+l)
(75)

+ek(g(u, o0)k+l)--g(u k+l, tok+l)) >O=
(76) Euk+I-- t) k.
Let us use (75) with u tlk+l--xETp k+l where x is an arbitrary positive constant to
be chosen later on. Let e be the operator norm of ET or E (which is bounded since
it is linear and continuous). We get that

xe E Tp+ ll2 <= K’(u+ K’( uk) + ekrk, --xekE Tp k+ l)
+ ek(g(u, tok+l)--g(u k+’, ok+’))

<= X ellpk+Xll[BJlu k+l- ukll 4- kllrkl] (Schwarz and Lipschitz for K’)

+ek(cs([Juk+lll+xel[pk+lll)+C6) (from property (16) for g).

Since E is assumed to be onto, we know that (see Remark 11)

38>0: Vp c,, [iETpll2-_(p, EErp)>_81lpll2.
Therefore, from the previous inequality, we derive the following:

8 IIp/’ II-< eEBll u/’- ull/ / r / c(ll u/’ll / x ellP/l II)/ c63.
Since this is true for an arbitrarily small x, the same inequality holds true without
the term x ellP+’ll in the right-hand side. Moreover, using (12) and

Ilull / Ilu/*- ull, we get

(77)
Let us introduce the Lyapounov function

A(u,

where u* is a solution of (38) and

(78) v*=Eu*.
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Because K is strongly convex,

(79) ]Iuk--u*II22A(u k, vk)/b and I}vk--v*ll2<2’yA(u k, vk).
We consider the variation of A over one iteration of the algorithm

3+IA-- K(uk)--K(uk+I)--(K’(uk), uk--u k+l)
A

+(K’(uk) K’(uk+’), u*-- U k+l)
A2

+ (llv+’ v*ll- IIv

For A, inequality (57) holds true. For A2, using (75) with u u*, we get something
similar to (59), which reads, remembering (76) and (78)

A2 <= ek[(j + g)( U*, .0
k+l --(j + g)( u k, C.O

k+l %" (p+’, v*- v)]
/ [llrll / c(llull / Ilu+1- ull) / 6]" uk+’- ull.

But

Bl<=e%llu+’-u[l=+ellu+’-ull. (llll/,/k[I -lt- 12 (from (12))

<---(F_,kCs+Ol/2)l]blk+l--lgkl12+(Sk)2(ll[ltlk[[+12)2/20Z ((68) with any a>O)

(ecs + /2)llu+’- ul12+(e)2(c13A(u, v)+ c14

using (x + y)2 2(x2 + y2) and (79).
As for A3, with help of (41) and the fact that v*e V we have that

A3 e(p+1, - v*>+()211P+*11=/2.
B2

However, from (77) and the fact that (x+y)2(1 + a)x2+(1 + 1/a)y2 for any a >0,

B2 (1 + a) e2(B + c)211 u+*- u11=/25+ r(1 + 1/)()2(c7[[ull + c)/2
=< T(1 + ) e:(B+cse)2lu+’ ull:/2a:+(e)2(c15A(R k, V k) + C16)

using (79) again.
Collecting everything, we get

a+’a [(j+ g)(u*, +’)-(j+ g)(u, w+’)]+(e)2[Cl7A(u, v)+
+[ecs+ /2+ y(l + ) e:(B + cse)z/2ae- b/2] Ilu+’- ul 2.

Clearly, with a and y small enough and when e has reached a sufficiently small value
also, (say, it is reached already for k=0), the coefficient in front of [[u+-u[[ 2

becomes nonpositive.
Remark 13. Indeed, can be chosen arbitrarily small so that y has to be less

than a ceain Daction of the ratio z ba2/e202. Note that if E is changed into rE,
then 6 is changed into v2a whereas e is changed into re. In the same way, if K is
divided by v’, both b and B are changed in the same way, so that z is finally multiplied
by vv’. In this way, the bound on y can be made arbitrarily large.

Then, taking the conditional expectation

A(u ) A(u, )[+0)( )-(+O)(u )]+()[cA(u,
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observe that the first term in the right-hand side is nonpositive since u k is feasible for
(38). Using the arguments already advocated in the previous proofs, it can then be
proved that

{A(u k, vk)} is a quasimartingale which converges almost surely to some variable
with finite expectation:
the sequences {u k} and {v k} are almost surely bounded from (79);
one has that

(80) E ek[(J+G)(uk)-(J+G)(u*)]<+c a.s.

Suppose that we show that

(81) ]c19" VkN, ]]u+1-u][<=c19e a.s.

which we postpone to the end of this proof. Then, applying Lemma 4 of [13] once
again, since J + G is Lipschitz on the almost surely bounded set containing the sequence
{uk}, with (80) we conclude that (J+G)(uk)(J+G)(u*) almost surely. Therefore,
using the (weak) lower semicontinuity of J + G, each cluster point t of {u k} is such
that (J + G)()<= (J + G)(u*). Clearly, the set of feasible points of (38) is closed and
convex hence weakly closed. Thus, g is also feasible, hence optimal.

The case when J + G is strongly convex is handled classically.
We now complete the proof by proving (81). Note that this will imply the

boundedness of {pk} almost surely from (77). We appeal to the variational inequality
(75) once again, but now with u u k. This yields

bllk+l--uk]2(g’(k+’)--K’(uk), Uk+’--U)
e[(r, Uk_uk+l) W g(uk k+l)_g(uk+l, k+l)]
+ ek(p k+l, Eu EU+1)
[llrll + c(llull + ]lu+1- ul]) + C6]" ]IU k+l-

+ 11+11 IIv--using the Schwarz inequality and (16) for g, and (76) for v and v-. On the one
hand, u, hence also r, are bounded almost surely, on the other hand, from (41)

using (42). Therefore

Knowing that u is almost surely bounded, (77) yields

Ek

To shorten notations, we set

The two inequalities above then imply

k
E

+ C21

and yk+l iip,,+,ll.

(xk+l)2 C22(xk+1)2-.[ C23xk+l-[ ’)/c24yly k+l

k+l k+ly _--< C25X -+- C21
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where c23 c20/b, C24-’-’/b and C22 (respectively, c25) is larger but as close as we wish
to zero (respectively, eB/6) provided that we consider these inequalities from some k
large enough. Using the latter inequality in the former yields

(xk+l)2 C22(xk+1)2 -" C23xk+ "- ’)/C24( C25xk+1" C21)(C25Xk -JI- C21 ).

After tedious but straightforward calculations where we use (68) repeatedly (always
with : a except for the cross-product xgxk+l for which we take sc =/3), we finally get

(1 t’)/c24c25/2- c22- 0lc23/2- 0’)/21 c24c25/2)(xk+1)2

(’C24C5/2 + Og’)/21C24C25/2)(Xk)2-t- C23/2a + "}/c2124c25/0[. -" C24C1
To fix ideas, let us pick/3 1/’)/C24C5. It should be clear that since I22 is small for k
large and since a can be chosen small also, this inequality can assume the following
form:

(xg+l)2 C26(Xg)2 + C27

with c26 < 1. By a classical result, this proves that the sequence {xk} is bounded, which
is the desired result.

A careful examination shows once again that if a is chosen arbitrarily small, y
must be chosen less than a certain fraction of the ratio z b82/e2B2 as already noticed
in Remark 13, which thus remains valid.

REFERENCES

K.J. ARROW, L. HURWlCZ, AND H. UZAWA, Studies in Linear and Non-Linear Programming, Stanford
University Press, CA, 1972.

[2] J. F. BALDUCCHI, G. COHEN, J. C. DODU, M. GOURSAT, M. HERTZ, J. P. QUADRAT, AND M.
VIOT, Three methodsfor optimizing the capacities ofan electrical transmission network, IFAC World
Congress, Kyoto, Japan, 1981.

[3] A BENVENISTE, P. BERNHARD, AND G. COHEN, On the decomposition of stochastic controlproblems,
1st IFAC Symp. on Large Scale Systems Theory and Applications, Udine, Italy, 1976.

[4] D. P. BERTSEKAS, Necessary and sufficient conditions for a penalty method to be exact, Math. Program-
ming, 9 (1975), pp. 87-99.

[5] C. B. BROSILOW, L. S. LASDON, AND J. D. PEARSON, Feasible optimization methodsfor interconnected
systems, Joint Automatic Control Conference, Troy, New York, 1965.

[6] G. COHEN, Optimization by decomposition and coordination: a unified approach, IEEE Trans. Automat.
Control, AC-23 (1978), pp. 222-232.

[7] ., Auxiliary problem principle and decomposition ofoptimization problems, J. Optim. Theory Appl.,
32 (1980), pp. 277-305.

[8] , Two lemmas and their use in convergence analysis ofsome optimization algorithms, Int. rep. E/68,
Centre d’Automatique et Informatique, tcole des Mines de Paris, Fontainebleau, France, 1982.

[9] Ddcomposition et coordination en optimisation ddterministe diffdrentiable et non diffdrentiable,
Thesis dissertation, University of Paris-Dauphine, Paris, France, 1984.

10] , Nash equilibria: gradient and decomposition algorithms, Large Scale Systems, 12 (1987), pp. 173-
184.

[11] G. COHEN, Auxiliary problem principle extended to variational inequalities, J. Optim. Theory Appl., 59
(1988), pp. 325-333.

[12] G. COHEN AND J. C. CULIOLI, Decomposition and coordination in stochastic optimization, IFAC
Symp. on Large Scale Systems Theory and Applications, Zurich, Switzerland, 1986.

[13] G. COHEN AND D. L. ZHU, Decomposition coordination methods in large scale optimization problems.
The nondifferentiable case and the use ofaugmented Lagrangians, in Advances in Large Scale Systems
Theory and Applications, Vol. I, J. B. Cruz, ed., JAI Press, Greenwich, Connecticut, 1984.

[14] J. C. CULIOLI Algorithmes de ddcomposition/ coordination en optimisation stochastique, Thesis disserta-

tion, Centre d’Automatique et Informatique, tcole des Mines de Paris, Fontainebleau, France, 1987.



DECOMPOSITION/COORDINATION ALGORITHMS 1403

[15] G. B. DANTZIG AND P. WOLFE, The decomposition algorithm for linear program, Econometrica, 29
(1961), pp. 767-778.

[16] Y. M. ERMOLIEV, Methods of Stochastic Programming, Nauka, Moscow, 1976. (In Russian.)
[17] ., Stochastic quasigradient methods and their applications in systems optimization, IIASA working

paper WP-81-2, Laxenburg, Austria, January 1981.
18] A. M. GEOFFRION, Primal resource-directive approaches for optimizing nonlinear decomposable systems,

Oper. Res. (1970), pp. 375-403.
19] A. M. GUPAL, Stochastic Solution Methods for Nonsmooth Minimax Problems, Naukova Dunka, Kiev,

1979. [In Russian.]
[20] H. KUSHNER AND D. S. CLARK, Stochastic Approximationfor Constrained and Unconstrained Systems,

Springer-Verlag, Berlin, 1978.
[21] L. S. LASDON AND J. O. SCHOEFFLER, A multilevel techniquefor optimization, Joint Automatic Control

Conference, Troy, New York, 1965.
[22] L. LJUNG, Analysis of recursive stochastic algorithms, IEEE Trans. Automat. Control, AC-22 (1977),

pp. 551-575.
[23] D. P. LOOZE AND N. R. SANDELL JR., Decomposition oflinear decentralized stochastic controlproblems,

IFAC Workshop on Control and Management of Integrated Industrial Complexes, Toulouse,
France, 1977.

[24] F.V. LOUVEAUX, A solution methodfor multistage stochastic programming with recourse, with application
to an energy investment problem, Oper. Res., 28 (1980), pp. 889-902.

[25] M. D. MESAROVIC, D. MACKO, AND Y. TAKAHARA, Theory of Hierarchical Multilevel Systems,
Academic Press, New York, 1970.

[26] M. MITIVIER, Semimartingales, Walter de Gruyter, Berlin, 1982.
[27] M. MINOUX AND .L Y. SERREAULT, Subgradient optimization and large scale programming: an

application to optimum multicommodity network synthesis with security constraints, Revue RAIRO
Recherche Op6rationnelle, Dunod, Paris, 15 (1981), pp. 185-203.

[28] E. A. NURMINSKI, Numerical Methods for Solving Deterministic and Stochastic Minimax Problems,
Naukova Dunka, Kiev, 1979. [In Russian.]

[29] L. ROBBINS AND S. MONRO, A stochastic approximation method, Ann. Math. Statist., 22 (1951),
pp. 400-407.

[30] R. WETS, Large scale linearprogramming techniques in stochasticprogramming, in Numerical Techniques
for Stochastic Optimization, Y. M. Ermoliev and R. Wets, eds., Springer-Verlag, Berlin, 1988.

[31] A. P. WIERBICKI AND S. KURCYUSZ, Projection on a cone, penalty functionals and duality theory for
problems with inequality constraints in Hilbert space, SIAM J. Control Optim., 15 (1977), pp. 25-56.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 28, No. 6, pp. 1404-1419, November 1990

1990 Society for Industrial and Applied Mathematics

007

HAMILTON-JACOBI THEORY FOR OPTIMAL CONTROL PROBLEMS
WITH DATA MEASURABLE IN TIME*

R. B. VINTERt AND P. WOLENSKI?

Abstract. Hamilton-Jacobi theory provides necessary and sufficient conditions on minimizing arcs in
terms of solutions to the Hamilton-Jacobi equation or inequality. The hypotheses under which such results
have previously been obtained typically require the data to be continuous in its time-dependence. The
present paper lifts this restriction. The basic hypotheses are Carath6odory-type with measurable time and
Lipschitz state dependence, and they incorporate the growth condition of Valadier’s existence theory. It is
shown that the value function is a solution to the Hamilton-Jacobi equation in an extended sense defined
in terms of lower Dini directional derivatives, and that solutions of the related inequality furnish verification
functions. Moreover, a characterization of the value function is provided as the pointwise maximum of the
family of all verification functions. The methods developed to take account of the measurable time-
dependence are based on a "uniform" Lebesgue point theorem for integrably bounded set-valued functions.

Key words, dynamic programming, differential inclusions, nonsmooth analysis

AMS(MOS) subject classifications. 49C05, 49C20

1. Introduction. We consider the following differential inclusion formulation of
the optimal control problem (it is labelled (P))"

(P) Minimize f(x(1)) over x(.)AC[O, 1] such that
( t) 6 F( t, x( t)), a.e.t[0,1] and x(0)=Xo.

Here f: n __> ,1 is a locally Lipschitz continuous function, Xo is a given point in ",
and F:[O, 1]x"n is a multifunction (or set-valued map). x(t) denotes the
derivative of x(. ).

The valuefunction V:[0, 1]," - ,n is defined as follows: for every point (t,
[0, 1] ,", V(t, :) is the minimal cost of a modified version of problem (P) in which

t, 1] replaces [0, 1] as the underlying time interval and : replaces Xo as the initial
condition. Under the hypotheses we shall soon impose, V will be finite everywhere.

Hamilton-Jacobi theory as it bears on problem (P) contains two important ele-
ments" verification theorems and properties of the value function. The Hamilton-Jacobi
equation (or the related inequality) provides the link between them. On the one hand,
a verification theorem (or the Hamilton-Jacobi verification technique) is a sufficient
condition for an arc to be minimizing. This is expressed in the terms of "verification
functions," which are solutions to the Hamilton-Jacobi equation suitably defined. On
the other hand, the value function furnishes a solution to the Hamilton-Jacobi equation
in an appropriate sense.

A restrictive feature of early forms of verification theorems (see, e.g., [9]) is the
requirement that verification functions be classical C solutions to the Hamilton-Jacobi
equation. Yet for many problems we should like to address, no C solutions exist.
Recent research has been directed at weakening the requirements on verification
functions to the point where, under mild and verifiable hypotheses, conditions are
provided which are necessary as well as sufficient for optimality. Nonclassical analysis
has had a major role here, since the verification functions we typically encounter are
nondifferentiable. A variety of approaches have been followed. For example, methods
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have been based on the notion of viscosity solutions [15], [8], [17], almost everywhere
strict sense solutions [3], 11], Krotov functions [24], Clarke generalized gradients [7],
a sequence of solutions to the Hamilton-Jacobi inequality [27], and lower Dini (or
contingent) derivatives [10], [4]. See also [20], [21], and [25].

We focus attention on results where the definition of verification functions involves
generalized gradients, and that provide necessary and sufficient conditions of optimal-
ity. Here it is customary (see, e.g., [7], [10], or [4]) to include among the hypotheses:

(E) F is continuous with respect to the Hausdorff metric.

(We mention, however, that Ishii [14] and Lions and Perthame [16] have established
existence and uniqueness of viscosity-type solutions to the Hamilton-Jacobi equation
in situations where the data is measurable in time.)

We shall show that if we define a generalized solution to the Hamilton-Jacobi
equation to be a function in a certain function space (strictly larger than the space of
locally Lipschitz continuous functions) which is a lower Dini solution to the Hamilton-
Jacobi equation, then we obtain necessary and sufficient conditions of optimality when
hypothesis (E) is relaxed to require merely measurable dependence of F in the time
variable. By "lower Dini solution" we mean a function 4 which satisfies

(1.1) min d-ch((t, )" (1 v))>=0

on some suitable set. Here we use d-4(; w) to denote the lower Dini derivative of
& in the direction w:

d & /; w) := lira inf
1

+o {(’ + hu)- ()}.

Our proof techniques accord a prominent role to properties of the set function defined
by the reachable set as it evolves in time (cf. [22], [29], [30]). They also make use of
a "uniform" extension of previously available results on Lebesgue points of set-valued
mappings, originating in the work of Hermes [12].

Specifically, we shall work with the following hypotheses (these will often be
referred to as the basic assumptions on F):

(H1) For all (t, ) [0, 1] x ,", F(t, :) is a nonempty compact set.
(H2) There exists a function AI(.) LI[0, 1] so that for all t[0, 1], , :’", we

have

distil (F(t, ), F(t, :’)) <_- A(t)[- ’I,
where distn denotes the Hausdorff metric.

(H3) For all n, the multifunction t-- F(t, ) is measurable, and there exist
functions r(. ), A2(. ) LI[0, 1] so that

F( t, :) (r(t) + A2(t)l:l)B,

where B denotes the closed unit ball.

Of particular interest here is the fact that we permit F to be merely measurable as a
function of time.

There are two principal reasons for working with these hypotheses. First, it is
desirable to have a broad, common framework of hypotheses within which to develop
different branches of optimal control, and in particular dynamic programming and the
theory of necessary conditions. The point is that, in proving certain results, we need
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simultaneously to draw on the theory of dynamic programming and to apply necessary
conditions of optimality. Such results will be rather restrictive unless the two bodies
of hypotheses under which each is valid overlap to a large extent. (One instance of
this is the interpretation of the costate variable in terms of generalized gradients of
the value function [26]. Another is proof of verification theorems in the presence of
endpoint constraints [7]; here necessary conditions of optimality have a major role.)
The theory of first-order necessary conditions has been developed for problems with
data measurable in the time variable and Lipschitz continuous in the state variable,
and so we would also like to treat such problems in dynamic programming.

Second, problems naturally arise, for example in optimal resource extraction,
where the data is discontinuous in the time variable. They typically involve abrupt
changes in tariffs or interest rates. The following example is a special case of the
hydroelectric power exfraction problem in [18], in which the reservoir is assumed to
have vertical sides and there is no flow into the reservoir.

Example.

Minimize
subject to

2(t) -u
u [0, 1] a.e. [0, 1 ],

x(O)/ )"
Here w(.), the tariff function, is a given bounded, measurable function, sc, a given
positive number, is the head at the turbine at time 0.

In this problem x2(t) is the head at time t, whose rate of decrease is proportional
to the flow rate u through the turbine, xl(t) is the profit which has accrued up to time
t. Consequently, the objective is to maximize the profit over the time interval [0, 1]. A
case of interest is that where the tariff is piecewise constant [18]; the different levels
represent charges for consumption of electricity over different periods of the day. In
this case, the data is discontinuous in time.

We shall solve this problem, for certain choices of w(.), using a verification
function treating data measurable in the time variable.

Results such as those reported in this paper do not supply a methodology for
obtaining verification functions. Their main purpose is to establish that if we have
obtained a putative minimizer (by finding an extremal, for example), then we can in
principle settle the question of whether it is optimal by finding a verification function.

Lower Dini derivatives are by no means new to the optimization and dynamical
systems literature. Work on Lyapunov functions by Yorke [31], necessary conditions
of optimality due to Ioffe [13], and verification theorems of Frankowska [10] and
Berkovitz [4] all make use of them in one way or another, to name but a few instances.
However, this paper apparently identifies for the first time the significance of lower
Dini derivatives in the treatment of optimal control problems with data measurable
in time.

We comment on some implications of our findings, all of which concern extensions
of known results to situations where the data is measurable in time. The fact that the
value function is a lower Dini solution of the Hamilton-Jacobi inequality is the basis
of the proof in [28] that a minimizing arc x(.) for problem (P) and an associated
co-extremal p(. are related according to

(1.2) (h(t),-p(t))OV(t,x(t)) a.e. t[0,1],
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where h(. := maxv(,,x,)) p(t) v. ("0" refers to the Clarke subgradient.) Inclusion
(1.2) extends the results of [26] to allow measurability in time. Using the exact
penalization techniques of [7], we obtain necessary and sufficient conditions of optimal-
ity (valid for data measurable in time) for a problem related to (P) in which a right
endpoint constraint "x(1) C" is introduced. A more intricate application of our
methods leads to a characterization of local minimizers for (P), which involves
verification theorems having domain a tube about the arc under consideration (cf. [7]).

We conclude this Introduction with a few definitions and identities. For a time
interval [to, tl] c [0, 1] and an initial condition ,", the set S(to, q, ) comprises
the solution x(. ) AC[ to, tl] to the differential inclusion

(t) F(t, x(t)) a.e. to, tl],
(1.3)

x(to) .
We denote by So(to, tl, ) the solutions to the associated convexified differential
inclusion. That is,

So(to, tl, ():={x(’)6AC[to, tl]: X(to) : and (t) 6 co F(t,x(t)) a.e. t6[to, tl]}

("co" signifies "convex hull"). The reachable set R(to, tl, ) (with time interval to, tl]
[0, 1] and initial state t") is defined by

R(to, tl, ):= {X(tl)6,gt": x(’)6 S(to, tl, ()}.
Under hypotheses (H1)-(H3) the reachable set is nonempty (a consequence of
Valadier’s existence theory [23]) and bounded (see, for example, Lemma 3.1 below).
It is evident that

(1.4) V(t, )= inf{f(x(1)): x(. ) S(t, 1, :)}.

Again when (H1)-(H3) are in force, the Filippov-Wazewski relaxation theorem (see,
e.g., [6, p. 117]) is applicable and asserts, in particular, that

cl R(to, tl, )= {X(tl): x(" ) So(to, tl, :)}.
Since the cost function f is continuous, this identity yields another characterization of
the value function

V(t, ) min {f(x(1)): x(. So(t, 1, )},
where the notation "min" indicates that a minimizing arc x(. exists.

It will be convenient in the proofs below to use only one function A (.) L1. Define
A(t) := max {Al(t), Az(t)}. Note that if (H2) and (H3) hold, then they remain satisfied
for A 1(" and A2(" replaced by A(. ).

2. The main results. Our purpose is to demonstrate the existence of verification
functions characterizing optimal arcs under the mild hypotheses (H1)-(H3) (the "basic
assumptions"). The choice of function space for the class of verification functions
under consideration is a delicate matter. It is dictated by the regularity properties of
the value function, which is, after all, the natural candidate for a verification function.
These properties cannot be described with adequate precision by appealing to the
standard spaces, for example, those comprising Lipschitz continuous or continuous
functions. It is well known that the value function is locally Lipschitz continuous in
the state variable and uniformly so with respect to the time variable. It will be shown
below that the value function is also, in some sense, "uniformly" absolutely continuous
in the time variable, as the state variable ranges over an arbitrary compact subset.
More precisely, we shall see that the value function meets the requirements of the
following definition.
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DEFINITION 2.1. Suppose b [0, 1] x 9 - 9t 1. We say that 4(’, sc) is absolutely
continuous independent of : in a compact set if, for all e > 0 and K c_c_ 91 compact,
there exists 6> 0 so that for any finite collection [al, bl],"" ", [am, b,] of disjoint
subintervals of [0, 1] satisfying Yj=I (bj-aj)< 6, we have

E sup [b(bj, )- b(aj, sc)[ < e.
j=l K

These conditions satisfied by the value function--local Lipschitz continuity in
and absolute continuity in in some uniform sense--are less restrictive than local
Lipschitz continuity jointly in : and (see the remark in 6). They are built into the
following definition of a verification function which also must satisfy the Hamilton-
Jacobi inequality (in a lower Dini sense) and the appropriate boundary conditions.

DEFINITION 2.2. Suppose b [0, 1 x 92" ,t . Then b is called a verification func-
tion (for the problem (P)) if

(a) 4(’, sc) is absolutely continuous independent of : in a compact set,
(b) b(t,. is locally Lipschitz with Lipschitz constant independent of [0, 1],
(c) b(1, sc) =f(sc) for all sc, and
(d) there exists J c_ [0, 1) of measure zero so that for all [0, 1)\J and ,91 n,

we have

(2.1) min d-ch((t, )" (1 v))->0.
uF(t,)

Our first result asserts that the value function V is indeed a verification function,
and that V is identifiable as the maximal element in the set of verification functions.
Furthermore, V is a special verification function for which a stronger Hamilton-Jacobi
equality replaces the inequality (2.1).

THEOREM 2.3. Suppose F satisfies the basic assumptions. Then V is a verification
function such that for each t, ) [0, 1 ,
(2.2) V(t, so)= max {b(t, ): b is a verification function}.

Moreover, the null set J in Definition 2.2(d) can be chosen so that V satisfies the
Hamilton-Jacobi equation in the following sense. For [0, 1)\J and , we have

(2.3) min d-V((t, )" (1 v))-O.
vcoF(t,)

Gonzales draws attention to the fact that the value function is the maximal element
in the class of verification functions (see equation (2.2)) in [11], which treats problems
with smooth data. Such characterizations are implicit in earlier literature however (see
references in [27].)

And now we give necessary and sufficient conditions of optimality, expressed in
terms of verification functions.

THEOREM 2.4 (the Hamilton-Jacobi verification technique). Suppose F satisfies
the basic assumptions. Then x(. ) S(O, 1, Xo) is an optimal solution to (1.1) if and only
if there exists a verification function ch so that 49(0, Xo)=f(x(1)).

Suppose it is known that the value function is locally Lipschitz continuous jointly
in the time and state variables. This will be the case, for example, when the functions
r and h2 of hypothesis (H3) are essentially bounded. Then the assertions of Theorems
2.3 and 2.4 remain true when a simpler definition of verification function is adopted:
We may replace (a) and (b) on b in Definition 2.2 by "b is locally Lipschitz continuous
in (t, sc) jointly."
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If F is continuous in both variables, then the null set J in Theorem 2.3 can be
taken to be the empty set. Under the continuity assumptions, Frankowska [10] has
recently shown that equation (2.3) holds at all (t, :) [0, 1)xn. Her proof makes use
of a convergence property of reachable sets; an important ingredient in our analysis
is the demonstration that this property is preserved when we relax the hypotheses to
permit, among other things, measurable time-dependence (see Lemma 4.3 below). This
convergence property (in the case of continuous data) features also in the work of
Roxin [22].

We conclude the section with a brief analysis of the hydroelectric power extraction
problem example of 1. Consider the case when the tariff function is monotone
decreasing. Here the minimizing trajectory (gl, g2) is given by

Io:,(t) w(s)[:- s]+ ds,

g2(t)=[:-t]+,
in which a/ := max {a, 0}. The interpretation of this trajectory is that maximum profits
are obtained (for a monotone decreasing tariff function) by operating the turbine at
maximum flow until the reservoir is emptied.

Optimality of this trajectory can be confirmed by application of Theorem 2.4 in
which we adopt as verification function the locally Lipschitz continuous function

IW( t, x) -Xl w(s)[x2 + s]+ ds.

This function is a lower Dini solution of the Hamilton-Jacobi equation at all points
in S , where S is the subset of [0, 1) on which w is continuous.

3. Properties of reachable sets. In this section, we show that (a) and (b) of
Definition 2.2 hold for b V. The proofs of these facts rely on standard properties of
reachable sets and the observation (1.4). Throughout this section, it is assumed that
F satisfies the basic assumptions.

LEMMA 3.1. Let K
_

92 be compact. Then there exist y( LI[0, 1] and a constant

kl>O (both depending on K) so that for all K and 0 <- to< tl <- 1, we have that
r R (to, tl, ) implies

to y(s) ds, and
(ii) Ir/I =< kl.
Proof. (i) Let : K and 0_-< to < tl <_- 1. Then for each x(. S(to, t, :) and

[to, tl], we have

Ix(-’l -< I(1
o

<-- (r(s)+ A(s)lx(s)l) ds (by (H3))
to

to to

An application of Gronwall’s inequality (see, e.g., [2, p. 119]) gives

Ix(t,)- :1 _-< (r(s)/A(s)ll) ds+ A(s)
to to

x r(s’) + (s’)ll ds’ exp (s’) ds’ ds
to

-<-[1+ I1111 exp I1 II1] (r(s)+,(s)lgl) ds,
o
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where IKI := max {It/]" r/ K}. Therefore (i) holds for

7(s) := (l + tlA II1 exp ]]A II1)(r(s)+ A (s)[KI).

(ii) Let kl ][)’]11 +[K[. Then (ii) follows immediately from (i).
LEMMA 3.2. For fixed 0 <- to < tl <= 1, the multifunction - cl R (to, tl, s) is

Lipschitz (with respect to the Hausdorff metric) of order exp (J" A(s)ds).to

Proof (see Aubin and Cellina [2, pp. 120-123]). Although the theorem in this
reference does not explicitly allow for measurable dependence of F(., s), the proof
can easily be adapted to incorporate this more general feature.
LA 3.3. Let e > 0 and K c__ be compact. Then there exists 6 6(e, K)> 0

so that for any finite collection [a, bl]," ", Jam, bin] of disjoint subintervals of [0, 1]
satisfying Y=I (b a) < 6, we have

(3.1) Y sup dist (cl R(b, 1, :), cl R(a, 1, )) < e.
j=l

Proof Let k be as in Lemma 3.1, and set k2 exp {o , (t) dt}. Define
by o(t)=kzIo(r(s)+A(s)k)ds. Because c(.)eAC[0,1], to prove the lemma it
suffices to show that for all 0-< to < tl < 1 and K, we have
distil (el R(to, 1, :), el R(t, 1, ))<-_a(q)-a(to).

Fix 0 <_- to < tl <= 1 and : K, and suppose x(. So(to, 1, :). Obviously, x(. restric-
ted to [tl, 1] is an element of So(t1, 1, x(tl)). Hence by Lemma 3.2, there exists
y(" So(t1,1, :) so that

Ix(l) y(1)l <-- k2]x(/1)

I ’l
k2 I(s)l ds

to

<-_k2 (r(s)+,(s)G) ds (by (H3) and Lemma 3.1(ii))
to

=,,(t,)- (o).

Thus we have shown that cl R(to, 1, :)___ 1R(t, 1, )+(a(t)-a(to))B.
Now suppose y(. So(t, 1, so). Pick any xl(" So(to, tl, ). By Lemma 3.2, there

exists x2(" So(t1, 1, xl(tl)) so that

Ix2(1 y(1)l -< k21x2(t,) y(tl)

k21xl(tl) 1
_<- a(t)- a(to) (as above).

Since x2(1) cl R(to, 1, :), we now have shown cl R(h, 1,
clR(to, l,)+(a(h)-a(to))B. Combining this with the above, we conclude that
dist (cl R(to, 1, ), cl R(tl, 1, ))<_-a(tl)- a(to).

We are now ready to show that properties (a) and (b) of Definition 2.2 hold for
4 I/.

Proof of (a). Let e > 0 and K
__
" be compact. Let k be the constant of Lemma

3.1 and the Lipschitz constant off on kB. Fix : K and 0<_- to< tl-<- 1. Observe from
(1.4) that

(3.2) Iv(tO, ()- V(t,, ()1-< dist/_/(cl R(to, 1, ), cl R(tl, 1, ))
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holds. Now choose 6 as in Lemma 3.3 for e replaced by e/1 in (3.1). Then for any
finite collection [al, bl],... ,[am, b,,] of disjoint subintervals of [0, 1] satisfying= (b a) < 6, we have

Y sup V(bj, 1, )- V(aj, 1,
j= :K

=< ] sup distil (cl R(bj, 1, :), cl R(a, 1, )) (by (3.2))
j=l K

<e (by (3.1)).

Hence V(., :) is absolutely continuous independent of in a compact set.

Proof of (b). Let K " be compact, and let be as in the proof of (a). The
analogue of (3.2) with varying state variables is: for , ’ K and [0, 1], we have

IV(t, )- V(t, ’)l-< distil (cl R(t, 1, ), cl R(t, 1, ’)).

From this it follows via Lemma 3.2 that for all , :’ K and [0, 1 ], we have

IV(t, :) V(t, ’)1 --< exp (s) ds I-

This proves (b).

4. Lebesgue points of integrably bounded multifunctions. Before proceeding, it is
convenient to review some notions of set convergence. For : 92" and K ", define
the distance from to K by dist(,K)=inf{l-r/[: r/K}. If {K(t)}o<,__<o is a
collection of subsets of " parameterized by (0, to], then the (Kuratowski) lim inf
and lim sup of K(. as $ 0 are defined by

lim inf K (t) { r/: lim sup dist r/, K (t)) 0},
t$o to

lim sup K (t) { r/: lim inf dist r/, K (t)) 0}.
t$o

Of course we always have lim inf,+o K (t) lim supt+o K (t). If, in fact, we have equality,
then we say that the limit exists and write lim,+o K (t) for the common value. Note
that both lim inft+o K(t) and lim supt$o K(t) are always closed sets. Also note if each
K(t) is convex, then lim inf,+o K(t) is also convex.

If K :[0, 1]--- " is any closed-valued integrably bounded multifunction, the
integral of K over [to, q] [0, 1] is the subset of " given by

K(s) ds:= g(s) ds" g(" is measurable on
to

[to, tl] and g(s)6K(s) a.e. s[to, tl]}.
By Auman’s theorem (see, e.g., [6, p. 112]), q K(s) ds is always closed and convex.

to
Recall that the set of right Lebesgue points L(g) of a function g L[0, 1] is

L(g):={t’liml f
’+h }ho - g(S) ds exists, is finite, and equals g(t)

It is well known that the set L(g) has full measure in [0, 1]. Such results have been
extended by Hermes 12] (see also 1 ], [5]) to situations where a multifunction replaces
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the function g. We now prove a further extension, which asserts (under appropriate
hypotheses) that the set of "Lebesgue points" of a multifunction, depending on a
parameter, has full measure in some uniform sense. The hypotheses in question are
those of 1, and the parameter is the state vector x.

PROPOSITION 4.1. Suppose F:[0,1]x9]"-- satisfies (H1)-(H3). Then there
exists J[O, 1) of measure zero so that for all t[0,1)\J and n, we have

limhw (l/h)o
h F(t+s, ) ds exists and equals co F(t, ).

Proof Our starting point is the fact that for fixed ", a null set J(:)___ [0, 1)
exists so that co F(t, :)___ lim inf,+0 (l/h) oh F(t+s, ) ds for all t[0, 1)\J().

This property, along with other information, is contained in Theorem 4.3 of [1];
it is a consequence of adopting a Castaing representation for the measurable multifunc-
lion F(. (see, e.g., 19]). Fix sc 91 n. Let {gj(t)}= be a Castaing representation. This
means gj(.) is measurable and F(t, )=cl {g(t)}__l for all t[0, 1]. By (H3), g(.)
LI[O, 1] for each j, thus J(:):= (Uj= [0, 1)\L(gj)) has measure zero. If [0, 1)\J(:),
then for each j we have

(4.1) g(t) lim 110 lloh+O - gj( + S) ds limh+nf F( + s, ) ds.

Since the right side of (4.1) is a closed convex set, by taking the closed convex hull
over j on the left side of (4.1), we conclude that t [0, 1)\J(:) implies

lfo (4.2) co F(t, ) c__ limhnf F(t + s, ) ds.

Now let {i}ic= be a countable dense subset of ", and let J(i) be chosen as
above so that (4.2) holds for :=:. Define Jo=([O, 1)\L(A))U(=IJ()), where
A (.) LI[0, 1] is given by (H2). Then Jo has measure zero. Fix [0, 1)\Jo and : ".
Let {hk}-i be an arbitrary sequence with hk$O, and let e>0 and v F(t, ,) also be
arbitrary. There exists io so that I:-:/o[ < e. By (H2) there exists Vo F(t, ’o) so that
IV-Vol<A(t)e. Since t[0, 1)\J(:o) by (4.2) there exists {Uk(’)}=l SO that

Uk(S)F(t+s, lJio) a.e.s[0, hk], and

4.3 1 fo u s as Vo as k - .h
Again by (H2), the set Pk(s):=F(t+s,()fq(u,(s)+A(t+s)l-olB is nonempty
almost everywhere on [0, h], and by Theorem 1M of [19] the multifunction P(. is
measurable on [0, hk]. Let v(. be a measurable selection of Pk(" (see [19, Cor. 1C]).
Then

fo fo llgk(S)- uk(S)l dS-I- Io’k uk(S) dS v d-lt)- t)l
1 hk 1 1

(4.4)

f; fo"k u(s) ds-vo +’(t)e"--<----hk A + s) ds + -Now let k-c and apply (4.3); the middle term on the right side in (4.4) approaches
zero. Since L(A), and e is arbitrary, we conclude from (4.4) that (1/hk) ho Vk(S) ds
v. Because

vk(s) ds | F(t + s, ) ds
1 1

hZ Jo
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for all k, and {hk} and v eF(t,) are arbitrary, we arrive at co F(t,)
liminfh,o (1/h) Iho F(t+ s, ) ds.

To finish the proof, we show there exists a null set J1 so that [0, 1)\J1 and

n imply lim SUph,o (I/h)Ioh F(t+s, )ds_co F(t, ). First, fix sequences
and {Pj}j=I that are both dense in . For (t, , p)[0, 1]x x, define
the Hamiltonian by H(t,, p) :-- sup,F(t,) (t), p). Note that by (H3), for each
and p, the function t-> H( t, , p) is an element of LI[0,1]. Define J1 :=
O, 1 \{L(A CI (3 i,j L(H(., i, Pj )) }, where, as earlier, L(g) denotes the right Lebesgue
points of g LI[0, 1]. Obviously J1 has measure zero. We remark that v co F(t, :) if
and only if (v, pj)<=H(t, , pj) for all j=1,2,... this is a result from elementary
convexity theory. Also note that a consequence of assumption (H2) is s- H(t, , p)
is continuous for fixed and p.

Now fix t[0,1)\J1 and n. Let vlimsupt$o(1/h)hoF(t+s,)ds. By
definition, there exists hk$O and gk(’)Ll[O, hk] with gk(S)F(t+s,) almost
everywhere s [0, hk] SO that

1 I gk S ds -> v as k -> oo.
hk 3o

For each and j, we have

(v, PJ)= k-lim kl f0k (gk(S), pj) ds

(4.5)
_<--limsup

1 I’{H(t+s,i,p)+A(t+s)l_l}ds
k- o (by (H2))

=H(t, ,,
The last equality holds because is a right Lebesgue point of H(., , pj) and A (.).
By considering points in {:} converging to , we deduce from (4.5) that (v, pj)<-
H(t, , pj) for all j. Hence the desired result vco F(t, ) follows.

We have shown that the conclusion of the proposition holds for J := J0
The next proposition is a widely quoted result by Filippov. It will play a major

role in the proof of Lemma 4.3.
PROPOSITION 4.2 (Filippov). Suppose F’[0, 1]x" " satisfies (H1)-(H3),

and let . Then there exists a constant k3 so that for all 0 <- to <
AC[ to, tl], there is a function x(. S(to, tl, y(to)) satisfying

Ix(tl) y( t,)] <= k3 p(y),
where p(y) := " dist ()(s), F(s, y(s))) ds.to

Proof See, for example, Theorem 3.1.6 of [6].
LEMMA 4.3. Suppose F:[0, 1]x"-- " satisfies (H1)-(H3). Then there exists a

set J [0, 1) of measure zero so that for all J and , we have that lim h+O (1 / h)
(R + h, t, ) ) exists and equals co F( t, :).

Proof Let J be the null set of Proposition 4.1, and fix [0, 1)\J and 6 ". In
view of Proposition 4.1, it suffices to show the following.

Let {hk} be an arbitrary sequence of positive numbers with hk $ O, and let v ".
Then there exists a sequence of functions gk(" LI[0, hk], k 1, 2, , with gk(S)
F(t + s, ) almost everywhere s [0, hk] and such that

1 I ’k
gk(S) ds -> v as k- oo(4.6)

hk 3o
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if and only if there exists a sequence Xk(" S(t, 4" hk, ), k 1, 2, , such that

1
(4.7) h--k (Xk( + hk) ) - V as k .

So now suppose gk(" are chosen so that (4.6) holds. We next show Xk(’) exist
so that (4.7) holds. Let yk(S)=+ogk(S’)ds. Then

p(y) dist (g(s), F( + s, y(s))) ds

<- dist(F(t+s,),F(t+s,y(s)))ds

(4.8)
/.h

--<-- Jo ; (t + s)]yk(s) l ds (by (H2))

<= 6k A(t + S) ds,

where tk:--SUpo<=s<__h ly(s)-l. From Lemma 3.1(i), it follows that k0 as kc.
From Proposition 4.2, for each k there exists Xk(" ) S(t, + hk, ) SO that

IXk(t 4" hk)-- yk(hk)l <= k3p(Yk)
(4.9) <-- gang Iok A(t + s) ds (by (4.8)).

Therefore, since yk(hk)--= hok gk(S) ds, we have

Xk +hkhk) 1 1-v <--_k[Xk(t+hk)--yk(hk)l+ gk(S) ds-v

-0 as k- (by (4.9) and t L(A), and by (4.6)).

Hence (4.7) holds.
Conversely, suppose we are given Xk(’) SO that (4.7) holds. For s [0, hk], let

Pk(S):={uF(t+s,):lU-2k(t+s)l=dist(2k(t+s),F(t+s,))}. Then Pk(’) is a
measurable multifunction [see 19, Cor. 1Q] which is nonempty almost everywhere on
[0, hk] by (H2). Hence there exist measurable selections gk(’) of Pk(’) for each
k=l,2,.... Observe that (n2)implies Igk(S)--2k(t+s)I<----A(t+s)]xk(t+s)--I.
Therefore

< sup A(t+s) ds

1
+

-0 askoo (byLemma3.1(i) and e L(A ), and by (4.7)).

Therefore (4.6) holds, and the proof of the lemma is complete.

5. The Hamilton-Jacobi equation with lower Dini derivatives. We are now ready
to show that V is a verification function and satisfies equation (2.3). It was established
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in 3 that the value function satisfies (a) and (b) in Definition 2.2; part (c) is trivial;
part (d) is an immediate consequence of Proposition 5.3 below, which in effect says
that V is a verification function for the problem (P) with F replaced by co F. We first
supply two simple lemmas.

LEMMA 5.1. Suppose ch :[0, 1]x" _..)1 satisfies (b) in Definition 2.2. Then for
t, st) [0, 1) x " and v ,9i", the Dini derivative reduces to

(5.1) d-ch((t, )" (1, v)) lim inf
1

h+O {ch(t+h,+hv)-ch(t,)}.
Proof By definition,

(5.2) d-ck((t, :); (1, v))= liminf
1

h,O -{qb(t+hs,+hu)-ch(t,)}.
(s.u)-(1,v)

Property (b) says that there exists a Lipschitz constant so that for all (s, u) near
(1, v), we have

d(t+h,,+h U] ch(t+h,,+ hv) < lhu=--v
\ S/ S

Consequently the lim inf’s in (5.1) and (5.2) coincide.
LEMMA 5.2. Suppose ch :[0, 1]x" _1 satisfies (b) in Definition 2.2. Let (t, )

[0, 1) x ,9i". Suppose further that we are given numbers hi $ 0 as and functions
xi( AC t, + hi with xi (t) that satisfy

(5.3) xi + hi - l) E .q as - c.
hi

Then

(5.4)
1

li inf { qb + hi, xi + hi )) th t, :)} lim inf
1

"-->cx i-->x -’ii { dp -b hi’ q- hil; dp t’ }"

Proof Property (b) implies that there exists so that for all large i, we have

dp(t + hi, xi (t + hi)) dp(t + hi, + hiv)l lhi
xi( + hi) ,

hi

It now follows immediately from (5.3) and (5.5) that (5.4) holds. [3

PROPOSITION 5.3. Suppose F satisfies the basic assumptions andfis locally Lipschitz
continuous. Let J be as in Lemma 4.3. Then for all [0, 1)\J and n, we have

min d-V((t, :); (1, v))->0.
F( t,j)

Proof Fix [0, 1)\J and 6 ". Let hi , 0 as c and let v co F(t, ) be
arbitrary. Since Lemma 4.3 in particular says that v lim infh0 (1/h){R(t, + h, sc) },
there exists xi(" ) S(t, t+ hi, ) so that

xi(t+hi)-
->/ as

hi

By the principle of optimality, for each we have

V(t + hi, xi(t + hi))- V(t, cs)>=0.
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Therefore

(5.6)

1
O <-- li oinr-- { V( + h’’ x’( + h’)) V( t, :)}

1
li inf { g( + + hiv) V( t, )}.

The last equality is a consequence of Lemma 5.2. Since {hi} arbitrarily approaches
zero, we conclude from (5.6) and Lemma 5.1 that

d-V((, :); (, v)) >_- 0.

Since v co F(t, ) was arbitrary, the proof of Proposition 5.3 is complete.
It has been shown that V is a verification function. We conclude this section with

the proof of equation (2.3), which says that in fact equality holds in the conclusion
of Proposition 5.3 (for a possibly different null set J).

Proofofequation (2.3). Append to J of Lemma 4.3 the null set [0, 1)\L(r), where
r(. ) LI[0, 1] is that given in (H3) (we still call this null set J). We show that (2.3)
holds for this new J. Again fix [0, 1)\J and ". As mentioned in 1, there exists
x(. ) So(t, 1, ) so thatf(x(1)) V(t, ). Let kl be as in Lemma 3.1 (with K {}). Then

limh,l,oSUp 1 sup 1]x( + h) 1 <-- limh+ [2(t + S)I ds

-< lim sup
h+O - (r(t+s)+A(t+S)kl) dS (by(H3))

r(t)+ A(t)kl < +C.

Hence there exist a sequence of numbers hi , 0 as i- c and a vector Vo " so that

1
hi(X(t+hi)-)Vo as io.

Since x(t + hi) cl R(t, + hi, ) for all i, we have that

1

(5.7) VolimSUPho - (clR(t,t+h,)-)

co F(t, ) (since J and by Lemma 4.3).

Hence

min
F(,)

d-V((t, so); (1, v)) <= d- V(( t, (); (1, Vo)) (by (5.7))

lim inf
1

h+o - { V( + h, + hvo) V( t, )} (by Lemma 5.1)

1
<-- lirn.inr { V( + hi, + hit)o)- V( t, :)}

1
=liminf-;-{V(t+h,,x(t+h,)) V(t, :)}

(by the principle of optimality). (by Lemma 5.2)

In combination with Proposition 5.3, this concludes the proof of (2.3). [3
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6. Properties of verification functions. In this final section, we complete the proof
of Theorem 2.3 by showing that (2.2) holds, and then prove Theorem 2.4. The next
lemma contains the important fact about verification functions that has motivated
Definition 2.1.

LEMMA 6.1. Suppose b:[0,1]x,gln.9t satisfies (a) and (b) in Definition 2.2.
Then for 0<-t0<h=l and all y(’)AC[to, tl], the function t-->6(t,y(t)) is in

AC[ to, ti].
Proof. Without loss of generality, we can take to =0 and t 1. Suppose y(.)e

AC[0, 1]. Let e > 0, set K := range of y(. ). By (b), there exists > 0 so that :- (t, :)
is Lipschitz of order on K for each [0, 1]. By (a), there exists 6 > 0 so that for
any finite collection [al, b],. ., [a,, b,] of disjoint subintervals of [0, 1] satisfying

we have

(6.2) 2 sup Ib(b, )- b(a, sc)l <-.

Since y(. is absolutely continuous, we can shrink 6 if necessary so that, if (6.1) holds,
then so does

(6.3) E ly(bj)- y(aj)l <--
= 21"

Take a finite collection [a, b],. ., [a, bin] of disjoint subintervals of[0, 1] satisfying
(6.1). Then

E I(b, y(b))- (a, y(a))l
j=l

{]b(b,y(bj))-(aj, y(b))l+l(aj, y(b))-(aj, y(aj))l}
j=l

2 supl6(b,)-6(a,)l+t 2 ly(b)-y(a)l
j=l K j=l

< e (by (6.2) and (6.3)).

From elementary real analysis, we conclude that (t, y(t)) is absolutely continuous
on [0, ].

Remark. As mentioned in the beginning of 2, the choice of a function class for
verification functions is a delicate matter. Basically, any class to which the value
function belongs, and whose members satisfy the conclusion of Lemma 6.1 along with
the appropriate monotonicity and boundary conditions, will do. It is not known whether
Definition 2.2(a) could be replaced by a simpler condition; for example, an obvious
candidate would be to let the sup over 6 K be taken outside rather than inside the
summation in Definition 2.1.

Proof of equation (2.2). We next prove the maximality propey of V described
by (2.2). Suppose b :[0, 1]x" is an arbitrary but fixed verification function. We
show that if (t, ) [0, 1) x ", then

(6.4) v(t,)6(t,)

holds, which implies the validity of (2.2) because it has already been shown that V is
a verification function.

(6.1) 2 (b- a) < 6,
j=l
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Let (t, s) e [0, 1) x " and e > O. There exists x(. e S(t, 1, :) so that V(t, :) + e _->

f(x(1)). We have

e+ V(t, )-(t, )-f(x(1))-(t, )

=b(1, x(1))-th(t,sc) (by (c))

(s,x(s)) ds (by Lemma 6.1).

Now suppose s e [t, 1] is such that the derivatives (s) and (d/ds)cb(s, x(s)) exist,
(s) F(t, x(s)) and 4 is a lower Dini solution ofthe Hamilton-Jacobi inequality. Then

d
d-- b(s, x(s)) d-dp((s, x(s)); (1, (s))) (by Lemmas 5.1 and 5.2)

_-> min d-c((s,x(s)); (1, v))->_O.
veF(s,x(s))

Since points s with the above properties have full measure it follows that

e+ V(t, )-(t, )>--0.

In view of the fact that e is arbitrary, (6.4) follows. [3

Proofof Theorem 2.4. Suppose x(. is an optimal trajectory to (P). Then the value
function is a verification function with V(0, Xo) =f(x(1)). Conversely, suppose x(. )
S(0, 1, Xo) and a verification function b are given such that b(0, Xo)=f(x(1)). If y(-)
is any other element of S(0, 1, Xo), then we have

f(y(1 )) -f(x(1 )) th(1, y(1 )) b(0, Xo)

-s qb(x, y(s)) as

(by (c))

(by Lemma 6.1)

_>-0 (as in (6.5)-(6.7)).

Hence f(x(1)) is the minimum value off over R(O, l, xo), and so x(. is optimal. [3

REFERENCES

[1] Z. ARTSTEIN, On the calculus of closed set-valued functions, Indiana Univ. Math. J., 24 (1974),
pp. 433-441.

[2] J.-P. AUBIN AND A. CELLINA, Differential Inclusions, Springer-Verlag, Berlin, Heidelberg, 1984.
[3] V. G. BOLTYANSKII, Sufficient conditionsfor optimality and thejustification of the dynamic programming

method, SIAM J. Control, 4 (1966), pp. 326-361.
[4] L. D. BERKOVITZ, Optimal feedback controls, SIAM J. Control Optim., 27 (1989), pp. 991-1006.
[5] Z. F. BRIDGELAND, JR., Trajectory integrals ofset-valuedfunctions, Pacific J. Math., 33 (1970), pp. 43-68.
[6] F. H. CLARKE, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983.
[7] F. H. CLARKE AND R. B. VINTER, Local optimality conditions and Lipschitzian solutions to the

Hamilton-Jacobi equation, SIAM J. Control Optim., 21 (1983), pp. 856-870.
[8] M. G. CRANDALL, L. C. EVANS, AND P.-L. LIONS, Some properties ofviscosity solutions ofHamilton-

Jacobi equations, Trans. Amer. Math. Soc., 282 (1984), pp. 487-502.
[9] W. H. FLEMING AND R. W. RISHEL, Deterministic and Stochastic Optimal Control, Springer-Verlag,

New York, 1975.
[10] H. FRANKOWSKA, Optimal trajectories associated to a solution of the contingent Hamilton-Jacobi

equation, Appl. Math. Optim., 19 (1989), pp. 291-311.



HAMILTON-JACOBI THEORY 1419

11] R. L. GONZALES, Sur l’ existence d’une solution maximale de l’dquation de Hamilton-Jacobi, C.R. Acad.
Sci., 282 (1976), pp. 1287-1290.

[12] H. HERMES, Calculus of set-valued functions and control, J. Math. Mech., 18 (1968), pp. 47-60.
[13] A. D. IOFFE, Calculus of Dini subdifferentials offunctions and contingent coderivatives of set valued

maps, Nonlinear Anal. Theory Methods Appl., 8 (1984), pp. 517-539.
[14] H. ISHII, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac.

Sci. Engng. Chuo Univ., 28 (1985), pp. 33-77.
15] P.-L. LIONS, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, Boston, 1982.
16] P.-L. LIONS AND B. PERTHAME, Remarks on Hamilton-Jacobi equations with measurable time-dependent

Hamiltonians, Nonlinear Anal. Theory Methods Appl., 11 (1987), pp. 613-621.
[17] P.-L. LIONS AND P. E. SOUGANIDIS, Differential games, optimal control and directional derivatives

of viscosity solutions of Bellman’s and Isaac’s equations, SIAM J. Control Optim., 23 (1985),
pp. 566-583.

[18] H. X. PHO, On the optimal control of a hydroelectric power plant, Systems Control Lett., 8 (1987),
pp. 281-288.

[19] R. T. ROCKAFELLAR, Integral functionals, normal integrands, and measurable selections, in Nonlinear
Operators and the Calculus of Variations, L. Waelbroeck, ed., Lecture Notes in Mathematics, vol.
543, Springer-Verlag, Berlin, New York, 1976, pp. 157-207.

[20] A. I. SUBBOTIN, A generalization of the basic equation of the theory of differential games, Soviet Math.
Dokl., 22 (1980), pp. 358-362.

[21] , A generalization of the main equation of differential game theory, J. Optim. Theory Appl., 43
(1984), pp. 103-134.

[22] E. ROXIN, On the generalized dynamical systems defined by contingent equations, J. Differential
Equations, (1965), pp. 188-205.

[23] M. M. VALADIER, Existence globale pour les dquations diffdrentielles multivoques, C.R. Acad. Sci., 272
(1968), pp. 474-477.

[24] R. B. VINTER, Weakest conditions for the existence of Lipschitz continuous Krotov functions in optimal
control theory, SIAM J. Control Optim., 21 (1983), pp. 215-234.

[25] ., New global optimality conditions in optimal control theory, SIAM J. Control Optim., 21 (1983),
pp. 235-245.

[26] New results on the relationship between dynamic programming and the maximum principle, Math.
Control Signals Systems, (1988), pp. 97-105.

[27] R. B. VINTER AND R. M. LEWIS, A necessary and sufficient condition for optimality of dynamic
programming type, making no a priori assumptions on the controls, SIAM J. Control Optim., 16

(1978), pp. 571-583.
[28] R. B. VINTER AND P. R. WOLENSKI, Adjoint variables and the valuefunction in optimal control theory:

the measurable case, J. Math. Anal. Appl., to appear.
[29] P. R. WOLENSKI, The exponential formula for the reachable set of a differential inclusion, SIAM J.

Control Optim., 28 (1990), pp. 1148-1161.
[30] , A uniqueness theorem for Lipschitz differential inclusions, J. Differential Equations, to appear.
[31] J. A. YORKE, Differential inequalities and non-Lipschitz and scalar functions, Math. Systems Theory, 4

(1970), pp. 140-153.



SIAM J. CONTROL AND OPTIMIZATION
Voi. 28, No. 6, pp. 1420-1431, November 1990

1990 Society for Industrial and Applied Mathematics
008

APPROXIMATION OF THE ZAKAI EQUATION
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Abstract. The objective of this article is to apply an operator splitting method to the time integration
of the Zaka’l" equation. Using this approach the numerical integration can be decomposed into a stochastic
step and a deterministic one, both of them much simpler to handle than the original problem. A strong
convergence theorem is given, in the spirit of existing results for deterministic problems.
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introduction. We consider in this article an approximation technique for the Zakai
equation of nonlinear filtering. For such a filtering problem, the state and measurement
processes are of the form

dXt g(Xt, t) dt + o’(Xt, t) dV,,

dY h(Xt, t) dt + dW,,
where Xt denotes the system state at time t, Yt denotes the measured output of the
system at time t, and { Vt: >-_ 0}, { W,: => 0} are independent Brownian motions. The
goal of nonlinear filtering is to determine the conditional distribution of the state at
time given the measurements up through time t. The Zakai equation, given by

(1) dy + A*( t)y dt B( t)y dWt,

is an evolution equation for the unnormalized conditional density of the state, given
the measurements. The operators A and B are defined by

02(0 0(9
a( t)q , aij Z gi

i,j OXiOXj - OXi
and

(B(t)q)(x) qo(x) h(x, t),
with A* denoting the formal adjoint of A, and aij (1/2o’o*)ij.

We apply the idea of splitting up, considering A(t)y dt-B(t)y, dw as the sum
of two operators.

Hence we write a sequence of problems of the form

dq9 + A*( t)q dt 0

d B(t) aw*
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which are considerably simpler than (1). Indeed the q equation is deterministic and
the 0 equation has a closed-form solution.

The technique of splitting up for deterministic partial differential equations has
been used extensively by many authors. It might also be noted here that this technique
is very much like the Trotter product formula from semigroup theory. We refer here
to the work of Temam [8], which is used as the background for our developments,
and also to Glowinski [3] and Marchuk [6] for applications in mathematical physics.

We refer to Legland [4] and Elliott and Glowinski [2] for semidiscretization
schemes of the Zakai equation, which, although not related to the splitting up method,
bear some analogies with those developed in this article. Legland’s newest work, which
contains convergence arguments of a probabilistic nature for a fully discrete approxima-
tion of the Zakai equation, also bears some similarities to the splitting-up scheme.

1. Setting of the problem.
1.1. Notation---assumptions. We make the following assumptions on functions of

the state and measurement processes:

(1.1) g L(R x (0, ); Rn), cr L(R x (0, ); (R, R)),

with g and o- Lipschitz in x, uniformly in t, and

(1.2) h L(R (0, oo); Rm).

Let , , P be a probability space on which exists an m-dimensional standard Wiener
process w(t), and let

Ft cr(w(s), s<- t).

Define the second-order differential operator

(1.3) A(t)o E aq
i,s OxiOxs

o__
gi

i

where we have set

(1.4) a 1/2o-o-* (a matrix aq).
We assume that there exists an a > 0 such that

(1.5) ao(x, t)i >=
We shall also define the operator

VsR, a>O.

(1.6) (B(t)q)(x) o(x)h(x, t).

Formally the Zakai equation is written as

dy / A*( t)y dt B( t)y dw
(1.7)

y(0) =yo.

In the next section, we detail the function space framework necessary to analyze
the system (1.7). This type of setting is used in the work of Pardoux [7] and
Bensoussan 1 ].

1.2. Functional set up. Following the variational formulation of partial differential
equations (P.D.E.) due to Lions [5], we introduce the Hilbert spaces

H=L2(R"), V--HI(R n)

and identify H with its dual. We denote by V’ the dual of V.
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We denote by

, o)= I dx

the scalar product in H, and by

((q, q))= j. qq + Dq Dq dx,

the scalar product in V. We denote the norms on H and V by l" and [l" II, respectively.
The operator D denotes the gradient. The duality between V and V’ is referred to
as (,).

We now write A(t) in divergence form as

( -x a +
Ox

where we have set

and

aij (ai).a*( t)
Oxi xi

Note that A* is the adjoint of A in the Hilbert space H. The operator A(t) belongs
to L(0, T; (V; V’)) and satisfies the coercivity condition

(1.8) ::l/3>0, h >-og(a(t)q, 0)/All=->tll0[I = v v, t0.

This is a consequence of (1.1) and (1.5). Note that A and A* (V; V’). Now the
operator B(t) L(O, T, (H; H)), and we may write more clearly

B(t)y. dw= E B(t)Y dw,
j=l

where BJ(t) L(O, T; (H; H)) corresponds to

(n( t))(x) (x)h(x,
We use the notation L(0, T; V) to denote the Hilbea space of processes z(t) with
values in V such that E IIz(t)[I 2 at <, and such that, for almost everywhere with
respect to time, z(t) is F’ measurable. Naturally, we can replace V by H or any Hilbert
space.

We can state the classical result of existence and uniqueness for (1.7) (cf. Pardoux
[7], cf. also Bensoussan [1]).

THEOREM 1.1. Assume (1.1), (1.2), (1.5). en,for each yo 6 H, there exists a unique
solution of (1.7) in the functional space

y( (o, ; v) (, < P; c(o, ; )).
The equation (1.7) can be interpreted as an Ito differential in V’, since

Ioy(t)=yo- A*(s)y(s) ds+ BJ(s)y(s) dw.

In addition, the following Ito’s calculus rule holds (equivalent of an energy equality)

(.9) d[y(t)l = + 2<m(t)y(t), y(t)> at 2 E (Y, nY) dw +E Iny[2 at.
J
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Note that the integrand in the stochastic integral at the right-hand side of (1.9), (y, BJy),
is almost surely in L(0, T) but does not belong to L(0, T). This is the source of
technical (although not fundamental) difficulties. To avoid them, we can rely on the
following additional result.

PROPOSITION 1.1. The process y(.) satisfies
y(. L(0, T; L4(f, ag, P; H)).

Proof We shall derive the a priori estimate without going into the full proof of
the results. From (1.9) we deduce

dly( t)le= 2[y( t)12[-2(Ay, y)dt+’.j ]BJy[ 2 dt + 2 BJy) dwj] +4 (y,. BJy)2 dt.

From (1.8) we have, among other facts,

(Ay, y) >= -xly[z.

hence,

dlY(t)l4<-- [4Zly(*)I4+21y(t)[y IJY[-+4 Y (Y, nY)I dt + 4ly(t)12 -, (Y, BJY) dwj.
j l j

Taking the mathematical expectation yields

d

d--Tt Ely( t)14 -< 4hEly(t)[4 + 2Ely(t)[ Y IBy[ / 4E Y (y, By)
J

<=kE[y(t)l4,
and from Gronwall’s inequality, it follows that

Ely( t)[4 =< lyol 4 e k’,
which yields the desired result.

In the following we shall replace (1.7) by

(1.10) dy + (A*(t)y + y) dt B(t)y. dw, y(O) Yo,

where z is a convenient positive constant. Since we derive (1.10) from (1.7) by the
transformation y ye-t it suffices to consider (1.10).

2. The splitting up approximation scheme.
2.1. The algorithm. Let N be an integer, which will tend to +, and set

T
k-

N+I

We shall define two processes Ylk, Y2k depending on k. We split [0, T] in steps 0,
k, , (N + 1)k. Consider an interval Irk, (r + 1)k[, r O. N, then Ylk, Y2k are
defined on this interval by the relations

ay + *(+- a o

y(rk)=y
r+l/2y(rk)=y

r+l/2and the sequences Yk, Yk are defined as follows:

,+/2yk+ y((r+ l)k-O)
(2.2)

y =y2((r+l)k-O).
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Clearly (2.1), (2.2) define completely Yak, Y2k in Irk, (r+ 1)k[ once y, is given. As a
starting point we set

(2.3) Yk =Yo

and (2.1), (2.2) define completely y, Yz in [0, T[. In (2.2) Ix is a parameter which
will be fixed later. The processes y, y are right continuous and their discontinuity
points are k,... Nk (on [0, T[). Since the equation for y is deterministic we have

r+l/2 FkrYk, Y k are measurable (with values in H)

(2.4) Ylk(t) is Fkr measurable Vt6[kr, (k+l)r[

Yk(t) is F measurable Vt.

We can state the following existence result for (2.1).
PROPOSITION 2.1. The system (2.1), (2.2) defines in a unique way Ylk, Y2k in

L2F(O, T, V), L2F(O, T’, H), respectively.
Proof Operating successively in each interval [rk, (r+ 1)k[, the result is clear,

since for Yk the deterministic theory applies and for Yk we have an explicit formula
for the solution.

2.2. A priori estimates. We begin by establishing a priori estimates.
PROPOSITION 2.2. The processes Yak, YZk satisfy

Io(2.5) E Ily[I = dt<_ C, E lY dt_ C

(2.6) Elylk(t)l4, ElY2k(t)14C, Vte[0, T[,

where C does not depend on T or k (for a convenient choice of Ix).
Proof We can write the energy equalities

(2.7) dlyl + (zly + 2(Aylk, Ylk)) dt 0

(2.8) dly2l2 + (Ixly2kl2-Z IByl2) at 2(Y2k, BJY2k) dw

on t6[rk, (r+ 1)k[.
We choose Ix such that

Ix > 2A, Ix > E sup [h(x, t)12;

hence we deduce from (2.7), (2.8) that

d(llylk(t)llZ+lyzk(t)12)+ Ix(l[ylk[[Z+lyzkl 2) dt<--2(yk, Byk)dw, for each j.

Integrating between [rk, (r + 1)k[ and taking the mathematical expectation yields,

E([y,k((r+ l)k-O)12+lY2k((r+ 1)k- 0)1) E(ly,k(rk)12+lY2k(rk)[2)

(2.9) f (r+l)k

at_-<0.
drk

Using (2.2) we deduce

(r+l)k

(2.10) E]yr+aI2-E[yI2+IxE ([[yll+ly2}2) dt<=O.
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Adding up the relations (2.10) for r=0,..., N, we easily deduce

(2.11) E Ilylkll 2 dt <- C, E [Y2kl 2 dt <- C, /[yl_-< C,

where C does not depend on k, nor T, but only on Yo and/. Now using (2.7) only,
integrated over rk, (r + 1)k[, and taking the mathematical expectation yields

(2.12) Elyk+l/212 <= Elyrkl 2

and thus also

r/1/212(2.13) Elyk <=C.

Similarly

Elylk(t)[2<--Elykl2<--C for t[rk, (r+l)k[
r+l/2 2Ely2k(t)12<=E[yk <_ C for t[rk, (r+ l)k[.

Therefore we have proven that

(2.14) ElYlk(t)12, ElY2k(t)]2C, ’qt6[0, T[,

We proceed now from (2.7), (2.8) to derive"

dly(t)l4 + 21Ylk(t)l( ly,l z + 2(Aylk, elk)) dt= 0

(2.15) dly(t)l+ [2ly(t)l(ly2l-Z ,BJy12)-4 (y.k, BJyk)2] dt

41y[(y, BJy=) dw,
and if is slightly larger than before, in paicular satisfying

3 sup Ihl =,

We derive from (2.15) that

Elyk((r+ 1)k- 0)4+ Ely((r+ 1)k- 0)14N Elylk(rk)14+ EJy2k(rk)[4.

Hence also

Therefore,

+l4 Elyl.
FlylC.

From this and (2.15) we easily deduce

ElYlk( t)l4 C, ElYEk t)l 4 _<-- C

and the proof of (2.5), (2.6) has been completed.

3. Convergence.
3.1. Statement of the main result. Our main result is the following theorem.
THEOREM 3.1. Assume (1.1), (1.2), (1.5). Then we have:

(3.1) Yak, Y2k -> y in LEF(O, T; V) and LzF(O, T; H), respectively;

ylk(t),Y2k(t)-y(t) in L2([l, sg, P;n) Vt6[0, T[.
(3.2)

Ylk( T-O), Y2k( T--O)-> y( T) in Lz([I, s, P; H).
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that

and

3.2. Weak convergence. We can extract subsequences, still denoted Ylk, Y2k such

Yl k Yl

Y2k Y2

in L(0, T; V) weakly,

in L(0, T; H) weakly,

Ylk, Y2k ’’) Yl, Y2 in L(0, T; L4(", , P; H)) weak star.

We first have the following lemma.
LEMMA 3.1. The functions y and Y2 are equal to a common function ft.
Proof Consider (2.1). We can integrate the first equation backward (since it is

deterministic), to obtain

y y(t) + y +A*y ds O,

and integrating the second equation forward, we have also

rk rk

Adding up, we get (recall e [rk, (r + 1) k[)

) i,(y2(t)-y,(t))+ yl+a*y, as+ y2ds= E BJykdWj
rk rk

from which we deduce "1

that

E IlYk (t) Ylk(t) ,
<- 3E - Yk + A*ylk ds

V’

+ 3E IlY , as + 3E E BY2k dw
rk rk V’

f (r+l)k ((r+l)kCkE (llyll=+ [y=]2) ds+ CE ly2l ds
drk drk

CkE (lly,ll+ly.l) ds+ Ck1/2 E lyl4 ds

Ck/2.

Since y-y y-y in L(0, T; V’) weakly, we deduce from Fatou’s Lemma

hence y Y2 7/.

E lly y_ll 2v, at=o;

’We use successively Ilx + Y+ zll23(llxll2+ YII2+ Ilzll 2) for all X, Y, Z in a Hilbert space; the
fact that A*(V; V’)’ Cauchy-Schwartz inequality Ifaxl2<-(6-a) Ifl ax; IIllv,<_- gll. <--
g211llv.
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Naturally r/ L(0, T; V) f] L(0, T; L4(-, /, P; H)). [3

Our objective now is to check that 7 satisfies (1.7) and thus r/= y, by the uniqueness.
LEMMA 3.2. r/= y.
Proof We write from (2.1)

yrk+l/Z--yk+ Ylk+A*ylk ds=O
,Irk

r+l/2 f(r+l)ky+-y +
,Irk

{(r+l)kelk ds BJY2k dwj,
Jrk

hence adding up

r+l/2 f(r+l)k(_ ) f(r+l)k(3.3) Yk --Yk + (ylk-l-Y2k)+A*yk ds= E BJY2kdWj
Jrk Jrk j

Adding up these relations for r 0,..., q- 1, yields

(3.4) y-yo+ (Ylk+Y2k)+a*Ylk ds= Y BJy2kdWj.

Also from (2.1) we have for t[rk, (r+l)k[,

(3.5) Ylk( t) yrk + A*Ylk+Yl as O.
rk

Let be fixed. Apply (3.4) with q t/k] and (3.5) with r t k]. Adding up, we obtain:

(3.6) Ylk(t)--Yo+ A*Ylk+-Ylk ds+ "- Y2k ds YBy2 d%.

Note that

(3.7)

(3.8)

E

E fk" Y2k ds
[t/k]

<-_ t- k
kit/k]

ElY2kl 2 ds)
<= C(k-[t/k])-)O

I 2It., BJY2k dwj E Y IByl ds
kit/k] k[t/k]

<-_ rE ly_l= ds
kit/k]

<-_C t-k

lY2kl4 ds)
1/2

Also

(3.9) A*Ylk+Ylk+Yk ds--> (A*r/+r/) ds in L2(’, ,.., P; V’) weakly.
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Let us check that

BJY2k dwj BJ’o dwj in Lz(Y, M, P; H) weakly.

Since

2

E E BJY2 dw <= C,

we can assert that at least for subsequences o j Byk dwj - X in L2(fl, d, P; H) weakly.
To check that X coincides with the right.hand side of (3.10), it is sufficient to prove that

(3.11) E v,

for all v e H, and L2(O, , P). This follows from the separability of H. Now since

X L(fl, F’, P; H) (because L(O, Ft, P; H) is a closed subspace of L2(O, , P; H)
in which ’o j BJY2k dwj stands), and since to jB dw belongs to L2(O, Ft, P; H), it
is sucient to check (3.11) with L2(O, Ft, P). Now a dense subspace of L(, F’, P)
is made of linear combinations of random variables of the form

0(t) exp (s) dw(s) -- I(s)l :z ds

where/3 is in L(0, t; Rm) (and deterministic). This follows from the fact that F’ is
generated by w(s), s=< t. Therefore, it is sufficient to check (3.11) with O(t) for any
/3 fixed. But then, what we have to prove is that

However we can calculate both sizes of (3.12) by Ito’s calculus, and (3.12) amounts to

E E j(s)(v, BJy2k(s)) ds E E flj(s)(v, Jrl(s)) ds,
J

which immediately follows from the weak convergence of yk to r/ in L(0, T; H).
Collecting results we can assert from (3.6) that

I Ylk(t) YO (A* +) ds + 2 BJ dwj

in L(O, , P; H) weakly. Since Ylk(t) is bounded in L(, , P; H) and y(.)
converges weakly to (. in L(O, T; H), we necessarily have

and thus 7 Y.
From the uniqueness of the limit, we can assert that

Yak Y in LF(0, T; V) weakly, Y2k Y in L(0, T; H) weakly,

and both sequences also converge in L(0, T; L4(f, , P; H)) weak star.
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3.3. Strong convergence. Consider (2.7), (2.8) which yield, integrating between rk
and (r + 1)k and taking the mathematical expectation,

"+’/1 : 1 fr+>,,E[yk Ely + E (z[y[ + 2(Ay, k, y,)) ds 0

EIy -Ely + E ,lyl-E IByl ds=O.
drk

Adding up we get

Ely+/l- ElYl + E IYl +ly -E IByI
drk

(3.13)
+ 2(Ayes, y)) ds O.

Adding up these relations for r 0,." ", q- 1, yields

(3.14) lgl-Id+ l+l-21Bl+2<A,> ds=O.

Now from (2.7) we have for t Irk, (r+ 1)k[,

(3.5 1(1- el;I+ (.ly+(y, s o.

Let be fixed. Apply (3.14) with q =[t/k] and (3.15) with r=[t/k]. Adding up, we
obtain

1(1-ol+ (,1,+(, as
(3.

j’/ )

Now consider the expression:

+ 1-1ds+ l-l-21n(y-)l ds

with

X(t)+ X(t) + X(t)

X( t) Ely( t)l + 2E (Ay, y) ds

+ E lyl ds + E lyl-E [BJyl 2 ds
ao

Ely(t)l: + 2E (Ay, y) ds + 21zE lyl’ ds E E IByl’ ds

lYol2;

In Xk(t) the terms do not go to 0 individually, at least a priori.
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and from (3.16)

X3k( t) lyo] 2.

Therefore Xk(t)-->O, for all t. Remark that/x was chosen so that

which implies

Z (BJY, BJy2k) ds

txIY--Yk[ >= E IBi(y--Yk)I.
Moreover, we have E 0 [Y YI 0 which yields Yk --> Y strongly in LF(0, T; H) and
Elyk( t) y( t)[2--> O, so that yk--> y in L2(, A, P, H). Next the coercivity condition
(A(y-- yk), y-- yk)+ A[y-- ykl2>= lly-- ykll 2 gives the LF(O, T; V) convergence,
because the left side of the inequality is controlled by Xk(t)- O.

This implies

Yk --> Y in L2(0, T; V) strongly,

(3.17) yk( t)--> y( t) in L2(, zd, P; H) Vt[0, T[, strongly,

Yk(T-O)-> y(T-O) in L2(f, zd, P; H), strongly.

Similarly we can check that the following expression analogous to (3.16) holds:

Elyk( t)l- EIy/I + E (/lyel-E IByl) ds
k

(3.18)
([tk]+l)k

+ E (tly[ + 2(Aylk, Yk)) ds O.
k

Using this identity, and constructing an expression similar to Xk(t), which is easily
guessed from the structure of (3.18), we can prove the remainder of the results (Y2k Y
in L(0, T, H) strongly).

The proof of Theorem 3.1 has been completed.

4. Remarks.
4.1. Explicit solution. The equation for Y2k can be explicitly solved, namely,

1
Ih(x, s)l dsy(x, t)= y+/(x) e-"/ exp h(x, s) dw(s)-

rk j
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whereas Ylk is solution of the classical Fokker Plank equation therefore we can write
for Ylk the following equation:

Oylk

ot
+ A*( t)Yik+Ylk

(4.1) E (rk( t)ylk(X, t--O)
r=l...N

exp ---+ , h dw--t-k t-k
[hi 2 ds] -1), Ylk(0) Yo

which can be considered as the approximation of the original Zakai equation
We can understand the right-hand side as follows. For k small and assuming h

continuous in time, the term within brackets is equivalent to -(/k/2)+j hj(x, t)x
(w(t)-w(t-k)), up to second-order terms. Comparing with the original Zakai
equation, it means that we have replaced the term

y(x, t) - dt +2 hj(x, t) dwj

with the sum of impulses

6,k(t)y(x, t--O) ----+, hj(x, t)(wj(t)-wj(t-k))
r=l...N

4.2. Fully numerical scheme. It remains, of course, to discretize completely (4.1)
both in time and space. This can be done using classical tools of numerical analysis.
Numerical results will be reported elsewhere.

4.3. Extension. Our variational techniques directly inspired from the deterministic
case bear two serious limitations. First, g, h must be bounded, which leaves out of the
framework of the linear case. More importantly, the case when there is correlation
between the system noise and the observation noise, which leads to an operator B
involving the gradient of y, seems to be out of the scope of our theory.

The first limitation is purely technical, and can be overcome using Sobolev spaces
with weights.
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ON ADAPTIVE STABILIZATION OF TIME-VARYING STOCHASTIC
SYSTEMS*
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Abstract. The basic stability issue of time-varying stochastic systems under adaptive control is studied.
A difficulty arising from treating the stochastic case as compared to the deterministic case is the lack of an
a priori upper bound on the sample paths of the random noise sequence. A projected gradient algorithm
with small stepsize is used, avoiding possible large deviations of the estimates. It is shown that if the unknown
parameters vary slowly in some sense, then an adaptive control law can be designed so that the closed-loop
system is stable. Issues of performance and robustness are also discussed.

Key words. Stochastic systems, adaptive control, random parameters, stability, short memory, projection
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1. Introduction. The main objective in adaptive control theory is to design control-
lers that perform satisfactorily for systems which possess time-varying structure.
However, the primary issue is to maintain closed-loop stability.

Over the past two decades, the area of adaptive control can roughly be divided
into two directions: deterministic and stochastic. In deterministic adaptive control, the
system under study is normally assumed to be subjected to no noise, or at most a
uniformly bounded disturbance. When the adaptive controller is designed based on
deterministic methods, optimality of the performance cannot be guaranteed for time-
invariant plants with a nice uniformly bounded white noise disturbance. This is due
to the fact that the algorithms used have the so-called short memory property, i.e., the
adaptation gain is not vanishing. Nevertheless, algorithms of this kind have the merit
that they may stabilize a time-varying system, as has been shown recently in, e.g.,
Tsakalis and Ioannou (1986) and Middleton and Goodwin (1988) in the deterministic
framework.

In stochastic adaptive control, noise is an essential feature of the system, and it
is not necessarily bounded; a standard example is the Gaussian white noise sequence.
In this case, especially for the constant parameter case, it is of interest not only to
guarantee stability of the closed-loop system, but to reject the noise optimally, or at
least close to optimally. This is possible, because the algorithms normally used have
the so-called long memory property, i.e., the adaptation gain tends to zero. This guaran-
tees that no large deviations of the estimates can occur, at least for the constant
parameter case. Indeed, it has been shown that in the constant parameter case, the
parameter estimates in a closed-loop adaptive system can be either nearly consistent
(Becker, Kumar, and Wei (1985)) or strongly consistent (Chen and Guo (1987)).
However, it is this long memory property that prevents the adaptive law from being
effective for general time-varying systems. Indeed, with long memory algorithms, it
has been found that it is difficult to deal with time-variations which are more compli-
cated than, for instance, those treated in Chen and Caines (1985) and Chen and Guo
(1988). For these reasons it is believed that short memory algorithms may be more
effective than the long memory ones in the control of more realistically modeled
time-varying systems.
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Let us illustrate the difference between stability studies of deterrninistic systems
and that of stochastic systems by the following example:

(1.1) Yk+l Okyk + Vk+l, Yo 0,

(1.2) 0t,+l a0k + ek, lal < 1.

Assume first that {Vk} and {ek} are deterministic sequences. It is then easy to verify
the following assertion: {Yk} is bounded for any bounded sequence {Vk} and any
sequence {ek} satisfying sup [e[ <_- o- if and only if tr(1 a) -1 < 1. Next, let us assume
that {Vk} and {ek} are independent white noise sequences. In this case, necessary
conditions for the boundedness of E [lYk 2 are discussed in, e.g., Granger and Andersen
(1978) and Pourahmadi (1986). However, general sufficient conditions are hard to find
even for this seemingly simple problem (see Pourahmadi (1986) for related discussions).
One of the difficulties is due to the possible unboundedness of the process noise. Thus,
stabilizing the first-order stochastic model (1.1)-(1.2) seems to be a nontrivial task.

By injecting an adaptive control signal to the right-hand side of model (1.1), Meyn
and Caines (1987) showed that (1.1) is stabilizable if ce is known, Itrl< 1, and if {Vk}
and {e} are independent Gaussian white noise sequence with known variances. The
noise assumptions on {Vk, ek} were subsequently relaxed in Guo and Meyn (1989) by
imposing only moment conditions.

Let us now consider (1.1) again but with the unknown parameter {Ok} a constant
plus a first-order moving average process:

(1.3) 0, 0 + e, + da e,_a, k >- O.

Assume that {Vk} and {ek} are independent Gaussian white noise sequences with
Elekl2" 0"2 0 and dl> 0. Then for second-order stability Of (1.1), it is necessary that
(see Tjostheim (1986, p. 60))

02 + 1 + (d)2]o"2 + 2( dl)2O"4 < 1,

which implies that 101 < 1 and that cr should be suitably small. In practice, it is acceptable
to assume that the noise variance O"2 is small. However, assuming the undisturbed
parameter 0 to be small or less than one is generally not applaudable. Again, to make
the unstable open-loop time-varying stochastic system (1.1) and (1.3) stable, the use
of stochastic adaptive control techniques seems to be necessary and appealing. This
problem is solved as a simple example of Theorem 1 stated later in 3.

in this paper, we consider the basic stability issue of general time-varying stochastic
systems under adaptive control. The assumptions on the random nOise include two
important cases" bounded sequences and Gaussian sequences. We will study two classes
of SISO stochastic models, although generalizations to MIMO and some other classes
are straightforward. In the first class (Model 1), the parameters are assumed to be
random, and only parameters in the autoregressive part are estimated, while in the
second class (Model 2) the parameters are assumed to be deterministic, and parameters
in both the autoregressive and exogenous parts are estimated. The remainder of the
paper is organized as follows, in 2 we describe the stochastic models that will be
studied in the paper. The main stability results are stated in 3. Section 4 establishes
some inequalities and stability results for general stochastic sequences. In 5 we present
the prOofs for theorems. Further discussions on performance and robustness are given
in 6. Section 7 concludes the paper.

2. Stochastic models. In this paper we will mainly consider the following two
classes of time-varying stochastic models.



1434 LEI GUO

Model 1 (random parameter model).

Yk+l=al(k)yk+" "+ap(k)yk_p+l+Uk+Vk+l, k>-O,
(2.1)

Yk l’lk Vk 0 k < O,

where y, u, and Vk are the scalar output, input, and random noise processes,
respectively, and a(k), 1 <=i<-p, are the unknown random time-varying parameters.

Model 2 (deterministic parameter model).

Yk+l=al(k)yk +’" "+as(k)yk_s+l+bl(k)tlk+" "+bt(k)Uk-t+l+Vk+,, k>=O,
(2.2)

yk Uk Vk O Vk < O,

where a(k), b(k), 1 <- <= s, 1 <-j <- t, are the unknown deterministic time-varying
parameters.

Note that both Models 1 and 2 can be rewritten in the following regression form:

(2.3) Zk+ (kOk -- Vk+l,where for Model 1, Zk+I- Yk+I- Uk,

(2.4) Ok=[yk yk_p+l], Ok=[al(k)... ap(k)],
while for Model 2, Zk+l- Yk+l, and

(2.5) qk=[Yk yk_,+I, uk" uk_,+I], Ok=[al(k) as(k), bl(k) b,(k)] .
Let us now introduce the assumptions on the random noise sequence {Vk}.
Noise assumption. {Vk, Fk} is an adapted sequence where {Fk} is a nondecreasing

family of tr-algebras, and for some integer r->_ 0 and deterministic positive constants
e and M:
(2.6) E{exp[ellv,+,[12]lF_r}<-_exp{M,} a.s. Vk->O.

Obviously, any sequence {v} which is uniformly bounded in sample path satisfies
this assumption. We note also that if {v} is an r-dependent sequence (i.e., for any k,
{v, ink} and {v+, i> k} are independent), then the above assumption (2.6) reduces
to

(2.7) E{exp [eIVk+,l]I--<_exp {M} a.s. Vk>-0.

Let us now give an example where the noise sequence {Vk} is unbounded almost
surely.

Example 1. Let {Vk} be the following time-varying moving average process:

(2.8) Vk=ek+C(k)ek-+ "+C,.(k)ek-r, k>-O,

with deterministic coefficients {c(k)} satisfying

(2.9) Ic,(k)l=<-c<o Vk>-0, (co(k)= 1),
i=0

assuming that {ek} is a Gaussian white noise sequence with variance crY> 0. Then

(2.10) lim sup 1/2 => r a.s.
k-,oo (2 log k)

and the noise assumption (2.6) holds for any

1 eco’2( r + 1
(2.11) e< M->2cr’ 1 2eco"



ADAPTIVE CONTROL OF TIME-VARYING SYSTEMS 1435

Proof Property (2.10) follows from the conditional Borel-Cantelli lemma and the
Gaussian assumption; details of the proof are omitted (see also Chow and Teicher
(1978, p. 64) for a related result). Here, we will only prove that (2.6) is true for any
constants e and M satisfying (2.11).

Apparently, {Vk} is an r-dependent sequence, so we need only to verify (2.7). By
elementary calculations, it is easy to verify that

E exp {elvkl 2} -<{E exp [8c(el)2]} r+’

(2.12) { eccr2 }=<exp
1--28C0"2

(r+ 1)

Hence by (2.11) and (2.12), we see that (2.7) is true.
We remark that in the above example, the constants e and M depend only on

the upper bounds of or, c, and r.

3. Main results. Since the conditions imposed on the time-varying parameters of
Models 1 and 2 are quite different, we will consider these two models separately.

3.1. Random parameter case. The assumptions on the parameters of Model 1 are
as follows.

Parameter assumption (random case). {0k, Fk} defined in (2.4) is an adapted
sequence which satisfies

(3.1) E{exp[Ml[Ok+,ll2]lFk_,,}<=exp{Mo} a.s.

(3.2) E{exp[M[[Wk+lllZ][Fk_,,}<=exp{6o} a.s. Vk=>0,

where Wk+ is the parameter variation process"

(3.3) Wk+ Ok+ Ok, k >= O,

and where m _-> 0 is an integer and M, Mo, and 6o < 1 are positive deterministic constants.
We now discuss this condition. Condition (3.1) means that the random process

{Ok} is bounded in an average sense and not necessarily bounded in sample path. In
the main theorems to follow, we will actually need that the constant M is suitably
large and that 0 is suitably small (see Remark 3.1), which means that the parameters
are slowly varying in an average sense, and again, the variation is not necessarily small
in sample path. In particular, these conditions do not rule out occasional but possibly
large jumps of the parameter process. Let us give a concrete example.

Example 2. Let the unknown parameter Ok be a constant vector plus a p-
dimensional moving average process:

(3.4) Ok=Ont-Ek’q-Dlek_l nt-" "nt-Dm_lEk_m+l, k>-O,

where Di, 1 =< <_- m 1, are deterministic matrices, and {ek} is a Gaussian white noise
sequence with covariance matrix (tr)2L Then for any cr > 0,

(3.5) limsup IIOkl[ = a.s., limsup I[o-o-lll =, a.s.
k k-

Furthermore, the above parameter assumption holds for all small o-.
Proof We need only to verify (3.1) and (3.2) here. Note that both the process

{Ok} and its variation process

(3.6) Wk ek + (D1 1)ek_l +" + (D,,-1 D,,-2) ek-,,+a Dm-aek-m
are m-dependent sequences, so it suffices to verify (3.1) and (3.2) with conditional
expectation replaced by expectation.
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Similar to the proof of Example 1, we have for any constant M > 0,

E{exp[Ml[Okl[2]}<---exp 2M 11011=/l_4Mdo(o.)z
E exp {Mll wk 2} _<-exp {p(m + 1)Md,(o)2}1 2Mdl(o-)2

where

rn--1

do= E IIOll =, d a / E IID-Di_ll, (Do =/, O. 0).
i=0 i=1

Hence (3.1) and (3.2) hold.
We now describe the estimation algorithm. Let L > 0 and d > 0 be two constants

(which will be specified later). We define D as the following bounded domain:

(3.7) D={x=(xl,... ,xp)Rp" Ix, l<-_L, l<=ip}
and 7to{x} as the nearest point from x to D (under the Euclidean norm).

The estimate for the unknown process { G} is generated by the following projected
version of the gradient algorithm"

with arbitrary initial condition 0o D, where qk is defined as in (2.4).
We remark that the use of a projection in estimation algorithms is common in the

literature (e.g., Ljung and Soderstrom (1983), Goodwin and Sin (1984)). However, in
estimating the parameters of stochastic systems by short memory algorithms, this
procedure seems to be particularly important, since otherwise large deviations of the
estimates are inevitable even if the system is persistently excited (see, e.g., Guo, Moore,
and Xia (1988)). We also note that due to the special form of the domain D, the
calculation of the projection in (3.8) is straightforward.

The certainty equivalent minimum variance adaptive control law is

(3.9) uk q , 0".
Our first stability result is the following theorem.
THEOREM 1. For the random parameter model (2.1), if the noise assumption (2.6)

and the parameter assumptions (3.1)-(3.2) hold for suitably large M and small o, and
if in the estimation algorithm (3.7)-(3.8), L and d are taken appropriately large, then
under the adaptive control law (3.9), the closed-loop system is stable in the sense that

(3.10a) lim sup

1 N

(3.10b) lim sup- 2 {lY, 2+lu.I2} < a.s.,
Noo n=0

where > 2 is a constant depending on M, 6o, L, and d.
Remark 3.1. We may ask how large (small) the constant M (3o) is required to

be in the above theorem. In 5, we will prove that Theorem 1 is true when M and
satisfy the following inequality:

M _-> 3(m + 1 )27p3/21 -p
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and

(3.11)

go <min 1
3(m+ 1) (log,-l)

2 2

25flPA-P(m+M 1)] -2}

Ml<O, tl<min{1,1og(A-a)[24K,A-a(4(s+t)1/ZMl+l)]-l},
(3.18)

K1 sA-S+l[ 1 + s(M/bl)2] + 1)A-’+I[ 1 + 1)(M1/bl)Z]aA 2/(A p),

and A (p, 1) is some constant.
We remark that since { Ok} is bounded, the assumption (3.16) is implied by uniform

asymptotic stability of the following time-varying polynomial"

(3.19) Bk(z)=bl(k)+b2(k)z+" "+b,(k)z ’-1,
which in the constant parameter case is the standard minimum phase condition.

Let us introduce the following bounded domain"

(3.20) D={x=(x,

The estimation algorithm is also a projected gradient one:

(3.21) Ok+,=rD Ok+d+llqk[12(Yk+l--q k

where the initial condition 0o D, and qk is defined as in (2.5).

(3.17)

where

for some Z (0, 1) and/3 > 2, where the function f(. is defined as

(3.12) f(x) 1/2+ x + 4x2[ 1 + exp (8x2)]
and Lo denotes

(3.13) L={-+Ap[96(m+l)p]-I lg[(m +1)lg(A-1)]2 }1/2.
Moreover, in practical implementations of the algorithm, it is desirable to know

the values of L and d. It will also be proved in 5 that one way to choose L and d is

L= Lo,

(3.14) d > 16p(eAP)- max {8M(log A-)-, 4/3(r + 1)}.

3.2. Deterministic parameter case. The assumptions on the parameters of Model
2 are as follows.

Parameter assumption (deterministic case). (i) There is a positive constant ba > 0,
such that

(3.15) b(k) >= bl Vk >= O,

and the model (2.2) is uniformly stably invertible in the sense that there are two
constants A> 0, p (0, 1) such that

k+l

(3.16)
i=0

(ii) The parameter is slowly varying in the sense that

<-- M,, <-- Vk >_- o,
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The certainty equivalent minimum variance adaptive control /./k at any time k is
solved from the following simple equation:

(3.22) OkOk =0.

Similar to Theorem 1, we have the following result.
THEOREM 2. For the deterministic parameter model (2.2), suppose that the noise

assumption (2.6) and the parameter assumptions (3.15)-(3.18) hold, and that in the
estimation algorithm (3.20)-(3.21), L is taken as M1 appearing in (3.17) and

(3.23) d > 36Kl(Aeo)-1 max {fl(r+ 1), 2My[log (A-l)]-1}

for some > 2. Then under the adaptive control law (3.22), the closed-loop system is
stable in the sense that

(3.24a) lim sup E{ly, + lu.I} < oo,

1 N

(3.24b) limN_osup --2o= {]y,I 2 + lUnl 2} < (30 a.s.

We remark that a precise upper bound for the left-hand side of (3.24a), (3.24b)
may be found in the proof--see 5.

4. General lemmas. For the proof of theorems, we need some inequalities and
stability results for stochastic sequences, which we will present in this section.

LEMMA 4.1. (i) (Bellman-Gronwall inequality). Let {Xk}, {fk}, and {hk} be three
nonnegative sequences, and

k-1

Xk fk + hixi, k >= 0;
i=0

then

(4.1)

(4.2)

k-1 k-1

x-<-f + Y’. H (l+hs)f, k>-0.
i=0 j=i

(ii) Let {x., F. } be an adapted sequence, andfor some integer r >= 0 and some > 1,

sup E{Ix,+IIIF,_r} <oo a.s.;

then

1 N

lim sup- E ]x,I < oo a.s.
Noo =0

Proof. The first result is well known and can be easily proved by induction (see,
e.g., Desoer and Vidyasagar (1975, p. 254)). As for the second result, we first note that
for any fixed k, 0 <_-k <_-r, the sequence

M, ]Xk+n(r+l) E {]Xk+n(r+l)l Fk+(n_l)(r+l)}

is a martingale difference sequence with respect to {Fk+,r+l}. Hence by (4.2) and
Chow’s martingale convergence theorem (see Stout (1974, p. 137)), we know that

1 u
y, M,-,0 a.s. as N-->oo.

N n’--=0
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Consequently, by (4.2) again,

1
lim sup - [Xk+n(r+ 1)[ < (X3

N-eo --0
a.s. Vk[0, r].

consequently the assertion (4.5) holds since el < 1. [3

N

(4.5) x.=O(N), a.s. asN
n=0

Proof. Applying the Minkowski inequality to (4.3) and noting (4.4), we see that

{E (Xn+l), } 1/a {E(f.+,x.).} 1/, + {E (gn+l), } 1/

{E[E[(L+I)"IF.](X.)]}/ + {E (g.+)
<- (e) /’{E(x,,) }/ +sup {E (g.+)" } 1/c,

from this and the fact that (e)/ < 1, it is easy to conclude that

(4.6) sup E(x)

Let us denote M x- E[xl F_]; then by (4.6) and the martingale stability
results (Stout (1974, p. 137)), it is evident that

N

Y M.=o(N) a.s.
n--O

Thus by (4.4) and the recursion (4.3) we have (where e is defined as (e)l/),
N N N

=0 =0 =0

N N

<= E E[f.+l[F.]x.+ E E[g.+llF.]+o(N)
=0 =0

N

el E x.+O(N)

N

<--e E x.+,+exo+O(N),
n=0

Then

Finally, the desired result follows by observing
N 1 r [(N+l)/(r+l)]

k =0 =0

where (N+ 1 / r + 1 is the integer part of (N+ 1 / r + 1 ).
We also need the following lemma.
LEMMA 4.2. Let {x., F.}, {f., Fn}, and {g., F.} be three adapted nonnegative

sequences satisfying

(4.3) Xn+l <=fn+lXn + gn+l Vn >-O.

Assume that for some constants e, < 1, a > 1, and C <

(4.4) sup E{(f.+)IF.}_-< e a.s. sup E[(g.+I)IF.]<- C.
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LEMMA 4.3. Let {fn} be a sequence of nonnegative random variables defined by
n--1 n--1

f.= E "-’ I-[ x, fo=O,
i=0 j=i

where (0, 1) and {x, F} is a nonnegative adapted sequence satisfying x >- 1, and

(4.7) {E[(Xk+l)a(r+l)lFk_r]}l/[a(r+l)]C a.s. AC<I,

for some integer r 0 and some constants C > 0 and a 1, then,

(4.8) sup {E [f.] } 1/a cr+2(1 c)-l.

Moreover, if in (4.7) > 1, then as N ,
N

(4.9) 2 f O(N) a.s.

Proo By the Holder inequality, we have

E x NE [Xs+(r+]
kj=i kj=i =0

(4.10)

{[(n--i)/(r+l)] ] 1/(r+l)

ir E [Xj+k(r+l)] (r+l)
j=i k=O

where [(n-i)/(r+ 1)] is the integer part of (n-i)/(r+ 1).
Note that for each and j,

[(n-i)/(r+l)]

E [X+(r+]
k=0

[(n-i)/(r+i)]-I

E [Xj+k(r+l)]a(r+l)E{[Xj+[(n_i)/(r+l)](r+l)]a(r+l)l+{[(n_i)/(r+l)]_l}(r+l)}
k=0

[(n-i)/(r+l)]-I
ca(r+I)E [Xj+k(r+l)]a(r+l)

k=0

C(r+l){[(n-i)/(r+l)]+l} Ca(n-i+r+l).

Substituting this into (4.10) we see that

E x N C("-i++.
kj=i

Consequently by the definition off and the Minkowski inequality,

{[L]t/ x.- (x)
i=0 j=i

NC(r+ 2 (AC)--NAC+(I_AC)-.
i=0

We now prove (4.9). By the Holder inequality,
N N n--1 n--1

EL =E 2 x-x
=0 =0 =0

N n-1 [(n-i)/(r+l)]

(4.11) E E xn--i U [Xi+j+k(r+l)]
n=0 i=0 j=0 k=0

{Nn-1 [(n-i)/(r+l)] } 1/(r+l)

E E n--i [Xi+j+k(r+l)]r+l
j=0 n=0 i=0
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Note that for each j

(4.12)

n--1 [(n--i)/(r+l)]

Z *"-’ II
i=0 k=0

[Xi+j+k(r+l) r+l

[n/(r+l)]

<--2 2
s=0 i=0

[(n--s)/(r+l)]--i, n--s--i(r+l) H [Xs+j+(i+k)(r+l)] r+l

k=0

Let us denote

[n/(r+l)] [(n--s)/(r+l)]--i

(4.13) g, E in--s--i(r+l) H [Xs+j+(i+k)(r+l)] r+l, 0<= S, j <= r.
=0 k =0

Similar to the proof of Lemma 4.1(ii), we consider the following subsequence of
{g,} for any fixed [0, r], 0 =< s, j =< r"

[t/(r+l)]+n [(t--s)/(r+l)]--i+n

gt+n(r+l) E 1 t-s+(n-i)(r+l) H [Xs+j+(i+k)(r+l)] r+l
i=0 k =0

(4.14) _-< h t-s+("-i)(r+ I- [Xs++(+k)(r+l] r+l

i=0 k =0

It is obvious that {M,, G,} is an adapted sequence, where G, Fs+j+,(+). Note
also that

M, [*Xs+j+n(r+l)] r+l M,_, + h ’-S[Xs+j+n(r+l)] r+l

and that by the assumption (4.7),

sup U{[hxs+j+n(r+)](r+l) Gn_} (AC)(r+) < 1 a.s.

Hence applying Lemma 4.2, we have

N

Y M. O(N)
n=0

a.s.

N

=:> E g,=O(N)
n=O

a,s. (since in (4.14) t [0, r] is arbitrary)

N n--1 [(n--i)/(r+l)]

n=O i=0 k=O
[Xi+j+k(r+l)] r+l-- O(N) a.s. (by (4.12))

N

=:> E f,=O(N) a.s. (by(4.11)).
n--0

This completes the proof. [3

LEMMA 4.4. Let w and F be any random variable and g-algebra, respectively. If
E{exp (w-) F}-<_ exp (6) a.s. for some 6 > O,

then for any real number a > O,

E{exp (alwl)lF}-<exp {a61/2+[1/2-b4a2(1 +exp (8a2))]6} a.s.

We remark that the key point in the above upper bound is the dependence on 6.
If 6 < 1, then the above result implies that E{exp (a[w[)lF}_-<exp {f(a)61/2}, where
f(. is the function defined by (3.12).
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Proof We first note that by the Jensen’s inequality,

E{exp(w)[F}>=exp{E[wZ[F]} a.s.

so it follows from the assumption that

E[w2.[ F]-<_ a.s.

Next, we will use the following fact that can be proven in exactly the same way
as that for Lemma 4.1.1 of Stout (1974, p. 226)" For any random variable Y, if 0 -<_ Y <= 1,
almost surely, then

E {exp Y)IF} <= exp {E[ Y] F] + E[ y2j F]}.

Applying this we have

E{exp [4a[w[I(4a]wl <-_ 1)IF]}-<_ exp {4a61/2 + (4a)28}.
Hence, by this inequality, the Schwarz inequality and the Markov inequality, we have
(where E v (.) denotes E (. F), for simplicity)

E v exp (alw])
E v exp {a[wl[I([w[>--2a)+I(Iw[<2a)]}

-< EV exp (-)exp{alw[I([w,<2a)}
exp(){Evexp{2a,w][l(]w] -a)+I(-a_-< _-< <lwl<2a

_-<exp (){E v exp [4alwlI(4a[wl<-l)]E v exp [4alwlI(-a <lwl <2a)]}1/4
-<exp {exp[4a61/+(4a)]}l/4 e exp 4alwlI aa<lWl<2a
_--<exp +al/+4a EvI

2

+ E exp [4alwl(ll < 2a)1

_-<exp a/+ +4a

<=exp[al/+(+4a)]{l+(4a)exp(8a)} 1/4

_<-exp al/2+ +4a+4a exp (8a)

This completes the proof.. Proof f fle theorems. The proofs of Theorems 1 and 2 are divided into several
lemmas.

Let us denote

(5.1) ’ d / [I, =’ o o o.
We have Lemma 5.1.
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LEMMA 5.1. Under conditions of Theorem 1, the following inequality holds for any
k>-0:

,,, <--2(11 ff,,[I a- ll,+,ll=)-t-(8/d)llv,+,[12-t-4{2p/2L -t- w,,+l[}ll w+,[[
q- 12{pl/=t q-II 0 II}ll 0 I(0 D),

where I(A) is the indicator function of a set A.
Proof Let us denote Ok Oki( Ok D). We have

o2/1 ff 2 --< 4pL2
and

So we have

o,+, o- o,+, o, + OkI(Ok - D)II

w,+, + OkI(Ok - D)ll.

k+l-- Ok+l 2 k+l-- k + k Ok+l 2

k+l Ok[[z+4pl/Zt{llWk+lll-t-]lOkI(Ok
_
D)II}

5.2) + 2 Wk+
2 + 2 OkI Ok D)ll 2

0+ k2+ 2{2p’/ZL+ Wk+, }[[ Wk+l
+ 2{2p /2L+ Ok ll}l] Ok I Ok D).

But by (3.8) and the propeies of the projection we know that

ff +, = o o d + = Z(o o) + v+,

( )-{OI(O,D)-v+, }112I-
d + = d + 2

kOk[I 2 2
d + k [[2 + 2 0k ]]21 Ok D) + k+,

2

+2llgkll IlOkllI(Ok Z D)+2 II&ll Ivk+,l
+ 11

Applying the following eJementary inequaJity

with

2xy <-_ 1/2x2 -t- 2y2 VX, y

Y d + qOk jl2) a/2

to the last term, we then see that

1 IIi,,ll 2 4 ’/L }IIo,-o,+lll-<-Ilffll- dyji-lj2+-llv,+lll+2{(p +llo,ll)lloll+llo,ll I(OkD)

1 I1,,:112 4 l/2t<- I111:- d;iilj2+-llv,+,ll2+2{p +211o,,ll}llo,,llI(o-D.



1444 LEI GUO

Substituting this into (5.2) we have

4

-d+[ll v

which is tantamount to the desired result.
In a similar way, the following lemma can also be proved.
LEMMA 5.1’. Under the conditions of eorem 2,

2(11 11=- +111 =) + (6/d)ll+ 2+ 23(4(s + t)/aL + 6).

LZMMa 5.2. Let the closed-loop system be expressed by

Yk+l kOk + 0k+l.

Assume that there are constants A 6 (0, 1), K 0, K2 0 such that

(5.3) E A"-’II,II= An-i{gl(Yi)2+ K2(Di)2

=0 =0

en for any 2,

{EII.II}’/Ko I+(1-A) -’/= E
i=0-- I1.11=o E E ln--i (I+2K1A-’aj)2 +O(1),

N =o .=oi=o j=i

where % is defined in (5.1), and

Ko (1 -A )-/z{[2K, +K][(v)]+ 2dK,[2pL+2(:(0))]}

:(v) sup {E]vI2 } 1/(2) 2(0) sup {E[O[2}
k k

Proof By the assumption it follows that

i=0

<- _, Z"-i{K,[211 i\ i_, ]]2 + 2( v,)2] + K2(t)i)2}
i=0

2K1 E A’-’-’a,(]lq,ll2+ d)+(2Kl+ K2) a"-’(v,)2

i=0 i=0

2K 2 --,IIII+(2K+K) -()+2dK1 2 --1.
i=0 i=0 =0

So by Lemma 4.1(i) with x -111, it is seen that

i=0 j=i

where

i--1

i (2K, + K2) E a ’-t:( v)2 + 2dK1 Y’.
k=O k=O
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Applying the Minkowski inequality and the Schwarz inequality to (5.4), we get

i=0 j=i

( [nl nil ]/3/4<{Elnl/3/2}2//3+ E X"-’ (l+2g,A-laj)2

L.i=O j=i

i=0

i--0 j=i

I.. i=0

<-{EI.I/=}/ + E E ln-i (l+2K,A-lcej)2

i=0 j=i

,"-’[EIlill]/
i=0

__< +(-,)-’/ a-- (+2Ka-)
i.i=0 j=i

sup {[’]}/.

Again by the Minkowski inequality,
il

{[]}/ -(K+ K)
k=0 k=0

_-< ( a )-{[K +][(v] +[pL +((0]}.
Hence the first assertion of the lemma is true, while the second assertion can easily
be proved by following the similar argument and by using (5.4), Lemma 4.1(ii), and
the Schwarz inequality.

LEMMA 5.3. Under conditions of Theorem 1, the property (5.3) holds with K

where Ik (n), k 1, , 4, are defined as

n-1

(5.7) I,(n)--- E tn-i exp (83,11i11}, 31 =4K1A-l,
i-0

(s.8) nl nl {32d3 }I2(n) A n-i exp .!. ilvs+ll =
i=0 j=i

--1 --1

(5.9) i3(n)-- E ln-i H exp {1631(2pa/2L+ Ilwj+lil)llwj+all},
i=0 j=i

rl --1 n -1

(5.10) I4(n) E ln--iH exp{48/3a(p
i=0 j=i

’/L+ o.j II)110,, I(O.J : D)}.
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Proof By the definition of (k in (2.4) and the fact that Yk 0 for k < 0, it is easy
to see that (5.3) holds with K1 =pA -(p-l), K2-- 0.

By Lemma 5.1 and the inequality log (1 + x)_-< x, for all x _-> 0, we have

nIl )2{(l+2K1A-1% =exp 21og(l+2K1A

<-exp 1

_-< exp {2/
j=

<= exp
J=l

1-I exp
j=i

n-1

(5.11) U exp{12131(P’/L+IIOII)I[OIII(OjD)}
j=i

Consequently, by the Holder inequality and (5.7)-(5.10),

[nl nl..lE A "-i (1 +2KA-l%)2 <=E Ik(n)
/ i=0 j=i k=l

<__ [(n]/
=1

Substituting this into Lemma 5.2, we see that (5.5) is true, while (5.6) can be proved
in a similar way by using (5.11) and the H61der inequality. The details will not be
repeated.

LEMMA 5.3’. Under conditions of Theorem 2, property (5.3) holds with

K2 (t- 1)A-t+’[ 1 + (t- 1 )(M1/b,)Z]AA 2/(A -p).

Furthermore,

(5.12) {Ellq,llt} 1/t=<K0 1 +(l-A)-’/ {E[Jk(n)]t/2} ’/3)

n=0 k=l =0

where J n k 1, 2, 3, are defined as

(5.14) J(n) 2 I- exp {6(n-i)[4(s+ )/L+ ]},
i=0

n-1

(5.15) J(n)=
i=0

I-
i=0 j=i

Vn_-->l,

1 =4K1A-l,
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Proof. Let us write i(k),/(k), as the estimates for ai(k), bi(k) given by k. Then
from (3.22),

--1
{l(k)yk +’’ "+ (k)yk-s+, + 2(k)uk-,-4-...+ ,(k)Uk-t+,}.

Since Ok belongs to the domain D defined by (3.20), it follows by the Schwarz inequality
that

lUkl 2 s E ly-jl 2 + (t- 1) lUk_j[ 2
j=o j=

Therefore, by the definition of in (2.5),
s--1

]2 n--i 2 n--i

i=0 i=0 j=O i=0 j=l i=0

1 +s a n-i E lY,-l
=o =o

+ 1)k
N SA -s+l 1 + s

i=0

i=0

Note that by the assumption (3.16),
n--1 n--1 i+1

=o i=o j=o

j=0 i=j--1

eh h"-J
j=0 i=j--1

_-< ah h"-{]yj[2 +[vj]}.
h-pj=o

Combining this with (5.17) we see that (5.3) is true. The second asseion can easily
be proved by using techniques similar to those used in Lemma 5.3. We need only to
note that under the present conditions the inequality (5.11) is changed to (via Lemma
5.1’),

n--1

(1 +2K-a)zN exp {261(n-i)[4(s + t)l/L+ 6]}
j=i

exp Ilvj+
j=i

The details will not be repeated here.
We now proceed to analyze the quantities I(n), k= 1,...,4, appearing in

(5.7)-(5.10) by using Lemma 4.3. For this we need the following lemma.



1448 LEI GUO

LEMMA 5.4. Under conditions of Theorem 1, the following inequalities hold (where
/31 4pA p)’

(5.18) (i) supE{exp[(16l(r+l)/d)llvj+lll][F_r}<A -r+1/2,
(j,to)

(5.19) (ii) supE{exp{8l(m+l)(2pl/L+llw+lll)llwj+,ll}lF_,,}<A
(j,to)

(5.20) (iii) sup E{exp[24/3fl,(m+

/-/3(m+1)/2

where j takes nonnegative integer values and to is the sampling point.
Proof. (i) By the noise assumption (2.6), the choice of d in (3.14), and the Hblder

inequality, we have (note that/31 4pA -p)

E{exp [( 16fl/l r + 1 )/d)]]/)j+l ll2] Fj_r} exp {26pA-Pfl( r + 1)M/(eod)}

< A -(r+)/2.

(ii) By Lemma 4.4 and the parameter assumption (3.2),

E{exp {2sflfl, m + 1)p l/a nll wj+ [I}[ Fj_m}
(5.21) E{exp {[27(m + 1)flp3/2A-PLM-1/2][(M)I/21Iwk+III]}

_--<exp {f(27(m + 1)p3/2LA-pM-1/2)61o/2},

where the function f(. is defined by (3.12).
Again, by the parameter assumption (3.2) and the HSlder inequality,

E{exp {24flf11(m if- 1)[[ wj+ll]2} j-m} <= exp {26pA-P(m q- 1)3o/M};

combining this with (5.21) we have via the Schwarz inequality,

E{exp {8/3fl (rn + 1)(2p1/L+
-< exp {[f(27(m + 1)flp3/ZLA-pM-1/)/2 + 25pA-P(m + 1)/ M]6o/2}

/--/3(m+1)/2

where the last inequality is derived from (3.11).
(iii) We now proceed to prove (5.20). Let us denote b 192/3(m + 1)p3/)t-P; then

by the parameter assumption (3.1) and the Markov inequality,

E{exp [48flfll(m + 1)pl/2LII Oj+lllI( Oj+ D)] Fj_m}

E{exp [bL[[O.+,[[I(O+,
E{I(O+, O)l 6-}+ E{exp [bLIlO;+,[I]I(O;+,

_
D)I F_,,}

+ {EEexp (2btllO,,+,ll)lFj_,]}’/Z{PEexp (2btllO;+,ll)> exp (2bE2)I F_]}’/2_
1 + E[exp (2btIlO+l[)lF_]/exp (btz)

=< /exp (-at2/2) fexp (2b [12)
_-__ 1 +exp (-bL2/2) exp (2bMo/M)

=< exp {exp 192(m + 1)p3/2A-P(2Mo/M L/2)]}
(5.22) <=exp {exp [192(m+ 1)pA-P(2Mo/M-L/2)]},
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where for the last inequality we have used the fact that 2Mo/M-L2/2<-O, which is
seen from (3.13) and the choice L= Lo.

Similarly, we have (c= 192/3(m + 1)pA-P),

E{exp [48/3/3(m + 1)ll o+, III(O+, D)] F_.,}
E{exp [clloj+lll2I(Oy+,

_
D)]I F_,.}

=< 1 + {E{exp [2cll o+,11231Fj_m}}l/2{p(llOj+ll[2> L2I Fj_m)} 1/2

<= 1 + E{exp [2cll o/11=] F_}/exp {cL2}
<_- 1 + exp {2cMo/M cL2}

(5.23) =<exp {exp [192/3(m + 1)pA-P(2Mo/M L2)]}.
Combining (5.22) and (5.23), we obtain via the Schwarz inequality,

E{exp [24(m + 1)[3131(p/2L+ Ilo+ll[)lloj+llli( oj+ O)] Fj_m}

<= exp {exp 192(m + 1 )/3pA -p (2toolm- L2/2)]} < A -t3’’+1)/2,
where the last inequality is obtained from (3.13). This completes the proof.

Proofs of theorems. By Lemma 4.3 (with a ill2 > 1) and Lemma 5.4, we know
that the quantities Ik(n), k 2,"" ", 4, defined in Lemma 5.3 satisfy

N

(5.24) sup E[Ik(n)]/< and Ik(n) O(N) a.s. k=2, 3, 4,
n=0

while for Ii(n), we note that

exp {8t I1= _-<exp {16/31pL2} exp
Then by the parameter assumption (3.1) and Lemma 4.1(ii), it is easy to see that (5.24)
is also true for k 1. Hence by Lemma 5.3 we get

N

suPEIl,ll< E II.ll2=o(N) a.s. as N-;
n=l

combining this with (3.9) we immediately conclude that Theorem 1 holds.
In a similar way, Theorem 2 can be proved. The details will not be repeated

here.

6. Further discussions. In this section we will give some brief discussions on the
issues of performance and robustness.

6.1. Performance. Since our control objective is to minimize the output process,
it is natural to ask if the output "approaches zero" when both the noise and the
parameter variation processes are "small." Mathematically, this needs the study of,
e.g., for Model 1, the asymptotic properties of {Yk} when (e)-l0 (My fixed), and
6o-0. Note that by (3.14), d is allowed to be chosen as d0 and (ed)- 0.Let us denote g (o, d, (ed)-) and parameterize the output process as {y}; then
from the proof of Theorem 1, it is easy to see that

(6.1) lim lim sup E IlYll -0.
g0

For any small but fixed g, the Markov chain ergodic theory may be applied to
prove the existence of the limit limk_ Ellyk[I if we strengthen the assumptions. For
example, if {Vk} is a Gaussian white noise sequence, and the parameter is modeled as
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in Example 2, then under the assumptions of Theorem 1, the closed-loop system
equations will give rise to a Markov state process {k}, which is, in particular, (i)
weakly stochastically controllable in the sense of Meyn and Caines (1988), and (ii)
bounded in probability due to Theorem 1. Thus, applying Theorem 1 (for/3 > 2) and
the important results developed in Meyn and Caines (1988) and Meyn (1988), we
know that

(6.2)

lim P(lyI > x)- r(lY[ > x)
k-oo

lim E[y[:= lim lyil= | y- d.a" < ,
k-cx3 k-cx3

where y denotes the function y(.) such that Yk =Y((Ik), and r is the invariant
probability of {k}. Detailed and further results are currently under investigation. We
mention that establishing the existence of the limits in (6.2) without using Markov
chain theory appears to be a challenging problem.

6.2. Robustness. Let us assume that in addition to the random noise {Vk} there
are unmodeled dynamics {r/k} acting on the system (2.3):

(6.3) Zk+ ( k Ok +/)k+l -" r/k"

We assume that the unmodeled dynamics { r/k} depend on the previous input-output
data, and have the following time-varying upper bound (see, e.g., Ioannou and Tsakalis
(1985), Chen and Guo (1988)):

(6.4) Ir/k[----< e*mk, mk Tmk-,+ IIll, mo> 0, k->_0,

where e*>O, ye (0, 1).
Similar to the normalization idea used in Ioannou and Tsakalis (1985), we replace

the quantity a+ll  ll in (3.8) or (3.21) by d+(m,), and consider the following
algorithm:

{" (Ok)2 (Zk+l--(ck)}"(6.5) Ok+ 7rD Ok .ql_
d + mk

Then stability of the closed-loop system under the certainty equivalent minimum
variance adaptive control law can also be established, provided that e* is appropriately
small. The proof is essentially the same as that for Theorems 1 and 2.

7. Conclusion. In this paper, stabilizing adaptive controllers are presented for
possible open-loop unstable time-varying stochastic systems described by Models 1
and 2. The closed-loop stability is proved based on an analysis of products of random
variables and truncation techniques. We have seen that the use of projection in the
estimation algorithm plays a crucial role in getting useful estimates in the stochastic
case, especially when the noise is unbounded in sample path. Further asymptotic results
are currently being explored by applying the weak convergence theory and the Markov
chain ergodic theory.
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RELATIONSHIPS BETWEEN VARIOUS MARKOVIAN DECISION
PROBLEM CLASSES*

GARY J. KOEHLER"

Abstract. In this paper Markov-type decision problems that are generalizations of discrete-time, finite
state, and action stationary Markov decision problems either in allowing negative entries and/or placing
less restrictions on the spectral radius are considered. Many of the results found in the literature of
Markov-type decision problems were obtained by authors investigating one of several solution procedures
for solving the related problem of interest. This orientation has led to a number of seemingly unrelated
results. In this paper several Markov-type decision problem classes are given and it is pointed out where
gaps still appear in an overall theory.

Key words. Markov decision problems, value convergence, policy iteration, linear programming,
complementarity, fixed points

AMS(MOS) subject classifications. 49, 60

1. Introduction. Let S= {1,..., m}. For each i S, let Ai be a nonempty, finite,
ordered set. Each j A indexes a one-by-m real vector P0 and scalar c0. Let A--- XAi.

6 A indexes a matrix P and vector c.
In finite-state and action Markov decision problems S is the finite state space, A

is the set of (finite) actions available in state i, A is the set of policies, Po is the vector
of transition probabilities from state under action j, c0 is the current reward in state
when action j is taken, P is the transition matrix under policy 6, and c is the vector

of current rewards under policy 6. If the returns are discounted, then each element of
pj is assumed to already contain the discount factor.

Define the affine functions L R _. R" and L: R __> R by

and

L(v) =- Pv + ca

L(v) Vmax (Pv+c)

where Vmax means the vector (component by component) maximum. It is readily
apparent that L( exists due to the construction and finiteness of A.

In finite-state and action Markov decision problems L(v) is the expected (discoun-
ted) reward after one transition with policy 6 and terminal rewards of v. L(v) is the
best expected (discounted) return after one transition with policy 6 and terminal
rewards of v.

Define k-= EIA[ and let (A, c) be the k-by-(m+ 1) matrix formed by (ei--Pij, Cij
ordered by j 6 Ai, i S where ei is the ith unit vector. In Theorem 2 we assume that
A’ cannot be partitioned to render smaller independent subproblems. This is easily
tested and implemented using a procedure given by Bather [1].

Let

F-= {v" v L(v)}

be the set of fixed points of L().

Received by the editors February 13, 1989; accepted for publication (in revised form) January 25, 1990.
? Department of Decision and Information Sciences, College of Business Administration, University

of Florida, Gainesville, Florida 32611.
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(E)

and

(P)

Consider the problems

Find f6 F

v* Vminf
fF

when the values exist. Clearly, any solution of (P) is a solution of (E). This can be
seen in Cottle and Veinott [2, Thm. 2, Cor. 2, pp. 244-245].

In discounted finite-state and action Markov decision problems the solutions of
v L(v) are the expected discounted rewards over an infinite horizon with stationary
policy & v* is the maximal such reward across all policies. The decision problems
originally considered by Howard [7], Veinott [17], Jewell [8], Koehler [10], [11], and
Eaves [4] fit this paradigm.

Much of the investigation of L( and F has been done by researchers having
one of several solution procedures in mind. Their results have reflected the strengths
and weaknesses of the selected method.

In this paper we review several scattered results on Markov-type decision problems
and show their relationships to each other. In doing so we point out gaps which
represent areas that may prove fruitful for further research.

2. Solution procedures. Let D={v: Av>-c}. Note that FG D. Let A= I-P for
each A where I is the identity matrix. Let p(P) be the spectral radius of the square
matrix P. We will draw frequently from various duality theorems 12] and the Perron-
Frobenius theorem for nonnegative matrices (e.g., see [15, Thms. 1.1, 1.5]).

Below we point our four primary solution methods for solving problem (P) or (E).
DEFINITION 1 (value ite’ration, successive approximation). Value iteration is an

algorithm defined as follows"

VI: Choose v6Rm.
V2: /)n+l

_____
L(v").

V3: If
v"+IB(F)

then stop;
else go to V2.

Here B(T) is an epsilon neighborhood of set T and e >_-0 and small enough.
DEFINITION 2 (policy iteration). Policy iteration is an algorithm defined as:

PI:
P2:

P3:

Choose 6 A.
Solve

Av c,.
Call the solution v,.
If

A(v,) arg Vmax (Pv + cv)
then stop; a

else choose A(v) and go to P2.

DEFINITION 3 (linear programming). A linear programming approach for solving
(P) is:

(LPP): Minimize b’v
subject to Av>-c
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with b > 0. The constraints can also be written as

The dual is frequently solved:

(LPD)" Maximize c’x
subject to A’x b, x>-O.

vD.

(CP): x-Ay-dz=-c
x,z>=O
::18 e A such that x 0

where x is k by 1, y is m by 1, d is k by 1, and z is a scalar variable, di 0 whenever
row of A corresponds to the values of the first action of a state. Otherwise di 1. If
(x, y, z) is a solution to (CP) with z =0, then there is a policy 3 A with x =0 and
y L(y) L(y) [4, Lemma 1 ].

A solution to (CP)mif anymis obtained by the following algorithm. Let/30 be an
initial "basis" of (CP). (For an exact definition see Eaves [4, pp. 66-67].)

PI:
P2:

determine/30 and set r 0.
Assume a sequence of bases/30,/31," ", fir has been constructed. If z is not
in fir, then stop. Otherwise find an "adjacent basis,"/3r+1, other than
using complementarity pivots. Increment r and go to Step P2.
Otherwise, stop.

For a given problem (A, A, c), none of the four methods may find a fixed point
of L(), even when F is nonempty. For example, step V3 in value iteration may never
be satisfied. P2 in policy iteration may not have a solution. (LPP) may be unbounded.

3. Problem classes. Several problem classes solvable by one or more ofthe solution
procedures defined in the preceding section are now defined.

The Markov-type decision problem defined by Veinott [17] includes traditional
discounted Markov decision problems studied by others [7], [8]. Let C1 be defined as
follows.

DEFINITION 5 (class C1). Class C1 is the class of all problems (A, A, c) satisfying
the following conditions:

(1) P->0, for all 8A.
(2) p(Ps)<l, for all 8A.
THEOREM 1 (Denardo [3], Veinott [17]). If (A,A, c) C1, then F has a unique

element v*. Value iteration (for any v R’), policy iteration (for any 6 A in step P1),
and linear programming all lead to v*.

Problems in class C1 are called contracting [3] or transient [17]. In finite-state
and finite-action discounted Markov decision problems, each P =- aQ where a [0, 1)
and each row of Q sums to one. The spectral radius of aQ satisfies p(aQ)= < 1.
Hence these problems belong to C1. Semi-Markov problems also fall into this category.

Koehler [11] investigated a more general problem defined as follows.
DEFiNITiON 6 (Class Ca). Class Ca is the class of all problems (A, A, c) satisfying

the following conditions"
(1) P>-0, for all 8A.
(2) p(P)<l, for some 8A.

The final method we wish to consider is the complementarity approach by Eaves
[4]. We refer the reader to [4] for more details of the algorithm.

DEFINITION 4 (complementarity approach). Consider the system of equations
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(3) A has a positive diagonal, for all 6 A.
(4) p(P)<-l, for all 6A.
(5) If p(P)= 1, then Av= c has no solution.
(6) D is nonempty.
THEOREM 2 (Koehler [11]). If (A, A, c) C2, then F has a unique element, v* and

A.v* c. for some 3" where p (P.) < 1. Value iteration or any v Rm) and linear
programming all lead to v*. Policy iteration may fail at step P2 for an arbitrary starting
6 A. However, if we choose 6 A at step P1 such that p(P) < 1, then policy iteration
will find v*.

Koehler [10], [11] also investigated a more general problem defined as follows.
DEFINITION 7 (class C3). Class C3 is the class of all problems (A, A, c) satisfying

the following conditions:
(1) P=>0, for all 6A.
(2) p(P)<l, for some 6A.
(3) D is nonempty.
THEOREM 3 (Koehler [10], [11]). If (A,A, c) C3, then F is nonempty but may

not have a unique element, v* is F’s least element. A.v*= c. for some 3* where
p (P.) < 1. Value iteration may not converge or may converge to a fixed point that’ is not
the least element of F. Policy iteration may fail at step P2 for an arbitrary starting 6 A.
If it does yield a fixed point, it may not be v*. Linear programming will lead to v*. Value
iteration will lead to v* when v<= v*.

Eaves [4] considered the problem of finding a fixed point of L( under rather
general conditions.

DEFINITION 8 (classes C4 and C-). Class C4 is the class of all problems (A, A, c)
satisfying the following condition:

Y DA

for all

giving

is nonsingular

D->0 and diagonal

C+ is the subset of C4 where P > 0 for each 6 A.4

Note that A must be nonsingular for each 6 A.
THEOREM 4 (Eaves [4]). If (A, A, c) Ca, then F has a unique element v*. Eaves’

complementarity procedure will find v*.
Eaves [4] also considered a more general class of the following form.
DEFINITION 9 (classes C5 and C-). Class C5 is the class of all problems (A, A, c)

satisfying the following conditions:
(1) A0 nonsingular for some 6 A.
(2) {v: Aov >- co, Av <= c} is bounded for each 6 A.

C+ is the subset of C where P >_-0 for each 6 A.
THEOREM 5 (Eaves [4]). If (A, A, c) Cs, then F is nonempty. Eaves’ complemen-

tarity procedure will find an element of F. Linear programming may not find a solution.
Simple examples illustrate that value iteration and policy iteration may also fail under
these conditions.

4. Relationships between problem classes. Our first result shows that C C2 C
We use the following property.
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LEMMA 1 (Fiedler and Ptak [5]). If P>=O is square and p(P)<l, then I-P has
a positive diagonal and (I P)- >- O.

THEOREM 6. C C2 C3o
Proof (Clc_ C2). Let (A,A, c) C1. Then Ps>_-0 and p(Ps) < 1 for each 3A. By

Lemma 1, As has a positive diagonal for each 3 6 A. Finally, from Theorem 2 v* F c_ D.
So D is nonempty.

(C2 C3). Each property of C is a property of C2o [-]

It is easy to show that C2 is not contained in C4. C2 permits problems where
p(Ps) 1 for some 3 6 A. In such cases As is singular. We noted earlier that As is
nonsingular for all 3 A for problems in class C4.

THEOREM 7. C4 C5.

Proof Let (A,A, c) C4. Then EDsAs is nonsingular whenever EDs I and
Ds >_-0 and diagonal. Let 3 A be arbitrary and suppose that

{ v: Asov >- co, Av <-_ cs}

is unbounded for some 3 A. Thus, there is a nonzero vector r such that Aor >-O,
Asr<-_O. Let Ds and D be constructed so that Do+D I and Do and D are
nonnegative diagonal matrices giving

Thus

DoAor + DsAr O.

DsA + DsAs r O,

which contradicts the nonsingularity of the term DoAso+DAs. Hence
(A, A, c) C5.

The same proof can be used to show that C-_ C-.
THEOREM 8. C

_
C-

_
C4.

Proof. The proof follows directly from results of Fiedler and Ptak [5].
While C2 is not contained in C4, it is contained in Cs.

+THEOREM 9. C2_ Us c_ C5.
Proof Let (A, A, c) C and let 3 be any 3 A giving p(po) < 1. There is at least

one. Suppose for some y A that

H { v: Aov >= cso, Av <= cv}
is unbounded.

Thus there is a nonzero vector r such that Aor>-O and Avr<-O. Since p(pso) < 1
and Pso>=0, by Lemma 1, Aol>=0. Thus, A-oAor--r>=O.

Suppose p(Pv) < 1. Then through a similar sequence of steps, we get r0. Thus
r-0, a contradiction. Hence p(Pv)- 1. By the Perron-Frobenius theorem there is a
semipositive x, such that x’As- O.

We now show that x’cv-O. Since Hv is unbounded there is a v Hr. Then

0--x’Av <-x’cv. Likewise, since D is nonempty by assumption, there is a w D so
that Aw >-_ c. Hence, 0 x’Aw >= x’c. Collecting results gives x’c 0. Note then that
xi > 0 implies (Aw)i (c)i for each w e D. This of course holds for v*e D.

In the following steps of the proof we will construct a policy /3 e A such that
p(P,) 1 and Atv =c has a solution which gives our desired contradiction.

As shown earlier, there is a semipositive r giving Aor >= 0 and Avr <- O. Partition
and permute A, x, and r as follows. First rearrange the terms so that all the zero
values of x come first. Then rearrange terms so that the negative components of Ar
come first for the zero rows of x. Finally, rearrange terms so that the zero components



MARKOVIAN DECISION CLASSES 1457

of r come first for the positive rows of x. This gives Table 1. Since x is semipositive,
N3 t.J N4 is nonempty. Also, since x’Av- 0 and x’Avr 0, rows N3 and N4 of Avr <= 0
must be zero-valued. We also see from x’Av 0 that P31 0, P32 0, P41 0, and P42 0.
From Avr <-0 with equality in rows N3, then P34- 0. Rewriting the above using these
observations gives Table 2.

If N4 is nonempty, then p(P44)- 1 from the last row of Avr and the Perron-
Frobenius theorem. If N4 is empty, then P(P33)--1 from the third partition of x’Av
and the Perron-Frobenius theorem.

Let 6" be as given in Theorem 2. Form a new policy/3 from y and 6" by replacing
corresponding entries of 6* by the entries of 3’ corresponding to the rows listed in N4
(N3 if N4 is empty). From the Perron-Frobenius theorem, P(Po)- 1 (since p(P44)- 1
or p(Pa3) 1, respectively). Also, since Aa.v* ca* and (Avv*)i- (cv.)i for N3 t_J N4,
then Aov*= co. This gives the desired contradiction. Thus Hv is bounded and C2

_
C5.

The following shows that Theorem 9 is as far as we can go with C5.
Remark 1. Ca is not contained in C-. This can be seen with a simple counter-

example. Let

where

and

Aa=
0 1

ca=
1

Av= -2 1 cr= -5

Here

TABLE

Rows x A A,/r

N 0 I P P2 P13 Px4 0 < 0
N 0 P211 P22 P23 P24 => 0 0
S >0 -P31 -P32I-P33 -P34 =0 .9
N - 0 P41 P42 P43 1 P44 > 0

TABLE 2

N 0 I Pll P2 P13 P14 0 < 0
g 0 e211- P22 P23 P24 ---0 0
N >0 0 0 I-P33 0 =0 =0
N 0 0 0 -e43I-e44 >0 --0

Rows x Av A,r
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and

p(Pa) 0< 1 yet {v: Aav>-ca, Avv<-cv}

and

{ v: Avv >- c,, Aav <= ca}

This observation suggests that there is a more general setting for Markov-type
decisions than the conditions used by Eaves.

The following results cover classes C- and C-.
Remark 2. C2 is not a subset of C- since C2 may have singular Aa matrices but

C- may not. This can be seen by the following counterexample. Let

={, }
where

Aa
1 1

ca

and

Av 1 cv
It is easy to verify that this problem belongs to C2 but Aa is singular.

C1 is not equal to C-. This also can be seen with a simple counterexample. Let

where

Aa=
-2 1

ca=

Here F={0} and D={v: v<=0} but p(Pa)> 1.
This last example also shows that C is not contained in C1, C, or Ca.

+The following result gives a relationship between C1 and C4.
THEOREM 10. If (A,A, c) e C- and p(Pa) < 1 for some t3 e A, then (A, A, c) e CI.
Proof. Let (A, A, c)e C-. Since every Ar is nonsingular for 3’ e A, then p(Pv) is

not equal to one. Suppose there exist TeA such that p(Pr) > 1. Let o, 6," , , eA
be formed from and 3’ with 0 and , 3’ and j formed from j_ by replacing
the jth entry of t3_ by thejth entry of 3/. Let k be the first integer such that p(Pak) > 1.
Note that k_-> 1.

We have p(Pak_,)< 1 and p(Pak)> 1. (Recall that no policy can have a spectral
radius of one.) Pa_, and Pa differ only in their kth row. Let Z e (0, 1) and P
ZPak_, + (1- A)Pak. By Lemma 3.7 from Seneta [15] (relaxed to reducible matrices) and
the continuity properties of convex functions, we have that p(P,) 1 for some A e (0, 1).
This contradicts our assumption that (A, A, c) e C- since all convex com-
binations of the Aa’s must be nonsingular. Hence p(Pr)<l for each 3’eA and
(A, A, c)e C. 121

5. Additional problem classes. A number of other problem classes have been
studied in the literature [6], [9], [13], [14], [16]. Hordijk and Kallenberg [6] have
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shown the relationships between these. Below we incorporate their results and relate
them to our results.

DEFINITION 10 (class STmstochastic). Class ST is the class of all problems
(A, A, c) satisfying the following conditions:

(1) Pa=>0, for all 6A.
(2) Pa I 1, for all 6 A.

(Here 1 is a vector of ones.)
DEFINITION 11 (class SST--substochastic). Class SST is the class of all problems

(A, A, c) satisfying the following conditions:
(1) Pa_->0, for all 6A.
(2) PI-<I, for all 6A.
DEFINITION 12 (class DC--discounted). Class DC is the class of all problems

(A, A, c) satisfying the following conditions:
(1) P->0, for all 6A.
(2) P 1 a 1, for all 5 A and for some a [0, 1) and fixed.
Clearly, ST

_
SST and DC

_
SST. It has already been pointed out that DC C1.

DEFINITION 13 (class Emexcessive). Class E is the class of all problems (A, A, c)
satisfying the following conditions:

(1) P->0, for all 6A.
(2) Au_-> 0, for some u> 0.
Clearly, STT

_
E since u 1 provides the necessary vector. C1

_
E is also easy

to show [6].
Remark 3. C2 E. This follows from Corollary 5.2 in 11 ].
E is not contained in C2 or C- as seen by the following simple counterexample.

Let

where

A=
1 -1

=A, ca=
-1 1

Clearly, AI=0 so (A,A, c)E, but no 5A gives p(P) < 1 and A is singular.
Finally, C- is not contained in E as seen from the last example of Remark 2.

There, no u> 0 gives Au >- 0.
Remark 4. C3 is not contained in E as shown by the example used in Remark 1.

The only u giving Au => 0 is u 0.
DEFINITION 14 (class N--normalized). Class N is the class of all problems

(A, A, c) satisfying the following conditions:
(1) P>_-0, for all 6A.
(2) p(P,)<=l, for all
Clearly, E N from the Perron-Frobenius theorem and the existence of u. Also,

from Remark 3, C2 N. Neither C3 nor C]- is contained in N since both classes permit
a spectral radius greater than one. Conversely, N is not contained in C3 or C- for the
same reasons discussed in Remarks 3 and 4 concerning E.

6. Summary. We have shown the following relationships:
(1) C C2__. C
(2) C4 c C- c C5.)
(3) C,_ C_ C.

+(4) C2 C5 -(5) (,A,c)C- and p(P)<l for some A implies (A, A, c) C.
(6) C2

_
E.
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The class memberships can be seen from the following diagram:

ST--> SST- E -- N
DC

C ----- G -- G$
+ +C C

C4 --C
In addition, the following "negative" results hold:
(1) C2 is not contained in C- and thus is not contained in C4.
(2) C3 is not contained in C- and thus is not contained in C5.
(3) C1 does not equal C-.
(4) Neither C- nor C is contained in C1, C2, or C3.
(5) Neither E nor N is contained in C2 or

+(6) Neither C3 nor C4 is contained in E or N.
The results suggest that there might be a larger class of Markov-type decision

problems than C-U C where F contains a unique fixed point. The class of fixed-point
problems of the form v L(v) with F nonempty is also probably larger than C3 U C5.
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COMPUTABLE BOUNDS FOR THE SENSITIVITY OF THE ALGEBRAIC
RICCATI EQUATION*

P. GAHINETf AND A. J. LAUB"

Abstract. In control or estimation theory, linear-quadratic optimization problems give rise to the
so-called matrix algebraic Riccati equation (ARE). For such problems, a crucial issue is the existence and
uniqueness of a symmetric nonnegative definite stabilizing solution to the ARE, and conditions on the
equation parameters are known which guarantee both. However, in the context of computations in finite
precision arithmetic, and with imperfect parameter identification, it is of concern whether the ARE retains
such a solution in the proximity of a given set of parameters, and how sensitive this solution is to parameter
variation.

In this paper, topological properties, such as openness of the domain of existence and continuity with
respect to parameters, are established for the symmetric nonnegative definite stabilizing solution. Computable
sensitivity estimates are also derived, which quantitatively define a region of safe computation, in terms of
the parameters of the equation.

Key words. Riccati equation, sensitivity, stabilizability, computable bounds

AMS(MOS) subject classifications. 49E30, 93B35, 93B40

1. Introduction. The symmetric algebraic Riccati equation (ARE) arises frequently
in control and estimation problems. Consider the continuous-time ARE given by"

(1.1) A3X +XA XFX + G 0

where all terms are matrices in R (real square matrices of order n), and F and G
are symmetric, nonnegative definite. The case of complex-valued matrices is qualita-
tively similar to the sequel but only the real-valued case will be considered here since
it is most commonly encountered in applications. Under the assumption that the pairs
(A, F) and (G, A) are stabilizable and detectable, respectively, there is a unique
nonnegative definite symmetric stabilizing solution X to (1.1) (see [3] or [12]). By X
stabilizing (for the pair (A, F)), we mean that A- FX is stable, i.e., all its eigenvalues
have strictly negative real parts.

Numerical algorithms are now available that solve the ARE efficiently and depend-
ably, provided the original problem is sufficiently well-conditioned (see [13] or [1]).
Well-conditioned means that the solution X is not greatly affected by small perturba-
tions of the data A, F, G. In that case, and with an appropriate scaling of the data
(cf. [8]), the Schur-type solvers yield accurate solutions to (1.1).

A natural question following this preliminary remark is how to assess the condition-
ing of the symmetric ARE, that is, its sensitivity to perturbations of the data. In other
words, if we consider a perturbed version of (1.1):

(1.2) (A+AA)3S+S(A+AA)-S(F+AF)S+G+AG=O,

under what conditions does (1.2) keep a unique, nonnegative definite stabilizing
solution S? And can we estimate the maximum discrepancy [IX-Sll for a given range
of data perturbations AA, AF, AG?

* Received by the editors April 17, 1989; accepted for publication (in revised form) December 13, 1989.

" Department of Electrical and Computer Engineering, University of California, Santa Barbara, Califor-
nia 93106. This research was supported by National Science Foundation grant ECS87-18897 and Air Force
Office of Scientific Research contract AFOSR-89-0167.

1461



1462 P. GAHINET AND A. J. LAUB

In the first part of the paper, existing contributions to this problem will be reviewed.
New results about the topological properties of the nonnegative definite stabilizing
solution to (1.1) are then presented, and an existence condition for S, along with
bounds for the variation X- S, are given in terms of the data perturbation. These
bounds are shown to have a computable expression, that is, an expression that
involves only known entities such as A, F, G, and some computed solution So. Finally,
an application of this result to the Newton refinement of solutions to (1.1) (see [9])
is discussed.

The following notation and definitions are used in what follows.
(1) The space of linear operators over R"" will be denoted by L.
(2) Throughout the paper, the vector norm will be the Euclidean norm, and the

matrix norm the spectral norm defined as

for M R"’, I[MII sup

z0

(3) The spectral norm will also be used over the space L; that is,

for f e L, Ilsall sup [[f(X)[____l.
x0

(4) The subset of R"" consisting of the real symmetric matrices will be denoted
by H,, and the subset of H, consisting of the symmetric nonnegative definite matrices
by H+

2. A survey on sensitivity estimates. A natural way to analyze the sensitivity of
(1.1) is to look at the maximum perturbation of X (in relative terms) resulting from
data peurbations of a given magnitude. The peaurbations of the data A, F, G will
be restricted to those peurbations preserving the nonnegative definiteness of the
matrices F and G. This constraint may appear impractical in the context of random
peurbations, but recall that the matrices F and G arise naturally in factored form.
Specifically, for a system whose dynamics and output are described by

Ax + Bu; A R"’’ B Rnxm"

y Cx; C Rp",

we will have F BBr and G CrC in the associated ARE. Thus, even when errors
in B or C are random, F and G still remain in H.

For 6 > 0, consider the set of peurbations P defined by

(2.)

P={(A,F,G)’F+F,G+GinH+andmax( IIA’ IIFII IIGII) N}.IIAII Eli
Note that P is convex, and hence connected. The number 8 will be called the magnitude
of peurbation. The sensitivity of (1.1) to peurbations in P is then measured by

(2.2) K sup
 llx[

In most applications we are only interested in small data peurbations. This motivates
the definition by Rice [15] of a condition number K for the ARE (1.1), obtained as
the limit when 6 0 of the K’s.
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The condition number K can be closely approximated by another sensitivity
estimate, due to Byers [2]. Consider the following linear operators:

fx(Z) (A- FX)TZ + Z(A- FX)
(2.3) 19x(Z) 12xl(zrx + XZ)

n: z f 7l xzx),

and the number Ks(X) defined as

(2.4) g(x)--
IIlllll[l/llxllllAIl/llrIxllllFll

Then K and Ks are related by 1/2Ks =< K -< Ks [10]. The estimate Ks(X) is essentially
an a posteriori estimate since it involves the solution X. This may seem a serious
drawback, since we can only hope to obtain an approximate solution S when solving
(1.1) numerically. Nevertheless, replacing X by S in the expression of Ks is technically
possible, as we will see in 5. Also, note that the norms IIn’ll, IlOsll, IlrIsll can be
easily computed or approximated (see Theorem 2.4 in [10]). For instance, I111 is
equal to the norm of the solution H to

(A FS)rH + H(A FS) + I O.

The approximate condition number Ks does not offer a totally satisfying answer
to the sensitivity issue, however, since it corresponds to a limiting case where the
magnitude of perturbation goes to zero. It merely indicates that, to first order in 8,

K,
Ilxll

with K bounded by Ks. Making explicit the contribution of the higher order terms
in 6 is one key motivation of this paper.

Finally, another class of results should be mentioned here" the so-called residual
bounds. Although they do not address the general sensitivity problem as formulated
above, they are of great practical interest in estimating the accuracy of an approximate
solution S to (1.1) (typically a computed solution). Using the residual to bound the
error in the solution is a common technique in linear operator theory. If is an
invertible linear operator, X solves (X) Q, and S approximates X, then the residual
is by definition R (S)- Q, and the error in the solution is bounded by

Ilx- sll --< I1-11[ R II.
This has a straightforward application to finite systems of linear equations Ax b
( A), and, although the operator associated with the ARE is not linear, an analogous
manipulation on its linear part leads to the following result [9].

THEOREM 2.1. Let X be the exact solution of (1.1), and suppose there is a stabilizing
solution S to (1.2). Let R G+ ATs -F SA- SFS be the residual. If 4llfl[ IIZ’ll= IIRll < 1
and x s < 1/ (3 F a’ II), then

(2.5) x s
A problem with this theorem is the checkability of the second condition, which

involves the unknown X. This drawback was avoided in a more specialized result,
which considers the particular problem of estimating the error between X and the
approximate solution computed by a Schur-type algorithm (see [8]). If the matrix S
in Theorem 2.1 comes from such computations, then the second condition can be
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checked through the estimate in [8]. Note that the estimation of algorithm-dependent
errors fits in the general frame of sensitivity analysis; that is, the computed solution
can be viewed as the solution of a perturbed problem (1.2), provided the algorithm is
stable. Nevertheless, the magnitude of data perturbation involved is very difficult to
assess. On the other hand, the bound proposed in this paper is algorithm-independent,
but requires that the magnitude of data perturbation be known. The two results are
therefore complementary: combined, both make the second condition of Theorem 2.1
checkable in most situations.

3. Topological properties of the ARE solution. In many applications, it is desirable
to have a unique symmetric nonnegative definite stabilizing (USNDS) solution to (1.1).
Criteria are available to establish the existence of such a solution for a particular
nominal set of parameters A, F, G, but, once established at a nominal set, can we
conclude anything for nearby parameter sets? In this section, theoretical results are
established which show the existence and continuity ofthe USNDS in a small neighbor-
hood of a parameter set A, F, G for which there is a USNDS solution to (1.1). The
appropriate framework here is the complete metric space (T, d), where T and the
metric d are defined by

T= R"" H, H, {(A, F, G): AinR andF, GinH,},

Finally, to simplify description, we will call "USNDS parameter set" any parameter
triple (A, F, G) in T for which (1.1) has a USNDS solution.

LEMMA 3.1. Suppose (1.1) has a USNDS solution X. If the perturbation
(AA, AF, AG) is such that F+AF and G+ AG are in H+n and also satisfies

1
(3.1) IlzXAII + [IAF}I IlXll < 211a11-----,
then (1.2) has a unique symmetric nonnegative definite solution S, such that A- FS has
all its eigenvalues in the closed complex left half-plane. Such a solution is referred to as
a strong solution. Furthermore, if

1
(3.2) IIx sll <

then S is stabilizing for the pair (A, F), and if
1 1

(3.3) IIAAII / IIAFII IlXll< and IIX-SII <411a’ll 41IF/aFll Ilalll
then S is the USNDS solution to (1.2).

Proof. This theorem relies on the following result (Theorem 1.2 in [7]). Given a
matrix R, and the associated Lyapunov operator F(Z):= RTZ + ZR, if R is stable and

IlaRII < 1/(211F-Ill), then R + AR is also stable.
From the definition of X, the matrix A- FX is stable. Now,

(A + aA) (F + aF)X A- FX + aA- AFX A- FX + E,

with [JEll =< IIAAII + IlaFII IlXll. The assumption (3.1) guarantees that

1
E < ;,----z-,
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and the stability of the matrix (A+AA)-(F+AF)X follows by applying the result
in [7] to A- FX. Consequently, the pair (A + AA, F/ AF) is stabilizable and Theorem
1 in [14] in turn guarantees the existence of a unique strong solution in the sense of
Chan, Goodwin, and Sin [4].

To show that S is stabilizing for (A, F) when (3.2) holds, write A-FS-
A-FX / F(X- S). Invoking again the result in [7], we see that A-FS will be stable
whenever IIFII IIx-sll < 1/ (2111) 7111), which is the condition (3.2). Finally, by writing

(A + AA) -(F+ AF)S A- FX + 6A-6FX-(F+ aF)aX,

it follows from (3.3) that the norm of the perturbation of A-FX in the right-hand
side above is again less than 1/ (211 ;,111), whence the stability of (A+AA)-
(F+aF)S. D

A fundamental result regarding the regularity of the USNDS solution to (1.1) can
be found in [5] and is recalled in the next theorem. For the sake of completeness, the
proof is also included.

THEOREM 3.2. The set ofparameter triples (A, F, G) for which (1.1) has a USNDS
solution is an open set in the metric space (T, d). That is, if (1.1) has a USNDS solution

Xo for some parameters (Ao, Fo, Go) (in T), then there is some e > 0 such that (1.1) has
a USNDS solution for any parameter set (A, F, G) in T within e of (Ao, Fo, Go) for
the metric d. Moreover, in this open set, the USNDS solution depends continuously on,
and is, in fact, infinitely differentiable with respect to the parameters.

Proof. Let (Ao, Fo, Go) be a set of parameters for which (1.1) has a USNDS
solution Xo. Consider the matrix-valued functional

f:Hn x (Rnn xHn xHn)Hn
defined by

f(X, A, F, G) ArX +XA-XFX + G.

By assumption, f(Xo, Ao, Fo, Go)=0. As a quadratic function in X, and a linear
function in A, F, and G, the function f is differentiable (even infinitely differentiable),
and its derivative with respect to X at the point (Xo, Ao, Fo, Go) is the linear operator
given for any matrix Z by

Dfx Z Ao FoXo 7Z + Z Ao FoXo
Since Xo is stabilizing, the operator Dfx is nonsingular. Therefore, from the Implicit
Function Theorem (see, e.g., [16, p. 356]), there exist

open neighborhoods U and V of (Xo, Ao, Fo, Go) and (Ao, Fo, Go), respectively,
with UHnTand VT,

an infinitely differentiable matrix-valued function q defined in V,
such that, for any (A, F, G) in V, X (A, F, G) is the only solution to

(3.4) f(X,A,F, G)=0 and (X,A,F, G) U.

Now, by continuity of , we can take V small enough so that for (A, F, G) in V
and X (A, F, G),

1
]](A FX (Ao FoXo) < ----i-,

which then guarantees that A-FX is stable. Note that (1.1) can be rewritten

(A- FX) 7"X + X(A FX) + G + XFX O.
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Since G + XFX is nonnegative definite and A FX is stable, X itself must be nonnega-
tive definite from the Lyapunov Theorem. Therefore, for any (A, F, G) in a small
enough open neighborhood V of (Ao, Fo, Go), (1.1) has a USNDS solution X-

(A, F, G). The uniqueness is a consequence of the stabilizability of (A, F) (see [14]).
This completes the proof of the openness in (T, d) of the set of USNDS parameter
triples.

The continuity and infinite differentiability of the USNDS solution as a function
of the parameters (A, F, G) follows immediately from the properties of as stated
above.

We call a curve of USDNS solutions any curve of points (X, A, F, G) such that
X is the USNDS solution to (1.1) for the parameters (A, F, G).

COROLLARY 3.3. The curves of USNDS solutions are isolated, in the sense that in
a neighborhood of such curves, there is no other quadruple (X’,A’, F’, G’) solving
f(X’, A’, F’, G’)=0 (f as in Theorem 3.2).

Proof This result is contained in Theorem 3.2. Specifically, consider a curve of
USNDS solutions passing through the point (Xo, Ao, Fo, Go). Then there is an open
neighborhood of this point within which all the solutions (X, A, F, G) to (3.4) are
exclusively USNDS; that is, the curve of USNDS solutions is isolated.

The continuous dependence on the parameters is not limited to the USNDS
solution; given a USNDS parameter set (Ao, Fo, Go), it indeed extends to the strong
solution defined for all parameter sets in

D={(Ao+AA, Fo+AF, Go+AG) T:

(3.5) Fo+AF, Go+AG in H,+ and IIAAI[/ IIAFII IlXoll<211 -1Xoll
Note the constraint Fo+ AF and Go+ AG nonnegative definite. To prove this result,
the following lemma is needed first.

LEMMA 3.4. Suppose (1.1) has a USNDS solution Xo for some parameters Ao, Fo,
Go, and consider for e > 0 the compact subset of D"

De={(Ao+AA, Fo+AF, Go+AG) D:

Then, for any set of parameters (A, F, G) in De, (1.1) has a unique strong solution.
Moreover, this strong solution, as a function of (A, F, G), is uniformly bounded in

Proof The condition (3.1) of Lemma 3.1 is fulfilled for any (A, F, G) in De since

1 1
11A Ao / F Fo go --<

2 ;?o <
2 ;?o

The existence and uniqueness of a strong solution in D is thus clear. Note that this
strong solution coincides with the USNDS solution whenever the latter exists.

Suppose the strong solution is unbounded in D. Then there exists a sequence of
parameters {Ak, Fk, Gk}k=l in De, such that the norm of the strong solution Xk to

(3.6) A[Xk + XkAk XkFkXk + Gk 0

goes to infinity with k. For each k, let 0<_-A)<_- _<-k) be the (real) eigenvalues of
Xk, and uk), ", U]k) an associated orthonormal system of eigenvectors. Observe that
the sequences {Ak, Fk, Gk}k=I and {ulk)}= (i- 1,"" ", n) all lie in compact sets and
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thus have convergent subsequences. Up to a reindexing of these sequences, assume
that they all actually converge, and let (A, F, G) and ui (i= 1,..., n) denote their
respective limits. Note that (A, F, G) lies in De (as the limit of points of the closed
set De), and that the ui’s form an orthonormal basis.

Since IIXkll goes to infinity with k, there is some integer r less than n, such that
the sequence {A(k)}ik=l is bounded for i< r, and unbounded otherwise. Premultiply
(3.6) by ulk)r and postmultiply by uJk). This yields

(3.7) Ak)’’(k)TAT"
-’-k "j + Ak)l,lk)TAkti Ak)Ak)uk)TFktlk)--tlk)GkUk) O.

First consider the case where both and j are > r. Then both Ak) and ,x (k) go to infinity
(k)(k) and letting k go to infinity, we then obtainas k- oo. Dividing (3.7) by

(k)T,,(k) fFuj=O forall i,j > r.(3.8) lim t4 "k"j U
kc

Now consider the case i->_ r and j < r. Divide (3.7) by Ak) and let k-->. This yields
(k)T-- (k)(3.9) lim u AkUj =uTiAuj=O for alli_->r and j<r.

Based on (3.8) and (3.9), the matrices A and F can be partitioned with respect
to the basis {Ul,’’ ", u,} as:

(3.10) A-= " F-- AT0

where the blocks , and/3 are (r-1)x (r-1). Moreover, the nonnegative definiteness
of F imposes A=0. Now, since (A, F, G) is in De, (A, F) is stabilizable, which,
combined with (3.10) and A =0, requires that/ be stable.

A contradiction to the initial assumption that "the strong solution is unbounded
in De" can now be derived as follows. Consider the case =j r in (3.7), divide by
A k) and let k tend to infinity. This yields

lim (2uk)TAkuk) A "i(k)T"k"i"(k)) O.
k

But lim uk)Tk-" ufAu and therefore

ufAui lim

T (k)which implies that ufAuO since Ak)uk)
kUi 0 for all k. Consequently,

Trace () ufAui O,
i=r

which indeed contradicts the stability of A.
The previous lemma is crucial to the following topological result about the strong

solution of the ARE (1.1) for parameters in D.
THEOREM 3.5. Suppose (1.1) has a USNDS solution Xo for some parameters Ao,

Fo, Go. en the strong solution to nearby problems (1.2), considered as a function of
the parameters Ao+AA, Fo+AF, Go+AG, is continuous over D as defined in (3.5).

Proo To prove the continuity of the strong solution in D, consider a point
(A, F, G) in D, and a sequence of points {Ak, Fk, Gk}kI in D converging to (A, F, G).
Let X and Xk denote the corresponding (unique) strong solutions to (1.1) and (3.6),
respectively.
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By an appropriate choice of e, we can ensure that all (Ak, Fk, Gk)’S and (A, F, G)
lie in D (use the openness of D). Lemma 3.4 therefore applies to say that the sequence
{Xk}k=, is bounded, and consequently has some convergent subsequence. Let Xoo be
the limit of such a subsequence.

Clearly, X solves the same ARE as X (and is also a strong solution) as the limit
of a sequence of strong solutions. By the uniqueness of the strong solution in D,
and X must be equal. Thus, the sequence {Xk} can have only one accumulation point,
X, and must converge to X. This proves the continuity of the strong solution at any
point (A, F, G) in D.

4. Uniform bounds for the sensitivity of the USNDS solution. In the previous
section, the continuity of the USNDS solution to (1.1) was qualitatively established.
We now turn to quantitative estimates for the sensitivity of the USNDS solution to
perturbations of the parameters. Throughout the section, (1.1) is assumed to have a
USNDS solution X. The first theorem bounds the variation [IX-SII between X and
a solution S to a nearby problem (1.2), in terms of A, F, G, X and the magnitude of
perturbation & In the two results following, X is then replaced by a known approxima-
tion So in order to make this bound computable.

The following lemma is needed in the proof of the first theorem.
LEMMA 4.1. Let Mx and Nx be defined by

(4.1) Mx --(IIAll + IIFII Ilxll)lln;?li, Nx KB(X)IIX[[ IIFII
and a, b, c by

(4.2) a ;,1 F I1( 1 + 3 ),

if

(4.3)

then

2b 1 2Mx3, c-- K,,(X)llXlla.

0_<3<
1 +4(Mx + Nx)’

b2-ac>O.

Proof Assume (4.3). For the sake of clarity, the subscript X will be dropped from
Mx and Nx in this proof. Noting that ac N3(1 + 3), b2> ac is equivalent to

(4.4) 4(M2- N)32-4(M + N)3 + 1 > O.

If m2 >-- N, a sufficient condition for (4.4) to hold is 1-4(M + N)3 > 0. This condition
is fulfilled with the assumption (4.3), and therefore b2> ac in this case.

In the other case (M2< N), consider the quadratic function

h(3) 4(M2- N)32- 4(M + N)a+ 1.

Its value is 1 at 3 0, and it goes to -oe when 131 +o0, since M2- N < 0. Therefore,
h will be strictly positive on any interval [0, g] such that g> 0 and h(g)> 0. But now,

( 1 ) (2M+l)2

h I+4(M+N) =(I+4(M+N))2>0"

Hence, h(3) is strictly positive for 3 in [0, 1/(1 +4(M+ N))], and (4.4) holds in the
case M2< N as well. This proves the lemma for any strictly positive M, N.
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THEOREM 4.2. Assume (1.1) has a USNDS solution X, and let Mx and Nx be
defined as in (4.1). Then, for perturbations AA, AF, AG in Pa with

1
(4.5) 6 < 30=4+ 8(Mx + Nx)’

the equation (1.2) has a USNDS solution S, also stabilizing for (A, F), and such that

K(X)IIXII(4.6) IIx-sll 1-3(Mx + Nx)a’

where Kn(X) is given by (2.4).
Proof Again for clarity, KB, M, and N will be used in place of KB(X), Mx, and

Nx, respectively, in the proof. Assume 6 satisfies (4.5), and consider AA, AF, AG in
Pa. Observe that

[IAAI[ + IIFII IlXll--< (llall / IIFII Ilxll)a
1 1

<--(IIAII / [IFII Ilxll)
4M 411a7’I---"

Thus, by Lemma 3.1, there is a unique strong solution S X + AX to (1.2). To establish
(4.6), first subtract (1.1) from (1.2) to obtain

AX -xl(AG + AATX + XAA-XAFX)
n’((AA FX)TX+X(aA FX))

+ flI(X(F+F)X).
From the definition of K and , we Can bound the norm of the first term on the
right-hand side by K IlXll. The second and third terms are easily bounded to produee

IIxll KI[XI[6 +211n’ll(llJ]] + ]]FII Ilxll)a IIxll
+ Iln’l[ Ell(1 + a) IIxll 2.

With a, b, c defined as in (4.2), this inequality becomes

(4.7) allXll-2bllXll+=a IXll +c---cO.
a

With assumption (4.5), the condition of Lemma 4.1 is satisfied and therefore b- ac > 0.
It follows from (4.7) that either

b-b-ac
(4.8) IIxll r,(a)=

or

b +x/b2- ac
(4.9) IIAXII >_-- r2(6)

a

The inequality (4.8) will provide the desired bound. Now we claim that (4.9) cannot
hold for any perturbation in Pa and 6 satisfying (4.5). First, observe that the strong
solution S is a continuous function over Pa, since it is continuous over D (Theorem
3.5) and Pa c D from (4.5). Therefore, the real-valued function

v(AA, AF, AG)= IIS(A+AA, F+AF, G+AG)-S(A, F, G)[[ [[S-X[[
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is continuous over P, and since P is connected, the set ,(P) must also be connected
in R, that is, it must be an interval. If (4.9) held for some perturbation in P, then this
interval would be contained in r2(6 ), +oo), because rl () < r2(6), and no value between
these two numbers is in ,(P ). This is obviously impossible, since r2(6) > 0 and 0 v(P
(0 (0, 0, 0)).

Therefore, under assumption (4.5), (4.8) holds. To obtain the bound (4.6), it is
sufficient to show that

(4.10) r1(6)_--<
1-3(M+N)6

Since ax2-2bx + c <0 if and only if r(6) <x < r2(6), inequality (4.10) will in turn be
satisfied if

+c<0.
1-3(M+N)gJ

-2b
1-3(M+N)6

Now, 1-3(M+ N)6 SO when (4.5) holds; hence the sign of the left-hand side
expression above will be the same as that of

a(K, llx , )2 2bK llX ,(1 3(M + N)6 + c(1 3(M + N)t)2

K [Ix II[(a / 6)N6-(1-2M6)(1-3(M+ N)6)

+(1-3(M+N)6)2]

gllXll (-2)N-M+6(M+N) --+
2

By virtue of (4.5), 6(M + N)3 < 1 and 6 < 1/2, which guarantees that

(8-2)N-M+6(M+N)8 + <--M+--+ <0.
2 2 2 2

Thus, (4.10) holds under assumption (4.5), and (4.6) follows.
Finally, the criteria of Lemma 3.1 are used to establish the stability results. The

solution X is stabilizing for (A, F). Observe that a common lower bound for the
right-hand sides of both (3.2) and (3.3) is 1/(4(1/)11FII I1  ’11), Using the bound
(4.6) a sufficient condition for (3.2) and (3.3) to hold appears to be

or equivalently,

gllxll
<

1

1-3(M+ N)6 4(1 +  )IIFII Ila ’ll

4N(1 +)_-< 1-3(M+ N)6.

Since 6 < 1/4, this will in turn be true when

1
5N6<=l-3(M+N)8, that is, 3<_-

3M+gN

This last condition is clearly implied by (4.5), whence S is stabilizing for (A, F) and
(A + AA, F + AF). [3

The bound in the previous theorem has the inconvenience of being formulated in
terms ofthe solution X to (1.1), which in practice is never known exactly. This drawback
is removed in the next two results, which offer bounds involving only known quantities,
and thus actually computable, that is, checkable quantities from the available data.
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Two different situations are considered. In the first scenario, only approximations
A+AAo, F+AFo, G+AGo of the data A, F, G are known, along with the (exact)
solution So of the corresponding problem (1.2). This is the case in particular when the
data is measured with a nonnegligible level of inaccuracy. In the second scenario, the
data is known exactly, but only an approximation So of X is available, which solves
a nearby problem (1.2) whose parameters are unknown. The limitations of computations
in finite arithmetic, for instance, can be modeled this way.

THEOREM 4.3. Assume that only approximate values A+ AAo, F + AFo, G + AGo
oftheparameters A, F, G of 1.1 are known. Assume also that the corresponding equation
(1.2) has a USNDS solution So, which is known exactly. Finally, let Kn(So), Mso, and

Nso be the counterparts of Kn(X), Mx, and Nx, when A+AAo, F+AFo, G+AGo,
and So replace A, F, G, and S respectively, in (2.3), (2.4), and (4.1).

If the perturbation (AAo, AFo, AGo) is in P with

1
(4.11) 6 < (1-4+ 8(Mso + Nso)
then the equation (1.1) has a USNDS solution X, such that

G(So)llSo[l 
(4.12) IIx- Soil =<

1-3 (]/So +
Proof This result is a direct consequence of Theorem 4.2, applied to equation

(1.2) (whose USNDS solution is So), while considering (1.1) as a nearby problem,
corresponding to a perturbation (-AAo, -AFo, -AGo) of the parameters of (1.2).

THEOREM 4.4. Assume that the parameters A, F, G of (1.1) are known exactly, but
that X cannot be computed exactly. Instead, the exact solution So of a nearby problem
(1.2) or some parameters A+ AAo, F+ AFo, G+ AGo) is available. Assume that So is

symmetric, nonnegative definite, and stabilizing for the pair (A, F).
If the perturbation AAo AFo, A Go) is in P6 with

1
(4.13) 6 < 82=4(Mso+ Nso)
then the matrix So is the USNDS solution to (1.2). Moreover, (1.1) has a USNDS solution
X such that

K (So) IlSolI (4.14) x Soil--< 1 -2Nso8
where Ku(So), Mso, and Nso are defined as in (2.4) and (4.1), except for So
replacing X.

Proof. Assume (4.13). By the same argument as in the beginning of the proof of
Theorem 4.2 (with So replacing X), the solution So to (1.2) can be shown to be
stabilizing for the pair (A+ AAo, F+AFo), whence it is the USNDS solution to (1.2).
Also, since (A, F) is stabilizable, (1.1) has a unique strong solution X.

Let AX So-X. In order to derive (4.14), subtract the two equations

(A + AAo) TSo + So(A + AAo) So(F + AFo)So + G + AGo 0

and

AT(so- AX)+ (So- AX)A-(So- AX)F(So- AX)+ G 0

to obtain
-1 -’(AAorSo +SoAAo+AGo SoAFoSo).AX -f so AXFAX) fl So
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This leads to [IAXII-<_ IlflS-o[I [lUll Ilaxll=+ g(So)llSoll, which, by an argument similar
to that used in Theorem 4.2, implies that

IIAXII 1-v/1-4Nso
6 2K(So)llSoll6

-1211FII IIX so 1 +v/1- 4Nso6
Finally, noting that v/l-x> 1-x for 0<x < 1, we obtain exactly (4.14).

--1Now, A-FX will be stable if 2tl soll IIFII Ilaxll <1 (from Lemma 3.1), and a
fortiori if

2No6 <1,
 -2S oa

using (4.14), and this last inequality does hold for satisfying (4.13).
The last two theorems provide computable bounds for the sensitivity ofthe USNDS

solution to (1.1), involving only an available approximation to this solution. These
bounds depend uniformly on the magnitude of data perturbation and are valid in
a limited range specified by conditions (4.11) or (4.13). This domain of validity shrinks
and the error growth factor increases when KB or I1 - 11 become large, which is
perfectly consistent with the idea that very small perturbations can drastically affect
the solution when the equation becomes ill-conditioned. In the ill-conditioned case,
only very accurate data and a very good model will make So a meaningful approximation
of X. In most applications, 6 can be identified as a worst-case estimate of the level of
inaccuracy corrupting the modeling-solving process. Such an estimate may not be
available for the algorithmic part, in which case specific results like [8] can be used
as an alternative.

In 7, this result will be applied to the Newton iterative refinement process. It
will be shown that, inside the domain of validity (perturbation-wise), this process is
guaranteed to decrease the error after the first step and converge faster than a geometric
sequence whose common ratio is proportional to 6. But first, the sensitivity of the ARE
condition estimate KB is analyzed.

5. Bounding the variation of Ks(X). This section focuses on the sensitivity of the
condition estimate KB(X) to perturbations of the parameters of (1.1). Bounds are
derived for the error occurring when the exact solution X to (1.1) is replaced by an
approximation S, typically solving a nearby problem (1.2). Since any computed solution
is only an approximation of X, these results are of practical importance.. Indeed, KB(X)
can only be estimated through its counterparts in terms of S and A, F, G or A + AA,
F + AF, G+ AG, depending on which parameters are known.

The equations (1.1) and (1.2) are assumed to have USNDS solutions X and S,
respectively. The following quantities will be compared:

(a) Kn(X) (expressed at X with parameters A, F, G, as defined in (2.4)),
(b) K(S) (expressed at S with parameters A, F, G, and with S replacing X in

(2.4)),
(c) Kn(S), (expressed at S with parameters A+AA, F+AF, G+AG; these

parameters and S replacing A, F, G, and X, respectively, in (2.4) and related definitions).
A perturbation analysis generalizing a result in [9] (Lemma 1) is used here. All the
needed bounds can be obtained as particular cases of the following theorem on linear
operators in L.

THEOREM 5.1. Let tO and be two operators in L, and suppose f is invertible.
Define q f-lo (R), where "o" is the composition of operators, and consider linear
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perturbations AI, A(R) of n, 6). By linear, we mean that An L and A(R) L. If
1

then a+aa is invertible, and the norm of * + a*= (a+aa)- (o+ao) satisfies

1 + Ila-lll IIall
--< I1’ / A*II <-

1 -Ila-ll IIAall
Proof. That the operator n + An is invertible when An satisfies (5.1) follows from

[6, Lemma VII.6.1, p. 584].
Let Z be a matrix of unit norm, and V, W, E in R be defined as

V n-o O(Z), W= (n + An)-o (o + A(R))(z)., and E V- W.

From the definition of V and W, it follows that

(n+An)(w)=((R)+A(R))(z) and Y(W+E)=(R)(Z),

and by subtracting,

whereupon

f(E) An(W) AO(Z),

IIEII IIn-’ll(llAall Wll + IIAOII).
Now, wll- E VII Wll + E II, and therefore

(5.3) wll(1 -Ila-’ll IIAall)=< VII / Ila-’ll I1oll
and

(5.4) vii- Ila-’ll IIAOII--< Wll(l+ Ila-’ll IIAall).
Considering the first inequality (5.3) and recalling that VII _<-1]*1111Z]] I1"11, yields

wll( -Ila-lll IIall)=< II’Vll / Ila-lll Ilaoll.
Finally, taking the supremum of the left-hand side over matrices Z of unit norm leads
to

II’I’ / A’IzII (1 -Ila-’ll IIall)=< I1’11 / Ila-’ IlzXOll,
which is the second inequality of (5.2). The first one is derived similarly from the
inequality (5.4).

A first application of this theorem is bounding the ratio (KB (X)llx II)! (g(s)II s II)
in terms of IIx-all.

THEOREM 5.2. Suppose (1.1) and (1.2) have USNDS solutionsXand S, respectively,
and let AX X- S. If

1
(5.5) IIxll< 21lFII
then K(X)IIXII and K(S)IlSll are related by

K(S)IISII-2MsIIAXII-[IF[I IIfl[[ IIAXII =
(5.6)

1 / 211FII IlaXll Ila’ll <= g,,(x)llxll

and

(5.7)
K,,(S)IlSll / 2MslIAXII / IIFII IlaZ’ll IIAXIIK,,(X)IIXII <=
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Proof Apply Theorem 5.1 three times to bound the variation of I1:11], IIo11,
IlHx successively. For these three applications, l-I and A are, respectively, set to

and All fZx fs.

Since (fx -fs)(Z) (S-X)FZ + ZF(S-X), it follows that

This inequality and (5.5) guarantee that the requirement (5.1) of Theorem 5.1 is fulfilled
for 11 =l)s. Also, the expressions in the denominators of (5.6)-(5.7) directly follow
from the denominator expressions in (5.2). As for the instances of (R) and A(R), we take
successively:

(1) (R)(Z)=Z, A(R)=0.

(2) (R)(Z)=ZrS+SZ, A(R)(Z)=ZT(X-S)+(X-S)Z
(3) o(z)-- szs, AO(Z)- XZX-SZS (IIAOII----<211Sll IIX-SlI+ IIX- SlI=).

In each case, Theorem 5.1 produces lower and upper bounds for Ila;,lll, Iio11, and
IIn,, II, respectively. Multiplying these inequalities by Nil, Ilell, and IIFII, respectively,
and adding them together yields the desired bounds (5.6)-(5.7).

The next theorem relates KB(S) to KB(S).
THEOREM 5.3. Let X and S be as in Theorem 5.2, and assume the perturbation

(AA, AF, AG) is in P or some 6>0). Let Ms be defined as in (4.1) with S replacing
x. if
(5.8) 2Ms6 < 1,

then the following inequalities hold"

(5.9)
K(S)(1- 6) </(S) <

K(S)(1 + 6)
1 + 2Ms6 1 2Ms6

Proof Recall the definition of the operator fis"
fis(Z) [a + AA-(F+ AF)S]rZ + z[a + AA-(F+ AF)S].

Since (s -fs)(Z) (AA- AFS)rZ + Z(AA- zXFS), we have

Ilfis- sll =< 2([IAI[ + []FII Ilsll)6,
Assuming that 2Ms6 < 1, Theorem 5.1 can be applied with s, A s-s and,
successively"

() :, A:0.
(2) (R)(Z) ZrS + SZ, AO O.
(3) O(Z)= SZS, AO=O.

The first instance yields

(5.10)
1 + 2Ms6 lift <--

1 2M56"
Then combining (5.10) with the output of the other two instances (in a similar way as
in the proof of Theorem 5.2) produces

C C
<-_K(S) <

1 + 2Ms6 1 2Ms6’
where

C [In,ill IIG+ AG[[ + IlOsll [[A + AAI[ + IlrIll IIF+ AFII.
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This leads to (5.9), since (1 6) [IGII IIG+ AG[I (1 + )IIGII. Similar inequalities
hold for IIA /  AII and IIF /  FII.

6. Numerical examples. All computations were done in double precision Fortran
77 on a Sun 3/50 with relative machine precision e 1.4 x 10-17.

Example 1. Consider the one-dimensional ARE

(6.1) fx2-2ax-g--O, withf>0 and g>0.

This equation always has a unique positive definite solution given by

a +x/a2 +fg g
(6.2) x

f /a+fg-a
which is stabilizing, since the closed-loop matrix is

a -fx -x/a 2 +fg < O.

Define s to be fx- a. We then have x (a + s)/f, and also

1 x x2

")-1" 2s’ s’ 2s

This leads to

=-+ kB=l+ n=- 1+ 1+m
2 2s s 2

Now consider perturbations Aa, Af, Ag of the parameters a, f, g, constrained to

(6.3) IAal--<
where 6 is a positive number. Since the solution x of (6.1) is an increasing function
of a and g (this is immediate when looking at the corresponding partial derivatives),
and a decreasing function off (cf. (6.2)), the maximum variation of x for perturbations
constrained by (6.3) will occur at

Aa= elal,, Ag= eg6, Af =-ef6,
where e is +1 or -1. These two sets of perturbations define two perturbed equations
whose nonnegative solutions (if any) are denoted by x+ (e + 1) and x_ (e -1). The
largest variation of x for the class of perturbations (6.3) is therefore given by

(6.4) ]AX]max max (Ix x+[, Ix x_l).

In order to test the bound (4.6), a variety of parameter sets (a,f, g) was selected,
and, for each set, the parameter 6o given by (4.5) and the parameters KB, M, N were
computed. We then considered values of 6 (cf. (6.3)) ranging from 10-36o up to 1026o,
and computed x+ and x_ as

a + alal + ,/(a + ala[) + 1 62)fg a 6[a + /(a 61al) + 1 6z).fg
x+= (1- 6)f

x_=
(1 + 6)/

From this data, for a given set a, f, g and for each 6, the maximum variation of x as
given by (6.4) could be compared with the value taken by the right-hand expression
in the bound (4.6). More precisely, we tested the equivalent of (4.6) in relative terms
and thus compared Axr := (I AXlmax/X with B 6 := Ks6/ 1 3 M + N)6 ). The outcome
of this experiment is displayed in Table 6.1. Each pair of columns corresponds to a
certain ratio 6/6o. For the largest values of 6, the numbers f and g sometimes become
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TABLE 6.1

10-36o 6 10-26o 6 10-16o

a, f g Axr B(6) A B(6) A B(6)

0.1, 2, 2 1.1 10-4 1.1 10-4 1.1 10-3 1.1 10-3 1.1 10-2 1.1 10-2

-0.1, 2, 2 1.1 10-4 1.1 10-4 1.2 x 10-3 1.2 10-3 1.2 10-2 1.2 10-2

1.0, 2, 2 0.9 10-4 0.9 10-4 0.9 10-3 0.9 10-3 0.9 10-2 0.9 10-2

-1.0, 2, 2 1.8 10-4 1.8 10-4 1.8 10-3 1.8 10-3 1.8 10-2 1.8 10-2

100, 2, 2 0.7 10-4 0.7 10-4 0.7 x 10-3 0.7 10-3 0.7 x 10-2 0.7 10-2

-100, 2, 2 4.0 10-4 4.0 10-4 4.0 10-3 4.0 10-3 4.0 10-2 4.1 10-2

10, 2, 20 0.7 10-4 0.7 10-4 0.7 x 10-3 0.7 10-3 0.7 10-2 0.8 10-2

1, 50, 2 1.0 10-4 1.0 10-4 1.0 10-3 1.0 10-3 1.0 10-2 1.0 10-2

20, 10, 0.1 0.7 x 10-4 0.7 10-4 0.7 10-3 0.7 10-3 0.7 10-2 0.7 10-2

6 60 6 106o 6 10060

a,f,g Axr B(6) AX S(6) AX B(6)

0.1, 2, 2 1.1 10- 1.9 10- ** ** ** **
-0.1, 2, 2 1.2 10 2.1 10- ** ** ** **
1.0, 2, 2 0.9 10- 1.6 x 10 1.9 ** ** **
-1.0, 2, 2 1.9 10-1 3.1 10- 1.2 ** ** **
100, 2, 2 0.7 10-1 1.3 10-1 1.1 ** 2.8 **
-100, 2, 2 4.9 10-1 6.6 10-1 105 ** 105 **
10, 2, 20 0.8 10-1 1.4 10-1 1.2 ** 2.4 **
1, 50, 2 1.0 x 10-1 1.8 10-1 7.9 ** ** **

20, 10, 0.1 0.7 x 10-1 1.3 10-1 1.0 ** 2.8 **

negative, in which case the perturbed equation no longer falls in the category (6.1).
In such cases, double asterisks appear in place of the maximum relative variation of
x. We also put double asterisks in the B(6) column whenever this bound became a
negative number.

These results indicate that the bound (4.6) is tight for relative magnitudes of
perturbation 6 up to go, with a noticeable difference only when 6 go. Moreover, the
threshold go coincides approximately with the point where the relative variation of X
(i.e., IIAXII/IIX[I) starts exceeding 1. Since we are typically interested in keeping this
relative variation small, the domain of validity of the bound (4.6), as prescribed by
go, does not seem limiting at all.

Example 2. The applications and performance of Theorem 4.4 are illustrated on
the following problem of order 3. Consider, for A 1.0, 0.1, 0.01, and 0.001 successively,
the triple (A, F, I) where

(6.5) Aa= 1.0 0.5 Fa= 0.5 1.0

-A 0.1 0.0 0.0

For these values of A, the pairs (Aa, F) are stabilizable. Let Xx be the USNDS solution
to

(6.6) A X +XAx XaFX, + I O,

and denote by S an approximation of X as computed by a Schur solver.
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For each value of h as specified above, estimates KB(A), M(A), N(A), and 62(h)
of KB(SA), Ms, Ns, and 62 from (4.13) are obtained as follows (cf. [10, Thm. 2.4])"

(1) Form the closed-loop matrix KA- AA- FASA.
A HA + HAIA + ! 0 and use the identity [[12 -1(2) Compute the solution

[[HA to estimate
(3) Compute JA solving K

to compute IIrIs II.
(4) Using the inequality IlOs <- (IIH IlL II) 1/=, estimate IlOs from above with

([1 HA IlL II)
(5) Using (2)-(4), (.2.4), and (4.1),.compute Kn(h), M(A), N(A), and 62(). Note

that Kn(SA) <= K(X), Ns <= N(h), and 2(h) -< 62 of (4.13).
Provided that the computed solution actually solves a problem within 62(A) of

the problem (6.6), Theorem 4.4 guarantees that the relative difference between the
exact solution XA and SA is at most

u(;)
1 2/Q(A)6"2(A)"

The magnitudes of 62(/\) and u(A) appear in Table 6.2. Note that the safety domain

P&(A shrinks as A decreases. This is expected since the pair (AA, FA) then becomes
nearly unstabilizable, thus making the ARE increasingly sensitive. For very ill-condi-
tioned problems, 62(A will be so small that the stability of the algorithm will no longer
guarantee that the ARE solved by SA remains in P&(A. The accuracy guarantee of
(4.14) will then be lost.

Finally, Theorem 4.4 can be applied to bound the variation ASA of SA for
perturbations of (AA, FA, 1) in P with

(6.7) 6 < 6o(X)
4+ 8(/(A) + )Q(A))"

We then have

K(A)II& II
1 3(hTl(A) + )Q(A))6

TABLE 6.2

1.0 1.6 10-2 2.8 10-2 6.3
0.1 1.4 10-3 1.0 10-2 5.4 101
0.01 1.2 10-5 8.1 10-4 3.2 103
0.001 1.0 10-7 7.2 x 10-5 3.0 105

TABLE 6.3

1.0 1.0 10-2 6.7 10-3 7.7 10-3 5.5 10-3 6.2 10-2

0.1 5.0 x 10-4 3.3 x 10-4 6.9 10-4 1.4 x 10-2 2.2 x 10-2

0.01 5.0 10-6 3.3 x 10-6 6.0 x 10-6 1.0 10-2 1.4 x 10-2

0.001 5.0 x 10-8 3.3 x 10-8 4.9 x 10-8 1.0 10-2 1.4 x 10-2
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As an illustration, consider the perturbed problems obtained by replacing A in (6.5)
by A/6A with 6A chosen so that (6.7) is satisfied for the corresponding 6-

(16A[/min ([[All, IlEal[). The USNDS solution S /ASh to the perturbed problem is
computed, and IIAS is compared to ,(A, 6) in Table 6.3. The results in Table 6.3
indicate that the bound (4.6) is realistic within the region Po()"

7. Application to the Newton refinement scheme. To conclude this paper, the error
bounds derived in 4 are applied to the Newton method for refining the solution of
an ARE. Specifically, a region and a speed of convergence are computed for this
scheme in terms of the magnitude of data perturbation 6.

First, recall the fundamental result in [9] concerning the convergence properties
of the Newton refinement scheme.

THEOREM 7.1. Assume (1.1) has a USNDS solution X, and let So be an "initial
guess" for X. Furthermore, let $1 be the refined solution after one iteration of the Newton
refinement scheme started at So, i.e., the solution of

(A FSo) rS1 + SI(A FSo) -SoFSo- G.

(7.1) [IX- Soil-<- r
3 F D.,1

then

(7.2) IIx- s, [IIF[[ IlaL Ilx- Sol[]llx- Soil.
Note that the Newton iterations are always converging to the exact solution X

provided that the initial guess So is stabilizing for the pair (A, F) (see 11]). Neverthe-
less, without condition (7.1), the error may be drastically increased during the first
iteration before decreasing to zero. When (7.1) holds, however, the growth factor
Po ]IF[I [11o[I IlX-Soll is less than 1, and therefore S is guaranteed to be a better
estimate of X than So. Note that

(7.3) po -< k
I]F[I II:’l[ IIX Soil (<1).

1-211FII IIl]ll IIx-Soil
More generally, the errors after and + 1 steps are related by

]]x-si/l]l <=pi[[x-sill,

where

F a X s
pi<--l_2[[F[[ [[all jiM_Sill

<1.

Since the error [IX- Sill is decreasing with i, all the Pi are less than k, and thus the
error decreases to zero at least as fast as the sequence {k"}nel.

In the remainder of this section, the bound of Theorem 4.2 is used to express the
result of Theorem 7.1 directly in terms of 6.

THEOREM 7.2. With the notation of Theorems 4.2 and 7.1, and if

(7.4)
4+ 8(Mx + Nx)’
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then

IIx- s, R()IIX- Soil,

where

Nx6(7.5) R(g)= and R(g) < l.
1 -(3Mx + 5Nx)

Proof The assumption (7.4) ensures that Theorem 4.2 applies and (4.6) holds.
But (7.4) also implies that 3Nxg < 1-3(Mx + Nx)g, or equivalently that

g(x)llxll6
<

1

1 3(Mx + Nx g 3 F K I1"
This last result, combined with (4.6), ensures that condition (7.1) of Theorem 7.1 is
satisfied, and thus

F K x SoIIx- s, II-<- 1-211FII I177 IIx- Soil IIx- Soil.

But using (4.6) again yields

IIFII I1’1111x-Soil
1-2IIFII Ill,ill IIx-Soil

Nxg

1-3(Mx + Nx)g
Nxg )1-2

1-3(Mx + Nx)g

1 -(3Mx + 5Nx)g
R(g).

Finally, R(g) < 1 follows trivially from (7.4). lq

Note that the bounds of Theorems 4.3 and 4.4 could have been used instead in
order to produce counterparts of (7.4)-(7.5) depending only on computable quantities.
Theorem 7.2 has an important implication. That is, in the entire range of perturbations
for which Theorem 4.2 applies, the Newton refinement iterations started at the computed
solution So are guaranteed not only to converge to X, but also to decrease the error
after the first step and finally to converge faster than a geometric sequence of common
ratio R (g) < 1. Therefore, the threshold go in (4.5) not only makes the error magnitude
IIx- sII tractable in terms of g, but it also ensures the fast convergence of the Newton
refinement process when started at the solution S of any problem (1.2) with perturba-
tions in Po. In other words, go defines a safety region (perturbation-wise), within
which accurate approximations of X are guaranteed when the ARE is solved with a
stable algorithm followed by a Newton iterative refinement.

Conclusions. The computation of the USNDS solution to the symmetric ARE
(1.1) was shown to be a well-posed problem, in the sense that if such a solution exists
for a particular set of parameters (A, F, G), then it exists in an open neighborhood
of (A, F, G) and depends continuously on the parameters in this neighborhood.
Computable estimates for the sensitivity of the USNDS solution to parameter perturba-
tion were also derived. They indicate what accuracy can at least be expected for the
computed solution provided that the magnitude of the parameter variations does not
exceed some explicit threshold. Note that "parameter variations" encompass the error
occurring at the identification level, as well as the perturbation introduced during the
computation.
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LYAPUNOV FUNCTIONS AND ALMOST SURE EXPONENTIAL
STABILITY OF STOCHASTIC DIFFERENTIAL EQUATIONS BASED ON

SEMIMARTINGALES WITH SPATIAL PARAMETERS*
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Abstract. The objective of this paper is to use the Lyapunov function to study the almost sure exponential
stability of the stochastic differential equation

q, x + F(os, ds),

where F(x, t) is a continuous C-semimartingale with spatial parameter x. This equation includes many
important stochastic systems, for example, the classical It6 equation. More importantly, the result can be
employed to study the bound of the Lyapunov exponent of stochastic flows.

Key words. Lyapunov function, almost sure exponential stability, stochastic differential equation,
semimartingale, exponential martingale inequality
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1. Introduction. Numerous problems in science and engineering lead to the study
of the exponential stability of stochastic systems. Has’minskii [8] gave a necessary and
sufficient criterion for almost sure exponential stability of the linear It6 equation which
opened a new chapter in stochastic stability theory. In fact, there exists an extensive
literature in this area, in particular, we mention Arnold [1], Arnold and Kliemann [2],
Arnold, Oeljeklaus, and Pardoux [3], Caverhill [4], Chappell [5], Crauel [6], and
Curtain [7]. However, it seems there is almost no work being done by using the
Lyapunov function to study the almost sure exponential stability of stochastic systems,
although a few papers exist, for instance, Ladde [12], which employ the Lyapunov
function to deal with the moment exponential stability.

The objective of this paper is to study the almost sure exponential stability of the
stochastic differential equation

(1.1) qg, x + F(qs, ds)

via the Lyapunov function, where F is a continuous C-semimartingale with spatial
parameter x. We would like to mention that (1.1) includes many important stochastic
systems. For instance, if we let

F(x, t) f(x, s) dNs + b(x, s) dAs, >-_ O,

where N is an m-dimensional continuous local martingale and A a continuous non-
decreasing adapted process, then (1.1) reduces to the familiar stochastic differential

* Received by the editors June 26, 1989; accepted for publication (in revised form) January 14, 1990.
? Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom. This research

was supported by grant GR/F51241 of the Science and Engineering Research Council.
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equation with respect to semimartingales

(1.2) p, x + f(os, s) dNs + b(o, s) dA,

If we let

F(x, t) f(x, s) dW + b(x, s) ds, >-_ O,

where W is an m-dimensional Wiener process, then (1.1) reduces to the classical It6
equation

(1.3) 0, x+ f(,s) dW,+ b(q,s) ds, t>-O.

Hence, as a direct application, we get a sufficient criterion for almost sure exponential
stability of (1.2) and (1.3). More importantly, our result can also be employed to study
the Lyapunov exponent of stochastic flows. In fact, given a forward stochastic flow of
homomorphisms os.t(x), 0

_
s -< <, x R" under some suitable conditions, we can

find a semimartingale F(x, t) with spatial parameter x such that the flow is governed
by It6’s stochastic differential equation based on F(x, t), i.e.,

(1.4) q,.t(x)=x+ F(,(x),dr) a.s. on0<_-s-t<ee, xeR.
Therefore, we can use the Lyapunov function to estimate the Lyapunov exponent of
the stochastic flow. In addition, some examples are worked out to illustrate our results.

2. M| eslt. Let (1, , {’}eo, P) be a complete probability space with the
right continuous filtration {} containing all P-null sets of : Let F(x, t)=
(F(x, t),. F(x, t)) r, (x, t)e R"xR+, be a continuous C-semimartingale with
spatial parameters, i.e., F(x, t) is a continuous semimartingale for any x e R" and is
continuous in x for any almost surely. Let F(x, t)=M(x, t)+B(x, t) be the
decomposition such that M(x, t) is a continuous local martingale and B(x, t) is a
continuous process of bounded variation. Set

’(x, y, t (M’(x, ), M(y, t), - i,j - n.

Then there exists a continuous strictly increasing process A with Ao 0 such that all
A(x, y, t) and B(x, t) are absolutely continuous with respect to A almost surely for
any x, y R. Therefore, there exist predictable processes a(x, y, t) and b(x, t) with
parameters x, y such that

A(x, y, t) a(x, y, s) dA,

B(x, )= b(x, s) A.

Set a(x, y, t)= (a(x, y, t)), and b(x, t)= (b(x, t), b(x, t)) The triple
(a(x, y, t), b(x, t), A) is called the characteristic of F(x, t) (cf. Kunita [9]).

It is well known (cf. Kunita [9]) that if is an n-dimensional predictable process
satisfying

a(, , s) dA < m a.s.,
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for all t R+, i--1,..., n, then ItS’s stochastic integral of p, based on the kernel
F(x, dt) of the form

ot
F(qs, ds)

is well defined. Kunita [9] also discussed the existence and uniqueness of the solution
to the stochastic differential equation based on F(x, t) of the type

(2.1) p, x + F(ps, ds).

Throughout this paper we assume that the equation satisfies the condition of the
existence and uniqueness of the solution.

Let C2(R n) denote the family of all functions V" R -+ R with continuous second
partial derivatives. Let (Rx R/) be the family of all predictable processes g(x, t),

_-> 0 with parameter x R ". Define the operator L" C2(R n) (R" x R+) by

1 02
(2.2) LV(x):=

O
V(x)bi(x t)+ V(x)a(x,x, t).

OXi - OX OXji,j=

THEOREM 2.1. Assume there exist a function V C2(R"), a polynomial Ix(t) >= O)
with positive coefficients, and positive constants p, A, a, , r such that

(1) Ixl’----< V(x), x Rn
(2) LV(x)<--hV(x)+z(t) e-;’’ (x, t)RR+

o o
(3) 2 V(x) V(x)a(x,x, t)<=ix(t) e-’atV(x), (x, t)RnxR+;

go= Ox2

(4) At at + almost surely for all >- 0 and lim inf,++ At/t >= o" almost surely.
Then the solution of (2.1) satisfies

1
(2.3) lim sup-; log Iqtl -Act//9 a.s.

t-->

Proof. By It6’s formula and assumption (2),

(2.4)

ehA’v(,) V(x)q- ehAs[AV(r.ps)-F LV(p,)] dA

Ioat- e aA. V(<.ps)Mi(qs, as)
i=10Xi

<= V(x)+ eaA(s) e-+’a dA+ eaA
0 V(q)Mg(<#s ds).

i= 8Xi

By condition (4) we have

(2.5)

Therefore,

(2.6)

ehA -has ehl s>=O.

eXA’v(qgt) <- V(x)+ e’t3 Ix(s) dA + e’A"
0

Mi
i=1 x/V((s) ((gs, ds).
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Thanks to the exponential martingale inequality, we have

P w’ sup es
Ot"r i=l Xi V((s)Mi(s’ ds)_

e(2.7)
2 ,=

V(,)
Ox

for any positive constants y, 3, and z. Let 0 > 1 be arbitrary and take

y O-(a+, 6 0(a++ log k, z=0 (k=l,2,...)

in (2.7), where d is chosen as d greater then or equal to the degree of (. ). Applying
the Borel-Cantelli lemma we deduce that there exists an integer ko(w) for almost sure
w such that

hAs

10_(a+, e2XA, 0
V()a(, ,, s) dA0("++ log + ,,=

v( ox
for all ON tNO, kko. By assumption (3) and inequality (2.5),

o v(,a(,, , s e"-"s V(s.

it then follows that

eA 0 V(,)M(, ds) 0(a++l log k
i=1

+2
for all 0N N 0, k ko almost surely. Putting this into (2.6) we arrive at

e,V()NV(x)+O(e++logk+e (s) dA

1

for all 0 N N 0, k ko almost surely. In view of Theorem 1 of Mao [10] we get

e"’V(,)N[V(x)+ 0("++ log k+ e(O)Aok] exp {0-(a+ e(O)Aok}
NC(l+O(a++logk), ONtNO, kko, a.s.,

where C is a positive constant independent of k. Consequently,

C(1 + 0(a++ log k)e’V(P)
0(e+(_ O-NtNO, kko a.s.,a+ log log t- (log (k- 1) +log log 0)’

which implies

e’’V(’)
N COe+ a.s.lim sup

log log

Letting 0 tend to 1 we have

-<C a.s.(2.10) lim,_,sup te+ log log t-
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Finally,

1 1
lim sup - log I,1-<_lim sup log V(qt)

1 I -Aat d+l etatv(qt) ]-lim sup -log e log log a+l
t-, log log

A
lim inf

At <-_-hcr/p a.s.,
p t-

which is the desired result and the proof is complete.
THEOREM 2.2. Assume there exist a function V C2(R n) and positive constants p,

h,/z, p, a,/3, cr such that
(1) [xl p <= V(x), x R";
(2) LV(x) <- -A V(x) + p. e-xt+’t, (x, t) R" x R+

0 0 ij Acet+pt(3) V(x) V(x)a (x, x, t) <= tx e- V(x), (x, t) R R+,
i,j= OXj

(4) At <= at + almost surely for all >-_ 0 and lim inft_, At >= cr almost surely.
Then the solution of (2.1) satisfies

1
(2.11) limsup-loglqt[<_-(ho’-p)/p a.s.

t--

Proof By It6’s formula and conditions (2) and (4),

Io’ Io(2.12) eaA’v(qt)<--_ V(x)+ txe
a+ps dAs+ exA

0

i=1 X/ V(qs)M’(qs, ds).

Let 0 > 1 arbitrarily. Taking

y= k- e-p’ 6 kO e" log k, r=k (k=l 2,...)
in (2.7) and applying the Borel-Cantelli lemma, we deduce that there exists an integer
ko(o) for almost sure w f such that

eXAs 0___ V(ps)Mi(q ds) <- kO ek log k +1 ek_ e_k es eXAsV(qs) dA
0 i=10Xi 2

for all 0_<--t---k, k >= ko almost surely. Hence we get from (2.12) that

;o’eXA’v(qt)<= V(x)+kOe’ log k+ tze+ dA
(2.13)

1

+2 eatak-1 e-ok eps eXasv(qgs) dA

for all 0 =< =< k, k >= ko almost surely, which implies

(2.14) e’a,V(qt)<=C(l+kOe’’ logk), O<=t<=k, k>=ko a.s.,

where C is a positive constant. Consequently,

e’A’V(qt)
<

C(1 + kO e’k log k)
k-l=<t-k, k>--ko a.s.,eP’t log ek-)(k-- 1) log (k- 1)’

which implies immediately that

(2 15) lim sup
e’A’v((’Pt)

--< C e’ a.s.
t e’tt log
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and then it follows that

1
lim sup -; log Iqtl _<- -(Atr- p)/p a.s.

The proof is complete.
The following theorem combines Theorems 2.1 and 2.2.
THEOREM 2.3. Assume there exist a function V 6 C2(Rn), a polynomial tx( t) >-O)

with positive coefficients, positive constants p, A, a, fl, tr, and a nonnegative constant p
such that

(1) Ixl p <- V(x), x Rn;
(2) LV(x) <-_ -A V(x) + l(t) e-at+pt, (x, t) g x R+

(3) V(x) 0__ V(x)aiJ(x, x, t) <-_ tx(t) e-t+p V(x), (x, t) R R+
i,j= 10Xi OXj

(4) At <- at + fl almost surely for all >= 0 and lim inft_oo At >- r almost surely.
Then the solution of (2.1) satisfies

1
lim sup- log [q,l -< -(Ao-- p)/p a.s.

t---

Proof For any e > 0, there exists a constant C such that

( t) e-Aa+pt C e-xat+(o+e)t.

Hence, by Theorem 2.2,

1
lim sup - log Io,[ _-< -(Atr- p e)/p.

The conclusion follows since e is arbitrary.

3. Important corollaries. First we have the following useful corollary, which fol-
lows directly from Theorem 2.3.

COROLLARY 3.1. Assume there exist a positive defined n n matrix Q, a polynomial
I(t)(t >-0) with positive coefficients, positive constants A, a, , or, and a nonnegative
constant p such that

(1) xT(Q+QT")b(x, t) <= -AxTQx+tx(t) e--Xt+Pt, (x, t)6R"R+;
(2) Ita(x,x,t)ll<=(t)e-"t+’, (x,t)gg+;
(3) At <- at + almost surely for all >= 0 and lim inft_, At/t >= r almost surely.

Then the solution of (2.1) satisfies
1

lim sup-log lqtl<---(Acr-p)/2 a.s.

We now let N (N,..., N), => 0, be an m-dimensional continuous martin-
gale such that No- 0 and

{N, NJ), K(s) dA,, >-_ O, 1 <- i,j <- m,

where K, 1 <= i, j <= m are all predictable processes. Let f(x, t)= QfiJ(x, t))nm, > 0
be a predictable matrix for each x R". Consider the stochastic differential equation

(3.1) qt=x+ f(qs,S) dN+ b(q,s) dAs, t>-O.
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Assume the equation satisfies the condition of existence and uniqueness of the solution
(cf. Mao and Wu [11]). Note that (3.1) is equivalent to (2.1) if we set

F(x, t) f(x, s) dNs + b(x, s) dAs, >-_ O.

Therefore, we have the following corollary.
COROLLARY 3.2. Assume there exist afunction V C2(Rn), apolynomial tx( t)( >- O)

with positive coefficients, positive constants p, A, a, , or, and a nonnegative constant p
such that

020 1
V(x)fil(x, t)Kik(t)fJk(x, t)(2) ,2=, x/V(x)b’(x, t) +- ,,j:, /,k=l OX OXj

N -A V(x) + (t) e-"’+’, (x, t) e R x R+

(3) V(x) V(x)f"(x, t)K’(t)f(x, t)
i,j=l /,k=l OXj

N (t) e-’+’ V(x), (x, t) e R x R+
(4) A, N at + fl almost surely for all 0 and lim inf, A,/ almost surely.

en the solution of (3.1) satisfies
1

limsuplogl,[N-(A-p)/p a.s.

More specially, we consider It6’s equation

(3.2) ,=x+ f(,s) dW+ b(,,s) ds, teO,

where W is an m-dimensional Wiener process. We then have Corollary 3.3.
COROLLARY 3.3. Assume there exist afunction V C2(R"), apolynomial( t)( O)

with positive coefficients, and constants p > O, A > 0, and p 0 such that
(1) Ix[" V(x), x e R"

02o 1
2 V(x)f’(x, t)f(x, t)(2) ,=, V(x)b(x, t)+ ,= = ox, ox

N-AV(x)+(t)e-’+’, (x,t)eR"xR+;

(3) 2
o

V(x)
o V(x)f,(x, t)f(x, t)

.=1 k=l OX OX
N (t) e-’+ot V(x), (x, t) R" x R+.

en the solution of (3.2) satisfies
1

lim sup log [,[ N -(A p)/p a.s.

4. The bound for Lyapunov exponents of stochastic flows. In this section we will
apply our results to study the bound for Lyapunov exponents of stochastic flows. For
the readers’ convenience, let us first give the definition of the stochastic flow of
homomorphisms and the Brownian flow (cf. Kunita [9]).

(1) Ixl V(x), x Rn;
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Let ps.,(x), s, R/, x R be a continuous Rn-valued random field defined on
the probability space (, , P). It is called a stochastic flow of homomorphisms if it
satisfies the following properties:

(1) Ps, Pt, P,,t for any s, t, u almost surely where denotes the composition
of maps;

(2) .- identity map for any s almost surely;
(3) .t :R -> R is an onto homomorphism for any s, almost surely.

It is called a Brownian flow if it still satisfies that
(4) For any 0 <= to < tl <" < tk, qt,.t,+,, 0, , k- 1 are independent.

If ., is only defined on 0 <= s <= <, we call it a forward stochasticflow ofhomomorph.
isms or forward Brownian flow, respectively.

We shall assume the following conditions.

(A1) q,.,(x) is square integrable for each s, t, x, and there exist the infinitesimal
mean b(x, t) and the infinitesimal covariance a(x, y, t) for any t, x, y:

1
b(x, t):= hli_om+ E{qt.t+h(X) X},

(A2)

1
a(x, y, t):= Jom+ E{(qOt,t+h(X --X)(qgt,t+h(y)-- y)T}.

There exists a positive constant K such that

[E{qs,t(x)- xII-<- K(1 / Ixl)lt- sl,

]E {(s.,(x) x)(s,,(y) y) r}[ N K (1 + Ixl)(1 + lyl)l sl
for any s, t, x, y.

(A3) a(x,y, t) and b(x, t) are continuous in (x,y, t) and (x, t), respectively.
Moreover, they are locally 6-H61der continuous (>0): for any compact
subset C of R n, there exists a positive constant Kc such that

Ila(x, x, t)-Za(x, y, t)+ a(y, y, t)[[-<_ Kc[x- yl,
[b(x, t) b(y, t)l <= Klx y[

hold for any x, y C, and _>-0.

We shall need the following theorem due to Kunita [9, Thm. 4.2.8].
TIORZM 4.1 (Kunita [9]). Let ps, t(x), 0 <- s <- < ee, x R be aforward Brownian

flow. Suppose that the pair of infinitesimal covariance and infinitesimal mean
(a(x, y, t), b(x, t)) satisfies (A1)-(A3). Then there exists a Brownian motion F(x, t) such
that the flow is governed by Ira’s stochastic differential equation based on F(x, t), i.e.,

Is’qVs,t(X)=X+ F(Ps,r(x),dr) a.s. onO<=s<-t<oe, xeR".

Furthermore, the mean and the covariance of F(x, t) coincide with

b(x, r) dr and a(x, y, r) dr,

respectively.
We now have the following theorem immediately which shows we can use the

Lyapunov function to estimate the Lyapunov exponent of the stochastic flow.
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THEOREM 4.2. Let Cs,,(x), 0 <- s <-- < , x R be aforward Brownianflow. Suppose
that the pair ofinfinitesimal covariance and infinitesimal mean a (x, y, t), b (x, t) satisfies
(A1)-(A3). Assume furthermore that there exist a function V C2(Rn), a polynomial
tx( t)( >- O) with positive coefficients, and constants p > 0, A > 0, and p >- 0 such that

(1) [xl p <- V(x), x g";
(2) LV(x) <-_ -h V(x) + Ix(t) e-At+’, (x, t) g x R+

0 0 ij(3) _----V(x)V(x)a (x,x.t)<-_ix(t)e-at+’V(x), (x,t)6R xR+.
i,j= OXi OXj

Then the flow satisfies
1

limsuploglqs.t(x)l<--_-(h-p)/p a.s.

for any s >= 0 and x R.
For a stochastic flow of homomorphisms we can have the similar result, and we

leave the details to the readers.

5. Examples. In this section we shall give some simple examples to illustrate our
results.

Example 5.1. Let w(.) be a one-dimensional Wiener process. Consider an It6
equation

(5.1) dx(t)=-h(2-sin t)x(t) dt+p(t) e-vt dw(t) on t->0,

where h, y are positive constants and p(t) is a polynomial of t. Define a Lyapunov
function V(x)= x2. We have

LV(x)=-2h(2-sin t)x2+p(t)2 e-2’t -_<-2(h ^ y)V(x)+p(t) e-2(^y)t

and

V(x)p(t) e-V 4p(t)- e-2(^vtV(x).
Hence, by Corollary 3.3, the solution of (5.1) satisfies

1
lim sup log Ix(t)[ <- -(h ^ y) a.s.

t-’-

Example 5.2. We still let w(. be a one-dimensional Wiener process. Consider a
linear stochastic oscillator

(5.2) 5i(t)+3:(t)+2x(t)=p(t) e-tvi,(t) on t>=0,

where p(t) is a polynomial of and p is a positive constant. Set y=, and the
corresponding It6 stochastic differential equation is

d
y(t) -2 -3 y(t)

at+
p(t) e

Define a Lyapunov function V(x, y) 8x2 + 4xy + 2y2. We then have
(1) V(x,y)>-x2+y2,
(2) LV(x, y)=-8x--4xy-8y+p(t) e-’<-_-V(x, y)+p(t)2 e-2’,
(3) Vy(x, y)2p(t) e-’<=4p(t) e-2tV(x, y).

Hence, by Corollary 3.3, the solution of (5.2) satisfies

1
limsup-log[x2(t)+ y2(t)]<--(l ^20) a.s.
t-o
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Example 5.3. We finally consider a two-dimensional stochastic differential
equation

(5.3) ot x + F(os, ds),

where F(x, t) is a continuous C-semimartingale with spatial parameter x. Suppose
F(x, t) has the characteristic (a(x, y, t), b(x, t), At) such that -< A, -< 2t for all => 0 and

b(x,t)=[xl-2x21 a(x,x,t)=t2e_2, [ sin2 Xl, sinxlsin(xl+x2)]3Xl-4xJ’ sin Xl sin (xl-x), sin (xl-x2)

Using a Lyapunov function

V(x) (13x2- 14x,x2 + 4x)
we have

(1) V(x) >-Ixl2,
(2) LV(x)<-1/2(-16x+ 14XlX-4x)+p(t) e-’ <--V(x)+p(t) e-2’,

(3) 0__ V(x) V(x)aO(x, x, t) <-p(t) e-’
j= Oxi Oxj

where p(t) is a polynomial of t. Thus, by Theorem 2.1, the solution of (5.3) satisfies

1 1
lim sup log ]q,l--< a.s.

Acknowledgments. I thank Professors K. D. Elworthy, L. Markus, and J. Zabczyk
for their helpful discussions. Thanks are also due to the referee for his useful suggestions.
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GLOBAL STABILIZATION OF PARTIALLY LINEAR COMPOSITE
SYSTEMS*

A. SABERIt, P. V. KOKOTOVIC, AND H. J. SUSSMANN

Abstract. A linear stabilizable, nonlinear asymptotically stable, cascade system is globally stabilizable
by smooth dynamic state feedback if (a) the linear subsystem is right invertible and weakly minimum phase,
and, (b) the only linear variables entering the nonlinear subsystem are the output and the zero dynamics
corresponding to this output. Both of these conditions are coordinate-free and there is freedom of choice
for the linear output variable. This result generalizes several earlier sufficient conditions for stabilizability.
Moreover, the weak minimum-phase condition for the linear subsystem cannot be relaxed unless a growth
restriction is imposed on the nonlinear subsystem.

Key words, composite systems, stabilization, Lyapunov function, nonlinear control

AMS(MOS) subject classifications. 93C10, 93C15, 93A20

1. Introduction. In this paper we propose new sufficient conditions for global
stabilization, by means of state feedback, of compositepartially linear systems in the form

(1.1a) 2 f(x, ), x R ’, R q,
(1.1b) =A+Bu,
where f(x, ) is a smooth (i.e., C) function and A and B are constant matrices.
Throughout the paper it is assumed that:

(HI) The pair (A, B) is stabilizable.

(H2) The equilibrium x 0 of 2 =f(x, 0) is globally asymptotically stable (GAS)
and a smooth Lyapunov function V(x)> O, x 0; V(0)=0, is known such
that V(x) as Ilxl[-,

and

(1.2) V V(x)f(x, 0) < 0 for all x 0.

As a class of nonlinear composite systems [13], [19], [26], the partially linear
systems (1.1) have become prominent because of recent results on partial feedback
linearization, where 2 =f(x, 0) is referred to as the "nonlinear zero dynamics" [2]-[4],
[9], 12]. It would appear that when x 0 is globally asymptotically stable as assumed
by (H2), then the global stabilization of the whole system should not be difficult.
Simple examples show that this is not so. Disturbed by an exponentially decaying
input :(t), the nonlinear system (1.1a) can become unstable, or even worse: its state
may escape to infinity in finite time! One way to circumvent this difficulty is to restrict
f(x, ) by a global linear growth condition and then to apply the classical "total
stability" theorems [7]. A criticism of the global linear growth assumption is that it
does not let nonlinear systems be "nonlinear enough." It excludes simple chemical
kinetics, mechanical phenomena such as Coriolis forces, etc.
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This paper continues the efforts of several recent studies [5], 10], [25], [22], 11],
which do not make a linear growth assumption. Instead of constraining the nonlinear
nature of f(x, ), our approach characterizes its dependence on : by the expression

(1.3) f(x, )-f(x, 0)= G(x,

Since for a given f(x, ) the choice of G and C is not unique, we seek a smooth n x p
matrix function G(x, ) and a constant p x q matrix C to encompass the largest class
of linear systems

(1.4a) =A+Bu, Rq, uRm,
(1.4b) y= C, y Rp.

Our main result is a stable right invertibility (SRI) condition imposed on (1.4).
This condition encompasses a much broader class of systems than the feedback positive
real (FPR) condition of 11]. When the linear subsystem is not SRI, our second result
imposes a restriction on the nonlinear subsystem, which is less severe than the linear
growth condition.

The meaning of (HI) and (H2) is that each subsystem, taken isolated, is globally
stable (or stabilizable). This setting is suitable for the construction of composite
Lyapunov functions [13], 19], which we use to broaden the class of linear subsystems
(1.4). In 2 we start with a sum-composite Lyapunov function, leading to the class of
stable invertible systems of relative degree one (SI). This class includes the FPR
systems of 11 ], and is broadened by the assumption that the zero dynamics are stable
(’weak minimum phase"), rather than asymptotically stable ("minimum phase"). The
main result of 3, and of the whole paper, removes the relative degree assumption
and requires only that the linear subsystem (1.4) be stable right invertible. The analysis
leading to this result provides new insights into linear system properties, revealed by
the special coordinate basis (s.c.b.) of [17] and [23], which is our key analytical tool.
As shown in 4, the assumptions of the main theorem cannot be weakened unless
some additional restrictions are imposed on f(x, ). So, when the linear subsystem
(1.4) is not SRI and the results of 2 and 3 are not applicable, then 4 introduces
a constraint on the nonlinear subsystem.

2. The stabilization procedure in the case SI. The problem is to find a smooth
feedback control

(2.1) u K+ v(x, ),

which guarantees the GAS property for the equilibrium (x, ) (0, 0) of the feedback
system

(2.2a) : f(x, O)+ G(x, )C,

(2.2b) =(A+BK)+Bv(x,).

This system is obtained by applying the control (2.1) to the system (1.1) and taking
into account the representation (1.2) of f(x, ). The two subsystems clearly displayed
in (2.2) are

(2.3a) =f(x, 0),

(2.3b) (A + BK)& A,:.
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By (H2) a Lyapunov function for the nonlinear subsystem (2.3a) is V(x), while (HI)
assures the existence of K such that Re 1(Ak)< 0. Hence, a Lyapunov function for
the linear subsystem (2.3b) can be chosen as scrP(, where P pr> 0 is such that

(2.4a) PAK +AP -Q <= O,

(2.4b) Q1/, An detectable.

Our approach is to use V(x) and scrPsc to form a composite Lyapunov function W(x,
for the whole system (2.2). The simplest choice is

(2.5) W(x, )= V(x) + Tp.

Its derivative for (2.2) is

(2.6) IiV(x, ,) V V(x)[T(x, O) + G(x, )C] -[rQ-2TpBv(x, )].

This expression is not informative because it contains the interconnection terms which
are sign indefinite. However, if G(x, ), C, P, and v(x, ) can be found such that the
interconnection terms in (2.6) are cancelled, then

(2.7) t/(x, sc) V V(x)f(x, O)- (TQ.

A sufficient condition for being able to achieve the cancellation is

(2.8) BrP=C.

Under this condition, the explicit form of v resulting in (2.7) is

(2.9) v(x, )=-1/217 V(x)G(x, so)] r.
Remark 1. Assuming, without loss of generality, that B and C are of full rank,

(2.8) implies the same number of inputs and outputs p m. This restriction will be
removed in 3.

PROPOSITION 1. Suppose there exists a K such that (2.4) and (2.8) are satisfied.
Then the equilibrium (x, )= (0, O) of the system (2.2) with this K and (2.9) is GAS.

Proof It is clear from (2.7) that 9(x, :) _-< 0 for all (x, ) and 9(x, sc) < 0 if x 0.
Moreover, W(x, )>= 0 for all x and : and equality holds if and only if (x, :)= (0, 0).
This establishes global stability of (x, sc) (0, 0), since W(x, ) oe as I[(x, sc)ll oe. To
establish the GAS of the (x, sc) (0, 0) it suffices to show that, if y: (x(t), :(t)) is
a complete trajectory of (2.2) along which I/’=0, then it follows that x(t)=-O and
(t) 0. To begin with, x(t) must be zero for all t, because "v;C(x, so) < 0 unless x 0.
Moreover, x(t) - 0 implies that v defined by (2.9) vanishes along 3’. Therefore, :(t)
is a solution of A/ and ff’(x, sc) =-(t)Q(t)=O for all t. By the detectability
assumption (2.4b) this implies so(t)----0 and, hence, (x, sc) (0, 0) is GAS.

The above construction is a variant of the cancellation procedure used in the
model reference adaptive control and goes back to [16] and [15].

With Proposition 1 the stabilization problem is reduced to that of the existence
of a K satisfying (2.4) and (2.8). In [11] this issue was addressed indirectly, via a
positive real property of (C, A:, B). Here we will deal directly with the properties of
the linear subsystem (1.4) induced by (2.4) and (2.8), such as invertibility, relative
degree, and zero dynamics. Let us recall their definitions.

Invertibility. The linear system (1.4) is said to be invertible if, for any Cq function
Yref(t), where q is an integer, there exist u(t) and (0) such that y(t)= Yref(t) for all
te [0, ).
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Relative degree. When (1.4) is "square," p m, it is said to have scalar relative
degree r if its first r- 1 Markov parameters are zero, CAiB 0 for 0, 1,. ., r-2,
and CAr-IB is nonsingular. Equivalently, the system (1.4) has relative degree r if it
is invertible and all of its infinite zeros are of order r.

Zero dynamics. Let V* be the supremal (A, B)-invariant subspace in Ker C, and
let R* be the supremal (A, B)-controllability subspace in Ker C. The solutions (t)
of (1.4) restricted for all [0, c] to V*/R* are called the zero dynamics of (1.4).
When (1.4) is invertible its zero dynamics are equivalently defined as the solutions
(t) satisfying y(t) 0 for all t.

Weak minimumphase. An invertible linear system (1.4) is said to be weak minimum
phase, or, equivalently, stable invertible (SI), if its zero dynamics are stable in the
sense of Lyapunov.

We are now in the position to completely characterize the class of linear systems
(1.4) specified by (2.4) and (2.8).

PROPOSITION 2. The following two statements are equivalent:
(a) For the system (1.4) there exists K satisfying (2.4) and (2.8).
(b) The system (1.4) is stabilizable, stable invertible and, moreover, its leading

Markov parameter CB is symmetric positive definite.
Proof (a)(b). We postmultiply (2.8) by B and verify that CB=BC>O.

Hence, (1.4) is invertible and has relative degree one. To prove the stable invertiblity
(weak minimum phase) property of (1.4) we assume, without loss of generality, that
(1.4) is in the special coordinate basis (s.c.b.)

(2.10a) o Ao:o + Al:l,

(2.10b) Do:o-k-O -at- CBu,

(2.10c) Y 1.
This s.c.b, has evolved from early works [20], [14], and [6] and its general form is
given in [17] and [23]. Noting that CB is nonsingular, the choice of u to achieve =0
for all is obvious from (2.10b). With this choice, :(0) 0 implies y(t) :l(t) -= 0 for
all [0, ), so that the zero dynamics of (2.10) are the solutions of

(2.11) o= aoo.
Hence, the eigenvalues of Ao are the invariant zeros of (2.10). A simple calculation
reveals an important property induced by the cancellation condition (2.8). Under this
condition, P for the system (2.10) is block diagonal, P =diag (Po, P1), where Po and
P are positive-definite matrices of dimensions (q- rn) x (q- rn) and rn m, respec-
tively. Because of this property and using any K (Ko, K) appropriately partitioned,
the Q matrix in (2.4) is of the form

(2.12) Q (PoA+ :).
By assumption (a) this matrix is positive semidefinite, which implies (see [1]) that

(2.13) PoAo+ A Po <= O.

Thus the zero dynamics are stable, which completes the proof of (a) (b).
(b) (a) Since the system is invertible and has relative degree one, we can represent

it by (2.10). Moreover, the stable-invertibility assumption implies that the zero dynamics
system (2.11) is stable. Without loss of generality we now let Ao diag (Ao, Ao2), where

(2.14) Re A (A0) < 0, Re A (Ao2) 0, and Ao2 + A2 O.
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Then the system (2.10) is rewritten as

(2.15a) Ol-- AolOl q-

(2.15b o2 Ao2:o2 + A1_:1,

(2.15c) 1 Dol ScOl + Do2:o2 % D11 + CBu,

(2.15d) Y :1.
The Hurwitz property of Aol allows us to define Pol PI > 0 as the solution of

(2.16) PolAol + A’I Pol -L

To prove the existence of K satisfying (2.4) and (2.8) we make a particular choice of
K (Kol Ko2, K1)."

(2.17) T -1K =-[(CB)-IDol +AllPol, (CB) Do+A, (CB)-ID1 +1/2I].
For this choice of K, the matrix An ,for (2.15) is

(2.18)
Aol 0 All

At( 0 Ao2 A12 /"
-(CB A Pol -( CB A -1/2CB]

The substitution of this A/ and P diag [Pol,/, (CB)-1] into (2.4a) and (2.8) proves
that they satisfy (2.4a) and (2.8) with Q=diag (/, 0, I). To prove that (2.4b) is also
satisfied we use Q1/2= (d o ) and test the observability of the pair (Q1/2, Au,). The
stabilizability of (A, B), assumption (HI), implies the controllability of (Ao2, A12),
and, hence, the matrix [sI-Ao2, A12] is full rank for all complex s. It follows that

[ 0 ](2.19) rank
I_sI AI

q for all complex s.

Thus (Q1/2, AK) is observable and (2.4b) is satisfied.
Applying Propositions 1 and 2 to our stabilization problem we summarize the

results of this section as follows.
THEOREM 1. Suppose thatfor the composite system (1.1), withfrepresented by (1.2),

(HI) and (H2) hold, and the linear subsystem (1.4) is invertible with relative degree one
and weakly minimum phase (SI1). Then there exists a feedback law such that the
equilibrium (x, )= (0, O) of the closed-loop system (2.2) is GAS. A particular form of
this feedback law is (2.1) with v(x, ) given by (2.9) and K given by (2.17).

Proof In the (SI1) systems the matrix CB is nonsingular, while in Proposition 2
it is assumed that CB is symmetric positive definite. However, it follows from (2.10b)
that, with a static precompensator fi CB)-I u, both Propositions 1 and 2 are applicable
to any (SI1) system. Alternatively, the same effect can be achieved with the postcom-
pensator .9 (CB)-ly.

A question raised by the following example is whether the weak minimum-phase
condition required in Theorem 1 is in some sense necessary.

Example 1. For c2 > 0 the linear subsystem in

(2.20a) 2-- --X3- x3y, ’1 2, ’2
(2.20b) y Cl ’- C22

is invertible with relative degree one, and (H1), (H2) are satisfied. For cl _-> 0 the weak
minimum-phase assumption is satisfied and, by Theorem 1, the system (2.20) is globally
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asymptotically stabilizable. What if the weak minimum-phase condition of Theorem
1 is not satisfied, that is, cl < 0? Then, as shown in [11], for all initial states (Xo, sol0, :2o)
such that

C1(2.21) (1 c:ao)X>
2C2

the system (2.19) fails to be asymptotically controllable to zero and therefore fails to
be smoothly stabilizable.

We will return to this issue in 4 and show that the weak minimum-phase condition
is necessary in the sense that, in general, it cannot be weakened without a further
restriction on f(x, ).

3. The stabilization procedure in the case SRI. The first generalization of Theorem
1 and, at the same time, a step toward our main result, is a global stabilization condition
for the system

(3.1a) f(x, O)+ G(x, o, ), x

(3.1b) o Aoo+AI, o Rq,

(3.1C) 1-" 2, i 6 R", i= 1," ", r,

(3.1d) r- :r, : Rq, q qo+ rm,

(3.1e) r=ur, y=, urRn, yR".

The linear part of this system is in the form to which every invertible relative degree
r (Sir) system (1.4) can be transformed using first the s.c.b, of [17], [23], and [24] and
then a feedback transformation u =(CA-B)-(Fx +u), with an appropriate F. The
zero dynamics of this linear system are defined by (3.1b) with :1 =0, and the weak
minimum phase property (Sir) implies that they are stable. To simplify notation, we
assume that Ao does not have an asymptotically stable part, i.e., we let

(3.2) aor+Ao=0.
There is no loss of generality here because if some of the linear zero dynamics are
asymptotically stable, we simply incorporate them in the nonlinear subsystem (3.1a)
with an obvious redefinition of x, f, and (3. However, our-next assumption, already
satisfied by the special form of (3.1a), is essential.
(H3) In (1.1) the dependence off(x, sc) on sc is such that (1.3) has the form

(3.3) f(x, )-f(x, O)= (3(x, o, ),
that is, G is allowed to depend only on the output y : and the linear zero
dynamics sCo induced by this output.

This assumption is a structural characterization of the linear/nonlinear intercon-
nection (1.3). A choice of y Cx 1 uniquely specifies sCo via its s.c.b. Then (3.3) may
or may not be satisfied even when (1.3) is satisfied. Let us illustrate this point.

Example 2. For the system

(3.4)

the choice of G and C in (3.3) depends on c. If a =>0, then the choice y= ascl + so2
results in a linear stable invertible system with r 1 so that Theorem 1 applies. If c < 0
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then the same linear system is nonminimum phase and Theorem 1 does not apply. So
we must try the second choice y 1, resulting in a linear system with r 2 and trivially
minimum phase, because it has no finite zeros. However, now the connection structure
condition (H3) is not satisfied because G= (a:l+ se2)x depends not only on :1, but
also on s2. In Example 3 we will discuss an important implication of this violation of
(H3).

Returning to (3.1) let us recall from Theorem 1 and (2.17) that for the case r= 1
a stabilizing control for (3.1) with (3.2) is

(3.5) Ul(X, o 1)=-Ao
With these preliminaries out of the way, the stabilization condition or the case of
relative degree r is obtained using the chain of integrators result [11], [10], [25], [22].

PROPOSITION 3. Suppose that the composite system (1) satisfies (HI) and (H2)
and that the linear subsystem (1.4) is invertible with relative degree r and weakly minimum
phase (Sir). If in addition, the connection-structure condition (H3) is satisfied, then this
composite system is globally asymptotically stabilizable at (x, ) (0, O) by a smooth state

feedback control Furthermore, the expressions for a stabilizing control and for a corre-
sponding Lyapunov function can be derived recursively.

Proof It is sufficient to prove this statement for the system (3.1). Let us start with
the case r= 2. From the first three equations (3.1a)-(3.1c) the result would be known
from Theorem 1, if . were the control variable Ul in (3.5). This suggests that sa be
modified as follows:

(3.6) 2" /’/1( x, 0, :1) q- 2, T--[:0T, 1T, 2T]
The time derivative of Ul along the solutions of (3.1) can be evaluated explicitly as a
function of x and :. We denote it by

du
(3.7)

dt (3.1)
hi(x, ).

Then for r 2 the system (3.1) becomes

(3.8a)

(3.8b)

(3.8c)

(3.8d)

=f(x, 0)+ G(x, o, 1)1,

o AosCo + A11,

1 ’2 "[- /’/1( x, 0, 1),

2----hi(x, o, 1) -f" u2,

For this system we use the Lyapunov function

(3.9) W2(x v(x) / II ll 2.

Its time derivative for (3.8) is

(3.10)

An obvious choice of u that makes I)_-< 0 is

(3.11) u2(x, )-- -1 -2A hl(X ).
The remaining step of the proof that (x, o, :1, :2) (0, 0, 0, 0) is the GAS equilibrium
of (3.8) is, as in Proposition 2, via an observability property which is guaranteed by
the c?ntrollability of (Ao, A1). The return to the original coordinates via (3.6) shows
that :2 - 0 implies 2 ’’-> 0, which completes the proof for r 2.
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To proceed to the case r 3 we note that, if 3 were the control variable, the result
(3.11) for r= 2 would apply, which in turn suggests the modification

(3.12) 3- u2(x, 0, 1, 2) + 3
where u is expressed using : rather than 2. Adding the term I111 = to w= the new
Lyapunov function W3 is formed. Requiring that if’3 -< 0 we obtain a stabilizing u3(x, -)
for the case r 3. It is clear that this procedure can be continued for any r, which
completes the proof. [3

Once again, an example is used to illustrate the closeness of the sufficient condition
above to being also necessary.

Example 3. Let us reexamine the system (3.4) in Example 2 in the case when
a < 0 and y . In this case r 2, but the connection structure (H3) is violated and
Proposition 3 does not apply. A detailed calculation in [11] shows that in this case
there are initial conditions {x(0), :(0), :2(0)} for which the solutions of (3.4) are either
unbounded as t- oe or escape to infinity in finite time. It follows that for the system
(3.4) the assumption (H3) cannot be relaxed to allow G to depend on both : and :2.

We are now prepared to remove the assumption that the linear system is "square,"
that is, m p, and with a scalar relative degree. In the next step we allow m->_ p and
require that the linear subsystem be right invertible and weakly minimum phase. The
definitions of right invertibility and weak minimum phase are the same as in 2 except
that now we have m->_ p. The problem of converting a right invertible system into an
invertible one with scalar relative degree, which has been examined during the last
two decades (e.g., [27], [21]), involves dynamic decoupling via precompensator and
static feedback. In the following proposition, this conversion is achieved with the
preservation of the weak minimum phase property using the results of [23] and [24].

PROPOSITION 4. Consider the system (1.4) with m >-p. Assume that (1.4) is right
invertible and let H(s) be its transferfunction matrix. Then there exists a precompensator
u C(s) a, R P, such that the system ISI (s) a__ H(s) C (s) has the following properties"

(i) H(s) has relative degree r.
(ii) Invariant zeros ofH(s) invariant zeros ofH(s) t.J A,

where A denotes the set of additional invariant zeros induced by the compensator C(s)
and arbitrarily assignable.

Proof In the proof we construct two precompensators. The task of the first
precompensator u= Cl(s)t is to "square down" H(s)A H(s)Cl(s) subject to the
requirement that the "squared" system satisfies (ii). The task of the second precom-
pensator C2(s) is that the compensatesystem H(s) be of relative degree r, but without
changing _the finite-zero structure of H(s). In other words, we require that invariant
zeros of H(s) equal invariant zeros of H(s).

As the de,sign of Cl(S) was developed in [24], the remaining task is to design
C2(s). Since H(s) is invertible, it can be represented in the s.c.b, of [23] as follows"

(3.12a)

(3.12b)

(3.12c)
(3.12d)
where F1, F2 R are nonsingular matrices and

o A0sCo + A137,

aii+ Bi(i+ Di’) + Li, i= 1, r,
j=0 /

fi=C,,, 37,R ’, r=(,...,f), fi=Fly,

a=(a, .,a),

(3.13) Ai--(0 I(’-l)qi) Bi=( 0 )o o Zq, c,=(Zqi, O).
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This s.c.b, displays the zero structure of the system"

Invariant zeros of/(s) eigenvalues of Ao,
Zero dynamics of H(s)- the solutions of o-AosCo,
i-order of an infinite zero, iqi- number of infinite zeros of order i.

Now, to design C2(s) that makes H(s) of relative degree r we simply add an appropriate
number of integrators to each input tii. Hence we let

1 (__1/)(3.14) aT=(r, tf) ffi= r_---7Oi, ff=C2(s)tT, C(s)--adiag
S \S -/

and obtain that (s)F2(s) has relative degree r and its invariant zeros are the
invariant zeros of/(s). So the second compensator is C(s)

Applying Propositions 3 and 4 to our stabilization problem we formulate the main
result of this paper as follows.

THEOREM 2. If the assumptions (H1)-(H3) hold, and the linear subsystem (1.4) is
right invertible and weakly minimum phase, then the composite system (1.1) is globally
asymptotically stabilizable at (x, )- (0, 0) by dynamic state feedback.

4. Restrictions on the nonlinear part. An assumption made throughout this paper
is that the full state of the composite system (1.1) is available for feedback. Despite
this assumption, our stabilizability conditions impose restrictions on the input-output
structure of the linear subsystem. In addition to the connection structure and right
invertibility assumptions, the key restriction is that the linear subsystem be weakly
minimum phase. The analysis of Example 1 has given us a hint that this key restriction
is in some sense necessary. Pursuing this hint we now prove that, given a strictly
nonminimum phase linear subsystem (1.4), a nonlinear subsystem can be found such
that the cascade (1.1) of these two subsystems, satisfying (H1)-(H3), is not globally
stabilizable. Our Theorem 3 reveals that the underlying instability mechanism is an
interplay of unstable zero dynamics with rapidly growing nonlinear terms, such as x3.
To limit this interplay, in Proposition 5 we introduce a specific growth condition which
is less restrictive than a global Lipshitz condition.

THEOREM 3. Consider the composite system satisfying assumption (H1)-(H3)"

(4.1a) : f(x, O)/ G(x, o, Y)Y, x g n,
(4.1b) A+ Bu, g q, u g m,
(4.1c) y C, y Rp,

and let the dynamics of (4.1b), (4.1c) associated with its invariant zeros be represented by

(4.2) o AosCo + Aly, o Rq.

When (4.1b), (4.1c) is strictly nonminimum phase, i.e., some of the eigenvalues of Ao
have positive real parts, then there existf(x, O) and G(x, o, Y) satisfying (H2) and (H3)
such that the composite system (4.1) is not globally stabilizable.

Proof Without loss of generality we assume that all the eigenvalues of Ao are
with positive real parts Re A(Ao)> 0. (If only some of them are, then we let Ao
diag (Aol, Ao), with Re A (Ao2)> 0 and modify the proof to apply to the subsystems
with A02 instead of with Ao.) Using the positive-definite Po satisfying

(4.3) PoAo+APo 2I,



1500 A. SABERI, P. V. KOKOTOVIC AND H. J. SUSSMANN

we evaluate the derivative of Vo scPosCo along the trajectories of (4.2)"

go 211o11 + 2scPoA,y + IlPoA,yll 2- IIPoA,yl] 2

(4.4) => I1:oll 2- [[PoA,yll

>- , Vo- =llayll
where /3= 1/Amax(Po) /2= IIPoll . We are now in the position to pick a nonlinear
subsystem to complete the proof. Consider the nonlinear subsystem defined by

(4.5) f(x, O)= -x3, G(x, o, y)= x3yTAA,
which satisfies (H2), (H3) and is nontrivial because, in view of (H1), the pair (Ao, A1)
is completely controllable and, hence, A1 # 0. Integrating the nonlinear subsystem

(4.6) : --x + 2y]lAyll2x

we obtain

(4.7) [xto) Io ]-2x2(t) ,,-__2;,<+ t- 2[IA,y(s)[I 2 ds +/-
O(t)

Clearly, 0(0)>0 and O(t) must remain nonnegative for all > 0 or else x(t) would
escape to infinity. Thus, using (4.4) a necesary condition for x(t) to remain bounded
is

1
(4.8) 2x2(0)+ + Qo(S) fla Vo(s)) ds 0

and, hence,

(4.9) Vo(t)>=, Vo(s)-
1

ds+ Vo(0)--------2x(0)"

Finally, applying a version of Gronwall’s lemma, (4.9) implies that

1 ( 1 1 ) eta,,"(4.10) Vo(t) ->1+ Vo(O) 2x2(0) 1
Now, from Vo(0)= sr(0)PosC(0) we observe that, for any given x(0), there exists so(0)
such that the factor multiplying et,’ is positive and Vo(t) scor(t)Poo(t) grows exponen-
tially. This completes the proof, because 0(t)>= 0, a necessary condition for bounded-
ness of x(t), implies that o(t) grows unbounded as -+ oo. For sCo(t) to remain bounded,
0(t) must become negative at some finite time at which x(t) escapes to infinity. [3

While Theorem 3 shows the limits to stabilizability of the composite system caused
by the nonminimum phase property of its linear part, the above proof reveals the
underlying instability mechanism. The effort to stabilize the unstable linear zero
dynamics may destabilize the nonlinear subsystem through some rapidly growing
nonlinear connection terms. It is clear, therefore, that the class of nonlinear subsystems
which can be cascaded with linear nonminimum phase subsystem must be restricted
by restricting the growth of the connection terms. It turns out that, under one such
restriction, the feedback loop needs to be closed only around the linear subsystem.
With u K and v(x, sc) 0, the feedback system (2.2) becomes

(4.11a)

(4.11b)

=f(x, O)+ G(x, ) =f(x, ),

=(A+BK)=AK,
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where the decomposition off(x, ) in (4.11a) is always possible due to the smoothness
off(x, c). The assumption (H2) is now strengthened by requiring global exponential
stability (GES), rather than only global asymptotic stability of 2 =f(x, 0). Another
crucial restriction to be imposed is the following:

(H4) There exists a nondecreasing scalar function 7(llll)0, bounded for all
bounded , such that

(4.12) IIa(/, )ll (llll)llxll for all x, sc.
This assumption is much less restrictive than the linear growth condition of 18].

It includes, for example, the product nonlinearities such as G(x, ) -x.
PROPOSITION 5. Ifx =0 is the GES equilibrium of2 f(x, O) and (HI) and (H4)

hold, then the equilibrium (x, :)= (0, 0) of the composite feedback system (4.1) is GES
for every linear feedback u K such that Re A (A:) < 0.

Proof. In view of the GES assumption, the Lyapunov function V(x) defined in
(H2) has the following additional properties:

(4.13) lllxll = V(x) <- =llxll =, IIv V(x)ll--< 311xll,
(4.14) I?-< -aoV,
where Q is the derivative of V for 2 =f(x, 0) and ao, ’, o are some positive constants.
Taking the derivative of V for (4.11b) we obtain

(4.15) f’(x, t) V V(x)f(x, O) + 7 V(x)G(x, ( t))( t),

where any solution. :(t) of (4.11b) satisfies

(4.16) k_->l, a>0.

Taking into account (4.12), (4.13), (4.14), and (4.16) we obtain from (4.15)

(4.17) (z<--aoV+ [[(O)ll e

From this inequality it follows that V(x(t)) is bounded by

(4.18) V(x(t)) <= ko((O)) e-o’V(x(O)),
where ko(sC(0)) exp {(c3k/ oa)(kll :(0) II) (0) II}. This completes the proof of global
exponential stability of (4.11).

5. Conclusions. The two types of structure constraints imposed by the coordinate-
free stability condition of Theorem 2 are, first, the interconnection structure constraint
and, second, the linear stable right invertibility constraint. To examine the first con-
straint, consider a decomposition f(x, )=fo(x, )+ R(x, ) that is more general than
(3.3). A simple extension of the assumption (H2) is to require for =fo(x, ) that the
asymptotic stability property, guaranteed by V(x), be uniform in . Much more
fundamental is the question of whether an assumption about the interconnection
R(x, ), less restrictive than (H3), can be made. Once a linear subsystem output
y= C:= 1 is chosen, the assumption (H3) disallows R(x, ) to depend on linear
variables other than 1 and the zero dynamics o induced by the output 1. For linear
systems with relative degree two and higher, this restriction is a challenging research
topic. If, as our Example 3 suggests, the interconnection condition (H3) is in some
cases necessary, then the challenge is to delineate such cases, and to search for less
restrictive conditions for other classes of systems. In any event, the study of delicate
interconnection properties, initiated in [11] and in this paper, is a promising direction
for future research.
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The second condition, which restricts the linear subsystem to be right invertible
and weakly minimum phase, cannot be relaxed, without imposing some form of growth
restriction on the nonlinear subsystem, as shown in Theorem 3 and Proposition 5. A
direction in which the right invertibility condition can be generalized is to consider
that both subsystems in the cascade are nonlinear and the first one is right invertible
and globally minimum phase. The results of this paper combined with several nonlinear
invertibility results starting with [8], justify the conjecture that a nonlinear analogue
of Theorem 2 exists, at least for the minimum phase case.

Acknowledgment. Discussions with Alan Laub of the University of California at
Santa Barbara have contributed to the final form of the Proposition 2.
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